
Essential Software
Testing

A Use-Case Approach

© 2009 by Taylor & Francis Group, LLC

Essential Software
Testing

A Use-Case Approach

GREG FOURNIER

A N A U E R B A C H B O O K

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

© 2009 by Taylor & Francis Group, LLC

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-8981-3 (Softcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

© 2009 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.auerbach-publications.com

iii

TABLE OF CONTENTS

Dedication..xiv

Preface.. xv

Why this book is important... xvi
Who this book is for...xvii
How to use this book...xvii

Acknowledgments... xviii

Part One: Testing Essentially..1

Chapter 1: On Being A Tester...3

Testing Perceptions and Realities...4
Perceptions.. 4

Reality.. 4

Another testing approach to deal with reality... 5

Testing In an Agile Way.... But Not Agile Testing...................6
Being Agile and Proactive.. 6

Dealing With Governance.. 6

Chapter 2: Basic Concepts Boot Camp......................................9

The Real Basics...9
Black Box Testing... 9

White Box Testing.. 10

Unit Testing... 10

© 2009 by Taylor & Francis Group, LLC

iv

Functional Requirements.. 10

Non-Functional Requirements... 10

Stakeholder Needs... 11

Features... 11

Testing Concepts...12
Traceability.. 12

Coverage... 12

Varieties of Essential Requirements.......................................13
Traditional Requirements... 13

Use Cases.. 14

User Stories... 15

Safety Critical Requirements.. 16

High Level Requirements... 16

Low Level Requirements.. 16

Derived Requirements.. 17

Organizing Your Testing..17
Test Plans... 17

Test Cases.. 18

Test Procedures... 18

Test Scripts.. 18

Chapter 3: Examples From My Experience We’ll Work With		
..21

Experience 1: Rinkratz..21
The Testing Perspective... 22

Experience 2: The Conveyor System Project.........................22
The Testing Perspective... 25

© 2009 by Taylor & Francis Group, LLC

�

Experience 3: Aircraft Engine Monitoring System...............26
The Testing Perspective... 27

Chapter 4: What is Essential Testing?.....................................29

Testing The Right Things...30
Testing To The Right Level of Detail......................................32
Testing At The Right Time...34
Bad Tester...36

Chapter 5: Essential and Efficient Testing..............................39

The Idea of Agility..39
Agile Methodologies... 40

Applying Agile Methodologies to Testing... 40

Agile Testing..42
How Agile Folks See Agile Testing... 42

Essential Testing and Agile Testing..44
Apply Agility to Any Development Methodology............................... 44

How Essential Testing Addresses Agility... 45

Chapter 6: Being Essentially Agile..47

The Agility Basics..48
Understand What Needs To Be Done... 49

Know Your Environment.. 49

Communicate A Lot... 50

Expect Change.. 50

Be A Minimalist.. 51

© 2009 by Taylor & Francis Group, LLC

vi

Be Ready To Explain Yourself.. 51

Don’t Sleepwalk... 52

Encourage Feedback.. 52

Courage... 52

Respect... 53

Conclusion...53

Chapter 7: Build Testing Agility Into Any Project...............55

Agile Iterative..55
Applying Essential Testing to Agile Iterative.. 56

Heavy Iterative..56
Applying Essential Testing to Heavy Iterative...................................... 57

Heavy Waterfall...57
Applying Essential Testing to Heavy Waterfall..................................... 58

Safety Regulated Systems (for example FAA D0178b)........59
What Regulated Systems Are... 59

Certifying Regulated Systems.. 60

Applying Essential Testing to Regulated Systems................................ 60

Conclusion...63

Part Two: Fundamentals For Testing Success................65

Chapter 8: Requirements – Fundamentals For Testing
Success...67

Good Requirements..68
What Makes Up Good Requirements... 69

Not So Good Requirements...72

© 2009 by Taylor & Francis Group, LLC

vii

What To Do When Requirements Aren’t So Good................................ 73

Be Proactive: Anticipate Requirements.. 74

Chapter 9: Use Cases For Testers..77

Working With Use Cases..78
Use Case Diagrams.. 78

Use Case Specifications... 79

Why Use Use Cases.. 80

Use Cases In Essential Testing...81
Perceived Problems Testing Against Use Cases.................................... 82

Make ‘Em If You Aint Got ‘Em.. 83

Chapter 10: Building A Test Process That Fits.......................85

Test Process: Scoping..85
Stakeholder Needs and Perceptions... 85

Big vs. Small.. 87

Test Process: Inputs and Outputs...88
Requirements as Test Inputs... 88

Design Artifacts as Test Inputs... 89

Outputs.. 90

Shaping The Test Process...91
Understand Project Needs.. 91

Plan For The Minimum Artifact Set To Get By With............................ 92

Team Dynamics.. 93

Delivery... 94

Things To Worry About... 94

© 2009 by Taylor & Francis Group, LLC

viii

Part Three: The Successful Testing Process...................95

Chapter 11: Essential Test Planning...97

Test Planning Realities..97
Test Planning Tasks.. 99

Planning Starts With Understanding.....................................99
Understand What It Will Take To Prove The System......................... 100

Understand What Input Artifacts Are Available................................. 101

Understand What Can Be Done With Artifacts................................... 102

After Understanding, Analyze..105
Bag of Tricks.. 105

Patterns.. 106

Creating A Testing Solution...107
Bring The Pieces Together.. 108

Chapter 12: Grouping Requirements With Use Cases.......109

You Need Use Cases to Be Use Case Driven.......................109
�The Problems With Testing Individual Requirements, and Why Use
Cases Are The Solution... 110

�Example of Grouping Traditional Requirements With Use
Cases...112

The Business Context.. 112

Initial System View.. 113

Understanding The Requirements.......................................113
Essential Testing Analysis... 114

Supplied Software Requirements: A Sample....................................... 114

© 2009 by Taylor & Francis Group, LLC

ix

Requirements Sample Considered.. 116

Getting To Use Cases..117
A Use Case Example.. 118

Chapter 13: Extending Use Cases For Testing......................123

Some Definitions...123
Condition.. 124

Operational Variable.. 126

System State.. 126

Nominal Tests... 127

Off Nominal Tests.. 128

The Extended Use Case Test Design Pattern.......................128
Binder’s Premises:... 129

The Extended Use Case Solution... 129

Adapting the pattern... 130

The Essential Test Identification Approach.........................130
Identifying Operational Variables... 131

�Discovering Operational Variables Example Based on Open a Lane
Use Case For The Conveyor System,.. 131

Chapter 14: Identifying Tests..137

Overview..138
Organizing A Variant Table...139
Filling In A Variant Table...140
Conclusion...145

© 2009 by Taylor & Francis Group, LLC

�

Chapter 15: Essential Test Cases...147

Grouping Tests into Test Cases...148
An Example using the process:.. 149

Selecting Tests..150
Determine What Tests MUST Be Run... 151

Eliminate Unnecessary Tests.. 153

Drop Insignificant Tests.. 153

Defining Essential Test Cases..154
Filling In Test Cases I: The Test Definition Section............................. 154

Test Case Example 1:... 155

Comments On This Example... 158

Chapter 16: Adding Test Design To Your Test Case...........159

Test Environment..160
An Example of Test Environment.. 161

Test Participants... 162

Procedures: How A Test Will Be Performed........................162
Activity Diagrams For Testers.. 163

Describing the Test With An Activity Diagram................................... 165

An Example Of An Activity Diagram For a Test Case....................... 166

Chapter 17: Creating Tests...169

Harvesting Tests..169
Creating Test Procedures...170

Use Activity Diagrams to Create Test Procedures.............................. 171

Test Procedure Components... 171

© 2009 by Taylor & Francis Group, LLC

xi

The First Pass.. 172

The Final Pass... 173

�A Test Procedure Example for the Open Lane Basic Flow Positive Test
Test Case.. 174

Conclusion...178

Chapter 18: Executing Tests...179

Execution Problems and Their Solution..............................180
DOA Deliveries.. 180

Changing Stakeholder Perception... 181

Timing of Tests... 182

Special Considerations at Test Execution Time..................182
Executing Regression Tests... 182

Executing Manual and Automatic Tests... 184

Recording and Reporting Test Results.................................184
Test Recording.. 184

Test Reporting... 185

Knowing When to Stop Testing..186

Chapter 19 Essential Traceability...187

Traceability...188
Tracing Artifacts... 188

Coverage...190
Requirements Coverage.. 190

Design Coverage.. 190

Code Coverage... 191

Showing Coverage via Traces.. 191

© 2009 by Taylor & Francis Group, LLC

xii

Other Things To Trace... 193

Traceability In Practice...194
A Requirements Perspective.. 194

The Impact of Change... 195

�Problems With Traceability - And Some Suggested
Solutions...197

What Really Needs To Be Traced?... 198

Who Will Do The Tracing And When... 199

Whether/What Tools To Use In Managing Traceability.................... 200

Conclusion...202

Chapter 20: It All Comes Together Like This......................203

Situation.. 203

First steps.. 204

Test Planning.. 211

Lay out the test process... 212

Requirements help and Use Cases creation... 217

Identify tests by Use Case... 219

Low Level Requirements delivered.. 221

Requirements Baselined for 2nd time... 222

Design tests... 223

Develop tests.. 224

Execute Tests... 224

Coverage analysis.. 225

Code Inspections.. 225

Create white box tests... 225

Refactoring Tests.. 225

© 2009 by Taylor & Francis Group, LLC

xiii

Final build delivered... 226

Final coverage analysis... 227

Traceability.. 227

Follow Up.. 228

Synopsis... 228

Chapter 21: Conclusion..231

Appendix A..233

Additional Information for Top Notch Conveyor System......
..233

Technical explanation of a typical conveyor system..........233
Appendix B Examples..237

Variant Table example for Open a Lane Basic Flow.............237
Example of Multiple Variant Tables for a Single Use Case

Flow..240
Example of a Test Procedure For a Manual GUI Test........244

Test Environment Set Up.. 245

Appendix C Templates...247

A Test Case Template... 247

A Test Procedure Template... 250

© 2009 by Taylor & Francis Group, LLC

xiv

DEDICATION

This book is dedicated to the memory of my father, Lionel,
who I think about every day.

© 2009 by Taylor & Francis Group, LLC

xv

PREFACE

Let’s face it.

The formal part of software testing is a bore and a necessary
evil at best.

At least that is what most people in software development
will tell you. Testers are on projects to point out mistakes.
Who wants to do that?

Well that is a perception, and this book isn’t going to change
it.

What this book will do is skip the ceremony and present
testing concepts, tying them together in a sequential and
straightforward fashion. At the same time, war stories will
be interjected to spice things up a bit. The book will describe
testing methods and techniques in a common sense manner
that is easy to understand.

I want to communicate how to determine what to test and
how to test it, how to select proper tests to match the plan,
techniques to build and trace tests, and finally how to conduct
and record tests.

I know, this all sounds simple, but things get convoluted in
the testing world.

So, before I get into some of the cool details of the book and
who it is written for, let’s talk about what you won’t find in
it.

First, you won’t find much talk about how important testing
is. You already know that. I don’t want to waste your time
spewing a bunch of hot air about how smart it is to test. I
would rather talk about when it is important to test.

© 2009 by Taylor & Francis Group, LLC

xvi

I won’t spend time talking about how hard testing can be.
Instead I’ll show ways to make it simple.

Finally, this book won’t dig too deep into implementation
specific testing. There is plenty of material out there that
explains OO testing techniques, embedded software testing,
tool use, etc.

Instead, I’ll get you to the point where you can implement
your project specific testing solution. I’ll focus on:

– fitting testing activities into any process. This isn’t a one size
fits all thing. Warning – there’s some thinking involved!

– testing in an agile manner rather than testing within an
agile process - a big difference. The agile word is overused,
but I’m going to use it to mean being as lean and mean as a
given project and environment will allow.

– important testing concepts to lay the groundwork for the
rest of the book.

– test planning and a simple test process that can be adjusted
to fit most projects.

– specific techniques to handle the pieces of the process
including understanding requirements, identifying potential
tests, selecting and building tests, tracing artifacts, and
executing tests.

– pulling everything together with a real world example.

Why this book is important
I’ve gotten sick and tired of hearing how hard testing is and
how careful one has to be. There’s a lot written on testing, but
you have to really dig for practical help.

I haven’t read anything that hits on the important activities
in a clear and concise manner. This book attempts to fill that
void.

© 2009 by Taylor & Francis Group, LLC

xvii

Who this book is for
This book is for anyone who wants to understand how to test
efficiently and actively enhance overall project quality. It is
also for anyone who wants to get a handle on Use Case driven
testing techniques.

Software development managers and project managers can
use the book to become familiar with incorporating test
processes into larger project processes. This book describes
a proactive approach to testing with supporting frameworks
that managers and testing personnel will be able to use.
Managers can use the concepts and techniques described
here to aid in project and test planning and in the training of
test personnel. Test people can use the book as a step-by-step
guide to perform testing activities in a manner that helps the
entire project.

How to use this book
Use it in any manner you see fit.

There are three parts to this book. You can read those parts
in the order you want. If you are more interested in testing
activities and techniques, jump to part two or three. No matter
what order you read the book in, read it all. There is too much
good stuff you won’t want to miss.

Part One talks about making testing agile. If you are trying to
get insight into how testing can be done efficiently in different
process environments take a look at this section.

Part Two lays the foundation for the rest of the book by
describing testing concepts. Skim through this section if you
have been around testing for a while and are already familiar
with the concepts described.

Part Three shows how to test. It details specific testing activities
that can be used on almost any project. Specifically, Use Case
driven testing is described. I will show you how to test using
Use Cases regardless of what the official requirements of your
project are. Use this part of the book as a testing guide.

© 2009 by Taylor & Francis Group, LLC

xviii

ACKNOWLEDGMENTS

Without the help and support of the following people, this
book would have never become a reality. So…

I want to thank the folks at IconATG including Beth, Stella,
and Lou. I have been associated with them for many years
and because of them had the opportunity to work on many
fun projects.

Thanks to Stephanie Stone also of IconATG who provided
valuable feedback related to software requirements.

I want to thank Mike Henry for some great pictures he
provided for the cover and interior.

Thanks to Andrea Waugh, my daughter, who happens to be a
Project Manager. She spent time reviewing this book for me.
Her insight and down to earth perspective definitely made
this book better.

Thanks to my good friend David DeWitt for the time and effort
he spent supplying feedback and insight. There is no reason
to write a book if there isn’t a good idea and a need. David
shed light on the need for this book and helped cultivate the
idea. We worked together on a number of projects where we
developed many of the techniques described in this book. He
provided me with a sandbox to play in among other things.
David shows up in some of the war stories in this book, always
as a one of the good guys.

Thanks to Paul Evitts, my friend, writing mentor, and editor.
It would be an understatement to say this book wouldn’t be
possible without him. He’s been through this process before
with his own book and walked me through each step of the
way. When I discussed some of the cool things I had been
doing, he encouraged me to write a book about them. He

© 2009 by Taylor & Francis Group, LLC

xix

told me that if I wrote the book he would edit it. He didn’t
know what he was getting himself into. Paul is an excellent
writer and coached me into becoming a better writer as the
book progressed. He spent many hours editing this book and
making sure concepts and techniques were clearly explained
while still exuding my enthusiasm and passion I have for the
topic. Thanks to him, I can now spel.

Thanks to my mother Betty who with my father, led by
example to instill a strong work ethic in me and my siblings.
I also want to thank my son Jeff, and my grandchildren Alan
and Maya, who have all enriched my life.

And last, but not least, I extend my most heartfelt gratitude
and ever lasting love to my wife, Jen, who understands me
deeply and supports me completely. Without her I wouldn’t
have been able to accomplish half of what I have, let alone the
writing of this book. She supported the idea from the start
and helped keep me motivated through the entire process.
She also provided valuable input into the design of the cover
and picture selection.

© 2009 by Taylor & Francis Group, LLC

Part One
Testing Essentially

This section will help you understand what it really means
to be agile in testing. In this part of the book, I first discuss
basic testing concepts and examples to get things started. I
then cover bringing agility into testing or as I call it, Essential
Testing. This will set the stage for the rest of the book.

I’ll cover

•	 Basic testing concepts

•	 Examples that will be referenced throughout the book

•	 The concept of Essential Testing

•	 �The difference between being agile in testing and
testing on projects using an Agile methodology

•	 �How to be agile on any project regardless of
methodology

© 2009 by Taylor & Francis Group, LLC

�

Chapter 1

On Being A Tester

The first time I worked as a tester on a project, I met with a
developer to informally review his first deliverable, part of a
customer service system.

I was the testing lead and it was my idea to conduct early
informal reviews, figuring a little initial interaction with
other teams on the project would help improve quality. The
developer was a friend of mine and we had worked on many
other projects together in various roles.

As I entered my friend’s cube, he handed me a pair of pliers.

“What’re these for?” I asked. He replied “Now that you’re
one of ‘them’ you’ll eventually pull my finger nails out.” He
figured we might as well get started then and there.

I was taken aback a bit, but not surprised. I knew what he was
talking about and often had similar feelings about testers.

Usually, project team members think of testers like this:

•	 Testers are rigid.

•	 �Testers are anal, more concerned about pointing out
failures than about the big picture.

•	 �Testers wait until the last minute to discover problems,
causing project delays and making the project team
look bad.

© 2009 by Taylor & Francis Group, LLC

� CHAPTER 1: On Being A Tester

•	 Then they gloat.

Okay, this is a little extreme.... but not far off the mark.

Testing Perceptions and Realities
Perceptions
On most projects testing is considered a necessary evil similar
to (aargh) Configuration Management. Testing helps the
project, but it’s hard to imagine what type of person would
want to do that type of job full time.

Of course, testers frequently see project realities differently, and
react to circumstances in a way that reinforces stereotypes.

For example, testers are often left out of the early stages of
projects when requirements are being developed, but are
expected to write tests against requirements that are not
always testable and often ambiguous. Then code gets thrown
over the wall to be tested towards the end of the development
process or iteration – usually late - with builds often dead on
arrival. This causes a bottleneck in testing, which makes the
testing team look bad.

So testers, knowing what is in store for them, take appropriate
CYA measures. Many of these measures make good sense
given the circumstances, however they may be perceived by
the development team and management.

This includes exhaustive testing (perceived as being anal),
detailed bug reports (perceived as finger pointing), and detailed
progress reporting (perceived as gloating), all of which are
perceived as evidence of testers being rigid.

Reality
The reality? Many testers, given the opportunity, prefer
working on projects using a more agile development process,
one where the emphasis is placed on test driven development.

© 2009 by Taylor & Francis Group, LLC

�

Developers write tests before they write code and have the
luxury of having direct access to the people who will eventually
accept the product.... and less time is spent worrying about
DOA builds and products that don’t come close to meeting
stakeholder expectations.

But, testers usually don’t have the opportunity to choose the
types of projects they work on. And most projects employ
processes where the place and time for testing is usually
towards the end of a project, phase, or iteration.

And then there are the usual development dysfunctions -
for example, around requirements. Sometimes requirements
aren’t great, other times they may not exist. I have worked
on projects where development was started before formal
requirements were even written, but we were expected to test
against the requirements.

Another testing approach to deal with reality
In this book, I will be introducing the concept I call Essential
Testing... tools for testers. This is not really a new concept,
but an approach to testing that works with both of the usual
approaches to development these days: Agile Development
or development using some variation of the Unified Process.
It also works with all the legacy and mongrel processes that
are probably even more typical of system development these
days. And it provides an additional benefit, an awareness of
that new 21st century need – governance.

Essential Testing says test the right things to the right level
of detail at the right time, providing results in the proper
context to prove the system under test with the most efficient
amount of effort. It sounds straight-forward, but getting it
right requires a great deal of proactive-ness on the part of the
testing organization, and a great deal of cooperation by all
project team members.

Testing Perceptions and Realities

© 2009 by Taylor & Francis Group, LLC

� CHAPTER 1: On Being A Tester

Testing In an Agile Way.... But Not Agile Testing
In Essential Testing it’s up to testing professionals to take the
bull by the horns in an effort to change their situation. By
taking a different approach to testing, testers can be proactive,
and agile.

Being Agile and Proactive
True agility is where you make an effort to understand the
entire project environment up front, understand the perception
of a successful system, and take actions early to help everyone
succeed.

As a tester, being proactive and agile means knowing the
environment you are testing in, knowing who it is you need to
prove the system either works or doesn’t, understanding what
needs to be presented to prove the system, taking action early
to ensure success, knowing you are going to make mistakes,
and being willing to adapt.

For testing, this may mean taking matters in your own hands
- without being intrusive - and helping perform tasks that are
not usually associated with testing. All of which takes skills
not usually associated with testing:

•	 �Communication becomes important to understand the
project environment and help mold it early.

•	 �Boldness is also needed to be able to have confidence in
the actions taken and the ability to adapt when things
need to be changed.

•	 �And, of course, agility. I’ll cover agility in detail in a
later chapter, including what people think it is and
how testers can truly be agile.

Dealing With Governance
These days, testers have to think “governance”. This affects
not just projects in industries where the government has a
responsibility for public interest (like flight systems, health

© 2009 by Taylor & Francis Group, LLC

�

continued...

regulation, or financial reporting), but increasingly within
industries - self governance.

Governance concerns can add layers of bureaucracy and whole
new stakeholders who must be satisfied that the product(s)
being developed meets their expectations. Many products,
such as ones dealing with flight over civilian airspace, or
products used in health care, must be certified before they can
be used.

Testers can also be proactive in environments where there is a
high level of governance. It still comes down to knowing the
environment and the expectations of the stakeholders. In the
chapters to follow we will deal with Essential Testing in all
environments including those where governance is a major
issue.

War Story

I once was tasked with creating a requirements elicitation
and management process for an organization. I worked with
the team responsible for requirements and part of our goal
was to deploy a requirements management tool to augment
the process.

We would eventually present our findings to the manager
who would ultimately own the process. I was told this wouldn’t
be an easy task since the manager came from a testing
background and had a tendency to be “detail oriented”.

I thought having a tester in charge of requirements
elicitation and management was a great idea. Who better to
understand the steps needed to ensure good requirements
than someone who has dealt with them from a testing
perspective?

I was half right.

When we presented our plan to the manager it was clear
she understood the processes required to ensure good

Testing In an Agile Way.... But Not Agile Testing

© 2009 by Taylor & Francis Group, LLC

� CHAPTER 1: On Being A Tester

requirements - she was all for the processes, controls and
tools proposed to help ensure requirements were well written
and stable requirements.

But, she was more focused on the reporting aspects of the
tool.

In particular, she wanted to be able to report on inadequate
and rapidly changing requirements. I assured her that
while we could produce those types of reports, with the
proper processes and controls in place, they would be less
important. This was difficult for her to grasp, because as
a tester, she usually dealt with inadequate and changing
requirements rather than ensuring requirements are right to
begin with.

As testers we may know what good artifacts and processes
are, but we also need to be able to understand the best use
of our time to get things right. This will be vital as we cover
ways of taking new approaches to testing.

© 2009 by Taylor & Francis Group, LLC

�

CHAPTER 2

Basic Concepts Boot Camp

Before we get into the details of how to do Essential Testing
and how it may be different from the testing your father did,
I need to make sure The Reader is up to speed on some basic
concepts that are the groundwork for all the later discussions.
Except for ‘The Real Basics’, everything here will be covered
in much greater detail as the book unfolds.

The Real Basics
Black Box Testing
Black box testing refers to testing a software item without
knowing anything about its inner workings - about how it
does the job! The system under test is actually treated as a
black box. Tests are written to specifications describing
what the software should do, based on specified inputs and
expected outputs.

This is real requirements based testing - a tester and
programmer can work independently of each other from the
same set of requirements as soon as requirements are delivered.
Black box tests can be created to test a product independently
of the individuals responsible for its development. The tester
doesn’t need to have knowledge of the implementation and
can create tests based on requirements. This form of testing
can also help identify holes in requirements.

© 2009 by Taylor & Francis Group, LLC

10 CHAPTER 2: Basic Concepts Boot Camp

White Box Testing
White box testing focuses on the internal structure of the
system under test. Paths through the software are identified
and tested. This requires knowledge of the programming
language being used. For systems that come under high
governance, such as software certified by the FAA, white box
testing can be used to supplement black box testing to ensure
all code paths are covered.

Unit Testing
This is a particular kind of white box testing. Properly done, it
ensures all paths through the test object are executed.

Unit testing is conducted on individual modules of source
code. Developers perform unit tests to ensure the component
they build works. What constitutes a unit depends on what
is being built and the methodology used. For example, in
Object Oriented development a Class could be considered the
smallest unit to test.

As units are integrated into components and products we
get the real picture of whether the unit works. Unit testing is
usually the job of the developer - and, being agile, we won’t
concern ourselves with the developer’s job.

Functional Requirements
These describe a system’s externally-perceived functionality
from the viewpoint of a stakeholder/user. The system is
treated as a black box.

Non-Functional Requirements
These are conditions the system must satisfy that go beyond
the functionality of the system. They usually cover things
the system must do along with the things described in the
functional requirements. Categories of non-functional
requirements include:

© 2009 by Taylor & Francis Group, LLC

11

•	 �System Wide Capabilities such as security, auditing,
and error handling

•	 Safety

•	 Reliability and Availability

•	 Performance

•	 Usability

•	 Software Design Goals

•	 Design and Development Constraints

Non-functional requirements tend to be a mix of requirements
that describe what the system does, and how it does them.
Consider performance requirements, they will describe
what the system must accomplish in terms of response time.
Other performance related requirements could describe how
response times are actually met by the system, including
solutions such as load balancing.

Stakeholder Needs
These are the needs of the people for whom the system is being
built. The needs are described in non-system terms. They
can be evaluated and turned into something the system can
satisfy. In the case of a website for a hockey league described
in the next chapter, a stakeholder need would be “The website
sponsor needs to be able to provide search services to hockey
players who wish to find places to play hockey”. Another
is “The website sponsor needs to be able to provide team
management services to team managers”. These are general
statements of needs that can be satisfied by multiple means.

Features
These could be considered the highest level of system
requirements. These are usually derived from stakeholder
needs and describe software features that will produce benefit

The Real Basics

© 2009 by Taylor & Francis Group, LLC

12 CHAPTER 2: Basic Concepts Boot Camp

to stakeholders. In the case of the hockey site, features could
include “the ability of the system to provide capability to search
for hockey venues” and “team management capabilities”.

Testing Concepts
Traceability
Traceability in software development and testing refers to
cross referencing requirements, for example tracing from
requirements to supporting tests. The level of traceability
varies from project to project depending on the need to show
relationships between artifacts.

On one extreme, projects do no traceability. The other
extreme…, full traceability: requirements may trace up to
features and down to design artifacts, source code, and tests,
i.e. Tests trace to requirements, design, and code.

While traceability is a good thing from a verification and
project management perspective, it can be difficult to manage
on a large scale. As changes occur, links between artifacts may
be broken and require change management.

Coverage
I talk about two levels of coverage in this book.

The first is requirements coverage by tests: are there sufficient
tests to cover requirements to the level of detail needed so the
system can be considered proven?

The other is code coverage: is the source code covered by
tests?

There are a number of different ways of measuring code
coverage such as:

•	 �Statement Coverage - Has each line of the source code
been executed and tested?

© 2009 by Taylor & Francis Group, LLC

13

•	 �Condition Coverage - Has each evaluation point (such
as a true/false decision) been executed and tested for
all possible conditions?

•	 �Path Coverage - Has every possible route through a
given part of the code been executed and tested?

•	 �Entry/Exit Coverage - Has every possible call and
return of the function been executed and tested?

•	 �Decision Coverage – Has every possible condition
been tested to show that it can independently alter the
condition?

Note: safety critical applications are often required to
demonstrate that testing achieves 100% of some form of code
coverage.

There are tools that measure code coverage. They detect level
of coverage as each test is run. But, while tools help, they may
not be enough - code inspections may be necessary.

Varieties of Essential Requirements
Traditional Requirements
For this book, traditional requirements are defined as
requirements that take the form of “The system shall…”
statements. These can vary in granularity, but should describe
the complete behavior of a system.

Traditional requirements have been around for a long time.

The expectation, more from developers and the clients they
seduce, is that requirements are understandable, to a level
of detail that tests can be written against them and software
design and development activities can take place to satisfy
them.

There are usually lots of requirements that specify what

Testing Concepts

© 2009 by Taylor & Francis Group, LLC

14 CHAPTER 2: Basic Concepts Boot Camp

the system does, or shall do. These are also called static
requirements: each requirement isolates a thing the system
must do.

The problem with static requirements is that they don’t
always provide a clear understanding of how requirements
interact, or the sequence in which the actions described by the
requirements should be executed.

We tend to look at traditional requirements individually. This
can lead to testing requirements that work, but don’t work
together. Often the requirements are grouped by functionality,
but it is usually up to the user of the requirements to understand
the requirements in the proper context.

From a testing perspective, the requirements may be crystal
clear, but testing them can be difficult.

A very large number of projects use traditional requirements,
and although they can potentially cause confusion, there are
things that that can be done to help keep them clear. This is
where Use Cases come in.

Use Cases
If somebody put a gun to my head and told me I could only
chose one artifact for use on a project, my choice would be Use
Cases. While there are some other artifacts almost as useful,
without Use Cases those artifacts are much more difficult to
use.

Many people have an idea of what Use Cases are. I’ll start by
defining them as scenarios expressing requirements based on
the perspective of users of the system.

Use Cases are used to package, at a minimum, the functional
requirements of a system. They are described via sequences of
interaction between one or more Actors, who represent users,
or other systems that interact with the system, and the System
being specified.

© 2009 by Taylor & Francis Group, LLC

15

Each Use Case specifies a use of the system, usually in
achieving a business goal, a use that provides measurable
value for the Actor.

Use Case Specifications are written using language that
should be understandable by all associated with the system
– especially including end users and analysts - avoiding
technical language. They are often coauthored by business
analysts and end users. They should not be confused with Use
Case diagrams that use UML notation to depict Use Cases and
relationships to Actors, but don’t go into the detail of what a
Use Case does.

The level of detail and formality written into a Use Case
depends on the audience and the needs of the project
employing them. A typical outline of a formal Use Case
Specification may include the following:

•	 Use Case Name

•	 Summary

•	 Preconditions

•	 Basic flow of events

•	 Alternate flows

•	 Post conditions

•	 Business Rules

•	 Associated Use Cases

•	 Notes & Assumptions

User Stories
User Stories are requirements that take the form of about
three sentences written in the language of users of the system.
These have their roots in Extreme Programming, but are
now used in many agile processes. They can be considered

Varieties of Essential Requirements

© 2009 by Taylor & Francis Group, LLC

16 CHAPTER 2: Basic Concepts Boot Camp

informal from a traditional perspective – and even by Unified
Process types. User stories are a quick way of handling
customer requirements without having to deal with large
formal requirement documents and tedious tasks related to
maintaining them.�

Safety Critical Requirements
Since this book will discuss testing safety critical applications
as well, here are some critical notions to remember.

High Level Requirements
The requirements for the system in the traditional sense,
created to meet the standards of ‘quality requirements’, that
is, they meet industry standards for quality including clarity,
consistency, and un-ambiguity. Quality, or what makes up
good requirements, will be covered in greater detail in Ch 8.

High level requirements describe the system in terms of
“what” it is supposed to do, including both functional and
non-functional requirements. They are produced through
analysis of system functionality and constraints, and to some
degree the system architecture. These are created to meet the
standards of good requirements early in a project and are used
in the design and implementation of the system. High-level
requirements are verified as part of acceptance testing.

These requirements, based on system functionality, are called
high level because they may be further decomposed into low
level requirements that can be represented by the system
design. Typically, black box testing is conducted against these
high level requirements.

Low Level Requirements
Low level requirements are software requirements from
which source code can be directly implemented without
further information. They describe “how” the system is to
be implemented. These are ”design requirements”. (Note:

� http://en.wikipedia.org/wiki/User_story

© 2009 by Taylor & Francis Group, LLC

http://en.wikipedia.org

17

If source code can be directly implemented from high-level
requirements, then those requirements will also be labeled as
low level.) Airborne Systems are a case in point. For these,
normal requirements are called high level requirements, and
they are supplemented by ‘design level’ requirements called
low level requirements.

In most projects, the end user cares less about how or why the
system does its job as long as it does it correctly. But, in some
projects, this isn’t good enough - especially with safety critical
systems where the stakeholder wants to be sure the design
isn’t sacrificing critical safety.

Low level requirements need to be formally identified when it
is important ensure that the design is implemented properly.

Derived Requirements
Often during development, a specific need or implementation
doesn’t align with the high or low level requirements under
consideration. Some may consider this a “discovered”
requirement. For safety critical systems these are called
derived requirements and must be reported to a safety
hazard assessment team. An example is a circumstance where
a system reset is required should an error occur. The safety
hazard assessment team would have to approve a derived
requirement for unexpected system reset.

Organizing Your Testing
Test Plans
These are documents that spell out how you will test in order
to prove the system and what activities will be followed to get
the job done. These plans can vary in level of formality and
detail. We will get into planning the test in detail later in the
book with the focus on planning just enough.

Test plans should be no more detailed than they have to be

Varieties of Essential Requirements

© 2009 by Taylor & Francis Group, LLC

18 CHAPTER 2: Basic Concepts Boot Camp

with a focus on less. All details don’t have to be known either.
Every project I have been on where we had an elaborate Test
Plan, we wound up changing it considerably. We need them;
we just don’t need to put too much faith in them.

Test Cases
A common definition of a Test Case is a description of
conditions and expected results that taken together fully
test a requirement or Use Case. In this book I allow multiple
requirements to be described in a single Test Case and may
limit a Test Case to a portion of a Use Case such as a flow
of events. Written Test Cases should include a description of
the functionality to be tested, and the preparation required to
ensure that the test can be conducted.

Test Procedures
Test Procedures describe specific activities taken by a tester to
set up, execute, and analyze a test. This includes defining data
values, input and output files, automated tests to run, and
detailed manual test activities.

The purpose of this artifact is to guide the tester in executing
multiple tests, including:

•	 how to set up the test environment

•	 where to find test data sets

•	 where to put them

•	 the steps to execute the tests, and

•	 what to do with the test results.

Test Procedures can be written for manual tests, automated
tests, or a combination of the two. They are usually only
needed if testing is complex.

Test Scripts
A tests script is what is used to test the functionality of
a software system. These scripts can be either manual or
automated.

© 2009 by Taylor & Francis Group, LLC

19

Manual test scripts are usually written scripts that the tester
must perform. This implies direct interaction between the
tester and the system under tests. Manual test scripts specify
step-by-step instructions of what the tester should enter into
the system and expected results. Many times the scripts are
embedded into the Test Procedures.

Automated test scripts are software programs written to test
the system. These can be generated with tools or coded the old
fashioned way. Usually there is a scripting language involved
to control performing the tests in an orderly manner. These
tests are usually initiated by testers and are referenced in Test
Procedures.

Organizing Your Testing

© 2009 by Taylor & Francis Group, LLC

21

CHAPTER 3

Examples From My Experience
We’ll Work With

Here are three examples of projects I have done. The names
have been changed to protect the innocent. I will draw on these
throughout the book. Each example demonstrates different
expectations and consequently, different levels of software
testing rigor.

Experience 1: Rinkratz
RinkRatz is an example of working with stakeholders who are
more focused on getting an end-product out the door than
they are on the details of testing. They want something that
works, and assume that the development team is composed
of professionals who can deliver.

The product is a hockey website geared toward adult hockey
players. The project is funded by a hockey nut, Denny
Lemieux, who wants to make adult hockey more accessible
and hopefully make a buck or two at the same time. He is the
primary stakeholder and ultimate customer.

Denny is keen on an agile approach (he has programmer
friends) and wants to work closely with the development
team. His expectations: he just wants the site to look nice and

© 2009 by Taylor & Francis Group, LLC

22 CHAPTER 3: Examples From My Experience We’ll Work With

have the functionality work with no major known defects.

One of the key features he wants is being able to search for
venues to play all types of hockey: pick up games, leagues,
and tournaments. As a business guy, he travels a lot, loves to
be able to look for chances to play when he’s on the road, but
he’s also the manager (and sponsor!!) of a local team.

So, naturally, another feature he wants is the ability to manage
teams and leagues. He figures this feature should be offered
for a small fee, but plans to let his buddies try out the features
for a season to work out the bugs before selling it.

The Testing Perspective
In the above scenario the testers only have to satisfy Denny
Lemieux. Functional testing can be fairly informal for the
most part. The stakeholder will get a clear understanding of
system capabilities as they are developed. Requirements will
initially be the scenarios that have been developed. These may
be supplemented by user stories. As the project progresses, if
more formality is required - Denny may need outside funding
and another stakeholder comes into the picture - Use Cases can
be developed and Use Case based testing can be performed as
required.

Experience 2: The Conveyor System Project
The Conveyor System project is an example of working with
customers who are used to seeing things work in a physical
environment while ensuring that the software is consistent
with architectural needs.

The major stakeholder, Jimmy Bland, is the Senior Vice President
in charge of Conveyor System product development. The end
product to him is a system that consists of both hardware and
software. He spent most of his life as an electrical engineer
and is less concerned with the software aspects of the system

© 2009 by Taylor & Francis Group, LLC

23

than seeing boxes go around a conveyor system as fast as the
laws of physics allow.

In this case it will be important to prove the software meets
functional specifications, but also meets architectural needs
as well. For this situation the underlying architecture must be
proven to work with various hardware types.

Top Notch Engineering is an engineering company that has
been a major player in the Conveyor System industry for over
30 years. The company has a majority market share due to
big contracts with most large retail companies that have large
distribution centers. Top Notch’s largest selling conveyor
system is 15 years old. The conveyor system is a combination
of conveyor hardware with a dedicated PC card that holds
software that controls system operation. There is also a PC
attached that is used by end users to monitor and interact
with the system.

While it is a reliable product, Top Notch’s competitors are
developing products that leverage the many technological
changes that have happened in the last 15 years. Top Notch
has only been able to keep its market share based on customer
loyalty and product dependability. But with new competitive
products emerging, Top Notch has been hard at work.

The software to support the current conveyor system is process
oriented and considered brittle. For each installation of a
conveyor system, the software must be modified to support
the specific hardware configuration (distances between
photo eyes, length of belts, locations of scanners, etc.). It also
only accommodates a specific set of hardware components.
Additions of new types of conveyor components will require
major revisions or rewrites of the software application.

Top Notch has decided to add new conveyor components to
its product line through a combination of internal R&D and
acquisitions of smaller companies that have created such
products.

Experience 2: The Conveyor System Project

© 2009 by Taylor & Francis Group, LLC

24 CHAPTER 3: Examples From My Experience We’ll Work With

Their goal is to create a product line that combines existing
conveyor components along with the newly developed and
acquired conveyor components. New conveyor systems
would be composed of a combination of new and legacy
sub-systems. Current conveyor systems would be upgraded
where necessary to fit the customer’s needs.

Top Notch’s system software is unable to support this new
direction. It will have to be rewritten. The software must
support both the conveyor systems in the field and new
systems that will be a combination of major sub-systems.

Top Notch IT management feels that an object-oriented
approach would be the best solution - based on professed
advantages of reuse. The development team is using the
Unified Process (UP) for its process, so testing will have to fit
into this process.

And then there are some serious technical constraints that
needed to be managed. While these would typically be
spelled out very clearly in the specifications, they also need to
be taken into account by the test team.

The constraints derive from the need to handle ‘legacy’
customers, the backbone of Top Notch’s success. For
example:

Even though faster processors become available, existing
systems will not be upgraded when the new software is
installed. The new software must work on last generation
processors. (a technical description of the product can be
found in Appendix A).

Additionally, the system has other constraints:

•	 �Must be configurable – changes to existing software
should not be required for each installation of a
conveyor system.

•	 �Real-time performance is an issue – there is a 200
millisecond window in which all external signals must

© 2009 by Taylor & Francis Group, LLC

25

be registered based on the speed requirements of the
conveyor belts.

•	 �Incorporation of sub-systems must be transparent
– some of the sub-systems will have their own
management software that must communicate with the
core controlling application while other components
will rely on the core application. Each sub-system
should be easily configurable into the overall system
without any adverse affects.

•	 �As new hardware sub-systems are developed, they
should be able to be incorporated into the core system
with minimal software upgrades (mainly at the physical
signal interpretation level)

•	 Must communicate with external legacy systems.

•	 �Must be able to communicate between major
components.

The Testing Perspective
The requirements may be in the form of Use Cases or traditional
requirements. In either case Use Case based testing will be
ideal. If only traditional requirements are used, Use Cases
may have to be created. This is a task the testing group could
take on.

Functional testing may take place first on a simulator, then on
an actual test system.

Proving the architecture will also be important for this project.
The test team will have to show that the architecture is
layered properly to allow minimal modifications for different
hardware configurations. Given the expense of constructing
multiple physical test environments, testing the design
may be the best way to prove interoperability of hardware
components. While the focus of this book is on functional
testing, I will cover some aspects of testing the design in the
third part of the book.

Experience 2: The Conveyor System Project

© 2009 by Taylor & Francis Group, LLC

26 CHAPTER 3: Examples From My Experience We’ll Work With

Experience 3: Aircraft Engine Monitoring System
This project is subject to FAA regulation and shows the impact
of working in a regulated environment.

Flying High, an IT consulting outfit specializing in aerospace
software, has been awarded a contract to provide control
software that monitors vital aircraft engine information for
main aircraft control systems. This component is considered
very critical to aircraft safety so the certification level for this
component will be level A, the FAA’s most rigorous.

In this case, the key player is the Project Manager, Dave. He’s
worked with the FAA many times before, and is a hired gun
for the client. Aircraft systems can be killers if they work badly,
and the FAA has stiff guidelines about protecting aircraft and
air passengers. Dave knows that, as usual, he’s in for a rough
ride. Testing has to satisfy him first, before anything gets to
the FAA.

Flying High is a small company of competent developers.
They have a tight deadline for getting an initial version to
their client, so testing must begin early. They define two
development/testing phases. The first is the prototype phase,
the second is the final product phase, a cleanup and rethink
following FAA guidelines.

After the prototype development, Dave calls in a third party
consulting company, Down To Earth, to help get the software
certified. The software works and the client likes it, so the
task of Down To Earth is to fill in all the blanks to get FAA
approval, including the requirements documentation, design,
and of course, testing - while changing the code as little as
possible.

Down To Earth treats the project as ‘build from scratch’ despite
hoping to make minimal changes to the existing code. They
call this a Top Down/ Bottom Up approach - all artifacts take
into account the Top (what the customer says they want) and
the Bottom (existing code that the customer likes).

© 2009 by Taylor & Francis Group, LLC

27

When writing requirements they look at the system specs
and any client supplied information. At the same time they
also talk to the developers and look at code to see what the
existing software does. Design takes into consideration the
top (requirements) and the actual software. There will be
some parallel work taking place. They know they will have to
make some changes to the code, but want it to be minimal.

As for testing, the system will have to be tested against
requirements and design, and must prove that every line of
code was tested and that all existing code is accessed.

The Testing Perspective
In this situation the test team must deal with a high degree of
governance. The FAA clearly states their expectations of what
it will take to prove the system. This makes understanding
what to prove easy.

On the other hand, the list of what needs to be proven is quite
extensive. Not only will functional testing be required, but
white box testing and code inspections will also make up a
large part of the testing effort.

Since a goal is to keep as much of the prototype code as possible,
modifications will take place on the part of requirements to
match the code. The testing team will have to be aware of
potentially changing requirements.

Requirements for projects of this type generally take the form
of traditional requirements. Chances are that the test team will
have to create Use Cases to group the requirements if they
want to do Use Case based testing.

Experience 3: Aircraft Engine Monitoring System

© 2009 by Taylor & Francis Group, LLC

29

CHAPTER 4

What Is Essential Testing?

Essential Testing: testing the right things, at the right time, to
the right level of detail, in the most efficient manner, to prove
a software system works and works correctly.

The type of testing we do and what we test to prove that a
system works depends on who we are proving the system to:
the stakeholders. We do the proving, they assess the proof,
and provide the approval. They help us determine the right
things to test, the level of test detail, and the proper timing of
the tests.

Meanwhile, as testers we have to be efficient as well; being
efficient is the key to testing success. If testing isn’t done in a
reasonable amount of time using a reasonable set of resources,
then, as testers, we still fail.

Efficiency adds proactive-ness to testing - being efficient
means being aggressive and courageous about testing, while
knowing that many aspects of projects won’t be to our liking
as testers, or within our realm of control.

However, before you can be efficient, you need to know the
basics. This chapter explains the basics of essential testing. I’ll
get into being an efficient tester later. I will finish this chapter
by talking about how bad things will happen and how to
avoid them using Essential Testing

© 2009 by Taylor & Francis Group, LLC

30 CHAPTER 4: What Is Essential Testing?

Testing The Right Things
There are some givens about WHAT we are going to test on
every project, no matter the type of project. So, the essential
things we will test, and test against, are usually assumed. For
example, requirements.

Beyond those givens, the “right things” to test depend on
project constraints, and what the stakeholders expect. These
fall into two categories: constraints and expectations.

•	 �Constraints are given “givens” such as regulatory
requirements, technology standards, architectural
gotchas.

•	 �Expectations are more subtle. Typically, the stakeholders
that ultimately approve the system are most concerned
about what the system does and less worried about
how it does it.

In situations where stakeholder expectations are the key
proof, testing against what the system does, without being
concerned how the system does it, is sufficient. Almost.

For example: a website application where the stakeholder
is most concerned with functionality. Testing against
requirements may be all that is required to sufficiently ‘prove’
the system.

But, think like a tester! Just because the stakeholder is happy
to see the functionality described in the requirements work
as expected doesn’t mean that testing is successful, or that
you’ve been a success as a tester!!

It would also be beneficial to perform at least some minimal
load testing and stress testing to ensure that something
embarrassing doesn’t happen when the application goes live
and undergoes normal use.

Load testing verifies that the system operates correctly under
the environmental conditions the system is expected to face

© 2009 by Taylor & Francis Group, LLC

31

continued...

when it is deployed. These conditions include things such as
the number of expected users at given times, and transaction
volumes. Stress testing simulates extreme conditions the
system may face and tests that the system performs to a
specified level of performance under those conditions. An
example of stress testing would be testing that a system can
respond to user requests within a specified response time
under specified degraded conditions.

The other extreme… we are testing software that is going into
a jet. If the failure of our software causes the jet to fall out
of the sky, then the “right things” to test will most likely be
different, or at least a lot more!!!.

And, in this case, a stakeholder, the FAA, will let us know. The
FAA is a major stakeholder when it comes to guaranteeing
public safety in the air, and is going to require some assurance
that the software won’t crash a plane.

So, with the FAA as stakeholder, there are other ‘essential
things’ to test: specifications, component designs, ensuring
there is no dead or deactivated code… and testing every damn
line of code.

War Story

Making the Major Stakeholder Happy

Sometimes, unlike the FAA, a stakeholder can expect too
little. The Conveyor System provides an example.

The requirements and constraints were rigorous. Bring
packages onto a conveyor from multiple lanes, merge them
into a single lane with optimal spacing so that they didn’t
run into each other. Divert them to final destinations without
causing jams. Overall, control the flow of packages from one
end of the conveyor until they make it to their destinations
and are reported on. Typical design constraints included

Testing The Right Things

© 2009 by Taylor & Francis Group, LLC

32 CHAPTER 4: What Is Essential Testing?

allowing for different types of component hardware to be
configured into a conveyor at the same time.

So, we have a major delivery scheduled along with a
demonstration of functionality for the VP who is the major
stakeholder of the project. We create a huge list of tests
performed, with results, to present to the VP: component
level tests, communication tests, system safety tests and
so on.

We present the results to the VP. He just shrugs and says
he only wants to see the boxes go around the test conveyor.
So we bring him down to the test system and load up the
conveyor and watch boxes move at high speeds. The VP is
happy with what we may consider a simple visual test.

Obviously, other things must be tested to ensure we created
the right product, but as far as the VP is concerned, boxes
going around a conveyor without running into each other or
falling off are good enough.

(For the next release we still do what we consider necessary
testing but keep most of it within the team, and show the VP
boxes going around the conveyor.)

Testing To The Right Level of Detail
The right level of detail involves understanding how deeply a
product is tested, and thinking intelligently about risks.

The general consensus is that no matter how much time is
available, you can always test more. So, testing comes down
to how much time you have to test and what you are going to
spend it on.

I want to challenge that premise right now. With Essential
Testing it is possible to give some of that testing time back by
being as lean and efficient as possible while still getting the
job done.

© 2009 by Taylor & Francis Group, LLC

33

Our first inclination when testing is to be afraid. We are afraid
we won’t catch something important. Based on that fear, we
tend to want to cover everything if we can. We also know we
can’t test everything so we build all kinds of models to help
us decide what to test.

Essential Testing says it’s okay not to use all the time and
resources available to you for testing on a given project. If we
look at the big picture and how everything fits together, we
will get an intelligent understanding of what we need to test.

But, we need to keep challenging our conclusions as well.
Rather than asking what else we can test and adding levels of
detail, consider what tests can be dropped. If it turns out we
made a mistake, we can always change our minds later.

For example, if a product is being tested that uses a
communication component that already exists and is being
used by other implemented products, there is probably low risk
associated with it. The thing is already running successfully
somewhere else. Directly testing the component to prove it
works would be of little value. Functional black box testing
against requirements along with performance testing on the
final product is most likely good enough.

Suppose, on the other hand, instead of using an existing
component, we are building the communication mechanism
from scratch. On top of that we will be using new concepts,
new technology, and a team of green engineers (no, I don’t
mean environmentally conscious). Now we have some serious
risk related to that component. Should we change our strategy
and test the daylight out of it?

You might be inclined to say yes.

Not so fast.

Barring any responsibility to mitigate embarrassment, I
would argue that the strategy is still pretty much the same.
Chances are the engineers will do sufficient testing as part of

Testing To The Right Level of Detail

© 2009 by Taylor & Francis Group, LLC

34 CHAPTER 4: What Is Essential Testing?

their development. If not, the component will probably blow
up when integrated into the product for the first time. We
will know something is wrong soon enough. If necessary, we
can provide some extra tests to the engineers to ensure that
basic commands are being processed correctly by the new
component.

There may be some obvious project risks, but the development
lead and Project Manager can handle them, and should. We
need to trust the PM and engineers, and let them worry about
the risk associated with the communication mechanism.

Still, if it looks like those risks may affect us as testers, we
may need to be proactive. We need to ensure that the final
product works correctly. If there are safety or performance
issues related to the newly created component we will need
to make sure these issues are incorporated into the testing.

Consider another scenario where the communication
component was being built from scratch, but also was
slated for use in other systems. In this case we may test the
component as a final product. This would entail a whole
other level of testing. The level of testing would also change
depending on what the final product is being used for and
the quality level expected. If the product was safety critical
and part of an aircraft, we would give the communication
component special scrutiny whether it was built form scratch
or previously existed.

Testing At The Right Time
Testing at the right time can’t be separated from Testing The
Right Things and Testing To The Right Level Of Detail. The
kinds of tests performed and the level of detail they test
typically depends on the development stage you’re in.

Look at the big picture, including the delivery plan - what
software gets delivered when. Knowing what can be tested

© 2009 by Taylor & Francis Group, LLC

35

continued...

at what time is important. We may test the same thing at
different times to different levels of detail.

Use Cases really help understand the timing of tests, even if
the development environment is NOT based on the Unified
Process or a variation.

When a bunch of individual “system shall” requirements
must be verified as part of the entire product, it may be
difficult to understand dependencies and the best time to test
requirements in conjunction with delivery. Testers can create
Use Cases either as interpretations of requirements or as a
means of packaging requirements to help in the planning and
timing of tests.

The virtues and practical use of Use Cases are detailed in later
chapters, but it is worth mentioning something about them
here. Use Cases are by nature sequential. They tell generic
stories about the uses of a system. These stories help us
understand what requirements are really important. They also
illustrate dependencies - which helps with test sequencing.

War Story

Using Use Cases Regardless

I was tasked with identifying functional tests for requirements
of stand-alone components that provided specific services to
requesting components. The services of each component to
be tested varied in functionality and complexity. Traditional
requirements were provided for each component.

I couldn’t clearly identify dependencies between
requirements. Even though the (traditional) requirements
were testable, clear, concise, and all that, I would expect
slightly different results depending on the sequencing of
other related requirements.

Testing At The Right Time

© 2009 by Taylor & Francis Group, LLC

36 CHAPTER 4: What Is Essential Testing?

So, while I could define tests for each requirement individually,
I couldn’t be sure the expected results were correct. Although
I had a clear picture of the individual requirements related
to each component, I didn’t have a clear picture of exactly
what each component did.

What was missing was a sequential description of what the
component did in responding to other components. The
people who wrote the requirements probably understood
these expectations, but I didn’t.

My solution? I wound up jotting down Use Cases for
components and passing them on to the requirements
writers. They could quickly read the Use Cases and tell me if
my interpretation of the requirements was on the mark. This
made it a lot easier to define tests as well as understand the
timing of the tests.

Bad Tester
For Testers, problems occur when we get any of the things I
just wrote about wrong, either individually or, more typically
all together.

Some of the extreme examples of catastrophes related to
improper testing can be that the software kills or injures
someone, renders a billion dollar piece of equipment useless,
causes a business to make expensive mistakes.

Risky stuff!! But catastrophes are less likely to occur if Testers
have a way of focusing on the right things when the stakes
are high.

Okay, most problems encountered are less radical.

A typical example is putting too much effort into testing the
wrong stuff, then finding out late in the game that there isn’t
enough time to test the most important things. The major
symptom of this is that the testing team just runs out of time.

© 2009 by Taylor & Francis Group, LLC

37

How to avoid this? The test team manager, armed with the
tools of Essential Testing, gets involved with project planning
early. And, being courageous ensures that good testing is a
priority, not an afterthought.

Frequently, testing doesn’t fit seamlessly into the overall
development effort. Testing has always been reactive, and
it may be seen as a project burden, courtesy of memories of
QA overkill, multiple walk throughs, peer reviews and so on.
These can provoke Project Managers into testing denial.

Essential Testing is proactive; emphasizing testing agility,
timing and being ready to perform the right tests at the right
time… helping Project Managers mange projects properly.

Another example: proper things are tested to the proper level,
but it can’t be proven to the client.

I have seen situations where great care was taken to plan and
develop tests, but when the final product was tested, it was
still unclear whether the product passed sufficiently. Many
times assumptions were made about requirements that were
never resolved, or timing of tests were planned that didn’t
mesh with the context of the delivered product.

All these potential problems can be avoided; most are related
to the Tester’s ability to understand the project environment
and opportunities to adapt.

Essential Testing focuses on understanding the overall
process and environment we are testing in. If we start with
that understanding, we can plan and execute our testing effort
appropriately and avoid most show stopper problems.

Bad Tester

© 2009 by Taylor & Francis Group, LLC

39

CHAPTER 5

Essential and Efficient Testing

Essential Testing depends less on planning - and executing
those plans rigorously - than it does on understanding your
development environment, creating plans for agility, and then
being able to adapt to changing circumstances with efficiency.
Efficient agility, if you will.

In this chapter, I will show how the concept of ‘agility’ - a
group of ideas, not a process or a methodology – can be the
basis for Essential Testing. I will start by discussing the notion
of capital ‘A’ Agility, and then show how it applies to testing.

Since Essential Testing can be practiced with any of the current
mainline development processes (Agile, Unified, Structured),
not to mention the most common development process,
MixedBag, the actual application of Essential Testing to any
of these processes will be described later.

We actually need to look at two separate concepts: Agility, and
then Agile Testing. These are very often confused, especially
by those in the Agile community.

The Idea of Agility
Currently in the industry there is a notion of ‘Agile Testing’:
the testing practices for projects using an Agile methodology.

© 2009 by Taylor & Francis Group, LLC

40 CHAPTER 5: Essential and Efficient Testing

In other words, any time you test on a project using an Agile
methodology, you are doing Agile Testing.

Agile Methodologies
Of course, there are a number of Agile methodologies out
there, each with its own set of specific practices:

•	 Extreme Programming (XP)

•	 Crystal

•	 Adaptive Software Development (ASD)

•	 Scrum

•	 Feature Driven Development (FDD)

•	 Dynamic Systems Development Method (DSDM)

•	 XBreed

Agile methodologies focus on getting the product developed
with only the activities that are required. If an activity is not
contributing to the end product, then it isn’t necessary. The
focus is on short iterations that include developing a working
product, continuous integration of new components into the
working product, lots of team communication, and frequent
feedback by stakeholders.

Agile Developers consider themselves ‘test infected’: infected
by the idea that testing early and often will help them
write better code. They also like to keep things as simple as
possible.

Applying Agile Methodologies to Testing
Agile advocates also have a set of values in what they call a
manifesto:

© 2009 by Taylor & Francis Group, LLC

41

We value:

•	 �Individuals and interactions over processes and
tools

•	 �Working software over comprehensive
documentation

•	 Customer collaboration over contract negotiation

•	 Responding to change over following a plan.

And, while there is value in the items on the right, we value
the items on the left more.

Okay, how could this apply to testing?

The Agile Manifesto is nice, but sounds more like an us-against-
them type of thing. Us-workers against them-managers and
them-bureaucrats and anyone else who doesn’t appreciate
the purity of being a developer and the nobility of the work.
Maybe even Us-testers at times.

Well, maybe, that’s overkill.

But consider just one value: We value working software over
comprehensive documentation. Well of course, what development
team player wouldn’t? (And how many of you have been on
projects where the opposite was true…)

But, is comprehensive documentation itself the opposite of
working software? Or is this just a glib idea that sounds cool?
The difference may not be interesting to developers, but is
VERY important to Essential Testers!!!

As testers, we know that working software and comprehensive
documentation certainly aren’t mutually exclusive; some
projects dictate comprehensive documentation because the

The Idea of Agility

© 2009 by Taylor & Francis Group, LLC

42 CHAPTER 5: Essential and Efficient Testing

stakeholders dictate it.

And, also as testers, we need efficient documentation because
we are trying to get the testing job done in the most efficient
way possible. This means satisfying our stakeholders –
proving to them that the product works correctly and satisfies
their requirements, not just the needs of the developers.

These values are fine, and when it comes down to it, just
about everyone agrees with them regardless of the type of
project being worked on. It’s just not many developers are in
a position to apply all of these values in any specific project
– if at all.

And developers only have to prove themselves to team
leaders and project management. Testers have to prove the
end product to the stakeholders themselves, in some ways a
much bigger job these days!!

So, while Agile values may be a useful counter-balance to
the old, rigid, ‘high-ceremony’ approaches to managing
development once necessitated by the cost of developers and
hardware, they need agile adaptation outside the limited
world of pure Agile Development.

For testers, the neatest concept they provide is the focus on
doing the minimum activities required to deliver a quality
product and nothing more.

Agile Testing
How Agile Folks See Agile Testing
Most developers see Agile Testing as something that happens
within an Agile project.

A Tester on a project using an Agile methodology is going
to embrace these Agile values and will test consistently
with whichever Agile methodology is being used. Since the

© 2009 by Taylor & Francis Group, LLC

43

‘traditional’ definition of Agile Testing is testing on a project
using an Agile methodology, it is not surprising that Agile
Developers think of Agile Testing in terms of the specifics of
Agile Development:

•	 Test early

•	 Test often

•	 Test just enough

•	 Use exploratory testing

•	 Test to augment an agile development process

Agile advocates like to contrast ‘Agile Testing’ with ‘traditional
testing’ in ways that contrast Agile methodologies and heavy
process methodologies. To them, traditional testing is any
testing not on an Agile project. It is about:

•	 �needing finished requirements before testing can
begin

•	 �specs thrown over the wall to the testers without
explanation

•	 testing against risks, not needs

•	 �waiting until the end of the project to have the system
‘complete’

•	 �a bureaucracy of testing, including reviews and
gateways

The result they see is all types of problems because the real
result is waiting until the last minute to find out that the
system isn’t working.

In contrast, Agile Testing proposes testing early and often and
addressing defects as they occur, so there are few surprises

Agile Testing

© 2009 by Taylor & Francis Group, LLC

44 CHAPTER 5: Essential and Efficient Testing

toward the end of the project.� They say, and rightly so, that
a heavy process dictates a lateness for testing, and creates a
‘testing cycle’ that is too late.

The Agile folks are right in important ways. Traditional testing
is an outdated approach that doesn’t reflect the development
realities of the 21st century. However, ‘agile’ values don’t have
to be limited to ‘agile’ projects, and, as I’ll demonstrate, they
can provide an important contribution to modern testing
practices regardless of development methodology.

They need to be expanded on, added to, to reflect the practical
experiences of 21st Century testers.

Essential Testing and Agile Testing
Apply Agility to Any Development Methodology
One reason most IT people think of testing in an agile way
only in terms of Agile projects is because they don’t think it is
possible in any other development environment.

I think agility can be applied to any development environment.
A little common sense and thought can and does make all
the difference in any development context, regardless of the
development ‘concept’.

This is especially true for testing. Testers have not been
part of the development spotlight, and so development
processes have treated ‘testing’ as the potential ‘bad boy’ of
development, needing a firm QA and project management
hand for guidance - or as an aspect of programming, needing
no guidance beyond the inherent wisdom of all-knowing
programmers.

Typically, this has ruled out the idea of ‘testing in an agile
manner’ on projects not using Agile methodologies. Not to

� “Agility For Testers” Elizabeth Hendrickson, Pacific Northwest Soft-
ware Quality Conference, 2004

© 2009 by Taylor & Francis Group, LLC

45

mention thinking about testing in a way that extends ‘agility’
beyond the narrow focus of Agile Development!!!

I am an experienced tester, test planner, developer, and
requirements guy, etc. In other words I’ve played most roles
in a development team. I know Testers have brains and are
capable of thought and adaptation. I expect them to adapt
agile methods when on any project.

How Essential Testing Addresses Agility
Essential Testing answers an unasked question: Why can’t
testers adapt agile methods within their environment no
matter what methodology they are bound to? It says: Testers
should be able to control their job within the development
environment, and not be second class development citizens.

So, it’s obvious that there seems to be a solid definition of
Agile Testing that works for Agile Development. No need to
change it. The Agile Process folks got to use the term first, so
they have a right to define it.

What Essential Testing does is adopt the gist of their
philosophy to provide ways of operating within any process.
And, perhaps, suggest ways that testers can add stuff to Agile
Testing ideas that makes sense to testers themselves.

Just to repeat (as little as possible)… Efficient Testing is about
testing the right things to the right level of detail at the right
time in the most efficient manner.

While being agile is an important element, being efficient
means taking agile concepts as a starting point only:
performing only test related activities that get the job done
without wasted effort.

So, no matter what the environment, we should be considering
“what is the least amount that we can do to get the job
done”.

In the case of the tester, that job is to assure that the final product

Essential Testing and Agile Testing

© 2009 by Taylor & Francis Group, LLC

46 CHAPTER 5: Essential and Efficient Testing

meets certain quality standards are satisfied and presented in
a manner acceptable to the ultimate stakeholders.

Essential Testing means we, as testers, work within the spirit
of the agile ‘philosophy’ while accepting that there are bounds
we have to appreciate. These bounds define our relationships
with developers. And so we have to fit within development
process notions associated with “Agile” development, or the
expectations of those using variations on the Unified Process, or
the mandates of what I’ll call the Regulated Environment…

How to fit into all these, and still stay sane as Testers? That’s
the subject of the next chapter.

© 2009 by Taylor & Francis Group, LLC

47

CHAPTER 6

Being Essentially Agile

This chapter is about the agile core of Essential Testing and
how to apply Essential Testing to bring testing agility to non-
Agile projects.

As I discussed in the last chapter, ‘Agility’ and ‘Agile Testing’
are existing concepts usually only applied to testing on Agile
projects, not testing in an agile manner on other types of
projects.

I believe testing in an agile manner is possible in any kind
of development, and, in fact, the ideas and practices behind
Agile Testing can be extended to establish values and practices
that will make testing as a whole a better discipline.

This is what I call Essential Testing.

The agile core of Essential Testing focuses on knowing the
environment you are testing in, understanding the expectations
of that environment, and meeting those expectations in the
most effective, but minimalist way possible. The other values
Essential Testing requires are more personal; I’ll deal with
them later.

Remember, Essential Testing isn’t just for Agile projects. Every
project can use it.

Essential Testing can work with non-Agile projects because
it takes into consideration the environment in which testing

© 2009 by Taylor & Francis Group, LLC

48 CHAPTER 6: Being Essentially Agile

takes place and aggressively strives to optimize activities
within that environment. So it doesn’t matter if your universe
is a project using XP or a project using Heavy Waterfall, as
long as you are one with it.

Essential Testing says focus only on necessary work product
and try to eliminate any unneeded testing activities within
the boundaries of the present environment - a concept that
can work within any project, because it doesn’t scream for
radical change.

Rather, it insists on common sense�, an understanding of what
needs to get done, and the courage to get it done as efficiently
as possible.

The Agility Basics
Essential Testers know that testing in an agile manner means

•	 understand what needs to be done

•	 know the environment

•	 communicate a lot

•	 anticipate change

•	 be a minimalist

•	 be ready to explain yourself

•	 �oh yeah, don’t be lulled into sleepwalking through a
project.

The first three are usually project specific; the others are
personal best practices. There are three other basics, borrowed
from Extreme Programming (XP), and real life:

� “Common sense is a term I am fond of just as I am of “good judg-
ment”, mainly because people understand what it mean. Besides, I know
the term drives stodgy testing folk crazy. It’s not testable.

© 2009 by Taylor & Francis Group, LLC

49

•	 Be courageous

•	 Encourage feedback

•	 Respect and expect respect

While I’ll go into all of them in much more detail in later
chapters, here’s a brief introduction to each.

Understand What Needs To Be Done
In testing, there are project expectations and product expectations
that determine the level of detail that needs to be tested.

In our Engine Aircraft Monitoring System example, many of
the testing expectations related to level of detail are spelled
out for us by product certification guidelines. These guidelines
are issued by the FAA and spell out what should be tested and
to what level of detail for different safety levels.

On the other hand, testing expectations were set at the project
level for the Conveyor System Project example. During
initial planning the project team specified how testing would
take place. Each software release has specific requirements
associated with it and the need to support different hardware
components. We can make our own determination of what
level of detail to use while testing different elements, based
on the complexity and criticality of the software being
incrementally delivered.

Know Your Environment
The project environment will help decide what needs to be
done - or, more likely, what you can do. Testers need to look
for boundaries. Eventually, you may have to push those
boundaries to get the job done, but understand them first. If
I don’t truly understand my environment, I can’t be agile in
my plan.

I once got a fortune out of a fortune cookie that read something
like “A gentleman is like water, he molds to the shape of the
container that holds him”. I always liked that one because it is

The Agility Basics

© 2009 by Taylor & Francis Group, LLC

50 CHAPTER 6: Being Essentially Agile

all about understanding your environment and adapting to it.
That isn’t conformity; it is just being humble enough to know
what you do control and where the limits are on the things
you don’t. At the same time, understanding those limits also
helps in understanding what may change in the environment
as well as what changes you have the power to initiate.

Communicate A Lot
Essential Testing requires constant communication, not just
lip service. To understand the environment and what needs
to be done, efficient, effective communication has to happen
from the beginning.

Right up front I want to know what I am up against and the
constraints that bind me. I prefer informal communication
over formal, but will take it any way I can get it.

So talk to the requirements analysts and the stakeholders early
in the project to understand the product and each group’s
expectations of what it will take to prove the end result. This
includes specified expectations, implied expectations, and
expectations rolling around in the back of a major stockholder’s
mind.

Talk to anyone related to the project to get a good feel for
the true environment – project management, architects,
developers, and the QA folks if QA is a separate function.

If I am the testing lead on a fairly large project I usually spend
a large portion of the planning stage walking around talking
to people when I am supposed to be planning (okay I do
that no matter what my role). But in reality this is part of the
planning process.

Expect Change
Understanding what needs to be done and scanning the
environment will help you anticipate what may change. This
doesn’t mean activities must be planned to accommodate
potential changes - that wouldn’t be agile. Energy shouldn’t be

© 2009 by Taylor & Francis Group, LLC

51

wasted on things that may never come to pass. But expecting
and anticipating change allows us to have the courage to take
action when it does occur – and be ready for it.

Be A Minimalist
Continually think of ways to do less work to get the job done.
If you aren’t sure whether to include or delete activities,
choose delete.� If you are flexible, you can always add things
later on.

Keeping things simple makes understanding easier.

I once worked with a guy who took great pride in his far
reaching vocabulary. He also wrote Use Cases. So, he wrote
some Use Cases that were simply poetic. The only problem
with them was that nobody could understand them. We had
to rewrite them so that they made sense and were practical to
use.

Simplicity goes beyond common vocabulary, although
simplicity helps make things easier to understand. Beyond
that, simplifying things ensures that processes are easy to
follow, and documents are clear and concise. Striving for the
simplest way to do things helps us be efficient.

Be Ready To Explain Yourself
You need to understand the environment, but the environment
needs to understand you. If you are going to ask for things of
others, be able to explain why you want them. This includes
educating others on the project team on best practices and
how doing things certain ways helps the entire project.

There are many ways to be persuasive, but I have found
that enthusiasm works best. When I feel strongly about the
value gained by specific activities or using certain artifacts, I
get enthusiastic. This turns into passion that bleeds through

� My daughter, the project manager, warned me that if you do this
make sure you are not perceived as a Slacker Tester. These are testers that
try avoiding work.

The Agility Basics

© 2009 by Taylor & Francis Group, LLC

52 CHAPTER 6: Being Essentially Agile

and is visible to anyone who gets close. I can’t help but show
excitement. This excitement is usually contagious and others
become open to my suggestions. Of course the passion must
be genuine so you really have to believe in what you talk
about to be persuasive.

Don’t Sleepwalk
Don’t get so comfortable with a process that you can sleepwalk
through it. There may be similarities between projects, but each
one is different and we shouldn’t be lulled into complacency by
those similarities. What can or should be done differently for
each project? Stay on top of the environment and what needs
to be done - this will go a long way to reducing complacency.

Encourage Feedback
Feedback is the other side of communication.

With Essential Testing we want to know that we are doing the
right things. If we are trying to push the envelope we want to
know when it breaks.

Feedback comes not just from stakeholders as we find
acceptable ways to present test results, but also from other
key testing clients including project managers, developers,
etc.

Feedback starts early too. Force feedback into your testing
process so that you are constantly evaluating yourself. The
Agile people like to talk about testing early and often. Well,
as testers, we want feedback on what we are doing early and
often.

Courage
Courage is not something normally associated with testing,
but it is vital to testing success and should be embraced by
all testers. Too often I’ve seen testers in an unending state of
fear or worry. They sit on their hands and wait for things to
happen. When they see things on the project that could be
improved, the stay silent, knowing potential trouble is on the
way.

© 2009 by Taylor & Francis Group, LLC

53

Testing with courage means being aggressively proactive
about ensuring the proper things get tested as efficiently
as possible. Being courageous requires balancing fears and
concerns with confidence. This includes understanding that
things won’t go as planned, taking action when warning signs
appear, and being willing to adjust course when unplanned
situations arise.

Risks and problems are normal and too easy to become a focus.
In the FAA certification world there are plenty of papers that
talk about dangers and pitfalls that should be avoided when
creating software that goes into aircrafts. What these papers
are short on are solutions to avoiding them.

It is okay to worry. Courage is the willingness to pull your
head out of the sand and take action to address those worries.
And courage includes the courage to be wrong. If you don’t
get it completely right the first time, that’s okay as long as you
understand what needs to be done next and have confidence
that you can turn things around when they go sour - without
jeopardizing the project.

Respect
This is the latest XP value. In Essential Testing, we want to
respect others and their work, and consider that we strive
for synergy. This respect also extends to overall goals of the
project. This is part of being aware of our surroundings.

Conclusion
Essential Testing shares more than just core concepts and
practices with Agile Development. It embraces the significant
values behind being agile, and extends them in special ways
that have additional meaning to testers.

In the next chapter, you’ll see how all of this applies in practice,
to any type of project.

The Agility Basics

© 2009 by Taylor & Francis Group, LLC

55

CHAPTER 7

Build Testing Agility
Into Any Project

It is possible to fit Essential Testing into all types of projects.
It’s just a matter of knowing the environment and striving for
efficiency. To show how, I am going to discuss three types of
projects. I’ll call these types Agile Iterative, Heavy Iterative,
and Heavy Waterfall.

These are my types, by the way, and I know they don’t cover
all projects of course. But they help illustrate at a very high
level how Essential Testing applies across the spectrum of
development types.

Finally, I’ll provide more detail on working with safety
regulated systems. In theory, these systems can be built using
any process, so long as the end results are documented to be of
minimal risk. However, depending on the certification level,
they require far more testing rigor than normal commercial
systems, and so are a special example of how Essential Testing
can apply in even the most extreme circumstances.

Agile Iterative
Agile Iterative projects have short iterations that incrementally
produce testable product. The focus is less on documentation

© 2009 by Taylor & Francis Group, LLC

56 CHAPTER 7: Build Testing Agility Into Any Project

to support decisions and more on producing delivered
software that works and is testable. The product delivered
in early iterations is likely to change as the developers
add functionality to the product and the stakeholders
understanding of the product changes, and consequently the
requirements change.

Applying Essential Testing to Agile Iterative
The Agile folks pretty much have this type of project covered.
There is less planning up front, with a lot of testing as each
iteration is delivered. Early testing is more exploratory
where the tester wants to make sure that things don’t break
and is less worried about detailed requirements testing - if
the requirements are going to change, don’t worry too much
early. Stakeholders will tell you what they do and don’t want
as they see the product progress.

The Rinkratz example fits into this mold.

Heavy Iterative
Heavy Iterative is more formal. A project following RUP would
normally fall into this category. There is more emphasis on
planning up front and stability in requirements than is the
case with Agile Iterative projects.

Once the planning phase is completed, the product is
incrementally produced in iterations. However, the iterations
are considerably longer than Agile iterations. They can
be treated as mini waterfalls where to some degree you go
through Requirements, Analysis, Design, Implementation
and Integration, and Test in each iteration.

The early iterations focus on shoring up the architecture and
eliminating risks, while it is expected that later iterations, more
focused on construction and integration, will run smoothly,
based on what was learned from the early iterations.

© 2009 by Taylor & Francis Group, LLC

57

Applying Essential Testing to Heavy Iterative
From an Essential Testing point of view, a risk to eliminate
early on is the risk that the testing process will be too
cumbersome and won’t adequately convey system readiness
to the stakeholders.

In the ‘planning’ phase make the test planning activities as
lean as you can get away with. Focus on doing as little as
possible while helping other project roles in the first iteration
based on the environment. You can always add more control
and activities later as you learn from early iterations since,
from a testing perspective, the early iterations are as much a
learning experience as anything else.

Later testing within iterations will be more formally focused
on requirements and presenting results to stakeholders than
in Agile Iterative projects. Still, think lean.

The Conveyor System example would be a Heavy Iterative
project.

Heavy Waterfall
Heavy Waterfall is the traditional development process that
everyone talks about, where there is tons of documentation
and lots of early planning.

The project goes through stages of Requirements elicitation,
Analysis, Design, Development and Integration, and Test. This
methodology is used quite a bit on large projects where the
correctness of the product is a major concern. It is perceived
that monitoring and control need to be in place to manage the
large number of people working on such a project. Familiarity
with the process is another reason it is used.

Critics will tell you that there is too much focus on
documentation and not enough focus on development up
front. They will also tell you that since requirements will

Heavy Iterative

© 2009 by Taylor & Francis Group, LLC

58 CHAPTER 7: Build Testing Agility Into Any Project

change an early focus on getting all the requirements right
is more trouble than it is worth and can lead to a mismatch
between the final product and what the stakeholders really
want. These are all valid concerns, but the reality is that there
is a need for these types of projects and a large number of
professionals work on them.

Applying Essential Testing to Heavy Waterfall
There are many adaptations of the waterfall to accommodate
some of the concerns, such as having multiple builds and
releases of product. Essential Testing would focus on using
most of the up-front planning time allotted to get to know
the environment. Understanding stakeholders, the project
process, and the individuals carrying out the process as much
as possible is key.

On many projects that employ Heavy Waterfall a document
called a “Test Strategy” is required in addition to a Test Plan.
It spells out the who, what, where, when, and why of testing
without talking dates or details. This is used to prove we
testers understand the environment and, since/once it gets
approved, acts as a CYA.

I discourage using such a document if it doesn’t directly
contribute to the testing of the product or isn’t a required
artifact in one form or another. As the Test Plan is built, the info
normally provided in a Test Strategy will be gathered anyway.
The formalized CYA aspect of this document shouldn’t be a
major concern for an Essential Tester. Don’t forget, one of the
basics of being efficient is being able to explain yourself.

The Test Plan should be the leanest and meanest you can
get away with. Iteratively identify and create tests cases
while working with the requirements people and fostering
interaction with the stakeholders.

Since you can’t test against requirements up front, focus
on understanding requirements early and getting as
much stakeholder input as possible. Plan on educating

© 2009 by Taylor & Francis Group, LLC

59

the stakeholders as much as possible on what the final test
product will look like and what they can expect. Plan on the
minimalist side and let the stakeholders tell you what else is
needed to make them feel comfortable.

As the project progresses, and testing is detailed, place more
focus on the adequacies of the tests and then on the execution
of the tests themselves. There are plenty of opportunities to
keep things simple as you trudge toward the ultimate goal.

Safety Regulated Systems
(for example FAA D0178b)
Safety regulated systems are typically built using Heavy
Waterfall, but worth a more detailed section to themselves.

What Regulated Systems Are
All systems are ‘regulated’ to some degree, because the
standards and rigor related to the product depends on the
expectations of the stakeholders.

However, what we think of as regulated systems are usually
systems that the government has an interest in, usually in
the name of public safety. This is even true with financial
regulation - think of Sarbanes-Oxley and the legacy of Enron
and WorldCom. The usual result of regulations is certification,
and a certification process that proves to one or more regulatory
bodies that nothing related to regulation was ignored while a
system was being constructed.

A couple of regulating bodies that are interested in software
certification are the FDA and FAA.

•	 �The FDA is ultimately concerned with health safety
and software in the health field that could cause harm
to individuals if not implemented correctly. Examples
include software that controls blood testing equipment
or any equipment that interacts with humans, and

Heavy Waterfall

© 2009 by Taylor & Francis Group, LLC

60 CHAPTER 7: Build Testing Agility Into Any Project

software that categorizes and stores health test results.

•	 �The FAA is concerned with flight safety and any software
that could cause harm to people in aircrafts. Examples
include software that aid in monitoring aircraft traffic,
and any software that runs on an aircraft that flies in
US airspace.

Certifying Regulated Systems
Regulated system certification isn’t just about testing. Testing,
and proving that you tested thoroughly, is important, but
equally important is proving that you planned development
activities, and followed the development process properly.

The testing process dictated in these regulated environments
is usually rigorous and rather heavy as you could expect.

Someone responsible for certifying software of this nature
must not only be able to verify the software works properly
and doesn’t cause anything dangerous to happen, but also that
a specific process was planned and followed in a defensive
enough manner during the lifecycle to ensure safety. Fear plays
a part in these processes and justifiably so. But even within
these heavy processes there is room for agility in testing at all
stages.

Applying Essential Testing to Regulated Systems
Using the FAA project as an example, one of the earliest
opportunities to communicate with the regulating authority
(the FAA in this case) is through the approval of initial
planning documentation. There is one document in particular
called the Plan For Software Aspects Of Certification (PSAC). This
is the document used to tell the FAA what you are building,
what level of safety you plan to build into it, how you intend
to build it, and what you are going to do to prove it works.
This is kind of a strategy for the entire project. Typically this
document should be approved before a single line of code is
written.

© 2009 by Taylor & Francis Group, LLC

61

Generally, you don’t talk directly to the FAA, but to a person
you employ as a liaison between you and the FAA, someone
called a Designated Engineering Representative (DER). This is
the person you use to be your sounding board. As the team
builds the PSAC, we can be bold, ensuring that our testing
techniques remain as lean as possible. The DER will tell us if
we are off the mark and let us know what he thinks will be
acceptable.

Since verification includes proving that the requirements
are implemented properly, testers must have a good
understanding of the specifics of the development process
that will be used, and then interpret and communicate their
role in an ‘essential’ way:

•	 knowing what needs to be tested when

•	 �acknowledging the fear in the back of their minds while
not being overcome by it

•	 �and focusing on only what needs to be done without
overdoing it.

An important aspect of certifying regulated systems to
software testing is traceability.

For regulated systems, traceability is king. In order to prove
verification of both process and product, requirements are
traced to analysis, design, and code - and tests traced to those
artifacts depending on the level of rigor required. This level
of traceability doesn’t really affect agility of the entire process
if done right.

I’ll go into details about tracing and tracing artifacts later in
the book. But for now, I want to emphasize that tracing can be
done well without driving people nuts.

Okay, heavy process can be intimidating. In many cases a
company or organization that signs on to develop a product
that must be certified isn’t prepared for the rigor. They may

Safety Regulated Systems (for example FAA D0178b)

© 2009 by Taylor & Francis Group, LLC

62 CHAPTER 7: Build Testing Agility Into Any Project

be provided with system specs and a timetable, but not much
else. The requirements for certification include following
a heavy process, but typically, these guys are competent
developers who don't want to be bogged down. The process
seems so overwhelming that the team may just go forward
and build the product from the system specs and worry about
certification later. This isn’t the norm but it certainly happens
and often is not accepted by the regulating authority.

Fortunately there are organizations specializing in certification
that can help out, that know the industry, are heavy on testing
skills, but also strong on understanding process and capable in
all aspects of development. They may have to build a process
where one isn’t apparent, around system specs and code that
works. Then, they follow the process as if they didn’t have
any code, in order to ensure all relevant artifacts are created.
From there, testing occurs against requirements and defects
are tracked.

Despite working in a regulated environment, these
organizations are themselves a good example of ‘being
essential’. They know what they’re up against, based on
experience, eliminating a lot of the fear. Depending on the
product being developed, they understand what needs to be
tested, the level of detail required, and how to best present the
results. They also are familiar with the regulatory environment
(FAA) and being experienced, can quickly get up to speed on
understanding the client environment.

Experience and knowledge of the environment help these
specialized organizations put processes in place for handling
development and testing that is lean and mean, enabling them
to get things done quickly and efficiently.

© 2009 by Taylor & Francis Group, LLC

63

Conclusion
In this and prior chapters I have defined Essential Testing and
made a case for using it whenever possible on just about any
project. Now that you understand what it is and how it can be
used, I can explore how to put it into action. But remember,
each instantiation of testing process and activities for any
project should embrace the values of Essential Testing.

The next chapters will demonstrate how to plan and test
according to Essential Testing values.

Conclusion

© 2009 by Taylor & Francis Group, LLC

Part Two
Fundamentals For Testing Success

So far I’ve talked about what Essential Testing is and, along
the way, I gave brief explanations of testing concepts.

In this part of the book, I discuss in greater detail concepts
vital to doing testing.

Don’t worry. This section isn’t very long. It will help you
become familiar with ideas that become part of the testing
process I will discuss in Part 3.

© 2009 by Taylor & Francis Group, LLC

I’ll cover

•	 �What good requirements look like and actions that can
be taken when they are not so good

•	 Use Cases and their importance to testers

•	 �My definitions of Test Cases, Test Suites, and Test
Procedures

•	 �Building a test process that fits, as a starting point for
communication and planning

Requirements are so vital to Testing The Right Things, they must
be a priority to all testers. Successful testers are dependent
on requirements supplied by other development partners,
therefore they must be able to tell if these partners have
succeeded, and what to do if they haven’t.

And I think Use Cases are vital to doing testing right, so I will
spend some time defining them from a testing perspective -
and, in the process, showing you some examples of good Use
Cases, since there are so many bad ones out there.

Also, because there are many different definitions of Test
Suites, Test Procedures, and Test Cases, I’ll spend some time
being clear how I use these terms, and how I think these
artifacts can be created in the most useful way.

Finally, the last chapter of this section will cover concepts
related to building a testing process that are consistent with
Essential Testing. This chapter will lead us into the next part
of the book where I will discuss how to do testing beginning
with planning.

© 2009 by Taylor & Francis Group, LLC

67

CHAPTER 8

Requirements–Fundamentals
For Testing Success

No matter how obvious it is, I can’t stress enough how
important requirements are to any software development
project and how having good requirements is vital to testing.

Software requirements are conditions or constraints that the
software system must comply with, usually broken down into
functional and non-functional requirements. In this chapter I’ll
deal with software requirements from a testing perspective.

In this chapter, I’ll explore:

•	 what good (and not so good) ones look like

•	 the various forms they may take

•	 what they are used for

•	 how requirements, good, bad and so-so, affect testing.

Perhaps most importantly, from a testing perspective, I’ll
discuss what can be done when requirements aren’t so good,
and anticipating requirements, an important proactive element
of Essential Testing.

© 2009 by Taylor & Francis Group, LLC

68 CHAPTER 8: Requirements – Fundamentals For Testing Success

Good Requirements
Requirements are supposed to drive the entire software project,
which is, of course, why they are so important to testing. How
can you test if you don’t know what you are testing?

Software requirements describe what the system should
do: consider them contracts between the stakeholders and
the people building the system. So in order to prove the
system works as it should, it is important to test against the
requirements and prove that the system developed meets
those requirements, and satisfies the contract.

Many projects fail because they don’t have good requirements.
Lousy or constantly changing requirements may sink a project.
There are plenty of ways to wind up with poor requirements.

For example, the stakeholders may not have a clear
understanding of what they want the system to do. This leads
to ambiguous requirements or clear requirements that change
constantly as the project progresses. Or perhaps the analysts
capturing the requirements didn’t do a good job and the folks
approving them didn’t scrutinize them or didn’t care.

Not having good requirements leads to difficulty proving the
system either works or doesn’t when it is finally complete. Since
this is the major responsibility of testing, testers have a vested
interest in good requirements. Good and stable requirements
are important to testers because it makes their life easier.
Essential Testers have a responsibility to do whatever they can
to ensure good requirements. I’ve seen many situations where
testers knew early on that the requirements sucked, but didn’t
say anything. Testers must be willing to voice concern when
they see problems with requirements, and must be proactive
in taking action to correct the situation wherever possible.

Unclear requirements make it difficult to understand the
expected results of the software or even get an understanding
of what the entire system is supposed to do. In many situations,

© 2009 by Taylor & Francis Group, LLC

69

requirements do not get clarified until they are implemented.
Then, the interpretation of the implementer becomes the final
definition, and more often than not the formal requirements
definition doesn’t change to match the final perception. Not
only does this cause testers to struggle to adjust tests at the
last minute, there is always a chance the stakeholders won’t
be happy with the final product even if kept in the loop.

Constantly changing requirements (in effect, poorly managed
requirements) also cause grief to testers. Even if everyone
agrees with changes, it can be difficult for the testing team
to maintain tests after they are developed. Agile folks handle
constantly changing requirements by just accepting change as
a fact of the project, and moving on. This approach only works
because they have immediate access to the stakeholders,
can treat the code as the documentation, and may have less
bureaucracy to deal with. For them, change management is
embedded in the development process.

However, most developers have to deal with more rigid
environments.

The reality is that on most projects, not all requirements are
good early on nor are all of them stable. We are always going
to have to deal with sub-optimal conditions and change.

With Essential Testing, poor or changing requirements are
less of a problem; like the Agile folks, we accept the inevitable
reality and deal with it proactively.

What Makes Up Good Requirements
A seasoned tester can pick out problems in requirements a
mile away. And it doesn’t take long to learn. On one project,
I worked with a team of testers straight out of college, new
to testing. I continuously hammered on the importance of
having good requirements. Once they started writing Test
Cases against requirements it didn’t take long for them to be
experts on good requirements.

Good Requirements

© 2009 by Taylor & Francis Group, LLC

70 CHAPTER 8: Requirements – Fundamentals For Testing Success

Here is my standard list of criteria for good requirements,
based on industry standards. Good requirements are:

•	 Clear (Understandable)

•	 Complete

•	 Reasonably Detailed

•	 Verifiable (Testable)

•	 Correct

•	 Consistent

•	 Unambiguous

This isn’t a book on writing requirements, so I won’t go into
great detail about writing good ones. But I do want to discuss
my version of good requirements criteria to help you know
what to look for.

Clear requirements are requirements that everyone can
understand. As a tester, I want the stakeholder who accepts the
requirements, the people implementing them, and those of us
testing against them to all have the same understanding. The
clearness issue can be avoided by getting as many disciplines
involved as possible in requirements review. This takes time
that not everyone may seem to have, and a consensus on clarity
can be difficult to gain. Essential Testers will take the lead if
necessary! It is worth the effort to communicate requirements
early to foster understanding.

Complete and Reasonably Detailed need to be balanced. As
testers, complete requirements are important for making sure
we are testing everything that needs to be tested. At the same
time we don’t want to go overboard with details to the point
that the requirement is difficult to understand. One way to
provide detail without cluttering up a requirement is to
reference selected supporting details in external documents
where possible.

© 2009 by Taylor & Francis Group, LLC

71

Verifiable (testable) requirements are those that a Test Case can
be written against that can validate whether the requirement
has or has not been implemented correctly. A requirement is
only testable if it has been broken down to a level where it is
unambiguous, i.e. precise.

In order to make a requirement precise, specific values should
be used in the description of the requirement. Conditions or
actions associated with the requirement must be specified.
Examples of using specific values include terms such as “90%
of all end users” or “product quantity must be greater than
zero”. Conditions or actions should be stated plainly using
terms such as “the user enters data”, “the order is validated”,
or “the check amount is deducted”.

An example of an imprecise requirement is “The system
must be easy to learn”. This requirement would be almost
impossible to verify without any specifics. What does “easy
to learn” mean anyway? Instead of the above requirements
we could write the following. “After 2 days of on-the –job
training (defined), 90% of all new customer service employees
will be able to view order details and place/modify customer
orders with a rework rate (defined) of less than 5%.” This is
much clearer and we don’t have any questions about what to
test for.

A requirement is unambiguous if all readers read the
requirement and understand it in exactly the same way. This
gets back to clear requirements. Of course you don’t want to
go overboard and make a requirement so non-ambiguous that
it looks like a legal document. There is a balance between an
understandable requirement and no ambiguity at all.

One way to help the balance is to supplement the requirements
with diagrams or tables to enhance understandability.
Alternatively, consider breaking up OR conditions into
separate requirements. If this is done, the sub-requirements
must be verifiable and all parties must agree that the sub-
requirements accurately represent the original requirement

Good Requirements

© 2009 by Taylor & Francis Group, LLC

72 CHAPTER 8: Requirements – Fundamentals For Testing Success

and are acceptable as written.

An example: “When the system receives a ‘Low Oil Pressure’
message from either the left or right engine, a corresponding
Engine Oil Pressure warning message shall be displayed to the
main cockpit display.” I can understand what this means and
the stakeholders probably could as well. But I need to make
sure everyone is clear on this and that testers test it correctly.

To clear things up I could write two requirements. One would
be “When the system receives a ‘Low Oil Pressure’ message
from the left engine, a Left Engine Oil Pressure Low warning
message shall be displayed to the main cockpit display.”
The other would be “When the system receives a ‘Low Oil
Pressure’ message from the right engine, a Right Engine Oil
Pressure Low warning message shall be displayed to the main
cockpit display.”

Enough about good requirements.

Exactly what constitutes a good requirement is always
subjective to some degree, but in most cases, as testers you will
know a good one when we see it. You shouldn’t be concerned
with less than perfect requirements as long as you understand
them and know how they’re understood by the stakeholders
and project team - and you can test them accurately.

Not So Good Requirements
You won’t always have good or stable requirements. So, while
the focus of testing on an Agile project is testing early and
often, testers on other types of projects should focus on the
requirements early and often.

This means getting involved in reviewing the requirements
as early as possible. The level of involvement will vary from
project to project but requirements must be addressed by the
testers.

© 2009 by Taylor & Francis Group, LLC

73

Being agile, you will want to get your nose into the requirements
as soon as you possibly can on any project. When and how you
get involved depends on the project and again on knowing
the environment. Ideally, get involved as the requirements are
created or, worse case, in the review process.

In some projects, testers will be allowed to have input into the
final product. On other projects you may not have any say on
the requirements and have to take them once they have been
base-lined.

What To Do When Requirements Aren’t So Good
Once requirements have been received by the testing team they
can be used for identifying and writing tests. As the process
of identifying and creating tests begins, it quickly becomes
apparent whether or not requirements are good enough, since
the major part of identifying and writing tests is gaining an
early understanding of the requirements.

What can and should be done when encountering poor
requirements depends on the environment. It is important to
do whatever it takes to continue to move forward quickly.

Here are two possible courses of action.

First scenario: you have the ability to request changes to
requirements once they have been delivered.

Take advantage of this opportunity.

In order to get requirements accepted and changed quickly,
suggest revisions and specific changes directly to the
requirements managers. This way you know exactly how the
requirement will look if it is accepted and you can continue
with your activities of creating tests. If your suggestion or
interpretation is off base, tweak your test to compensate. But
more often than not your interpretation will be accepted if
you did your homework.

This requirements help shouldn’t be considered doing

Not So Good Requirements

© 2009 by Taylor & Francis Group, LLC

74 CHAPTER 8: Requirements – Fundamentals For Testing Success

someone else’s job either. Your attitude as a Tester: it doesn’t
matter who is ultimately responsible for the requirements as
long as they work.

Second scenario: requirements are delivered and you are told
they will not be changed further - for example, they are base-
lined. But they may be base-lined before they are in good
shape.

A way to deal with this: make informal changes to requirements
and document them. Write your interpretation of the
questionable requirements using input from the requirements
managers, stakeholders, or anyone who can help clarify.
Document your interpretation and make it known that this is
only an interpretation in order to move forward.

The interpreted requirements can be used to identify and
build tests. As tests are executed, the tests can be presented to
the stakeholders to show the interpretation of what is being
tested. Most likely the interpretations will stir discussions that
help clarify everyone’s understanding of the meaning of the
requirements. Then, changes to tests to reflect clarifications
can be made as needed.

Remember: Always take the bully by the horns.

Be Proactive: Anticipate Requirements
Even if requirements aren’t available early, it may be possible
to anticipate what they may be. This can be inexact, but
anticipating requirements when none are available can be a
key to Essential Testing.

For Essential Testing, testing management should plan to
have resources available to a project as soon as possible, even
if the project doesn’t have a need for them until later. A lack
of requirements doesn’t mean testers can’t plan tests. Sure,
it’s tough to know what to test when you don’t know the
requirements. That shouldn’t stop you from sketching them
out.

© 2009 by Taylor & Francis Group, LLC

75

Start with any related documentation that talk about the
system being built or modified. From there communicate with
anyone who will talk to you who you think may potentially,
provide some enlightenment.

If the requirements analysts are available, talk to them - try to
get a sneak preview of requirements.

Talk to stakeholders. Of course, if you do, make sure not to
step on the toes of the requirements analysts and make sure it
doesn’t look like a duplication of effort from the point of view
of the stakeholder.

Document your requirements sketches in Use Cases or
scenarios (I’ll tell you about Use Cases for Testers in the next
chapter!). Use these initial Use Cases to get feedback from
people who know about the requirements. From there you
can identify potential tests, sketch out Test Cases, and even
get an idea of how tests may be implemented.

Yes, this is starting early and working against artifacts that are
not the requirements, but this is a start, and you will be acting
in a proactive fashion. If you’re wrong, you can always change
things, once the formal analysis is underway. If you do your
job correctly, and communicate as much as you can, you most
likely won’t be far off the mark anyway and, in fact, may be
able to contribute to the completion of the requirements.

Not So Good Requirements

© 2009 by Taylor & Francis Group, LLC

77

CHAPTER 9

Use Cases For Testers

Because of their importance as a testing tool, I’ll provide a brief
explanation of Use Cases here. Since they are also subject to
wide variations in the way they get defined in practice, this
explanation is intended to help Testers understand Use Cases
from the vantage point of a Tester.

Use Cases are a way of expressing requirements based on the
perspective of users outside of the system. They capture the
uses of the system in terms of achieving goals or value for
someone or something outside the system. That someone or
something outside the system is called an Actor.

Actors represent roles that interact directly with the system
under development. They are external to the system and can
be human beings, other systems, or devices.

•	 �Human Actors can be any role a human takes on
within an organization that interacts with the system.
Examples include Hockey Player and Team Manager in
the Rinkratz example and Pilot in the FAA example.

•	 �External system Actors are systems that interact with
the system under development through the Use Cases.
Examples include Ground System or Central Aircraft
Control System in the FAA example.

© 2009 by Taylor & Francis Group, LLC

78 CHAPTER 9: Use Cases For Testers

•	 �Actors can also be inanimate objects. In the Conveyor
System example, Package becomes a major Actor since
it interacts with the system via sensors and gets value
from being transported to the correct location.

Working With Use Cases
Use Cases are depicted with specific model elements and
diagrams in the UML, and specified in standardized text.

Use Case Diagrams
Use Case diagrams are used as a static representation of the
Use Cases in a system and the Actors outside the system that
they interact with. They are a nice way of showing the high
level functional scope of a system.

Figure 9-1 shows the Use Case diagram for Rinkratz.

Actors are depicted as stick figures and Use Cases as ovals.
Lines between Actors and Use Cases show interaction between
the two. In this example I have a dotted line surrounding the
system. As you can see, the Actors are outside the system and
in this case we have human Actors such as a Hockey Player,
Team Manager, and League Manager. We also have Actors
that are systems such as the Accounting System, and the US
and Canadian Hockey organization systems.

Here’s one technical detail that’s especially important to note for a
tester….

There are two Use Cases, Set Up a League, and Set Up a Team,
both dependent on the Check Background Use Case, since those
Use Cases can’t exist without the Check Background behavior.
When a user wants to register a new league or team, the user’s
background is validated to ensure that he/she is a member in
good standing with at least one of a number of US or Canadian
hockey organizations. This common behavior works the same
in both Use Cases and so is separated into the Check Background

© 2009 by Taylor & Francis Group, LLC

79

Use Case. Set Up A League and Set Up A Team are said to have
‘includes’ relationships with Check Background, that is, Check
Background is included in both.

Figure 9-1 RinkRatz Use Case Diagram

Use Case Specifications
A Use Case Specification is the container for the sequential
story the Use Case tells: the story of how the system satisfies
the goals of the primary Actor.

The real value of a Use Case is the dynamic relationship
between the Actor and the system. A well written Use Case
clarifies how a system is used by the Actor for a given goal or
reason. If there are any questions about what a system does to
provide some specific value to someone or something outside
the system, including conditional behavior and handling
conditions of when something goes wrong, the Use Case is

Working With Use Cases

© 2009 by Taylor & Francis Group, LLC

80 CHAPTER 9: Use Cases For Testers

the place to find the answers.

The Use Case Specification shows the sequence of interactions
for a Use Case in terms of the Actor. The Actor does something
and the system responds. Each sequence of events is written
as a flow. There are two main types:

•	 �A main flow describes the interaction between the
system and Actor that takes place most of the time to
achieve the Use Case’s goal.

•	 �Alternate flows are used to show conditional behavior.
Alternate flows don’t occur all the time, but take place
under certain conditions in order to fulfill the goals of
the Use Case.

Another type of flow you may encounter is the ‘exception
flow’. This is a variation on the Alternate Flow, used to handle
error conditions.

Use Case Specifications also include other elements most
importantly:

•	 �Pre-conditions (These represent the state the system
must be in or information that must exist within the
system prior to the Use Case taking Place)

•	 �Post conditions (These represent changes in the System
State that occur once a Use Case has been executed.)

•	 �Issues and Assumptions (This is a good place to identify
any issue related to the content of the Use Case that
must be resolved, or assumptions made while writing
the Use Case.)

Why Use Use Cases
Employ Use Cases to better understand what a system does.
They help us understand the requirements of the system in
context. This is a great use, but not the only one.

© 2009 by Taylor & Francis Group, LLC

81

I like to use Use Cases in every project I work on regardless of
whether they are the official requirements or not. If they are
not the official requirements, then they are good for grouping
traditional requirements and helping to understand how
these fit into interactions within the system.

Use Cases In Essential Testing
Use Use Cases in Essential Testing as either the functional
requirements or to group the requirements.

•	 �If Use Cases represent the functional requirements, the
requirements are found in the body of the Use Case
Specification. Each Step of a Use Case flow where the
system does something can be considered a requirement
that can be tested. These requirements can be tested
based on the flow of the Use Case. All main flows and
alternate flows in a Use Case should be tested. In Part
3, I detail how Use Cases can be used to identify and
select tests.

•	 �If a project is using traditional requirements, Use Cases
can still help. Use Cases can be created to group the
requirements by functionality. As mentioned before,
the testing personnel can create Use Cases for this
purpose if they don’t exist.

•	 �When grouping requirements by Use Case, traditional
requirements can be mapped to steps in the Use
Cases they pertain to. This helps show the sequence
in which requirements are enacted. Also, a trace from
the traditional requirements to the Use Cases makes
it easier to show mapping to tests when proving the
system works.

•	 �A requirement may map to steps in more than one Use
Case. This is fine. As tests are written corresponding to
Use Cases, some requirements may be tested multiple

Working with Use Cases

© 2009 by Taylor & Francis Group, LLC

82 CHAPTER 9: Use Cases For Testers

times… which shows that the requirements are satisfied
in the context of different uses (Use Cases).

Use Case driven testing provides a way to identify and develop
tests that is thorough, flexible, and works on just about any
project. Even if you work on projects where there are no Use
Cases, when you see how this works you will want to build
them if you don’t have them.

Perceived Problems Testing Against Use Cases
A common problem cited with using Use Cases to test against
is that there isn’t enough detail to test properly.

Typical complaints:

•	 variables aren’t adequately defined

•	 business rules aren’t always specified

•	 the narrative can be ambiguous.

All of these complaints are about poorly written Use Cases,
but…

•	 �If you write a decent Use Case you either identify
variables in the body of the Use Cases where it
makes sense or you reference external documents
to maintain readability and understandability.
Referenced documentation in turn becomes part of the
requirements.

•	 �Likewise, good Use Cases will either include a section
for business rules or reference them as separate
documentation.

•	 �As for ambiguous narratives, the point of the Use
Case is to describe system functionality in a way that
everyone can understand. Ambiguity should be out of
the question.

© 2009 by Taylor & Francis Group, LLC

83

The bottom line: a good Use Case should either contain the
information or reference the information to adequately test its
functionality.

Make ‘Em If You Aint Got ‘Em
Use Cases are vital to the testing effort. They are the ideal way
of expressing functionality of a system in a way that everyone
understands, including the stakeholders that are going to
accept the system. So if you don’t have them you should want
them to the point of creating them yourself. If your project
doesn’t use them that doesn’t mean you can’t create them or
something similar such as user stories or scenarios as part of
getting to the final test product. I consider this being proactive
as a tester and helping the project succeed.

Use Cases In Essential Testing

© 2009 by Taylor & Francis Group, LLC

85

CHAPTER 10

Building A Test
Process That Fits

To start, when building a testing process the essential things
are:

•	 Stakeholder needs and perceptions

•	 The size of the project

•	 Project artifacts

•	 Project activities

•	 Project synergies

•	 Minimizing artifacts

•	 Team dynamics

Test Process: Scoping
Stakeholder Needs and Perceptions

The first priority: the effort put into testing is proportional to
the needs of the stakeholders. If you have a lot of stakeholders
with different needs from a testing perspective, you have to
consider the minimal effort to satisfy those needs. This may
take some prioritization.

© 2009 by Taylor & Francis Group, LLC

86 CHAPTER 10: Building A Test Process That Fits

Consider each stakeholder or stakeholder group
individually.

What are their perceptions of what they need to feel comfortable
that the product is ready? Does their perception match our
perception? Can we and should we change the stakeholders’
perception?

It all boils down to what we understand the testing needs are,
and what the people approving and ultimately living with the
product think, and feel.

We want the stakeholder feeling comfortable, but at the same
time we want to focus on spending the testing effort testing
the right things to the right level of detail. It comes down to
communicating with the stakeholders, understanding their
needs and perceptions as they relate to testing, evaluating
our own perceptions and balancing the two. This is part of
knowing the environment and what we can and should do
within it.

In a project like Rinkratz, where there is a single enthusiastic
stakeholder who will know what he wants when he sees it,
the testing effort can be toned down. This stakeholder, Denny
Lemieux, is more concerned with the functionality, look, and
feel of the product. He wants a hockey website that will appeal
to hockey nuts like him.

Since that is the case, and he is accessible, let him tell you if the
functionality is ok. Of course you need to control the process
just enough to get Denny to agree on what is good enough
and you will have to ensure that the underlying infrastructure
will handle the functionality satisfactorily in a live situation.

In the Conveyor Project, we know that, while the ultimate
stakeholder, VP Jim Bland, just wants to see boxes go around
the conveyor system in an orderly manner, there is a lot
more to the testing effort than that. For example, we have to
ensure the infrastructure is properly in place to handle inter-
operability of hardware.

© 2009 by Taylor & Francis Group, LLC

87

We also have other stakeholders to think about, such as
sub-system providers, and the project architects. And, we
have to consider the existing functional and performance
requirements. Finally, we have to determine the best way to
present test results in a manner that is understandable and
meaningful at the same time.

In the FAA project, a major stakeholder (the FAA) will have
made most of its expectations clear to us in the form of
published guidelines, eliminating a lot of the guesswork. For
them, it is mostly a matter of understanding how to present
the results as efficiently as possible to match the expectations
within the guidelines.

But, remember, we have another stakeholder - the group that
hired us, Sky High. Fortunately, as usual, they just want us
to meet the FAA’s expectations and get the product certified
with as little hassle and as little cost as possible.

So understanding stakeholder needs and perceptions in this
case is a little easier than in the Conveyor situation. But that
doesn’t make the overall testing effort any easier, just clearer
at the beginning.

Big vs. Small
Another consideration is the size of the project and the overall
process that will be employed to get the job done. The scope
of the project inevitably affects the testing effort. Larger scope
usually means more things to test. More people on the project
mean more people to interact with and meeting their needs.

Most of the time, project planners equate project size/scope
with testing effort. Essential Testers can help fix that. We know
that, sometimes, other factors play a larger role in determining
the level of effort going into testing.

The FAA project is a good example of a project that would be
fairly small with a large testing effort, because there are other
factors other than product scope. Not only the validity of

Test Process: Scoping

© 2009 by Taylor & Francis Group, LLC

88 CHAPTER 10: Building A Test Process That Fits

functional and non-functional requirements must be proven,
but also a greater level of detail in testing must be shown. On
top of that, we must show that we adequately tested design
requirements, prove that all code is covered by tests, and that
no code is present that isn’t being used.

Test Process: Inputs and Outputs
For testers, artifacts are either inputs or outputs. We need to
look at both: what we’re going to be provided with and what
we’re expected to produce.

Knowing what inputs are available and the condition they
are in will go a long way to understanding how we go about
proving the system. There will be different types of input
artifacts in various forms. Requirements, design artifacts:
these are vital to testing. There may be other artifacts such
as source code and standards that we need to consider, but
requirements and design artifacts are what we will test
against, within the constraints imposed by architecture and
stakeholder expectations.

Requirements as Test Inputs
Requirements are what we use to prove the system is correct.
What we decide to do with them depends on the type of
requirements, the condition they are in and the type of
project.

In some cases there may be system specifications that
encompass more than just the system we are concerned with.
In other word, there are no real clear requirements to speak
of. My editor suggests that, when this occurs, we should start
exploring dice.com for other opportunities, or maybe cashing
in an IRA. Those are options, but there are other options.

First think about the project methodology.

On a fairly small or informal project a system specification

© 2009 by Taylor & Francis Group, LLC

89

may be all that‘s needed to start with. For example, in the case
of Rinkratz, Denny Lemieux will know what he wants when
he sees it. Since an agile approach is being taken, there will be
close customer contact with short iterations. A concept is all
that is needed to start with. You may not expect any formal
requirements documentation.

For heavier methodologies, such as iterative/incremental or
waterfall, something more substantial will be needed. You
would think not having formal requirements on projects
like these would be out of the question, but I have seen it
happen.

When it does happen, convince others on the project that
requirements should be created, or take on the task of creating
them yourself.

Testers NEED requirements!!! And GOOD requirements!!!!

Design Artifacts as Test Inputs
It won’t always be necessary to test the design. System design
is usually a constraint, to be tested against, as opposed to
requirements, which you test for.

For projects where design constraints are not specified by
stakeholders, how the system works may not be a factor in
proving the system. That doesn’t mean design constraints
are not an issue for the development team. There will always
be design constraints to contend with, often imposed by
architects. Those constraints may or may not merit testing.

Remember- know the environment.

It may be up to testers to appease others on the project that
the system is sound. Compatibility issues and organizational
standards may specify design constraints that must be
followed. The tester must understand what will be important
to prove.

Test Process: Inputs and Outputs

© 2009 by Taylor & Francis Group, LLC

90 CHAPTER 10: Building A Test Process That Fits

Regulated environments are big on proving the design all
the way up at the system level. Regulated agencies, like the
FAA and FDA, love ‘validation’ and ‘verification’ when
talking about software testing. For them it is a major part
of software validation. So, to be clear, software verification
proves requirements work as stated, validation proves
all the requirements were implemented and are capable of
supporting their intended use. OR – we did it right AND
we did the right thing.

Where aspects of the design must be proven, you need to know
what design artifacts are available. They can take various
forms: System Architecture Documents (SADs), formal design
documents for heavier projects, even informal documents.

Worse. Informal documentation - or none at all - for less formal
or Agile projects.

Depending on the development process, the artifact notation
may vary. For testing purposes understand the form the
design artifacts are in, the condition they are in, and what will
need to be done to adequately test the design.

Outputs
What artifacts that must be produced - for example Test
Cases, automated tests, bug reports, and test results, as well as
intermediate artifacts that are used to get to the final products.
These may be determined and shaped by the testing tools
available. The expectations of the stakeholders and the project
also determine what artifacts must be produced to prove the
system.

Projects employing heavier processes may expect formal
reviews to ensure the testing effort is adequate. Controls may
be placed on artifacts such as baselining tests.

Again, the least amount of output artifacts to adequately
prove the system is preferable.

© 2009 by Taylor & Francis Group, LLC

91

Shaping The Test Process
The artifacts available, the condition they are in, and what has
to be done to produce the expected outputs - these all shape
the project testing process.

But, as courageous testers you may need to add activities
to get certain artifacts up to snuff so they can be used in an
efficient way.

An example: I was on a project where requirements were
presented in the form of Use Cases but written by developer
types with no history of writing Use Cases. The ”Use Cases”
presented were nothing more than sequence diagrams that
went into great detail on the inner workings of the system,
but didn’t lend much about the true functionality the system
provided, or the interaction between the system and the
outside world.

We were expected to do black box testing and were not allowed
to request changes to the requirements. We planned on using
a simple process for identifying and developing tests based
on Use Cases, but knew the existing requirements were not
sufficient. To compensate we added activities, writing unofficial
Use Cases as interim artifacts, getting the stakeholders and
requirement writers to agree on the content.

Normally, adding activities and artifacts to a project process
isn’t consistent with being agile, since cutting activities is better
than adding them. In this case adding the activities was being
agile. We had a very efficient process for developing tests that
required good Use Cases, so adding activities actually made
the overall process more efficient.

Part of being agile in testing is being able to see the big picture,
understanding what will make you more efficient, and doing
what it takes.

Understand Project Needs
Translation: understand the project and the project ‘process’,
and where testing fits into the scheme of things.

Shaping The Test Process

© 2009 by Taylor & Francis Group, LLC

92 CHAPTER 10: Building A Test Process That Fits

Synergy with the rest of the project team is very important.
We want our testing processes and artifacts to blend with the
expectations of the rest of the project. This also requires an
understanding of the tools and artifacts preferred by the project.
These will vary depending on the project environment.

Here’s an example of fitting the testing process into the needs
of the rest of the project.

In the FAA project, the third party, Down to Earth, is given a
clean slate by Sky High in order to get the final project certified
with the FAA.

Down To Earth knows Sky High is very comfortable with
traditional requirements, and that Sky High is using a low
cost requirements management tool. The project has decided
to create traditional requirements but asks for the testing
team’s input in deciding which requirements management
tool to use.

The testing team normally uses an automated requirements
management tool that works well for traceability but chooses
to recommend the one Sky High is familiar with when they
found it would still be able to manage traceability. The test team
also recommends that Use Cases be created to supplement the
formal requirements, but was willing to create them as part of
the testing process if needed. This compromise was done in
the name of allowing the overall process to work smoothly.
The testing process would have to be adjusted, but could fit
comfortably into the overall process.

Plan For The Minimum Artifact Set To Get By With
Focus on the minimal set of artifacts that the test team can get
by with and still make the stakeholders happy. In the set of
artifacts defined for a project most emphasis should be placed
on deliverable artifacts.

Deliverable artifacts will include anything that must be
provided to stakeholders or other team members. The objective
is to minimize these artifacts.

© 2009 by Taylor & Francis Group, LLC

93

One question to ask about each artifact is if the project can be
successful without the deliverable. The next question to ask is
what would happen if the deliverable wasn’t provided.

You get the picture. We want to get into the habit of questioning
the need for every artifact we produce, and then whether they
are long term or interim artifacts:

•	 �Interim artifacts are artifacts that must be created
as part of getting to the final artifacts that must be
produced, but can be discarded, or more importantly,
will not be maintained. We streamline interim artifacts
as we establish the testing process.

•	 �Long term artifacts impose an implied long term
commitment on the part of the user: they will be
maintained.

We create interim documents for efficiency, quality, or just to
ensure communications. They should be created only if they
contribute directly to the creation of the final test product. For
example, on a project where requirements are in the form of
traditional requirements, Use Cases may be an interim artifact
created by testers in order to do Use Case based testing.

Team Dynamics
Here, the focus is on the interaction between the test team and
the rest of the project team. Not only are you trying to make
things lean for testing, but you are concerned with making
things work smoothly for the rest of the team.

It doesn’t matter how agile testing individuals are and if
they are testing the right things if they screw everything up
for the rest of the project team. You need to make sure you
understand what is expected of the testing team from the rest
of the project. This is part of knowing the environment and
building a testing process that works within it.

Shaping The Test Process

© 2009 by Taylor & Francis Group, LLC

94 CHAPTER 10: Building A Test Process That Fits

Delivery
How will the product be delivered for testing and when?
Much will depend on the methodology being used. Projects
employing iterative/incremental methodologies are expected
to deliver product toward the end of each iteration. Projects
employing a waterfall methodology may chose to deliver
multiple releases in order to spread out the functional
testing.

Things To Worry About
Don’t waste time worrying about anything.

© 2009 by Taylor & Francis Group, LLC

Part Three
 The Successful Testing Process

In this part of the book, I discuss the how of Essential Testing:
a roadmap with specifics - what you test (and how you decide
what to test, the essential activities that must take place, and
packaging the results, with examples.

As I explain all of this, I will make it plain how the basics
of Essential Testing can be applied. As covered in chapter 6,
these include:

•	 understanding what needs to be done

•	 understanding the environment

•	 communicating,

•	 expecting change,

© 2009 by Taylor & Francis Group, LLC

•	 being a minimalist,

•	 explaining yourself, and

•	 encouraging feedback.

And, of course, the golden rule: build a testing process to fit a
particular project, being as efficient as possible while focusing
on the right things to test.

I’ll deal with thinking about a test process for a project in order
of the priority of the topics to consider. My priorities will help
you understand how Essential Testing differs from traditional
thinking about testing, keeping in mind the basics above.

I’ll cover

•	 �Test planning, and only planning enough to get you
started

•	 �Shaping requirements to ensure testing success,
including how to use Use Cases to help succeed,
whether you have them or not.

•	 �Test selection and design, using a pattern and procedure
I’ve helped develop that simplifies and organizes the
tester’s job

•	 Test execution – doing it

•	 Then, proving it, via traceability and test coverage

•	 �With a word or two about test automation - tricky to
implement, this can cause more problems than it is
worth if not done properly.

These aren’t the technicalities of testing. Rather, because
successful testers are dependent on the successful execution
of other development partners, testers must have as a starting
point a basis for knowing whether these partners have
succeeded, and what to do if they haven’t.

© 2009 by Taylor & Francis Group, LLC

97

CHAPTER 11

Essential Test Planning

Test planning doesn’t have to be formal, but it must take place.
And it doesn’t have to be elaborate.

Just do the essential planning; the planning needed to get the
job done. Do it because you need a starting point to get off the
ground early on.

Later, change the plan - it becomes a guide.

Since testing agility is a goal, don’t put too much emphasis
on sticking to the plan. To be agile, you must be prepared to
change the plan as the project moves forward.

As Essential Testers, who want to get the testing job done in
the most efficient way possible be prepared to the point that
makes sense, expecting circumstances to change, not being
afraid of change, and doing whatever you have to get the job
done most efficiently when circumstances do change.

Test Planning Realities
If anybody tells you they can accurately plan an optimal
test process, they are either lying, or they overestimate
themselves.

You can’t imagine how riled I get when someone accuses me

© 2009 by Taylor & Francis Group, LLC

98 CHAPTER 11: Essential Test Planning

of not sticking to a plan. I never intend to stick to the plans I
make – but I develop them like I intend to.

You know things will change, so you need to think ‘change’
when you plan. You do test planning to attempt to solve the
problem of testing on a project. The problem isn’t solved
when the plan is accepted, but when someone with authority
(customers or stakeholders) says they are satisfied with the
results.

Early in any project, a Test Plan is devised. The intent is to
encourage you to understand the testing problem as best
you can. You present what you think is the best approach to
solving the testing problem.

This gets you started. As the project progresses, the plan is
used to guide the testing team in solving the problem: proving
the system. But it should be changed and refined as much as
is practical as time progresses. So, creating a plan is useful….
But following the plan is less important than adapting to
changes in reality from your initial perception. With Airborne
Systems you can even tell the FAA you didn’t follow the plan
– so long as you document what you DID do and include that
information in the Software Accomplishments Summary.

Now, you’re probably asking - why put much effort into test
planning if you aren’t going to follow it anyway?

The Essential answer: you take planning seriously so that
you understand what needs to be done and have an approach
to doing it, so that, when some of our initial perceptions
are found to be inaccurate, or things change, you can make
educated decisions on what to do next.

Who does the test planning? That depends on the project.

On small projects it could be an individual tester who plans
his own activities and informally lets the project lead know
what he intends to do. In larger projects it may be the job of a
single test lead. If a test team is formed early enough it may

© 2009 by Taylor & Francis Group, LLC

99

be helpful to get as many testing personnel involved – at least
informally - in the planning as possible. The more everyone
understands what has to be done initially, the easier the
effort.

Test Planning Tasks
So how do you do serious test planning in an agile manner?

Three test planning activities should take place no matter how
informal the testing process or how small the role of testing
on a project. How much or how little ceremony is associated
with these activities depends on what it takes to get the job
done. But, as usual, when in doubt, lean toward less rather
than more.

I call these test tasks understand, analyze, and create. The
first activity is about learning and understanding what testing
needs to get done and what has to be presented as results. The
second activity is analyzing what is available to get the job
done, and the last activity is creating the testing plan.

Planning Starts With Understanding
Early in a project you must be comfortable that you understand
what needs to be done, what artifacts are available as inputs,
and what minimal outputs are required of the testing effort
to get the testing job done. This is the first step to sensible
test planning with the bulk of the effort anchored on
communication. I have already mentioned some virtues of
communicating early and often. It helps the planning process
by getting good understanding early. This is also part of
understanding the environment in which testing will take
place. You need to communicate in order to understand the
following things.

•	 What it will take to prove the system

•	 What input artifacts are available

Test Planning Realities

© 2009 by Taylor & Francis Group, LLC

100 CHAPTER 11: Essential Test Planning

•	 What we can do about them

Understand What It Will Take To Prove The System
Remember, it is important to communicate as much as possible
with the stakeholders to understand their expectations of
what will prove to them the system works or doesn’t work.
Documentation and organization policy help, but there is also
the human factor to consider.

Many times an influential stakeholder will have to be satisfied
in a particular way that the system works, that may not always
seem practical. Getting a feel for what is important will help
you understand what level of testing needs to take place, what
things to focus on, and how to present proof that the system
works or doesn’t.

Even in environments where there is a lot of guidance on what
to test and to what level of depth, there is still a human factor
to consider.

Let’s take FAA regulated systems as an example.

The FAA has specific guidelines on what must be tested but, as I
mentioned earlier, each project seeking FAA certification must
have a liaison called a Designated Engineering Representative
(DER) who acts independently to interpret guidelines and sort
out what is acceptable to the FAA. This position holds quite a
bit of power. Even though regulations are fairly clear, the DER
may only be comfortable with specific processes or artifacts.

So, know up front what a DER is comfortable with and what
he/she is not.

On Object Oriented projects I like using UML artifacts such
as Use Cases and sequence diagrams to determine tests for
the requirements and design. I also know that most DERs
dislike them, or worse. That doesn’t stop me from using those
artifacts in my test planning, it only changes how I present
test and traceability results.

© 2009 by Taylor & Francis Group, LLC

101

Make sure you know what stakeholders are influential, and
what human factors must be considered to prove the system.

•	 �For the Rinkratz example, when we find that all Denny
Lemieux needs to be satisfied is the ability to search
for places to play hockey, we focus on presenting that
while also testing the other requirements.

•	 �For the Conveyor System, if the VP, Jim Bland, needs
to see packages cruising around the conveyor system
without running into each other or falling off, we make
sure that visual ‘confirmation’ is part of the acceptance
test. We will also test all the functional and non-
functional requirements to ensure the system really
does what it is supposed to, especially with some of
the architectural requirements.

•	 �With the FAA example we have specific guidelines to
follow that tell us every (high level) requirement must
be tested, the design (low level) requirements must
be tested, and code not only must be covered by the
tests, but it must be shown that there is no dead code.
So we know that we not only have to show whether
or not each test passed, but that the tests cover all
requirements, design, and code. We have to show
traceability of requirements to design, code, and tests
and prove all code is being executed by the system in
fulfillment of identified requirements.

Understand What Input Artifacts Are Available
Often projects are fairly clear on what artifacts are to be
produced. So, just looking at project planning documents and
organization standards will be enough to get an understanding
of the environment you are working in and what artifacts are
available to you.

However the artifacts that will be used may not be so clear.
They may be suggested, but optional…. and, let’s face it, not
all projects are that organized. Or a project structure may be

Planning Starts With Understanding

© 2009 by Taylor & Francis Group, LLC

102 CHAPTER 11: Essential Test Planning

out of the norm of what the organization normally does. It is
important to talk to the project manager and team leads to see
what they expect to produce.

As I’ve said before, start by focusing on requirements. What
form will the requirements take? What containers will hold
them? What models will be used to show design?

For example, Use Cases may be supplemented by a
specification containing non-functional requirements. Or,
requirements may be traditional and the project may have
specific standard documents for them. There may also be
requirements dispersed in design documents, various models,
and interface specifications.

Who is responsible for requirements? In some organizations,
all requirements are under the ownership of requirements
analysts. Some organizations distinguish between functional
requirements that fall under the requirements analysts
while the architect or design team is responsible for non-
functional requirements. There may be other combinations of
requirements owners.

Knowing who is responsible will help us understand how
much influence we will have ensuring the quality of what we
will receive or the form they are presented in.

Understand What Can Be Done With Artifacts
Once you know what to expect for input artifacts, figure out
what you can do with them.

You’re not always going to be happy with what you get.

Doing Essential Testing, the aim is being agile within
the environment. That means not accepting what you’re
presented with without any thought or happily incorporating
inefficiencies into the testing process.

It also means being proactive and practical.

© 2009 by Taylor & Francis Group, LLC

103

continued...

Essential Testers first compare the current artifacts with the
artifact inputs that would make the testing process most
efficient. From there they try to influence artifacts form and
quality. Depending on how much influence they have, what’s
the next step?

The obvious proactive one: decide what to do with the available
artifacts to help get the job done efficiently. Remember, as
testers we need to be pushy.

•	 �If I need Use Cases to optimize the testing effort and
they don’t exist, I am going to want to build them
myself.

•	 �If the requirements aren’t clear enough to test properly
I want to fix them. But messing with other people’s
artifacts is a touchy subject and must be handled with
care.

Remember, first talk to the artifact creator and see if you
can help update/upgrade the artifacts. Not possible? Try
introducing interim artifacts to supplement the existing
ones. Then, talk to the project manager early and see what
options you have dealing with artifacts that are unsuitable
or unavailable. Different projects have different policies for
dealing with requirements Find out what can be changed or
adjusted, but also what should or could be done under the
radar.

War Story

Dysfunctional Requirements

I worked on a large dysfunctional project where we wanted to
do Use Case based testing - in fact the stakeholder wanted
us to do it too.

The problem? The requirements people were also
developing the software and didn’t know how to write good
Use Cases.

Planning Starts With Understanding

© 2009 by Taylor & Francis Group, LLC

104 CHAPTER 11: Essential Test Planning

continued...

The Use Cases that were written were terrible. They were
sequence diagrams that were really part of the design that
they called Use Cases.

These ‘Use Cases’ detailed what happened inside the
system. Each sequence diagram was accompanied by
a table of operation names describing the steps of the
sequence diagram. That was it.

There was no way we could use these things to test against
as they were. The engineers/requirements analysts insisted
that since these had been base-lined (without input from
the test team) that they wouldn’t be changed. The project
was already falling behind and the project manager wouldn’t
help.

We approached the lead engineer and reached an agreement
where the testing team would write real Use Cases but
couldn’t call them Use Cases and he would review them to
help ensure accuracy. On top of that we couldn’t tell anyone
these Use Cases existed. As far as anyone knew, these were
just interim documents that the testing team was creating to
help create tests. It wasn’t pretty, but it was the best solution
available and it helped us get our job done.

Another war story

I worked on a project where we were given traditional
requirements to test against from a client. These requirements
had already been base-lined before the testing team ever
saw them; many were unclear.

Although we could create any other artifacts we wanted, such
as Use Cases, to help us test, the requirements couldn’t be
changed and the tests had to map to them. The client was
in another country and wasn’t very accessible to discuss
requirements.

© 2009 by Taylor & Francis Group, LLC

105

We created a document listing the unclear requirements,
and our interpretation of what they meant. As we delivered
the preliminary Test Cases to the client for approval we
included the document. That way the client was clear on our
interpretation; we could continue to get the job done without
waiting for answers. If the client said our interpretation was
wrong, we would change the Test Case.

Both of these examples are uncharacteristic. However, as
testers, we often find ourselves dealing with artifact situations
that aren’t the best. No matter, as Essential Testers, we can
find a solution.

After Understanding, Analyze
Once you know what you’re stuck with, you ask what you
can do with it to get the job done. So, go to your bag of tricks,
and a repository of patterns.

Bag of Tricks
The first question: how do we intend to prove the system?
You know what features and requirements are important to
prove from understanding the environment. Now you have to
consider how to make the case that the system does or doesn’t
work based on stakeholder criteria.

For Rinkratz, you already know that the search for hockey
venues feature is important to the stakeholder. You may decide
to present semi-formal testing results for the search feature
including load testing. For the rest of the system it may be
sufficient to present Denny Lemieux with access to the entire
Rinkratz site and let him poke around. Since the development
process is agile, he will get the chance to play as new features
are delivered with time to make changes.

After Understanding, Analyze

© 2009 by Taylor & Francis Group, LLC

106 CHAPTER 11: Essential Test Planning

In the Conveyor System, it is important to identify the artifacts
that will be presented and the types of tests run in addition to
the visual acceptance test desired by the stakeholder.

In the case of the FAA project, the general format of the artifacts
to produce to prove the system is spelled out. It is important
to consult with the DER to ensure the FAA will be comfortable
with the specific format of the test results.

Next, think about interim artifacts and specific processes. Often
you have specifics in mind that you know will get the job done.
As you gain testing experience, you accumulate techniques
and artifacts that work well under various circumstances: a
bag of tricks.

Of course, as Essential Testers, when you reach into your bag
of tricks you only pull out the minimal set that will get the
job done in the most efficient manner. You understand your
environment and the minimal artifacts you must present to
prove the system, and select the artifacts requiring the least
effort.

Patterns
I consider patterns part of a broader bag of tricks that others
use and have proven that they work.

Patterns were formalized by Christopher Alexander back
in the 1960’s and 1970’s as ways to help people who design
things (initially real architects) solve recurring problems.

A pattern describes a problem and its context, and provides
a means to solve the problem that has been proven to work.
Patterns provide a shared language for problem solving, focus
on the underlying causes of problems, and provide a venue
for creative problem solving.

The software community has adopted patterns as means
to create a body of literature to solve recurring problems
encountered throughout software development. Patterns in
the software development community were initially used

© 2009 by Taylor & Francis Group, LLC

107

to solve software design problems but have spread to other
aspects of software development.

Now patterns have crept into the realm of testing.

Brian Marick is right on when he makes the statement that
“testers lack a useful vocabulary, are hampered by rigid ‘one
size fits all’ methodologies, and face many problems whose
solutions are under-described in the literature.”� - one of the
reasons for this book and also a reason that testing patterns
are starting to materialize.

Robert Binder has presented a number of patterns that are a
good starting point for testing�. I use a modified version of one
of his patterns later in this book to present a straightforward
means of identifying tests.

But be careful.

When you look at patterns you have to look at the context the
problem lives in and the perspective of the author. You may
find a situation that looks like yours or possibly solves a real
problem, but one that is not necessarily the one the author
describes. You may have to modify some patterns to meet
your particular needs. Do your own thinking as well.

And, try rolling your own.

Creating A Testing Solution
As you plan, you may encounter situations you haven’t dealt
with before. You may have to create processes or artifacts
from scratch or piece together parts of other solutions to meet
your needs.

� Brian Marick, http://www.testing.com/test-patterns/index.html
� Robert Binder, Testing Object Oriented Systems: Models, Patterns,
and Tools

After Understanding, Analyze

© 2009 by Taylor & Francis Group, LLC

http://www.testing.com

108 CHAPTER 11: Essential Test Planning

Bring The Pieces Together
You have a feel for what the testing effort needs to focus on
and what you need to present for success determination, and
an understanding of components for a potential solution.
Now you have to put that potential solution together.

Sketch it out first. Keep it as lean and as simple as possible;
only consider activities that directly relate to getting the job
done. Don’t put major effort into finding a good solution at
first. While you put the plan together, solutions will become
clearer as things fall into place. The Test Plan is just a starting
point to get your thoughts together. And, it will change
anyway… the plan is a roadmap of what can be done, not
what will be done.

Start by laying out the breadth and depth of tests to be
performed and the final artifacts that will be presented to the
customer. From there identify steps and activities that will
take you from the inputs to where you want to go.

When identifying activities and artifacts, be a minimalist:
focus on doing as little as possible to get things done correctly.
Present the decision maker with enough information to make
an un-regrettable decision on the acceptance of the system.
Strive to provide nothing more and nothing less while only
producing artifacts and activities directly related to that goal.

© 2009 by Taylor & Francis Group, LLC

109

Chapter 12

Grouping Requirements
With Use Cases

You Need Use Cases to Be Use Case Driven
The activities and techniques described in the rest of the book
deal with Use Case driven testing. So naturally Use Cases will
be needed. Once you’ve reviewed the requirements and know
you understand them thoroughly, make sure good associated
Use Cases are available.

If Use Cases are the main source of requirements, you’re
almost there.

If traditional requirements are the official requirements but
Use Cases are provided as a means of grouping requirements
make sure the requirements trace to the Use Cases. This will
help in tracing requirements to tests later on.

If traditional requirements are the official requirements and
Use Cases are not provided, build them yourself. I can’t stress
how vital Use Cases are to understanding the system and
other forms of requirements just don’t seem to cut it.

Variations are possible, ranging from formal Use Cases to
scenarios, even user stories. Personally, if the traditional
requirements are understandable, I prefer simple Use Cases
with just enough detail to get by. I include pre-conditions and
post-conditions - information needed to start and complete
our tests.

© 2009 by Taylor & Francis Group, LLC

110 CHAPTER 12: Grouping Requirements With Use Cases

A brief description is nice to have too - at least sketch out
the steps to identify the system inputs and how the system
responds to those inputs

The Problems With Testing Individual Requirements, and
Why Use Cases Are The Solution

First, you may think you have all requirements covered (and
you may), but testing each requirement doesn’t mean the
system works correctly.

Reading through traditional requirements to get a handle on
what the system does can be cumbersome - and so, you can
miss the point on a lot of requirements, especially detailed
requirements without a concrete process to tie them together.
You can wind up with conflicting requirements that don’t get
discovered until late, or not at all. Conflicting requirements
can occur when the system context in which two or more
requirements take place is not adequately explained.

Use Cases help by making logic of the overall use and
functionality of the system. Use Case based testing focuses
on the real value gained by the system and allows us to
present the results to the stakeholders in a manner that they
understand.

If you have Use Cases as your requirements, you can get a
clear picture of what the system is doing and a sequential
dialog of what is happening between the outside world and
the system. These Use Cases can be supplemented by other
requirements that can be tied to steps in the Use Cases. As
testers, the Use Cases provide a scenario to test against.
The supplemental requirements tied to each Use Case can
be tested along with the functionality. Tying supplemental
requirements to Use Cases is done by matching Use Case
functionality to individual non-functional requirements that
support that functionality.

CHAPTER 12: Grouping Requirements With Use Cases

© 2009 by Taylor & Francis Group, LLC

111

If you have Use Cases that are not your requirements, but used
as a way of grouping requirements you get the same thing - a
sequential picture of what the system is doing in plain words
or simple diagrams.

War Story

I worked with a small team on a project to build a prototype
software application to track military personnel in the field.
The requirements the team had to work with were data-
centric - all about what type of data was to be provided. I
asked the team if they needed help with some Use Cases to
get a better feel for the interaction with the system and the
functional value presented to the users, which were going
to be all branches of the military. They declined the offer
feeling they had enough information and that eliciting the
requirements from stakeholders with limited accessibility
would slow things down.

Testing was done based on the requirements that specified
what type of data on individuals would be tracked and how
it would be presented. The system was built, tested, and
presented to the military. It worked fine for the Army, and the
Air force and Navy could live with it, but the Marines hated it.
It turned out that the Army was very data focused and liked
the product because lots of things were being captured and
reported on.

The Marines were infantry focused, and already had a
system of tracking individuals in the field that relied on a
human chain of relationships and responsibilities. The
proposed product didn’t match their goals of using a system
and didn’t show any measurable value. It didn’t fit their
particular environment.

But it passed the tests against requirements.

Use Cases clear up a lot of concerns. First, as requirements
are tied to Use Case steps you get a feel for the context each

You Need Use Cases to Be Use Case Driven

© 2009 by Taylor & Francis Group, LLC

112 CHAPTER 12: Grouping Requirements With Use Cases

requirement operates in. As I mentioned before, sequence can
be seen easily, which may lead to the discovery of conflicting
requirements that may look compatible, but can be seen as
incompatible in the context of the sequence they are activated.
Telling the system story can help make difficult to understand
requirements understandable.

Either by using Use Cases as the primary requirements, or
using them to group traditional requirements, by allowing
Use Cases to drive testing, you have a basis for building Test
Cases. You can build multiple tests based on the Use Cases
and activities within them.

Example of Grouping Traditional
Requirements With Use Cases
Let’s take a look at a simple example, a subset of the Conveyor
System. I’ll use a group of requirements for assigning diverter
lanes to specific destinations.

The Business Context

•	 �Packages on a conveyor system must be diverted to
lanes leading to loading docks based on their ultimate
destination.

•	 �Multiple lanes may connect to a single destination, e.g.
a warehouse or a store. There is a business rule that
states each truck will have a single destination

•	 �Trucks parked at different loading docks may be going
to the same destination.

•	 �A corollary: packages sent to different lanes can end up
on trucks going to the same destination.

•	 �Lanes are assigned to a destination and then the
destination is assigned a truck which implicitly assigns
a lane to a truck.

© 2009 by Taylor & Francis Group, LLC

113

Initial System View

In assigning Lanes, the software associates Lanes with
Destinations - it must have the smarts to choose a lane for
each package so that the package ends up at its designated
destination. The software may have to choose between
multiple Lanes, because of earlier activity assigning Lanes to
Destinations and Trucks to Lanes. The choice will be based on
business rules around optimizing package flow. Optimization
depends on how many packages a lane can handle in a given
time (lane capacity) primarily, although other dependencies
may become apparent.

There are some givens.

The software knows how many packages an Assigned Lane
can handle, i.e. the limit to the number of packages that can be
handled by an assigned truck, based on information previously
entered during the assignment of a Lane to a Truck.

So, when a truck becomes full, the system detects that the lane
to that truck has reached its limit. The gate from the conveyor
to the divert lane is then physically closed; packages are no
longer diverted to that lane so long as the currently associated
truck is full.

When a truck leaves, Shipping Clerk accesses the system to
make the lane available. Later, when an empty truck arrives
at a vacant loading dock, Conveyor Operator assigns the Lane
to a Destination – the destination assigned to the empty truck
– and opens the gate to that lane so packages can be diverted
to the lane with the new truck.

Understanding The Requirements
For this example, as a Tester, I am concerned with two main
requirements:

•	 assigning available lanes to destinations

Example of Grouping Traditional Requirements With Use Cases

© 2009 by Taylor & Francis Group, LLC

114 CHAPTER 12: Grouping Requirements With Use Cases

•	 �physically opening lanes so that packages can be
diverted

Essential Testing Analysis

I construct business scenarios to help understand what can
really happen. Here’s one simple example: an empty truck
pulls into the loading area.

•	 Driver tells Dock Attendant Truck’s destination.

•	 �The Dock Attendant acting as a Conveyor Operator
accesses the Conveyor Control System to assign an
available Conveyor Lane to Destination combination.
Conveyor Control System provides information on
available lanes which lead to specific loading docks.

•	 �The Dock Attendant acting as a Conveyor Operator,
selects available lane, the destination to assign it to, and
the amount of packages that can be diverted to the lane
before the truck is filled. Based on the lane assigned
leading to a specific loading dock, the Driver is told the
Loading Dock for his/her truck.

•	 �Conveyor Operator coordinates opening gate to
Assigned Lane. Packages bound for associated
destination are diverted to the loading dock associated
with that lane.

Supplied Software Requirements: A Sample

Here are some of the static requirements you would typically
be faced with, given the business needs identified above. The
list is deliberately simplified… okay, some may consider it an
example of Extreme Simplification!!

Note: when software requirements mention the system, they
refer to the software controlling the actions of the physical
conveyor system

© 2009 by Taylor & Francis Group, LLC

115

SRS 1: �	� The system shall limit the number of lanes that
may be assigned to a given destination to a
number specified for that destination at system
initialization.

SRS 2: 	� The system shall display lanes assigned to a
destination upon request.

	� The system shall display available lanes upon
request.

	� The system shall identify that a lane is available
if it is not currently assigned to a lane and is not
being held for future use.

SRS3: 	� The system shall allow only available lanes to be
assigned to a destination.

SRS 4: 	� The system shall allow only available lanes to be
held for future use.

SRS 5: 	� The system shall provide the user with the capability
of associating available lanes to destinations.

SRS 6: 	� The system shall provide the user with the capability
of opening a physical lane gate on request.

SRS 7: 	� The system shall designate a gate as “Opened”
when the corresponding physical gate is opened.

SRS 8: 	� The system shall designate a gate as “Closed”
when the corresponding physical gate is closed.

SRS 9: 	� The system shall only open a physical gate when
that gate is assigned to a destination.

SRS 10: 	�The system shall notify an operator that a gate is
locked when a physical gate could not be opened.

SRS 11: 	�The system shall determine that a gate is locked
when it does not respond with an ‘open’ signal
within 10 seconds of an open command.

SRS 12: 	�The system shall store gate/destination assignment
once an assigned gate is determined to be
“Open”.

SRS 13: 	�The system shall send gate/destination assignment
to the dispatch system when a gate is determined

Understanding The Requirements

© 2009 by Taylor & Francis Group, LLC

116 CHAPTER 12: Grouping Requirements With Use Cases

to be assigned and open.

SRS 14: 	�The system shall only assign packages to a lane if
that lane is open and assigned to a Truck.

SRS 15: 	�The system shall stop assigning packages to
a lane once a configurable, predefined limit has
been reached.

SRS16: 	�The system shall be ready to control diversion of
packages to a lane once the lane becomes open/
assigned.

SRS 17: 	�The system shall accept destination identification
numbers only as five digit numbers

SRS 18: 	�The system shall accept lane numbers only as 4
digit numbers

Requirements Sample Considered

These requirements are, obviously, part of a much larger group.
But, for Essential Testers, even within the context of the larger
group it may not be completely clear how the requirements
fit together. In fact, with a larger group of static requirements
representing a more complex portion of the system, it will
probably be more difficult to understand how requirements
fit together.

But, understanding how requirements fit together is an
Essential Tester responsibility!!

So, in this example I need to talk to team members who know
how the system is supposed to work - requirements analysts
and system experts and Subject Matter Experts (SMEs). Then,
as I’ve said, as I become familiar with what the requirements
really mean, I might want some of them changed, or at least
stated more clearly. And, again, if I can’t get the requirements
I don’t like changed, I have to document my interpretation
of requirements I am unsure of. Yup, CYA, but good testing
practice!!! I know, I’ve talked about all of this before, defining
the role(s) of an Essential Tester. Now I can explain some
specifics!!!

© 2009 by Taylor & Francis Group, LLC

117

For example, the requirement, SRS15, stating “The system
shall stop assigning packages to a lane once a configurable,
predefined limit has been reached.” isn’t really clear. It talks
about the condition when the system stops diverting packages
to a lane; the scenario I described is about assigning lanes.

So, I talk with the requirements analyst and a system expert
and find that the requirement really doesn’t belong with this
group - but it is indirectly related. As part of assigning a lane
to a destination, the Conveyor Operator must specify how
many packages can be diverted to the lane. More specifically
the system needs to know how many packages can be diverted
to a lane before a truck is full.

I find that there is no requirement like this. One is written:

The system shall accept and recognize a value associated with a
lane/destination assignment representing the maximum number of
packages that can be diverted to the lane.

The original requirement is removed (from my subset, anyway
– it may be used elsewhere). The new requirement is added to
the group as SRS 75.

Getting To Use Cases
In my example Use Cases are not provided, so I have to create
them.

For Essential Testing, this is the next step. Again I have to
communicate with requirements analysts, system experts and
SMEs about what the system does, if these folks are available.
Realistically, I may have to just dig in and start writing Use
Cases as best I can, then get someone to read them and confirm
what the system really does.

Understanding The Requirements

© 2009 by Taylor & Francis Group, LLC

118 CHAPTER 12: Grouping Requirements With Use Cases

A Use Case Example

Here’s what should result: a basic flow for an Open a Lane Use
Case with alternate flows identified.

I’ve left the details of alternate flows out for the sake of
simplicity. In real life I would probably fill them in.

Open a Lane Use Case

Primary Actor: Conveyor Operator

Secondary Actors: Dispatch System, Divert Lane

Precondition: Conveyor Operator is logged onto System.

Post Condition: Lane is assigned to a valid destination.

Basic Flow

1)	 Conveyor Operator requests System to open a lane.

2)	 System prompts for a destination.

3)	 Conveyor Operator enters destination requested.

4)	� System displays lanes currently assigned to the

requested destination and the lanes currently available.

	 Alt: Invalid Destination

	 Alt: No lanes available

5)	� Conveyor Operator chooses a lane to assign to the

destination and specifies the maximum number of

packages that can be diverted to that lane.

	 Alt: Hold Lane

6)	� System assigns the lane and prompts to open the gate

on the conveyor associated with the lane.

7)	� Conveyor Operator requests to open the gate.

	 Alt: Wait to open

8)	� System responds by sending a request to Divert Lane to

open the gate.

© 2009 by Taylor & Francis Group, LLC

119

9)	 Divert Lane notifies System when gate is opened.

10)	System: �Stores the gate and destination information.

Sends Dispatch System the lane and

destination assignment information indicating

packages can be assigned to the lane.

Notifies Conveyor Operator when successful

	 Note: Repeat steps 5 – 10 to assign multiple lanes

11)	Use Case ends.

This Use Case gives a clearer picture of how the Conveyor
Operator can assign lanes to a destination and ready the
system to divert packages to these newly assigned lanes. It
helps us prepare for identifying and selecting tests.

For example, I have Conveyor Operator as the Primary Actor
and Divert Lane and Dispatch system as Secondary Actors.
So, now I have clearly defined system boundaries. All three
Actors are outside the system. The Primary Actor interacts to
achieve a goal, and the Secondary Actors interact in order for
the Use Case to successfully achieve the goal of the Primary
Actor.

The next thing I do: map traditional requirements to Use
Case(s). Okay, this is an optional step. Depending on the
number of requirements you’re dealing with you can opt out
of this activity.

Like I said, I like to be a minimalist when I can, but there is
value to this activity. As you move further through the process
and identify tests based on Use Cases, the mappings can help
in determining test coverage of traditional requirements.

As mentioned in chapter 9, mapping should be done at a
granularity that makes best sense for the project. Sometimes,
map to specific steps. Sometimes, map to the Use Case.

Here’s an example of mapping requirements to Use Case steps
and alternate flows.

Getting To Use Cases

© 2009 by Taylor & Francis Group, LLC

120 CHAPTER 12: Grouping Requirements With Use Cases

Req. ID Traditional Requirement UC Step

SRS 1

The system shall limit the number of
lanes that may be assigned to a given
destination to a number specified for that
destination at system initialization.

4

SRS 2 The system shall display lanes assigned
to a destination upon request. 4

SRS 2.1 The system shall display available lanes
upon request. 4

SRS 2.2

The system shall identify that a lane is
available if it is not currently assigned
to a lane and is not being held for future
use.

4

SRS 3 The system shall allow only available
lanes to be assigned to a destination. 1, 2, 5, 6

SRS 4 The system shall allow only available
lanes to be held for future use.

5
Alt: Hold Lane

SRS 17
The system shall accept destination
identification numbers only as five digit
numbers.

3, 4, 6

SRS 18 The system shall accept lane numbers
only as 4 digit numbers. 5, 6

SRS 5
The system shall provide the user with
the capability of associating available
lanes to destinations.

6

SRS 6
The system shall provide the user with
the capability of opening a physical lane
gate on request.

7, 8

SRS 7
The system shall designate a gate as
“Opened” when the corresponding
physical gate is opened.

9, 10

© 2009 by Taylor & Francis Group, LLC

121

Req. ID Traditional Requirement UC Step

SRS 11

The system shall determine a gate is
locked when that gate does not respond
with an ‘open’ signal within 10 seconds of
an open command.

8, 9
Alt: Gate Not
open

SRS 9
The system shall only open a physical
gate when that gate is assigned to a
destination.

7, 8, 9

SRS 10
The system shall notify an operator that
a gate is ‘locked’ when the associated
physical gate can not be opened.

8, 9
Alt: Gate Not
open

SRS 12
The system shall store gate/destination
assignment once an assigned gate is
determined to be opened.

10

SRS 13

The system shall send gate/destination
assignment to the dispatch system when
a gate is determined to be assigned and
open.

10

SRS 16
The system shall be ready to control
diversion of packages to a lane once the
lane becomes open/assigned.

10

NEW SRS 75

New: The system shall accept and
recognize a value associated with a lane/
destination assignment representing the
maximum amount of packages that may
be diverted to the lane.

5, 6

Table 12-1 Example of Requirements Mapping to Use Case Steps and
Alternate Flows

This is a small list of requirements, but you can see how they
map to Use Case steps.
Mapping to Use Case steps work for grouping large amounts
of requirements. The mapping strategy and the tools used are
up to the project. But, like I said, map just to the Use Case if
that’s the agreed-upon strategy within the project.

Getting To Use Cases

© 2009 by Taylor & Francis Group, LLC

123

Chapter 13

Extending Use
Cases For Testing

Once you have requirements available and Use Cases are
ready as described in the previous chapter, the next steps are
to identify the potential tests and select the ones to use.

I had the opportunity to work with David DeWitt on a number
of projects where we were tasked with coming up with testing
plans and processes. Together, we put together and refined a
simple Use Case driven approach to test identification and
selection that has worked well for us. It works so well that we
use it on all projects where we do testing whether Use Cases
are official requirements or not. We’ve even used it on highly
regulated FAA certification projects with large amounts of
traditional requirements. We found it helps align requirements
with tests and illustrate test coverage well.

In this chapter I will cover the first part of the test identification
process: identifying operational variables. In the following
chapter I will cover the second part: Identifying tests.

Some Definitions
Before I let you in on the details of this approach, you need to
know the definitions of a few more test-related terms.

© 2009 by Taylor & Francis Group, LLC

124 CHAPTER 13: Extending Use Cases For Testing

Condition
Definition: A distinct value or range of values of the system
or for inputs into the system that defines a unique testing
situation.

For example:

An input into a customer service application is Customer ID.

So, a condition for Customer ID would be a valid ID that
is associated with an existing customer recognized by the
system.

Notice I identify the value in general terms. You don’t have to
give the input a specific value.

Operational Variable
Definition: An input into the system by an Actor that causes
significant system response.

Although all Operational Variables are inputs into the system,
not all individual inputs are Operational Variables. Only
inputs that cause system behavior to change. Inputs can be
aggregated to a broader system input that causes significant
behavior. Let’s look at an example where the customer search
functionality of a customer service system is being tested. The
requirements specify that the system will be able to search for
customers based on full name combining first name and last
name. Although first name and last name are entered into the
system as search criteria, neither are Operational Variables
on their own. The system bases searches on the entire name
rather than one or the other. So the Operational Variable will
be Name. First or last name on their own won’t change system
behavior. If either first or last name is invalid, the system treats
the entire name as invalid. It doesn’t matter that the entire
name is delivered into the system in two pieces.

Note: Sometimes an input (Operational Variable) by itself will
not cause a significant response. But when combined with

© 2009 by Taylor & Francis Group, LLC

125

other inputs, the result can be specific system behavior that can
be tested for, and needs to be covered. So, each combination
of inputs (Operational Variables) should be testable to some
expected result defined by requirements.

An example: for the Open A Lane Use Case where Destination
ID is passed to the system by Actor Conveyor Operator (step
3). Under normal operating conditions, entering a valid
Destination Id should cause the system to display lanes
currently assigned.

Look at the Operational Variables for Destination ID and Lane
Selection in Use Case step 5 in combination. There are multiple
responses the system will have depending on combinations
of input values. So besides the specific system response for
Destination ID by itself mentioned above, there is a system
response when a value is entered for Lane Selection as well, in
combination. This combination needs to be tested.

(By the way, outputs are not Operational Variables - they are a
result of system behavior rather than a cause.).

War Story

I was once instructing a team on Use Case driven testing and
one tester kept insisting that he needed to treat a specific
output to another system as an Operational Variable. His
reasoning was that the output caused behavior in another
system that in turn caused a change in behavior in the
system under test. After tracing the flow of events I was able
to convince him that even though the system output from
another combination of Operational Variables set off a chain
of events, it was really an input from the external system
that caused the new behavior.

Some Definitions

© 2009 by Taylor & Francis Group, LLC

126 CHAPTER 13: Extending Use Cases For Testing

System State
Definition: The condition of the system at the start of a test - the
stable state waiting for input.
In the example of testing the system response to a value
entered for Lane Selection, one System State would be: “The
system is operational and at least one lane is available for selecting”.
That would be the condition the system is in when that test
starts. Conversely, another System State could be: “The system
is operational and no lanes are available for assignment”. You can
see how starting the same test with the two different System
States should result in different system responses.

Important to remember - after processing a set of inputs in an
individual test, the system ends up in a new stable (output)
state after (correct) inputs have been (correctly) processed.

The state of the system before a test is performed is a
precondition of a test while the state of the system after a test
has been performed is a post condition.

A post condition of one test can be used as the beginning
System State (precondition) to another test. Testing one step
of a Use case begins with a System State and ends with a
System State. If the next step in the Use Cases is being tested,
the ending System State of the test of the previous step should
be the beginning System State of the next test.

Discovering System State for tests is iterative that is best done
after identifying Operational Variables as part of building
variant tables to identify tests. I will explain the steps in the
next chapter.

Nominal Tests
Definition: Tests that verify specific outcomes communicated by
the requirements.

There are two types:

•	 �Positive Nominal Tests cover input conditions that are
part of normal operation.

© 2009 by Taylor & Francis Group, LLC

127

An example - testing a function of a system that searches for a
customer.

•	 �Negative Nominal Tests cover conditions where
something happens in the system under test that is not
considered part of normal operations. (In FAA terms
– these are “Robustness Tests.”)

Even though these can be ‘unhappy’ conditions where
something bad happens - or at least not what normally would
happen – they are still considered nominal if requirements
exist that describe the expected system response to the
unhappy outcome.

What is an example of a negative test? Testing a customer search
function with inputs outside ranges specified by requirements
and that the system responds to as the requirements specify.

Off Nominal Tests
Definition: Tests that the requirements don’t cover, for example,
they test situations that the requirements do not specify outcomes
for.

Okay. Off-nominal tests are usually negative tests. And, when
I say negative, I mean really negative. (Again – in FAA terms
“Robustness Tests.”)

These are identified tests that the requirements do not cover,
for example, they test situations that the requirements do
not specify outcomes for. As part of the test identification
process I will discuss shortly you will see how tests can be
discovered that describe conditions where system response is
not specified by requirements.

These really try to break the system. Many conditions identified
by off nominal tests may be oversights on the part of the
requirements analysts. Often these conditions can be resolved
with a little communication with requirements analysts and
developers before testing takes place.

Some Definitions

© 2009 by Taylor & Francis Group, LLC

128 CHAPTER 13: Extending Use Cases For Testing

The Extended Use Case Test Design Pattern
The approach David and I used so successfully is loosely
based on the Extended Use Case Test Design Pattern, authored
by Robert Binder, as a means of dealing with what Binder
perceived as test-related problems with Use Cases: he sees
Use Cases as inadequate requirements.

Of course, I don’t consider Use Cases as ‘inadequate’
requirements. Just the opposite… they can be the basis for
creating and packaging good requirements regardless of
development approach, and modern Testers need Use Cases
to do their job properly!!!

As I said in chapter 13, patterns can help solve specific IT
problems. But, you need to treat them as a starting point and
adapt them to fit specific needs. I’ve loosely incorporated the
Extended Use Case Test Design Pattern into Essential Testing as
a good starting point for thinking about Use Case based test
design and development.

So, let’s look at Binder’s pattern and why it needs adapting.

Binder’s Premises:
Use Cases as requirements either don’t or may not hold enough
information to easily identify tests for sufficient coverage

Entry points, or inputs, into the system are not always clear

Those entry points often don’t have enough information about
data and parameters surrounding them.

Essentially, Binder suggests Use Cases aren’t testable as is.

Okay, I don’t buy that. At least, not if they are written properly.
Since Use Cases describe the system from a user perspective
in a manner that should be clear to everyone on the project,
they should be good enough to test against.

Sure, with Use Cases, there are no specific rules that say you
have to describe in detail every variable or where to put

© 2009 by Taylor & Francis Group, LLC

129

business rules. You need flexibility when you write a Use Case
so that it is understandable and that requirements analysis is
‘agile’.

A good Use Case will be readable, and will have the appropriate
level of detail within it, or will reference those details.

But, I love his solution, anyway!!

The Extended Use Case Solution
His solution: “extend” Use Cases to make tests easier to
identify and implement. Specifically, he says, define input/
output relationships, identify Operational Variables and
combine them to create an Extended Use Case table that
identifies unique tests. (note: he is not discussing the UML
notion of a Use Case extends relationship where one Use case
represents optional behavior of another Use Case.)

Binder’s solution helps with coverage concerns. In particular,
it provides a way to ensure proper test coverage. By following
his pattern you can see all potential tests needed for proper
coverage of the system, and select the tests necessary to prove
the system to stakeholders. Binder’s pattern really shines
in providing a mechanism to ensure coverage and facilitate
traceability when faced with a large number of requirements.

But, the big reason I love his pattern is because it helps you
simplify testing in environments that don’t look so simple.

Adapting the pattern
David and I modified the pattern slightly to suit our needs.
First we added a step to identify and table the Operational
Variables as a precursor to identifying tests in a variant table.
This just formalizes the process of identifying Operational
Variables and makes test identification easier.

We also place an added emphasis on System State, combining
it with Operational Variables to select unique tests. This
adds another dimension to test selection where the state of

The Extended Use Case Test Design Pattern

© 2009 by Taylor & Francis Group, LLC

130 CHAPTER 13: Extending Use Cases For Testing

the system at the beginning of a test can figure into system
behavior.

The Essential Test Identification Approach
Here’s an outline of our approach for identifying potential
tests from Use Cases based on Binder’s pattern:

•	 �Identify Operational Variables: Inputs and Input
Combinations

•	 �Package potential tests using combinations of System
States and Operational Variables into variant tables

The rest of this chapter shows a simple way to identify
Operational Variables to be used to identify potential test.
Identifying the potential tests will be covered in the next
chapter.

Identifying Operational Variables
Start by reviewing the Use Case that will be the source of
potential tests, examining each flow of events.

Whenever the Actor does something, there is a definable
input. Every step that describes an Actor initiating an action
is an entry point, or input, into the system. Each entry point
is a potential Operational Variable. If specific input values
“cause” significant system behavior, it should be considered
an Operational Variable - I like to treat all inputs as Operational
Variables on the first pass and then reevaluate.

As you identify Operational Variables place the results
in a preliminary table like table 13-1. It has a column for
identifying the Operational Variable name, a Use Case step
column identifying the step where the Operational Variable is
active, a description column to describe what the Operational
Variable is used for, and a Conditions column to identify
possible values for the Operational Variable.

© 2009 by Taylor & Francis Group, LLC

131

Op Variable Step Description Conditions

Table 13-1 Example template of Operational Variable Table

Discovering Operational Variables Example Based on Open a
Lane Use Case For The Conveyor System,
I’ll use the Open a Lane Use Case for this example. Here it is
once more.

Basic Flow

1)	 Conveyor Operator requests System to open a lane.

2)	 System prompts for a destination.

3)	 Conveyor Operator enters destination requested.

4)	� System displays lanes currently assigned to the

requested destination and the lanes currently available.

	 Alt: Invalid Destination

	 Alt: No lanes available

5)	� Conveyor Operator chooses a lane to assign to the

destination and specifies the maximum number of

packages that can be diverted to that lane.

	 Alt: Hold Lane

6)	� System assigns the lane and prompts to open the gate

on the conveyor associated with the lane.

7)	� Conveyor Operator requests to open the gate.

	 Alt: Wait to open

The Essential Test Identification Approach

© 2009 by Taylor & Francis Group, LLC

132 CHAPTER 13: Extending Use Cases For Testing

8)	� System responds by sending a request to Divert Lane to

open the gate.

9)	 Divert Lane notifies System when gate is opened.

10)	System: �Stores the gate and destination information.

Sends Dispatch System the lane and

destination assignment information indicating

packages can be assigned to the lane.

Notifies Conveyor Operator when successful

	 Note: Repeat steps 5 – 10 to assign multiple lanes

11)	Use Case ends.

The first time an Actor initiates an action on the system is in
the first step, where the Conveyor Operator requests to open
a lane. This is treated as the first Operational Variable because
it will cause the system to respond by (normally) opening a
lane.

Create an appropriate name, one that describes the action or
input into the system; in this case “Open Lane Request”. The
description for this operational variable: “This is an input into
the conveyor control system to request initiating activities to assign a
lane to a destination and physically open the corresponding lane”.

Enter the name, the description, and the corresponding Use
Case into the first line of the table - the first entry. Continue to
identify the rest of the Operational Variables in the basic flow
in the same manner.

Once all potential Operational Variables have been identified
and entered into the table, identify conditions for each.

As mentioned before, these are values of Operational Variables
that cause a variation in the expected results of the system i.e.
that change system behavior. These values may stand alone
or work in conjunction with values of other Operational
Variables to produce specific system behavior.

For each Operational Variable, look at the Use Case step in

© 2009 by Taylor & Francis Group, LLC

133

which it is used. Then, look at the corresponding system
response for condition values. Condition values can include
valid data with different variations, invalid formats, and no
data among other things.

When listing variable conditions, start with positive conditions
expected within the flow of events in a Use Case, followed
by variables that could cause alternate flows to take place,
and then values that could cause error conditions or could be
considered for negative testing.

Again, let’s look at the example table for Open Lane Request.

In particular, looking at potential inputs that would initiate a
normal system response, there only seems to be one, which is
a “valid request”. So “valid request” becomes the first value
in the condition of Open Lane Request.

There are no alternate flows identified in the Use Case for
steps one or two where the Open Lane Request is present, so
there are no potential values that could cause variants in flow.
Still, looking for values that may cause system behavior, I
come up with two more when considering inputs that may
cause error conditions.

These are “invalid request”, and “no request”.

It is still unclear if these would either be possible or if they
would really cause the system to behave differently, but list
them as conditions in the table anyway. At this point you are
trying to come up with values without scrutinizing them in
any great detail. You can do that when you identify potential
tests.

The results of this effort are shown in table 13-2.

In my example I identified Lane Selection and Package Limit
from step 5 in the Use Case. This is because the Conveyor
Operator is expected to select a lane to assign and a package
limit - two separate variables that must be inputted into the
system.

The Essential Test Identification Approach

© 2009 by Taylor & Francis Group, LLC

134 CHAPTER 13: Extending Use Cases For Testing

Also, note that when I identified the conditions for each
Operational Variable, I specified values I thought would
cause significant behavior. I am not sure all values identified
will cause significant behavior at this point, and that is to
be expected. These values are identified just to get started
identifying potential tests.

An example of this is Operational Variable Package Limit. Right
now I don’t know if there is a range in which the package
limit must fall. There are no requirements specifying one at
this time or if the package limit value could be 0. I put values
for above range, below range, and 0 anyway. Later, I would
ask a system expert or requirements analyst about this.

The table in this example should be sufficient to be used in
the next activity, selecting potential tests. In that activity we
will combine values related to different Operational Variables
along with System State to identify unique tests.

© 2009 by Taylor & Francis Group, LLC

135

Op Variable Step Description Conditions

Open Lane
Request

1

input into the conveyor control system
to request initiating activities to assign
a lane to a destination and physically

open the corresponding lane

Valid Request,
Invalid Request,

No request

Destination Id 3
The destination the Conveyor

Operator
intends to assign a lane to.

Valid, invalid
format,

Nonexistent
destination

Lane Selection 5
Represents the lane intended to be

assigned to a destination

Available lane
Held Lane
selected,

Assigned lane,
Invalid lane,

No lane selected

Package Limit 5
Represents a numeric value limiting
the number of packages that can be

diverted to an assigned lane

Valid format,
Value above high

range,
Value below low

range,
Value of 0

Invalid format
No value entered

Open Gate
Request

7

Request by Conveyor Operator to
coordinate activities to physically open

a gate on the conveyor associated
with an assigned lane.

Valid,
Invalid format,

Wrong gate
specified,

No command

Table 13-2: Example of Operational Variable table for the Open a
Lane Use Case

I just explained identifying and Operational Variables. In the
next chapter I will show you how to put them to good use. I
will describe a means of identifying potential test based on
combining Operational Variables and System State.

The Essential Test Identification Approach

© 2009 by Taylor & Francis Group, LLC

137

Chapter 14

Identifying Tests

Once Operational Variables for a Use Case flow have been
defined, identify potential tests. Each potential test will
be a combination of specific values for System State, the
Operational Variables and expected results.

What does that really mean??

When we’re identifying tests, we’re actually instantiating
Use Case flows. I hope you remember - Use Cases are
generalizations of scenarios - specific ways of achieving some
value for an Actor by using the system. So, the instantiations
of Use Case flows that we base our tests on are really scenarios.
This truly is Use Case driven test selection.

In identifying potential tests, I’ll use the Extended Use Case
Design Pattern that I’ve discussed before, combining different
values for System State and Operational Variables in a new
table, the variant table. In this table, each row will identify a
specific potential test.

A sample variant table is shown in table 14-1.

These are only ‘potential tests’ because once the combinations
are identified, not all will be kept as tests. Later, I will explain
how to select tests by evaluating potential tests against testing
goals, requirements, and most of all, what is important to the
stakeholders.

© 2009 by Taylor & Francis Group, LLC

138 CHAPTER 14: Identifying Tests

Overview
Okay, to summarize.

Identifying potential tests means defining variant paths for
each Use Case flow (i.e. significant scenario) by taking unique
combinations of System State and Operational Variables and
plugging them into a variant table.

Each unique combination of System State and Operational
Variables triggers significant system behavior.

Here’s what’s supposed to be in each row of a variant table,
column by column (take a look at Figure 14-1).

First, a sequential number (variant) as an identifier. No
‘intelligence’ here! Just sequencing!! Each row in the table
is a potential test. The identifier is used as a reference when
selecting Tests, creating Test Cases etc....

Next - System State. System State is first because it is the state
the system is in as the test begins.

Operational Variable - After System State, each Operational
Variable has a column. Sequence specific Operational Variables
in the order they show up in the Use Case flow.

Then, a column for Expected Results, the outcome for each
test variation as defined by a row.

Finally, Comments - any questions or assumptions related to
a potential test.

Variant
Sys

State
Op

Var1
Op

Var2
Op

Var3
Op

Var4
Expected
Results

Comments

Table 14-1: Extended Use Case Variant Table Template

© 2009 by Taylor & Francis Group, LLC

139

Organizing A Variant Table
Before filling out the variant table you must set it up first. You
do this by populating column names in the variant table with
the Operational Variable names previously identified using
the steps outlined in the last chapter.

Here’s my layout for a variant table for the Open a Lane flow
(table 14-2), using the Operational Variable tables created
previously in chapter 13 Table 13-2.

Variant
Sys

State
Open Lane

Request
Dest

ID
Lane

Selection
Package

Limit
Open
Gate

Gate
Response

Expected
Results

Comments

Table 14-2: Variant Table Structure for Open a Lane Use Case Basic
Flow

Sadly, as you can see, the table is barely manageable -we have
a lot of columns. It could be broken into two tables to make it
easier to read.

In fact, here’s an informal Rule Of Thumb - if there are more
than five Operational Variables, think about using multiple
tables for a single Use Case flow. Each table would include
a subset of the Operational Variables still sequenced in the
order they show up in the Use Case flow.

I am not going to break the table up for this example but I will
talk a bit about how it could be done. Here’s a brief description
of how Open A Lane might be split into two.

A good place to split the table is between Package Limit and
Open Gate.

Why?

Package Limit is the last input for the steps leading up to

Organizing A Variant Table

© 2009 by Taylor & Francis Group, LLC

140 CHAPTER 14: Identifying Tests

assigning a gate, and Open Gate is the first input into the steps
related to coordinating the physical opening of a gate.

So the first variant table would include columns for System
State (as usual), Open Lane Request, Destination ID, Lane
Selection, and Package Limit. The second table would contain
System State followed by Open Gate and Gate Response. System
state will be used in the second table as it was in the first to
identify the system condition that is required to test each
combination of Operational Variable values.

But, breaking up tables is hard to do. I have a detailed example
and explanation in Appendix B. Like I said, I’ll stick with a
single table to explain the potential test identification process,
to keep things as simple as possible.

Filling In A Variant Table
The focus of this activity: incrementally combining specific
inputs for a Use Case flow and specifying an expected system
response.

The steps:

•	 �Enter values for combinations of System State and
Operational Variables that represent unique scenarios
of the Use Case, flow by flow.

•	 �Then, define expected results in each row to create a
potential test.

Here’s a closer look….

Start with the values for the basic flow of events, adding
inputs (aka Operational Variables) as they appear in the Use
Case flow.

Once all variants with the optimal beginning System State
are covered specify values for each additional System State,
incorporating Operational Variables for each.

© 2009 by Taylor & Francis Group, LLC

141

And here’s an example using the basic flow of the Open a Lane
Use Case.

The first System State should be the state the system must be
in to positive test the Use Case flow. In the example, this is
“Operational – Lanes available”.

The first Operational Variable is Open Lane Request; the optimal
value would be ‘Valid Request’ - at this point I only want to
test the condition of Open Lane request being valid. So, the
rest of the Operational Variables are not applicable here – I
place N/A in the row as values for them. I identify this row as
Variant 1, the first potential test.

What this test does is validate the system response when a
request is made to open a lane and the system is operational
and lanes are available for assignment. So, the expected result
from the Use Case is “The system prompts for a destination.”

I put that in the expected results column for variant and now
the first potential test is complete. The result can be seen in
the table 14-3.

Variant Sys State
Open
Lane

Request

Dest.
ID

Lane
Selection

Package
Limit

Open
Gate

Gate
Response

Expected
Results

Comments

1
Operational

– lanes
available

Valid
Request

N/A N/A N/A N/A N/A

The system
prompts

for a
destination

Table 14-3 Example of first row in the variant table

I continue to fill in the table.

First I refer to the Operational Variable table to exhaust all
values for the first Operational Variable keeping the same
System State. These values will typically generate negative
results or trigger alternate system behavior.

In my example, the other potential values for Open Lane

Filling In A Variant Table

© 2009 by Taylor & Francis Group, LLC

142 CHAPTER 14: Identifying Tests

Request are ‘Invalid Request’ and ‘No Request’. I talked to the
requirements analysts and discovered:

• �The system doesn’t act when there is no request so that
is not a possible input value.

• �It is possible to have an invalid request but there is
no requirement that says what the system does in
response.

So the second variant in the table will have the same System
State as the first, but I enter a value of ‘Invalid Request’ for
Open Lane Request. For Expected Results, I indicate we don’t
know what happens yet. In the comments section I explain
that there isn’t a requirement yet so this would be an off-
nominal test for now. This is the second potential test, Variant
#2.

Once I exhaust the values for the first Operational Variable
combined with System State, I combine values for it with
those of the second Operational Variable, continuing until I
exhaust all combinations. Then I start combining the third
Operational Variable and so on.

When I’ve exhausted all System State and Operational Variable
combinations I have a variant table that can be used as a set
of potential tests. Again, I say potential because now the table
must be reviewed to determine if all combinations are really
needed, which tests can be combined, which are duplicates,
and how much coverage is really needed.

Table 14-4 shows partial results of my example. I am only
showing portions of the variant table here since the entire
table is very large. The entire table can be found in Appendix
B, table B1.

I want to emphasize some key aspects here.

First as you can see, the list of potential tests can get long. For
this simple flow I identified 28 variables. There may be more

© 2009 by Taylor & Francis Group, LLC

143

to be identified with a closer look, but this is good enough for
this example.

Variants 1 through 24 all include the same value for System
State. I exhausted all combination of Operational Variables
with the initial state before moving on the next significant
value. I walked incrementally through the Use Case flow,
combining values for Operational Variables for each step.
Variant 22 represents the Happy Path of the entire Use Case
flow where all Operational Variables contain values allowing
the most common path to successfully complete.

There are also variants where we don’t know the expected
result because either the requirements are not clear or there are
no requirements specified for the condition. Enter Comments
to explain what is being done about them…. If possible, go
to the system experts and requirements analysts to get these
variants clarified and resolved.

Variants 25, 26, 27, and 28 are examples of System State that,
when combined with “positive” values for Operational
Variable, can cause negative system results.

Var. Sys State
Open
Lane

Request

Dest.
ID

Lane
Selection

Package
Limit

Open Gate
Gate

Response
Expected
Results

Comments

1
Operational

– lanes
available

Valid
Request

N/A N/A N/A N/A N/A
The system

prompts for a
destination

2
Operational

– lanes
available

Invalid
Request

N/A N/A N/A N/A N/A Not specified

No requirement
yet. Consider
an off nominal
test for now

…

21
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid
No

Command
N/A

The system
waits for
an open

command

Filling In A Variant Table

© 2009 by Taylor & Francis Group, LLC

144 CHAPTER 14: Identifying Tests

22
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid Valid Gate Open

The system:
Stores the
gate and

destination
information
Sends the
Dispatch

System with
the lane and
destination
assignment
information
indicating

packages can
be assigned
to the lane.
Notifies the
Conveyor
Operator

…

24
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid Valid
No

response

After ten
seconds

the system
determines

the gate can’t
be opened
and informs
the operator

25
Operational

– all lanes held
or assigned

Valid
Request

N/A N/A N/A N/A N/A

The system
informs the

operator
that there

are no lanes
available for
assignment

…

28

No
Communication
with Dispatch

system

Valid
Request

Valid
Available

lane
Selected

Valid Valid Gate Open
Not sure what
the response

is
No requirement

Table 14-4 Open a Lane Basic Flow Variant Table

Var. Sys State
Open
Lane

Request

Dest.
ID

Lane
Selection

Package
Limit

Open Gate
Gate

Response
Expected
Results

Comments

© 2009 by Taylor & Francis Group, LLC

145

Conclusion
I just outlined a way to identify tests based on Use Cases, a
simple way of identifying tests for complex systems. The key
is to focus on System State and inputs into the system, combine
values for those variables, and build a table of unique tests to
choose from. This gives you the potential tests.

In the next chapter I will describe my definition of a Test Case,
and cover how to select tests to run by grouping tests into Test
Cases. Then I will explain how to define selected tests in the
body of the Test Cases.

Conclusion

© 2009 by Taylor & Francis Group, LLC

147

Chapter 15

Essential Test Cases

David DeWitt and I also came up with a different approach to
Test Cases that better suits Use Case based testing.

Traditionally Test Cases are a description of conditions
and expected results that taken together test an individual
requirement or a step in a Use Case. This definition varies,
but it boils down to defining an individual test by inputs and
expected results. Essential Test Cases differ from this in four
ways.

•	 �First each Essential Test Case combines multiple tests
into a single Test Case.

•	 �Secondly they base test definition on a scenario or flow
through a Use Case. It is the best way to be Use Case
driven in testing as I will explain later.

•	 �Third, they go beyond test definition to include test
design. [I figure since I am defining the test, I may
as well define how it is performed. That way, all the
information needed to create the test can be found in a
single place.]

•	 �Fourth, as if that isn’t enough bastardization, I take it
a bit further and simplify test design by condensing it
into an easy to understand Activity Diagram.

Now I am going to show how to select tests from the potential

© 2009 by Taylor & Francis Group, LLC

148 CHAPTER 15: Essential Test Cases

tests identified in the last chapter and group them into Test
Cases.

Grouping Tests into Test Cases
As I mentioned earlier, Essential Test Cases describe groups
of tests based on scenarios or flows of the Use Case. To group
tests you start by selecting tests.

To group tests into Essential Test Cases here is what to do.

Identify initial Test cases by grouping tests according to Use
Cases.

•	 Start with positive tests.

•	 �For each Use Case look at the happy path first. This can
provide an initial test scenario.

•	 �Group tests that support each alternate path in the Use
Case: Those too are Test Cases.

•	 �Test cases can also be built around partial sections of
any Use Case flow.

•	 �Next, look for negative tests in the variant table that
also can be grouped by the flows of the Use Case.
Create Test Cases from them.

•	 �Then look at off-nominal conditions not covered by the
above Use Case flows. Remember, these are conditions
where the requirements may not be clear about what the
system will do. Set these up as separate Test Cases.

•	 �Group negative tests where the System State is not a
normal operational state for a given flow.

•	 �Next examine all the remaining tests. Some may be
incorporated into existing Test Cases. Create individual
Test Cases for any that are left over.

© 2009 by Taylor & Francis Group, LLC

149

•	 �Finally, take a look back and see what else you might
imagine would be a good test but is not apparent by
the table. Such as, what would happen if the power
went out – twice? Or, what happens if two successive
sensors report good data but BOTH were actually
wrong? Think outside the box!

An Example using the process:
Here is a brief example limited to the basic flow of our example
Use Case.

We first look at the positive tests of the basic flow of the Use
Case and group the following variants:

Variant 1: Open Lane Request valid

Variant 3: Destination ID valid

Variant 6: Lane Selection/Package Limit valid

Variant 18: Open Gate valid

Variant 22 Gate response = gate open

This will be the Test Case “Open a Lane Basic Flow Positive
Test”.

Once we have the positive Test Case, we group the rest of the
tests based on steps in the basic flow: Destination Selection,
Lane Selection, Opening Gate, and add a Test Case to cover
negative tests caused by System States.

Open A Lane Basic Flow Negative Tests For Destination Selection

Variant 2: Open Lane Request invalid

Variant 4: Destination ID invalid format

Variant 5: Destination ID selected not in system

Grouping Tests into Test Cases

© 2009 by Taylor & Francis Group, LLC

150 CHAPTER 15: Essential Test Cases

Open A Lane Basic Flow Negative Tests For Lane Selection

Variant 7: Lane Selection/Package Limit = held/valid

Variant 8: Lane Selection/Package Limit = assigned/valid

Variant 9: Lane Selection/Package Limit = invalid lane/valid

Variant 10: Lane Selection/Package Limit = no lane selected/valid

Variant 11: Lane Selection/Package Limit = valid/ limit set to 0

Open A Lane Basic Flow Negative Tests For Opening Gate

Variant 19:Open Gate - invalid format

Variant 20:Open Gate - wrong gate specified

Variant 21:Open Gate – no command

Variant 23:Gate Response – gate locked error

Variant 24:Gate Response – no response

Open A Lane Basic Flow Negative Tests Due To System State

Variant 25: No lanes available

Variant 26: Lane assignments to destination at limit

Variant 27: Selected gate already open

Variant 28: Dispatch system not available

Selecting Tests
I just showed how potential tests can be selected by grouping
test to run as Essential Test Cases. As far as I’m concerned,
that is the bulk of the selection process.

But wait, there is more.

I jumped right into selecting tests for Test Cases without
going into the philosophy of test selection. Why? Because for

© 2009 by Taylor & Francis Group, LLC

151

an Essential Tester that stuff takes second fiddle to actually
knowing how to select tests.

Remember, as an Essential Tester you understand your
environment early and learn what it will take to prove the
system. This includes knowing what needs to be proven and
to what level of detail is needed. As part of initial planning
you figured these things out.

As the project progresses and stakeholder perceptions change,
the details of what needs to be tested may change. You still
understand what needs to be tested because you expect
change and have no problem keeping up with it.

When you follow the steps just described to identify potential
tests, many of the tests to keep will become obvious as you
identify them. That’s because you have a clear understanding
of what it will take to prove the system.

Despite my comments above, I’m going to talk a little bit in
this chapter about the broader picture of selecting tests from
the potential tests.

The rest of this section covers how to select tests to ensure you
know how to.

In other words, how to:

•	 determine the essential tests that must be run,

•	 eliminate unnecessary tests, and

•	 �augment the list of tests to ensure coverage of
requirements, especially those that may not have been
mapped to Use Cases.

Determine What Tests MUST Be Run
To determine what tests to run first identify the features
important to stakeholders that must be proved. Select tests

Selecting Tests

© 2009 by Taylor & Francis Group, LLC

152 CHAPTER 15: Essential Test Cases

continued...

that verify those features.

The most important functionality of the system in the eyes
of the stakeholders is identified during test planning. But
Stakeholders change their mind. So check to make sure
that the functionality identified then still holds the same
importance to the stakeholders. Then identify tests that prove
that functionality.

Next, identify tests that prove functionality vital to system
operation. Identify functionality that must work in order for
the rest of the system to work correctly.

Use corresponding requirements to help select tests to prove
the important functionality.

War Story

I worked on a project that developed software to control
a satellite system. The software would be responsible for
starting up the system, handling communication with a
ground station, and controlling functionality to perform the
satellite’s mission.

Although the satellite’s mission was the most important
aspect of the system in the eyes of the stakeholders, it was
also vital that communication with the ground station and
starting the system worked correctly.

In fact these two aspects could be more important. It didn’t
matter how well the system controlled satellite mission
functionality if the satellite couldn’t communicate with the
ground properly or the system couldn’t start up. Then, the
satellite would be no more valuable than a floating brick.

On the other hand, if the mission software didn’t work
properly, as long as the satellite can communicate with the
ground station, software can be upgraded on the ground,
uploaded to the satellite, and rebooted.

© 2009 by Taylor & Francis Group, LLC

153

So, although we wanted the whole system to work, we really
needed to weight our focus towards communications and
start up. So, while it may not be intuitive that the startup
should be tested as much or more than the flight control
software it’s thinking outside the box that makes testers the
heroes.

Eliminate Unnecessary Tests
Once the important functionality has been examined and
initial tests selected, review the variant table of potential tests
to determine:

•	 tests that may be dropped

•	 tests that are redundant

And, of course at the same time don’t forget, as an Essential
Tester, you don’t want to do any more testing than needed to
prove the system.

Drop Insignificant Tests
Some potential tests may not be significant for example,
conditions covered by other tests, or tests of functionality
whose failure is of little consequence to the success of the
system as a whole.

I start by looking at potential tests where the system takes no
action: prime candidates for dropping.

For example, look at variants 20 and 21 in the Open A Lane Use
Case. No requirements were specified for these variants; there
may be a reason. So, you find out why.

In talking to stakeholders and requirements analysts, I found
out that no requirements were specified because the occurrence
specified - Package limit being entered is in an invalid format or
not being entered at all - is one they consider rare and of little
importance. So, with agreement from the stakeholders that

Selecting Tests

© 2009 by Taylor & Francis Group, LLC

154 CHAPTER 15: Essential Test Cases

those conditions will not have to be tested these variants were
dropped.

Another example. variants 12 through 15 are combinations of
negative values for Operational Variables Lane Selection and
Package Limit. Since the variant table already has negative
tests for the individual conditions of each Operational
Variable (variants 7 through 11) you don’t need to test this
combination of negative values. (The stakeholders agreed
and those variants were dropped.)

Defining Essential Test Cases
Now that you know how to group tests into Test Cases, the
next step is to build them. I am going to show you how in
two parts. In the rest of this chapter I will cover defining the
tests. In the next chapter I will show you how to create the test
design and include it into the Test Case.

Filling In Test Cases I: The Test Definition Section
If initial Test Cases have been identified, by grouping and
selecting tests as described in the previous section, the work
of creating test definitions for Test Cases has already been
done. It is now a matter of filling in the right information into
the body of each Test Case. This information comes from the
variant tables.

Remember, variant tables hold information about test
preconditions (System State), test inputs (Operational
Variables) and expected results - think of the variants in the
variant table as mini Test Cases.

I include a Test Case template in Appendix C. For now I will
focus on the definition portion.

In the body of the Test Case define what is being tested with
the following.

© 2009 by Taylor & Francis Group, LLC

155

Name: identifies the Test Case. Give the Test Case a name
related to the type of test and the Use Case and flow it is
related to.

Description: what the Test Case will verify and a general
description of what takes place during the test.

Requirements Covered: optional depending on the needs of
the testing team. It may serve as a reference tying the Test Case
to requirements. But if the project is tracing requirements to
Test Cases it would be redundant.

Preconditions: can be composed from system state information
in the variant table.

Input: should come straight from the Operational Variables
for the variants being covered.

Expected Results: should come from the expected results
described for the covered test variants

Test Case Example 1:
The following is a description of the test definition portion of
a test case.

Name: Open a Lane Basic flow Positive Test

Description:

This Test Case validates the system can properly respond to
inputs into the system under normal conditions described in the
basic flow of the Open a Lane Use Case. Multiple positive tests
are combined to verify system outcome throughout the steps of
the basic flow.

The following conditions will be tested by this Test Case:

An Open Lane Request is valid (Variant 1)

An existing Destination ID is entered in a valid format (Variant
3)

Valid Lane Selection and Package Limit are inputted into the
system (Variant 6)

Defining Essential Test Cases

© 2009 by Taylor & Francis Group, LLC

156 CHAPTER 15: Essential Test Cases

A valid Open Gate command is received by the system (Variant
18)

A Gate response of “gate open” is received by the system in
response to a request to open a gate (Variant 22)

Requirements covered

SRS 2: �The system shall display lanes assigned to a destination
upon request.

	 The system shall display available lanes upon request.

	 �The system shall identify that a lane is available if it is not
currently assigned to a lane and is not being held for future
use

SRS 3: �The system shall allow only available lanes to be assigned
to a destination. (Partially tested)

SRS 5: �The system shall provide conveyor operators with the
capability of associating available lanes to destinations.

SRS 6: �The system shall provide conveyor operators with the
capability of opening a physical lane gate on request.

SRS 7: �The system shall designate a gate as “Opened” when the
corresponding physical gate is opened.

SRS 9: �The system shall only open a physical gate corresponding
to a gate that is assigned. (partially tested)

SRS 12: �The system shall store gate/destination assignment once
an assigned gate is determined to be “Open”.

SRS 13: �The system shall send gate/destination assignment to the
dispatch system when a gate is determined to be assigned
and open.

SRS 19: �The system shall accept and recognize a value associated
with a lane/destination assignment representing the
maximum amount of packages that may be diverted to
the lane.

Preconditions

•	� The system is operational and lanes are available for
assignment

© 2009 by Taylor & Francis Group, LLC

157

Test Inputs

Open Lane Request: A valid request to initiate activities to assign
a lane to a destination and physically open the corresponding
lane.

Destination ID: A valid identifier for the destination the
Conveyor Operator intends to assign a lane to.

Lane Selection: A valid selection representing the lane
intended to be assigned to a destination. This value is entered
in conjunction with Package Limit.

Package Limit: A valid numeric value limiting the number of
packages that can be diverted to an assigned lane.

Open Gate: A valid request by Conveyor Operator to coordinate
activities to physically open a gate on the conveyor associated
with an assigned lane.

Gate Response: A message received from the Divert Lane
Control system indicating a gate has been successfully opened.

Expected Test Results

•	� The system prompts for a destination upon receiving a valid
Open Lane Request.

•	� The system displays lanes currently assigned to the requested
destination and the lanes currently available in response to a
valid Destination ID.

•	� The system assigns the lane, records the Package Limit, and
prompts to open the gate on the conveyor associated with the
lane. This is in response to a valid lane selection and Package
ID.

•	� The system responds to a valid Open Gate command by
sending a request to the divert lane control.

•	� In response to a Gate Response indicating the gate has been
opened, the system:

•	 Stores the gate and destination information

•	� Sends the Dispatch System with the lane and destination
assignment information indicating packages can be assigned
to the lane.

•	 Notifies the Conveyor Operator

Defining Essential Test Cases

© 2009 by Taylor & Francis Group, LLC

158 CHAPTER 15: Essential Test Cases

Comments On This Example
Here is the important stuff from the above example.

The Description mentions the flow being tested. This is a
reference to the portion of the Use Case being tested. I also
listed functionality being tested. I got that from the variants
we selected for this Test Case.

In the Requirements Covered section I identified the
functional requirements the Use Case flow being tested. Like I
mentioned before, this is optional. I also placed the text of each
addressed requirement in the section. Normally references
are good enough. Also, I have some of the requirements listed
as partially tested. This says that other Test Cases will have
to cover aspects missed by this Test Case. Requirements are
determined to be partially tested based on analysis.

What I have just given you constitutes the test definition
portion of the Test Case. Next you add the test design part.

This would be the finish for a traditional Test Case. Except for
Environment. I consider Environment as the start of Design.
Next chapter!

© 2009 by Taylor & Francis Group, LLC

159

Chapter 16

Adding Test Design To Your
Test Case

In the last chapter, I introduced a very important part of
Essential Testing - using Test Cases to document both ‘test
definition’, their traditional role – and Test Design. I spent
most of the last chapter talking about defining tests, but
haven’t covered test design.

In this chapter, I’ll add in the Test Design elements -
Environment and Procedure – that you will use to complete
an Essential Test Case.

As I mentioned before, David DeWitt and I came up with a way
of designing tests as we defined them – combine definition
and design in the Test Cases!

I like including test design with test definition because then
everything you need to create your test is in one place. In the
first part of the Test Case you have all the information about
what you are testing, what inputs will be used in the test, and
the expected results. The design part (the procedure) shows
how the test process will work using all the ingredients of the
Test Case to perform the test. A single Test Case document can
be handed over to a test builder with enough information to
build the test.

However, if you don’t feel comfortable including your test

© 2009 by Taylor & Francis Group, LLC

160 CHAPTER 16: Adding Test Design To Your Test Case

design in the body of your Test Cases, keep them separate. It
won’t be Essential, though.

First, I’ll discuss test environment. Then I’ll discuss describing
how tests will be performed in the form of Procedures. This
is the order that design is described: first understand the test
environment, and then define the procedure to get the test
done.

Test Environment
The test environment is composed of the hardware and
software the tests will run on. The environment must be
defined before you can define how tests will be run.

Fill in the Test Environment section by including any
hardware and software items that will be used to test. First
identify hardware. Hardware items include computers the
software under test will run on, devices that will monitor test
result outputs (oscilloscopes), hardware simulation software
will run on, and devices that interact with the software under
test.

Software items include the software under test, simulation
software, test monitoring software, software used to interpret
results, and operating systems.

When filling in this section sketch out a scenario of the activities
involved in testing. This is a precursor to designing the test
with procedures. The actual flow will come later. Think about
the software and hardware required to perform the activities
required to run the test defined so far in the Test Case. Look
at all activities including test set up, running the test, and
evaluating results. For each activity list the hardware and
software available to use for testing. Include all components
you can think of in the initial pass. List the environment
components in the Test Environment section of the Test Case.

© 2009 by Taylor & Francis Group, LLC

161

An Example of Test Environment
In the example for the Test Case for Open a Lane Basic Flow
Positive Test, the first thing to do is understand how the test
environment can be set up. Enter this information in the
Environmental Needs section of the Test Case. The focus is
on the software and hardware that will enable the test to be
performed. This is not a wish list. This is based on what is
practical.

We know we’ll use

•	 �an automated GUI testing tool that is readily available
to automate interaction with the system under test.

•	 �a conveyor simulator created in-house that runs on
a PC card plugged into a conveyor back panel that
also holds the PC card the system under test runs on.
Devices, including lane gates, can be configured into
the simulator for example to simulate the opening of a
gate.

•	 �an instance of the Dispatch system used to verify that
the system under test sends proper lane assignment
information to the dispatch system.

For the example I entered this information into the
Environmental Needs section of the Test Case as follows.

Environmental Needs

Hardware

•	 �Two PC Pentium 4 cards inserted into slots one and two
of a back plane configured for a conveyor system.

•	 A conveyor back plane power supply

•	 �A display monitor and keyboard connected to the PC card
in slot 1.

•	 �A display monitor and keyboard connected to the PC card
in slot 2.

Test Environment

© 2009 by Taylor & Francis Group, LLC

162 CHAPTER 16: Adding Test Design To Your Test Case

•	 �PC system with monitor to be used for the automated
testing software.

Software

•	 �Automated GUI testing software installed on the PC
system slot 1

•	 System Under Test installed on PC card in slot 1

•	 �Conveyor simulator software installed on PC card in slot
2

•	 �Instance of Dispatch system running on
PC system slot 1

Test Participants
Test participants are part of the test environment: anything
or anyone participating in the test. Participants can include
testers, simulators, test tools, and the System Under Test.
Anything that does something – including all activities from
test set up through test evaluation – is a candidate.

Test Participants can be gleaned from the test environment
defined for the test. In our example, Tester is an obvious
Test Participant. The tester will set up the test, initiate it,
and evaluate it. The System Under Test is another obvious
participant. It will respond to the tests. Without it there is no
point in testing. Others that may be less obvious now include
the conveyor simulator, the automated GUI tester, and the
Dispatch system. These will become apparent as the design
progresses.

Procedures: How A Test Will Be Performed
How a test will be performed – the design - doesn’t need an
elaborate description; diagrams are enough. These will be
placed in the Procedure section of the Test Case.

© 2009 by Taylor & Francis Group, LLC

163

I prefer using UML Activity Diagrams to show what happens
in a test and who the participants are. You don’t have to use
Activity Diagrams, but I recommend them. They are easy to
understand and combine test flow with responsibilities of test
participants.

Activity Diagrams For Testers
Activity Diagrams are the UML version of a flowchart. They
show process flow, and are typically used to model business
process flows.

I use them to show the flow of a test and the test participant
responsible for any given test activity.

I’ll use the diagram, (figure 16-1), as an example of an
Activity Diagram describing the generic activities involved in
performing a test.

Figure 16-1: Example of an Activity Diagram for a generic test

The following table explains the diagram components.

Procedures: How A Test Will Be Performed

© 2009 by Taylor & Francis Group, LLC

164 CHAPTER 16: Adding Test Design To Your Test Case

Initial
node The start of the process.

Activity

Activities can be manual or automated.
For example, a manual activity would be
Review Results Performed By A Tester, while

an automated activity would be Update
Files Performed By The System.

Swimlane

Swimlanes partition the workflow
according to who or what is responsible
for performing individual activities. For
testing, the swimlanes will represent test

participants. My example in figure 19-1 is
organized into three partitions indicating

which activates will be handled by
the Tester, Test Environment, or System.
This can also help with test setup and

planning. Activities partitioned to a tester
are most likely manual activities, while

activities performed by the Environment
will be automated.

Fork:

Used to manage parallel activities in the
model, that is, multiple activities that can
be performed concurrently right after a

preceding individual activity.

Join:

Shows the convergence of parallel
activities as they finish. All parallel

activities that happen between a fork
and join have to finish for the join to be

considered complete.

Activity
final node.

Ending point of the process. An activity
diagram can have more that one activity

final nodes

Table 16-1 Activity Diagram Components

© 2009 by Taylor & Francis Group, LLC

165

Describing the Test With An Activity Diagram
First review the Test Environment section of the Test Case to
determine the test participants that will be responsible for
performing specific test activities – the ‘players’ in each test
scenario.

There’s an informal pattern here.

I usually start with a Tester, a Test environment, and the
System (the system under test). You may need to identify
other players, such as emulators or external systems. All of
these will end up represented by swimlanes in the Test Case
Activity Diagram.

Then take a look at the definition portion of the Test Case
and decide what activities will be needed to set up, perform,
and analyze results for the test it describes. Finally associate
activities with the test participants.

The first activities will identify test set up followed by the
actual test and finally test wrap up and analysis.

Most of the time, the Tester will be responsible for setting up
the test environment including activities such as:

•	 running a program to restore files

•	 �running other tests to get the system in the proper
state

•	 �Manually setting up files that must be in place to run
tests, or system parameters

Test execution activities can include:

•	 test initiation

•	 simulation of inputs

•	 manual input of data

•	 response by the system under test

Procedures: How A Test Will Be Performed

© 2009 by Taylor & Francis Group, LLC

166 CHAPTER 16: Adding Test Design To Your Test Case

Wrap up and analysis activities can include:

•	 storing results

•	 processing test result data

•	 automated analysis of results

•	 manual analysis of results

Identify individual steps required to test as specific activities.
Attach notes to activities to describe additional test details as
necessary.

Activities will be placed in the swimlanes of the test participants
performing the activities.

The value of an Activity Diagram is Efficient Communication.
The Tester creating the test can use the diagram along with
the rest of the Test Case to understand how to build the test.

An Example Of An Activity Diagram For a Test Case
I will now walk through the creation of an Activity Diagram
continuing with the example for the Open a Lane Basic Flow
Positive Test:

•	 �I first identify test participants by looking at the Test
Environment section of the Test Case I filled in the last
example. I know there will be an automated GUI testing
tool as part of the test environment, the system under
test, a conveyor simulator, and a Dispatch system.

•	 �There will also be a Tester. I set up the initial
Activity Diagram partitioning those participants into
swimlanes.

•	 �After reviewing the entire Test Case created so far I
identify activities and create the Activity Diagram for
the Test Case shown in figure 16-2 below.

•	 �Once the Activity Diagram is complete it is placed in
the Test Procedures section of the Test Case.

© 2009 by Taylor & Francis Group, LLC

167

Figure 16-2 Example of Activity Diagram for 1 Open a Lane Basic
Flow Positive Test Test Case

The flow of the test is shown beginning with the tester setting
up the test environment and then initiating the test. Most of
the activities after that take place between the Automated GUI
Test tool and the system under test. For each activity initiated
by the automated test tool, the system under test responds. I
don’t specify how the system responds, because I won’t know
the actual response until the test takes place. I can link notes
to the system responses and specify expected results.

Looking at the rest of the Activity Diagram you can see what
the simulator and Dispatch system do. The last activity of
analyze results belongs to the tester, and after that the process
ends.

Procedures: How A Test Will Be Performed

© 2009 by Taylor & Francis Group, LLC

168 CHAPTER 16: Adding Test Design To Your Test Case

What I like about the Activity Diagram is that you can quickly
get a feel for where activities take place throughout the test
flow. This information along with the rest of the information
in the Test Case should be enough to use to build the tests. The
Activity Diagram illustrates what activities will be automated,
and what activities will be manual.

Now that design is incorporated into the Test Cases, you have
everything you need to create the tests required to prove
the system. In the next chapter I will show how to take the
Essential Test Cases and turn them into tests.

© 2009 by Taylor & Francis Group, LLC

169

Chapter 17

Creating Tests

Once design information is incorporated into Test Cases, there
is enough information to create the corresponding tests.

In this section I will discuss first looking for existing tests that
may be used to create new tests from to save time and energy.
Next I will show you how to create detailed test instructions
in the form of Test Procedures.

Harvesting Tests
The next thing to do is see if there are any existing tests similar
to the ones we are going to build: borrow them. I call that test
harvesting, others call it stealing.

Harvesting tests consists of looking for tests that may be
reused either as is or with modifications. The motive is to
help speed up test development. Tests previously created for
a similar product or a previous version of the system to be
tested may be ripe for harvesting.

© 2009 by Taylor & Francis Group, LLC

170 CHAPTER 17: Creating Tests

War Story

I once worked on a large project where we were tasked
with doing black box testing for a particular product. There
was another test team doing white box testing on the same
product using the same test environment and the same
scripting language. We were able to schedule the test
creation work of the two groups to reduce redundancy. The
white box testers harvested test the black box testers created
and vice-versa. Of course both groups had to modify tests to
meet their own specific needs, but each group was able to
save time by harvesting from the other.

When harvesting tests make sure they are worth harvesting.
If the tests are in poor shape or don’t fit well with the existing
test suite, it may be better to build from scratch. Still, it doesn’t
hurt to take a look first.

To harvest tests review Test Cases against lists and
documentation on existing tests that may be of interest. When
potential tests are found, look deeper into corresponding Test
Cases, Test Procedures, and test scripts. Try to get a feel for
the magnitude of changes that will be required if the test is
harvested. As part of harvesting, review requirements that the
harvested test will cover. Once the test is deemed harvestable,
document it for the test creators.

Creating Test Procedures
After harvesting, create Test Procedures and corresponding
tests.

Test Procedures describe the details of the activities a tester
must perform to execute tests described in a Test Case. These
are instructions the testers use to conduct tests.

© 2009 by Taylor & Francis Group, LLC

171

Use Activity Diagrams to Create Test Procedures
Test creation depends on the test environment available and the
types of testing planned, including the level of involvement of
testing personnel. You get this information from the Activity
Diagrams in the Test Case.

Start by determining what combination of manual and
automated testing is needed.

•	 �Manual tests are tests with a high degree of tester
interaction. Many of the tests are scripted in step-by-
step documents that a tester must follow. Often, testing
takes place in front of a User Interface that resembles
the final product such as a website. In other cases
manual testing may take place with a user interface
into a simulator where the tester supplies inputs to
the simulator which converts the information into
messages to the System Under Test.

•	 �In automated tests the tester usually sets up the test
environment and initiates a set of tests that bypass
most tester interaction. In some cases portions of the
analysis of test results may be automated as well.

In many cases tests will be composed of a combination of
manual and automated events.

Up until now I have encouraged you to use as few artifacts as
possible and employ as little rigor as possible to successfully
test the system. In the case of Test Procedures, I want to stress
that you need to get these right. Accuracy in testing is vital
to having confidence in the tests, so it is critical that the test
instructions are understandable and correct.

Test Procedure Components
I included a Test Procedure template in Appendix C. The main
components that make it up are:

•	 What the procedure is for

Creating Test Procedures

© 2009 by Taylor & Francis Group, LLC

172 CHAPTER 17: Creating Tests

•	 Procedure specific files

•	 Test set up

•	 Test Procedure steps

•	 Test evaluation instructions

The first section identifies the Test Case the procedure is for.
Multiple procedures may be required to cover a Test Case

The next section, Procedure specific files, identifies parameter
files and databases required for the test. It also includes vales
for the files and databases and specific instructions for setting
them up.

The Test set up section describes step-by-step instructions for
setting up the tests. This includes turning on hardware, hooking
up test monitoring devices, and initializing programs.

Test Procedure steps identify the steps that must be followed to
run the tests. For automated tests they describe the interaction
between the tester and the test environment required to run
the tests. For manual tests, steps describe the interaction
between tester and test interface including values to enter and
expected results. I like to use a table to describe test steps and
include expected results where appropriate. I like to identify
the requirements each step tests and if the requirement is
completely or partially tested.

The Test Evaluation section provides instructions for
evaluating the test including running programs that process
raw data. This section may not be necessary for some manual
tests where evaluation can take place as the procedure steps
are followed.

To create tests I find that it helps to take a two pass process.

The First Pass
In the first pass review the Activity Diagram in the Test Case.
This should provide a good illustration of the flow of events

© 2009 by Taylor & Francis Group, LLC

173

that must take place to fulfill the test. It will also give an
understanding of how the tests are to be written for each test
participant. There may be multiple Activity Diagrams for a
Test Case indicating multiple Test Procedures.

For each procedure determine the order of tests that will take
place and sketch out the steps to be performed within the test
environment. Then identify inputs and their data values:

•	 �For manual tests this may take the form of a written
list.

•	 �For automated tests this may require identifying test
files and formats.

Then identify test evaluation activities, file locations,
observation activities, and analysis tools. Also identify any
automated analysis.

Next review tests slated for harvesting and determine how
they fit into the tests being created. For tests being harvested,
fill in the details in the Test Procedures with harvested
information where appropriate.

The Final Pass
In the final pass start by identifying any automated tests that
need to be written.

Then for manual tests, build the appropriate written steps for
the tester to follow. Include them in the body of the procedure.
Identify any interactions with simulation software including
activities to build input files. At this point your procedure
should be filled in.

To finish, create automated tests that may be necessary and
unit test them. Once all tests related to a Test Procedure have
been built, follow the Test Procedure to test the tests and debug
them. Make any changes to the Test Procedures as needed.

As part of creating tests, the Test Procedure is pivotal. As the

Creating Test Procedures

© 2009 by Taylor & Francis Group, LLC

174 CHAPTER 17: Creating Tests

instruction set the tester will follow, it ties the tests together.
Here is an example.

A Test Procedure Example for the Open Lane Basic Flow
Positive Test Test Case

Test Procedures for Open a Lane Basic Flow Positive
Test
ID: TP 1
Procedure Specific Files

Dispatch System Output log file: This file contains
a log of messages received from the system under
test. This file is automatically initialized when the
application Dispatch Application is run. No set up is
required.
Conveyor Simulator parameter table: This file
contains parameters to simulate an active conveyor
system. It holds information that describes lane
assignments the simulated system will be initialized
to and the packages that will be simulated as moving
through the simulated conveyor system.
File Format: As description of file format can be found
in document ConveyorSimulatorParameterFile.doc.
File Parameters: Parameter specifics for this
file are described in the document called
SimulatorSetUpTP1
File location name: ConveyorSetUpTP1
File location: PC2 folder location c:\Simulator
Set Up: prior to testing access PC2 and copy file
ConveyorSetUpTP1 from c:\simulatorSetUpFiles to
c:\Simulator
Automated GUI Test Parameter file: This holds
information that is used to drive the automated test

© 2009 by Taylor & Francis Group, LLC

175

for the test described in this Test Procedure. This is a
system file crated automatically using the GUI testing
tool. It doesn’t need to be loaded for this test.

Test Environment Set Up
Test environment setup steps are as follows:
•	 Turn on Monitor for PC1 (labeled)
•	 Turn on Monitor for PC2
•	 �Turn on power (black button) for the Conveyor Box

(labeled “Conveyor System Box”).
•	 �Windows system will be displayed in monitor for

PC1.
•	 �Windows System will be displayed in monitor for

PC2.
•	 �Select Conveyor Simulator Icon on PC2 using the

arrows on the keypad labeled (PC2)
•	 �The monitor for PC Two will display message that

the conveyor is running
•	 �Select the Dispatch System on PC1 using the arrows

on the keypad labeled (PC1)
•	 �The monitor for PC1 will display message indicating

the Dispatch System is running.
•	 �Select the System Under Test (SUT) icon on PC1

using the arrows on the keypad labeled (PC1)
•	 �The monitor for PC1 will display message indicating

SUT is running. The Window for Conveyor
Monitoring is displayed.

•	 Select the GUI Tester Icon on PC1.
•	 �The GUI Test window will open and list automated

tests available to perform

Creating Test Procedures

© 2009 by Taylor & Francis Group, LLC

176 CHAPTER 17: Creating Tests

Test Procedure Steps

Step# TEST Step EXPECTED
RESULT

Pass/
Fail Req Comments

1 Bring up the GUI Test
window on PC1

2
Select Open Lane BF TC1
form the list of available

tests to run

3 Select Run Test (button)

The test should
run to completion
and display “Test

Complete”.
Log file is stored as
OpenLaneBFTC1
with a date/time

4

Copy the log file named
OpenLaneBFTC1 from
c:\GUI Test\Log to c:\

Test Results as file name
“OpenLaneBFTC1(date/

time)”.

Test Evaluation Instructions

 Display the log file for the test (file “OpenLaneBFTC1(date/
time)”. View the file and check the step name and
corresponding results identified in the table below. For each
test mark pass or fail.

Test Step Name Expected Results Pass/Fail

Request Open a Lane

Open Lane window Displayed
showing a list of destination that may

be selected Including DST1, DST2,
DST3with list of available lanes.

Destination 2 Selected
Destination2 is displayed showing

Lanes 2 and 3 assigned to DST2 and
Lanes 6, 7, and 8 available.

© 2009 by Taylor & Francis Group, LLC

177

Lane 7 selected for
Destination 2, Package

limit = 100.

Lane 7 assignment to Destination 2 is
displayed

Prompt for Open a Lane

Request Open Gate 7 Response displayed that gate for lane
7 is open

Check the Conveyor Simulator log file and confirm that Gate
for lane 7 was opened and message sent to SUT.

Check log file for Dispatch System and verify message
received from SUT that Lane 7 was assigned to Destination
2.

The above example shows the Test Procedure to positive test
the happy path of the Open Lane Use Case. The information
in the procedure should be detailed enough to set up, run,
and evaluate the tests.

As I created the Test Procedure, I continually used the Test
Case and corresponding Use Case it describes tests for.

When filling in the Procedure Specific Files section, I referred
to the Test Environment section of the Test Case. I could put
the file formats here if I chose to. For clarity, I refer to those
details described in other supporting documents.

For the Test Environment Set Up section, I relied on both
the Test Environment section and the Activity Diagram in
the Test Case. With that information and knowledge of the
test environment components, I was able to create the steps
required to bring the system up in a state ready to run tests.

Creating Test Procedures

Test Step Name Expected Results Pass/Fail

© 2009 by Taylor & Francis Group, LLC

178 CHAPTER 17: Creating Tests

In the Test Procedure Steps section I describe the steps the tester
must take to run the tests. In this case, the test is automated
so I only have to describe how to initiate the test and perform
house cleaning once the test is run. I don’t use all the columns
in the table. If I were describing a manual test there would be
more information listed. In this case the detailed information
related to the expected results go into the Test Evaluation
Instruction section. I have an example of a Test Procedure for
a manual test in Appendix B.

To fill in the Test Evaluation Instructions section I rely heavily
on the Use Case, and the Test Definition and Activity Diagram
in the Test Case The Activity Diagram shows the steps taken
by the participants including automated test components. The
Use Case gives more detail about the sequence of events, and
the test definition describes inputs and expected results. You
can see how the same information would be needed to build
the automated tests into the GUI Tester. I created a simple table
to be used to evaluate results generated by the GUI Tester.

Conclusion
I have just covered how to build tests using the test design
and created Test Procedures to describe how to run those
tests. Once tests are created and instructions to run them are
in place, the next step is to run the tests. That is the topic of
the next chapter.

© 2009 by Taylor & Francis Group, LLC

179

Chapter 18

Executing Tests

We execute tests to find defects and report on them. If all the
activities took place described in the previous chapters to
plan, identify and select the right tests, build the tests and
create detailed instructions on how to run and evaluate results,
executing the tests should be mostly strait forward.

In order to test, the following are needed:

•	 The application to test

•	 The environment to test it in

•	 Tests to run

•	 Criteria to evaluate them

•	 Instructions on how to test

In recent chapters I described how to define the test
environment, design and create the tests, define expected
results in the Test Cases, and create test instructions in the
form of Test Procedures. You have control of those artifacts so
don’t worry about them. In fact, if you do everything I said
an Essential Tester does, executing the tests is the easy part of
testing.

The only thing listed above that you don’t have complete
control over is the application to test. And by being
proactive, you help the entire project team produce a decent

© 2009 by Taylor & Francis Group, LLC

180 CHAPTER 18: Executing Tests

application.

Still, problems will arise.

Execution Problems and Their Solution
As I mentioned at the beginning of the chapter, if everything
has gone as planned, then testing should be mostly straight
forward - mostly strait forward because we don’t test in
perfect environments.

In this section I talk about dealing with less than optimal
circumstances that may face the tester at execution time.

DOA Deliveries
Most testers have been in situations when they were given
lousy deliverable to test against. In some cases the testing
group receives a delivery that doesn’t run at all, or has too
many major problems to be able to test at all.

The typical industry answer I found while researching for
this book is to identify and report all visible defects that are
holding up tests and notify management since the product
delivered indicates there are problems with the development
process.

That is one solution, and may even be the best response in some
cases. Hopefully, deeper problems with development will
have been caught earlier through constant communication.
As the product is being developed, it shouldn’t be too hard for
Essential Testers to get a feel for whether requirements have
stabilized and if development is based on the requirements.

Essentially, it is best to address problems when you first
suspect them rather than waiting until test execution.

The first thing to do when a product isn’t testable is to go talk
to the developers and find out more information. I have seen
people write defects on products that seem to not work only

© 2009 by Taylor & Francis Group, LLC

181

to find out the test environment wasn’t configured properly.
That doesn’t bode well for working relationships. The people
handing over a product don’t want to hand over something
that doesn’t work any more than a tester wants to receive it. It
may be best to hold off on the defects for a bit and allow the
developers a little flexibility at first. You don’t want to affect
schedules, but working with developers and integrators to
get a testable product goes a long way, and you don’t want to
scare the stakeholders if it isn’t warranted.

War Story

I worked on one iterative development project where we
executed functional tests and reported on them for each
iteration application build. Stakeholders had full visibility to
defects. The first iteration was a disaster. We got a build
that had major defects that caused some delays but also
caused concern from the stakeholders that things weren’t
going well. We worked with the developers and came up
with a plan for future iterations where we would have two
levels of functional testing. The first would be an informal test
where the developers would deliver the product a couple of
days prior to the official start of testing for an iteration. We
would sit with the developers and run our planned tests as
best we could while identifying but not officially recording
defects. That way, the developers were aware of potentially
embarrassing problems before they actually got recorded.
The result was a product that was more reliable when the
official functional tests were performed and a decent working
relationship between development and test.

Changing Stakeholder Perception
As the product is tested and the stakeholder sees features
come to life, the importance of the features may change. This

Execution Problems and Their Solution

© 2009 by Taylor & Francis Group, LLC

182 CHAPTER 18: Executing Tests

may require slight changes in presentation strategies or even
the level of testing. This can also cause requirements to change
late in the game. Often this is a project management issue
but testing personnel may also help deal with this type of
situation. By keeping a constant rapport with the stakeholders,
testers can position themselves to adjust quickly to perception
changes. Many times the solution is nothing more than an
additional report or slight changes in existing tests.

Timing of Tests
Timing tests, determining when to run them, can be a source
of execution problems. Test timing depends on the project
process. Traditionally, most testing to prove the system is
done against delivered code. For projects employing Agile
methodologies, this means testing early and often since code
delivery is early and often. In an agile environment timing
isn’t even a consideration.

 For iterative development most tests will be executed towards
the end of each iteration.

For waterfall methodologies, test execution takes place towards
the end of the project as releases of functionality occur. Test
timing would have been taken into account when doing the
initial planning. Most likely the initial plan wasn’t accurate.
Changes to the environment, in release strategies, in what the
stakeholders need to see, and project delays will cause a plan
to be inaccurate. As Essential Testers, make adjustments from
the original plan as changes happen, but remember evaluate
the impact of those adjustments before entering into test
execution. Some last minute tweaking may be in order.

Special Considerations at Test Execution Time
Executing Regression Tests
Regression testing is done to ensure that something that
was previously working still works. It doesn’t focus on

© 2009 by Taylor & Francis Group, LLC

183

new functionality, but on functionality that was previously
delivered and tested. As new functionality is added to
a product tests are run to make sure nothing previously
delivered got broken. Defects of this type include:

•	 �existing uncaught defects that show up with the
integration of new code

•	 �defects previously fixed that reappear in the new
release

•	 �defects on previous functionality introduced as part of
the creation of new functionality.

Regression tests are generally identified from previously run
tests. Common ways to regression test include performing
all previously run tests, focusing on the reemergence of
previously found bugs, and running a subset of previously
run tests focusing on critical functionality.

Rerunning all previously run tests on a product can be time
consuming, especially when manual tests are involved. When
most of the tests are automated, it may be possible to run
all test without human intervention. An option is to start
regression tests at the end of a day, let them run overnight,
and analyze results in the morning.

Running regression tests to see if previously fixed bugs have
reemerged is another method of regression testing. A reason
for focusing on previously fixed bugs is because defects often
have a way of showing up in code after they have been fixed.
Reasons for this include improper or poor version control,
fragile code, or redesigning existing features introduces past
mistakes. This method can be useful but it focuses on past
problems. Testers must still worry that either previously
undiscovered bugs haven’t emerged or new critical defects
haven’t been created.

Another way of regression testing is to use a subset of
previously run tests to focus on critical functionality. This

Special Considerations at Test Execution Time

© 2009 by Taylor & Francis Group, LLC

184 CHAPTER 18: Executing Tests

reduces the effort of running and analyzing all previously run
tests by only executing what is deemed critical. This allows
testers to focus on what the stakeholder considers important
as well as critical functionality required to run the new tests
and potential reemerging defects.

Executing Manual and Automatic Tests
The effort involved in testing manually is not always greater
than the effort to execute automated tests. Complexity of the
test environments, the test preparation effort, and the effort
to analyze results affect the testing effort. Different tester
skills may be required for the two types of tests. In the case
of manual testing, testers may have to emulate end user
behavior. In the case of automated testing, testers may have
to be more technical savvy. More training may be required for
testers performing automated testing.

Even in executing tests we must be flexible. We may have
planned for and created automated tests for a given feature.
As you test you may find the test is not adequate and the test
must either be modified or supplement with another test.

Recording and Reporting Test Results
Test Recording
Defects are recorded to notify the development team of
things that need to be fixed and help them prioritize those
fixes. Defect recording also serves the purpose of notifying
management and the stakeholders of progress. As tests are
evaluated pass/fail guidelines are used to determine defects.
Those defects are then evaluated against broader project or
organization criteria to determine the severity of the defect.
Usually the most severe defects will cause the system to crash
or not allow further testing of the product to continue, while
the least severe have minimal noticeable effects on the product.
Severity standards should be put in place during test planning.

© 2009 by Taylor & Francis Group, LLC

185

Defects are recorded and reported on. The repository for
defects depends on the method of recording. There are many
tools available for defect tracking. What is used depends on
the needs of the project and benefit provided.

When a bug is detected take time to analyze the problem
when recording the defect. When it comes to finding defects
there is a fine line between being thorough, and being zealous.
The key is to make informed decisions and often knowing the
expected results is not enough.

I have worked on projects where testers with good intentions
find all kinds of defects only to find out later on that a large
percentage of them are determined to not be defects. Things
like this lead to finger pointing and animosity between
tester and others on the project. These types of problems can
be minimized through communication with stakeholder,
developers, and other project members.

Test Reporting
Test reporting is used to report aspects of testing results that
are important to the project. Reporting is done to help show
progress as well as help identify issues to be addressed by
the project. Reports depend on the target audience. Reports
can be generated to show defect status, severity, resolution
rates, time to resolve defects, and more. Often the test group
will determine the types of reports to produce in the planning
process with help from other project roles such as project
management, developers, and stakeholders.

Test reporting should point out testing shortcomings as well
as others. Reporting on erroneously identified defects and
severity is an example.

As testing takes place, coverage analysis may also take
place as required. Coverage analysis measures the amount
of code covered by tests being executed. Often this includes
instrumenting code to run with a code coverage tool that
identifies coverage as tests are run. It also includes gathering

Recording and Reporting Test Results

© 2009 by Taylor & Francis Group, LLC

186 CHAPTER 18: Executing Tests

the proper information and reporting on it. Coverage
analysis often depends on project expectations. Coverage
level requirements are usually set up as part of the planning
process.

Knowing When to Stop Testing
A friend of mine who paints pictures told me that a painting
is never finished; you just have to find an interesting place to
stop. While I don’t want to compare testing to art, the same
holds true with knowing when testing is complete. Many
software applications are so complex that complete testing is
out of the question. The “interesting place to stop” for testing,
is mostly in the eyes of the stakeholders. We base most of our
testing on what is acceptable to the stakeholders and balance
that with our understanding of what makes up a quality
system. Acceptable stopping points often are a combination
of reducing defects below an agreed to level and reaching
certain levels of test coverage.

© 2009 by Taylor & Francis Group, LLC

187

Chapter 19

Essential Traceability

Traceability is something that happens throughout a project,
usually as early as requirements gathering. Although I
mention traceability in other parts of the book, it is significant
enough to merit its own section. Now that I have covered the
testing process I must cover traceability in more detail.

From a testing perspective, traceability and test coverage go
hand in hand. The right level of test coverage can be shown
through traceability.

Way back in Chapter 2, I provided definitions for traceability
and coverage:

•	 �Traceability is tracing requirements up to features
or stakeholder needs, or down to design, code, and
tests. For testing purposes you have to be able to trace
requirements to tests in order to prove that requirements
are covered by tests - one purpose of traceability is
to help verify that all requirements are implemented
and that the application only implemented the
requirements.

•	 �Coverage has two meanings. The first is requirements
coverage by tests - are there sufficient tests to cover
requirements to the level of detail needed to prove the
System? The other is code coverage. This measures the
source code covered by tests.

© 2009 by Taylor & Francis Group, LLC

188 CHAPTER 19: Essential Traceability

Success in achieving the right level of test coverage can only be
demonstrated by means of your traceability documentation.

But traceability supports many other needs in a project. I’ll
deal with some of these later.

Traceability
Tracing Artifacts
Here are typical artifacts and traceability relationships found
on a standard project (see Figure 19-1).

•	 �stakeholder needs include features of the system,
general system architecture, and other documents that
describe the system in the view of the stakeholders. In
validating requirements it is often necessary to trace
requirements to the stakeholder needs in order to show
that requirements communicate these needs properly
and completely as the basis for building the system.

•	 �requirements can include traditional functional and
non-functional requirements as well as Use Cases. And,
as I’ve stressed before, Use Cases may not be the actual
requirements but a means of grouping them. This
means that traditional functional and non-functional
requirements can trace to Use Case.

•	 �Also traceability can be between requirements when
they are connected. For example, non-functional
requirements may need to be traced to functional
requirements when they support functionality specified,
making it easier to demonstrate both requirements are
covered.

•	 �Design elements. Requirements can trace to the design.
The design must be consistent with the requirements,
so it follows that the requirements trace to the
design. Design elements to be traced to can include

© 2009 by Taylor & Francis Group, LLC

189

implementation specific textual specifications and
models. such as sequence diagrams, class specifications
and operation definitions.

•	 �Code is usually written from a good design, but
sometimes there is enough information in the
requirements to write code directly. So code can trace
from both requirements and design artifacts. Tracing
code to requirements and tests is also required in safety
critical systems.

•	 �Test artifacts can trace to all the other major artifacts,
but the key for testing is tracing to requirements.

Figure 19-1 Artifact Traceability

Traceability

© 2009 by Taylor & Francis Group, LLC

190 CHAPTER 19: Essential Traceability

Coverage
Test coverage is all about having enough tests to sufficiently
demonstrate that the system meets specifications as perceived
by the stakeholders.

The focus of test coverage is usually between the tests and
the requirements – do the tests cover all the requirements
identified? We want to be able to prove the requirements
were satisfied. While this is an important aspect of coverage,
your coverage strategy may need to be deeper than that. The
amount of coverage depends on what needs to be proven to
the stakeholders.

You may also need to demonstrate test coverage of design
elements and code.

Requirements Coverage
The level of requirements coverage by tests depends, as usual,
on the project and what is feasible. Many times stakeholders
are okay with less than 100% coverage, and many times 100%
coverage isn’t always feasible.

For example, there may be many outcomes described
by requirements where it is only feasible to test some
requirements partially, or perhaps not at all. Or, In some cases
stakeholders may be less concerned with particular features
and may not feel it is important that all requirements related
to those features be tested. And, of course, where time is a
factor, requirements may have to be prioritized.

Design Coverage
Sometimes certain aspects of the design must be proven, so
tests may trace to portions of the design. In such cases tests
may be written specifically to prove the design, or existing
tests that provide coverage of requirements may be used
for the same purpose. For safety critical systems, it must be
shown that the design is in line with requirements and safety
issues, and that all aspects of the design have been tested
sufficiently.

© 2009 by Taylor & Francis Group, LLC

191

Code Coverage
In most projects it is good enough to show requirements
coverage and some design coverage. If the system performs
to the specifications of the requirements and to the constraints
of the design, then the code must be implemented correctly.

In regulated industries such as avionics, the stakeholders’
needs for safety may drive proving test coverage of code. The
regulating body (a stakeholder) will want to see that you can
point to code that implements specific requirements. They
will also want to see that as tests are executed, code related to
the requirements being tested is executed as well.

Showing Coverage via Traces
There are many means of showing test coverage but I only
want to talk about the traceability matrix. It is the most
effective means I have found.

The traceability matrix is a table depicting links between
one artifact type such as requirements, to another set such as
tests.

Figure 19-2 shows a very simple traceability matrix. This
particular matrix shows the link between functional
requirements (FR) and Test Cases (TC). In this example
each requirement reference in the left most column and Test
Case references are identified across the top of the table. In
this example there are a total of 14 requirements and 5 Test
Cases to support test those requirements. For this table, an
“X” identifies a link between a requirement and a Test Case
indicating coverage of a requirement by a Test Case. In this
example there is full coverage of requirements by Test Cases
with some requirements being tested by multiple Test Cases.

For this example I only used a spreadsheet to show traceability.
This is a traceability matrix in its simplest form and can be
cumbersome to maintain when there are lots of “things” to
trace. Requirements management tools may work better for

Coverage

© 2009 by Taylor & Francis Group, LLC

192 CHAPTER 19: Essential Traceability

large projects. Most requirements management tools worth
their memory space provide traceability matrix displays.

Figure 19-2 An example of a traceability matrix

The level of coverage that must be shown will vary depending
on the project. The key is to know what level of coverage must
be shown. Traceability can be set up based on the coverage
that must be shown. In many cases coverage may be shown
by leveraging traces between other artifacts. If a test traces
to a specific requirement and that requirement traces to a
design element which in turns traces to code, that link may

© 2009 by Taylor & Francis Group, LLC

193

be good enough to show traceability from the test to code that
implements the requirement.

Other Things To Trace
Traceability can show that the right things were developed.
Systems that support regulations or processes that conform
to regulations can use traceability to show requirements were
derived from regulations. In such cases traceability is taken
beyond requirements and conventional software development
artifacts.

An example of this would be a project developing software
within the pharmaceutical industry where requirements
must support Standard Operation Procedures (SOPs). In this
regulated industry, business processes are based on SOPs that
must be followed. Systems created to support those business
processes must be able to prove they also support the SOPs.

Using traceability to tie the Use Cases (or other forms
of requirements) to SOPs is an obvious way of showing
correspondence.

In most cases SOPs will be captured on a company intranet or
in text documents. It would be cumbersome and a duplication
of effort to treat the SOPs as a type of requirement so that
they may be traced in a tool. A simpler way of showing this
type of traceability would be to treat the SOPs as references to
requirements. This is a less formal means of traceability that
can be easily done within almost any environment being used
for traceability. All the expensive requirements management
tools allow for referencing web pages or documents from
requirements.

Referencing can also be done with less formal tools that may
be used for traceability such as spreadsheets. This is an easy
way of showing traceability to other artifacts that must be
supported without making them formal requirements. A
drawback to this approach is that you won’t have the luxury
of easily identifying suspect traces that tools provide when

Coverage

© 2009 by Taylor & Francis Group, LLC

194 CHAPTER 19: Essential Traceability

artifacts change. This is a tradeoff that needs to be considered
when determining not only what will be traced but how to
manage the traces.

Traceability In Practice
There are two main benefits to tracing between project
artifacts.

A Requirements Perspective
The first is being able to understand project elements the
requirements map to such as where the requirements came
from (tracing requirements from features and stakeholder
needs), and where they lead to in the development process
(tracing to design, code, and tests).

•	 �For testing, tracing helps identify what needs to be
tested, and demonstrates the test coverage of the
requirements.

•	 �By understanding the other artifacts requirements map
to, it is easier to understand exactly what needs to be
tested to provide the proper testing depth.

•	 �When selecting tests and prioritizing requirements for
testing, knowing the other artifacts related to a given
requirement may shed light on their importance. A
requirement may look trivial on the surface, but may
trace to a design element that is critical to system
operation or uses an unproven technology. If so, the
importance (and priority) of that requirement may be
considerably increased.

•	 �Requirements supporting features important to
stakeholders may be identified for special testing based
on the features they trace from.

© 2009 by Taylor & Francis Group, LLC

195

continued...

•	 �Missing tests can be identified where critical
requirements do not trace to any tests.

•	 �Tracing may help identify some tests that don’t map
to any requirements, and so are, perhaps, unnecessary.
That may sound funny, but it happens. Often a tester
with a misguided sense of stakeholder perspective gets
the idea that a particular test is needed. Once the tests
are mapped to requirements, it is found that the test
really doesn’t test any real requirements.

The Impact of Change
The second benefit comes when analyzing the impact
requirement changes have on other artifacts in the development
process, not just on testing.

•	 �In general, a good reason to trace is to see where
requirements go to and come from. This allows
management to understand the effect requirements
have on other project artifacts.

Once you document the artifacts a requirement maps to, you
can identify the impacts when the requirement changes.

When a requirement changes, its links to other artifacts
become suspect. From a testing perspective, if a requirement
changes, you need to check each test artifact related to the
requirement.

War Story

I worked on a project with a company that subcontracted
the testing effort of a large project. We were responsible
for identifying, selecting, and creating tests for the system
being constructed based on the requirements. We were also
responsible for running tests and reporting results.

Traceability In Practice

© 2009 by Taylor & Francis Group, LLC

196 CHAPTER 19: Essential Traceability

continued...

Once requirements stabilized and were baselined, we
identified and selected tests and then mapped tests to
requirements and corresponding design items where
pertinent. As tests were created, requirements were clarified
and updated based on our suggestions.

After the initial tests were created and run, it became
apparent to our client that the product they were producing
didn’t match all of the stakeholder expectations. This caused
a flurry of activity by the client in the form of changing
requirements supported by corresponding development.

Suddenly we were deluged with new and changing
requirements causing changes to the test suite we had
developed so far. This wouldn’t have been a big deal had
we not contracted the project on a fixed bid. At that point our
biggest concern was that the client met their deadline doing
whatever we could to help.

Being naïve, we figured we could adjust the contract when
the dust settled. So we made changes to our tests and added
tests where needed to match the changes in requirements,
tested our tests, updated traces and ran the tests to prove
the system.

When the dust did settle we found ourselves on the short
end of the stick. The client thanked us for the hard work but
wasn’t willing to pay us for the added costs due to changes.
In fact they maintained that those changes were just part of
the way they did business and we should have factored that
into the contract.

We were maintaining traceability and thought that would
help us in our dispute. The problem was that even though
we were mapping requirements to Test Cases, we were
not keeping track of the history related to mappings and
changes. So the only thing we really could tell from our
traceability was that the tests traced to the proper artifacts.

Our lesson learned from this episode was that we could have
used traceability to manage changes if we were smart.

© 2009 by Taylor & Francis Group, LLC

197

We should have put a clause in the contact relating to
an expected number of requirements changes after
requirements were baselined. As changes came in we could
have used existing traces to testing artifacts to help estimate
costs related to specific requirement changes.

Problems With Traceability -
And Some Suggested Solutions
There are two major pitfalls associated with traceability.

•	 �There is often a tendency to want to trace too much. This
is true for organizations tracing artifacts for the first
time, and especially true when a new tool is introduced.
Usually this can be tempered by carefully considering
why traces between specific artifacts should exist and
be maintained.

•	 �Another problem is maintaining traceability, especially
on large projects with lots of requirements and a large
number of artifacts to maintain traces with. As a project
progresses and changes occur, it becomes more difficult
to manage traceability even with decent tools. Often
projects underestimate the amount of work it takes
to maintain traceability. When that happens, if more
time and effort isn’t allotted to managing traceability,
the project runs the risk that traces between artifacts
will deteriorate and become unreliable, causing more
problems than solving. On large projects managing
traces may require multiple individuals full time.

Finding the right fit of traceability depends on project needs
and requires some planning up front. Ask yourself

•	 What really needs to be traced?

•	 �Who will be responsible for tracing and when they will
do it?

Problems With Traceability - And Some Suggested Solutions

© 2009 by Taylor & Francis Group, LLC

198 CHAPTER 19: Essential Traceability

•	 How traceability will be managed?

What Really Needs To Be Traced?
The stakeholders usually dictate the amount of traceability on
a project, whether they know it or not. We employ traceability
to help produce a quality product that meets the expectations
of the stakeholders. Traceability may also be used to assure
stakeholders that the system was tested to the proper level of
detail.

On projects with a high degree of governance, traceability
needs are usually clearly defined although often extensive.
For safety critical development regulated by an organization
such as the FAA, requirements must be traced up to system
level requirements that describe the entire hardware/software
system. They must also trace down to low level (design level)
requirements, source code modules, and tests.

For projects with less governance, the project team may have
more leeway in establishing traceability. Ask what added
value tracing between specific artifacts will bring and if it is
necessary.

When deciding on using traceability for test coverage, first
understand the degree of test coverage that must be shown to
the stakeholders, and whether traceability proof is expected.
Next understand the value that employing traceability will
provide in ensuring proper test coverage. Then figure out
what artifacts must be traced to demonstrate test coverage.

Tracing artifacts can be an expensive overhead, so it is
important to try to minimize tracing to only those elements
that will produce value in the form of more efficiency or a
higher confidence level in the system by the stakeholders.

Before deciding on what will be traced consider tradeoffs
between value added and what tracing will cost you in time
and complexity. I always try to lean towards less tracing at
first and add more if I see it is needed later. This allows me to

© 2009 by Taylor & Francis Group, LLC

199

keep complexity low initially, and adding more tracing (and
complexity) only when I can clearly see the value.

Who Will Do The Tracing And When
Once it is known what will be traced, decide who will be
doing the tracing.

I choose the people who get the most value from the tracing
whenever possible. This will help ensure that tracing takes
place when it adds substantial value. People will carefully
consider how much value tracing really adds when they are
the ones who will have to do the work themselves.

Of course, while that’s a nice way to determine who will do
the tracing, it isn’t always practical.

So in addition, look that those who know the most about the
traces and whether managing traceability is the best use of
their time. A tester who is building tests against requirements
would be the ideal person to handle the traces between test
and requirements, since that person is close to both artifacts.
In that case the test group may get the most value from that
type of trace.

But what if the testing group gets the most value from showing
traceability between requirements and design artifacts to the
stakeholders to help prove the system? That doesn’t mean
you want the test people handling that particular trace. The
designers would most likely be the best candidates for that
task.

When to trace is equally important; the artifacts being traced
should be in a fairly stable state. This will help reduce changes
in traces once they are enacted. Milestones and baselines are
good places to consider tracing. If requirements go through
a formal process where they are accepted and baselined, it
is wise to wait until those events take place before starting
tracing. The same goes for other artifacts as well. Not all
projects have the luxury of formal milestones so it may be

Problems With Traceability - And Some Suggested Solutions

© 2009 by Taylor & Francis Group, LLC

200 CHAPTER 19: Essential Traceability

required to determine when artifacts are stable enough for
tracing. The metrics applied to help make the determination
will depend on project dynamics. Start thinking about this
early as you plan.

Whether/What Tools To Use In Managing Traceability
How traceability will be managed depends on the tracing
tools available and their capability, as well as the project and
IT environment, such as other tools being used on the project
and the standard toolset mandated by a client.

Requirements management tools can be expensive, so think
carefully about what a tool will save you as far as time and
management complexity. And tools shouldn’t make our real
jobs more difficult.

War Story

I worked on a project where we were given requirements to
test against without a lot of lead time. We did some quick
planning and knew what we had to do and also knew what
needed to be traced to prove test coverage. We didn’t have
a tool or method for managing traceability. There was a
tool available to us that was being used in other parts of
the organization and wouldn’t cost us anything. The only
problem was that the ramp up effort to get the requirements
into the tool, train people on the tool, and ensure it was being
used properly was too much for the value we would get.

Meanwhile, the testing manager was a spreadsheet wizard
who completely understood our traceability requirements
and the skill level of the testing group. He spent half a
day putting together a spreadsheet that met our minimum
needs and was easy to use by the testing team. This got us
going quickly, was good enough, and was the most efficient
solution available to us.

© 2009 by Taylor & Francis Group, LLC

201

continued...

First look at what is being used presently. This may be good
enough. You may have nothing more than spreadsheets
available or nothing at all.

Alternatively, look at what may be readily available to you, for
example tools being used in other parts of the organization.
But be careful with available licenses and learning curves.

Besides understanding what you have available, taking into
account cost and usability, think about the environment a
tool will be used in. For example, artifacts are not always in
a single repository and may be scattered across various tools
and formats. The difficulty of tracing across environments
and repositories may cause you to rethink the value of some
traces.

Another War Story

I worked with a group that was putting together a requirements
management and traceability strategy. The organization had
a requirements management tool that most people in the
organization were familiar with. This tool was flexible and
met most of the organization’s needs.

The group decided on a traceability strategy for the
organization that included tracing requirements to design
items. In anticipation of this strategy the group purchased
three seats of a design tool that allowed easy traceability
between design objects and requirements in the existing
requirements management tool. They figured they had
everything they needed to support their strategy.

However, the design and development team were using other
tools, including a spreadsheet to show some semblance of
tracing from requirements to design that worked well for them,
including documenting the design in a text document.

Problems With Traceability - And Some Suggested Solutions

© 2009 by Taylor & Francis Group, LLC

202 CHAPTER 19: Essential Traceability

They had no interest in using a new tool. The design toolset
supported a different methodology than was currently being
used, and if the requirements management group wanted
to convert the design team over to the new tool many more
seats of the new design tool would be needed along with
lots of training. So a decision was made to hold off on a new
design tool and keep the present form of design traceability
for the short term. Other alternatives would be evaluated in
the future. Although the solution wasn’t close to the vision of
design element traceability the requirements management
group had in mind, it was the best short term alternative to
standing an organization on its head and forcing a tool on
them that they didn’t need.

Conclusion
To Sum Up.

Sure traceability is useful on projects, and even mandatory
on some, but make sure you understand what you need it for
and how it fits with the organization. Coverage needs must be
fully understood and minimized. Traceability can be difficult
to enact and manage on large projects so having good reasons
for the traceability planned and keeping it to a minimum is
essential. Tools can help manage traceability but it is important
to understand how tools fit into the environment and whether
they help or hinder.

© 2009 by Taylor & Francis Group, LLC

203

Chapter 20

It All Comes Together
Like This

We have covered everything I think is most important about
testing. Now I am going to use a case study to try to bring
everything covered into perspective. For this example we will
use the testing of a system residing on a large jet airplane that
must be certified by the FAA. This example should exercise
most aspect of agility and Essential Testing. One reason
for using a FAA certification example is because testing in
regulated environments is becoming more of a reality every
day and the FAA is one of the most demanding environments
for proving safety.

Situation
A company is building cockpit instrument application that
displays instruments on a display panel and allows pilots
to perform functions related to the displayed instruments
such as fuel load balancing, adjusting cabin temperature and
pressure, and control external heaters and deicers.

We have been contracted to do the verification portion of the
project which will include verification planning, identifying,
selecting, and creating tests against high and low level
requirements, provide proof that all requirements are covered
by tests, prove that every line of code was tested and that all
existing code is accessed. Code inspections must take place to

© 2009 by Taylor & Francis Group, LLC

204 CHAPTER 20: It All Comes Together Like This

prove coding standards have been followed and the system
adequately supports safety standards.

Planning documents have been created for the project with the
exception of the verification plan which we will be responsible
for.

Requirements are being derived from a system specification
supplied by the aircraft manufacturer, limited customer
interviews, display standards, and interface documents. The
requirements are about 70% complete and are expected to be
ready for review prior to test development.

The deadline for development is tight. The development team
felt they couldn’t wait for the requirements to be complete
and began designing and developing the system.

A simulator is currently available to feed inputs into the
system under test and review results. At this time quite a bit
of manual interaction is involved. We are allowed to modify
the tool to allow test automation if it will save testing time.

Our first deliverable will be the verification plan.

First steps
Understanding who will accept the system

The primary stakeholder for this project is the FAA. That is
who we must certify the system. The FAA has high standards
so testing and proving the system takes a lot of work. The
good thing is that this stakeholder is clear on what it takes
to prove the system In this case we are certifying the system
to a safety level of A. This is the FAA’s highest level of safety.
To help us understand the FAA’s expectations, the client has
a Designated Engineering Representative (DER) to work
with the project team to ensure we are meeting the FAA’s
expectations.

The secondary stakeholder is the company responsible
for the entire jet being developed. They have system level
requirements that must be met by the system we are testing.

© 2009 by Taylor & Francis Group, LLC

205CHAPTER 20: It All Comes Together Like This

They expect the product to meet the system level requirements
while integrating with the rest of the jet.

Understand what needs to be done

We have a fair understanding of what needs to be done. It
was outlined in the contract. Our group has done this type
of verification for others many times before and we have
our own processes and templates. Project details are not yet
known and we don’t know exactly how we are going to make
this project a success. We need to understand the customer’s
processes and how we fit in.

Fortunately the client is in the same city as we are. The project
lead for this verification process calls up the overall project
manager for the client and offers to spend a week at the
client site to help organize certification documents. Since our
company has participated is all aspects of certification we can
lend our expertise to organize the project. This accomplishes
a number of things. First it builds goodwill between us and
the client. Helping them with things that are clearly outside
the contract shows we are ready to help wherever we can
while adding value to the overall project. It also allows us to
get into their environment so that we can get a feel for their
corporate culture, how they operate, and the other members
of the overall project team. This will allow us to open up
channels of communication within the organization. Finally,
the verification lead will be able to get a clear understanding
of details related to what needs to be done and a feel for how
we can get the job done efficiently.

It may seem like sending a highly skilled individual to help a
client with no extra compensation is a foolish business move,
but the communication value we gain is worth it. Since our
first effort is to build a detailed verification plan we rely on
a few key client contacts to provide us information, and their
perspective of the project. By having a person on site we
have a chance to get a much broader perspective and better
information to plan with.

© 2009 by Taylor & Francis Group, LLC

206 CHAPTER 20: It All Comes Together Like This

Understand the environment

The verification manager spends a week at the client’s
site. While there he does the work he promised. As part of
that work he must spend quite a bit of time with the DER
reviewing planning documents. This person is very important
to projects requiring FAA certification because the individual
acts as the eyes of the FAA and knows what the FAA is looking
for. Unfortunately, each DER caries their own biases that can
weigh heavily on what official artifacts are produced and how
they are presented.

From working with the DER our verification manager finds
the following:

•	 �The DER is not comfortable with Use Cases and
wants to see traditional requirements. If Use Cases are
used in the process, they shouldn’t be a part of any
deliverables.

•	 �Full traceability is expected and will be carefully
evaluated.

•	 �High level requirements will be expected to trace up to
system requirements.

•	 �High level requirements must trace to low level
requirements unless code can be written directly from
the information they provide. In those cases they will
also be considered low level requirements.

•	 �Low level requirements must trace to modules in the
code.

•	 �High level requirements not tracing to low level
requirements must trace to code as well.

•	 All code modules must be trace to by requirements.

•	 All requirements must trace to tests.

© 2009 by Taylor & Francis Group, LLC

207CHAPTER 20: It All Comes Together Like This

The verification manager also spent time walking around
informally talking to individuals on the projects. Here is what
he found out:

Requirements

The requirements team is relatively green consisting of a
lead with two years experience and two people fresh out of
college.

About 70% of an estimated 1500 high level requirements have
been written, but haven’t been formally reviewed. Looking
at a sample of the requirements the verification lead felt the
requirements still needed a lot of work before they were
testable.

Requirements are being written as traditional requirements
and are currently grouped by functionality (instruments being
displayed).

There are no plans on the part of the requirements team to use
Use Cases to help group requirements. Nobody on the team
has experience using them and feels using them would only
slow them down.

The requirements lead is under pressure to quickly deliver
high level requirements and is worried that the team is going
to get hammered when the requirements are presented in
formal reviews.

Development

The development team is made up of about eight individuals
with varying levels of experience. Many have developed
systems similar to this one and are familiar with the underlying
architecture.

The team is under the gun to deliver the product on time and
couldn’t wait for all the requirements to be delivered. So the
team has created most of the design and has begun coding
based on the system level specification, interface documents,

© 2009 by Taylor & Francis Group, LLC

208 CHAPTER 20: It All Comes Together Like This

and what high level requirements have been created.

Functionality based on instrument displays has been
assigned to individuals. These individuals will participate
in requirements reviews related to their assignments.
Architectural components have also been assigned to
individuals and work has begun.

The development team is worried about the quality of the
high level requirements and feels that the requirements team
needs to come to them to get clarification on many of the
requirements since they are already writing the code.

The team is stressed out and overworked.

The development team has a simulator they built for a previous
project that does a decent job of simulating input data from
other systems. They plan to make some minor changes so that
it may be used on this project. Right now this tool works well
for unit testing but may not be ideal for black box testing since
it requires a large amount manual interaction.

What we would like changed

There is a lot we would like to change. First off we are scheduled
to start work toward creating tests in a week, but would like
stable requirements to work with. We are afraid we won’t get
testable requirements anytime soon. We would like to change
the requirements delivery process for rapid delivery of small
amounts of requirements as they become available.

We would like to change the requirements process to
incorporate Use Cases as a means of grouping requirements.

We would like the simulator tool to be modified to allow for
automated testing.

We would like the project team to take a proactive approach
to traceability. This could include a clear picture of who will
do the tracing and when or possibly assigning someone full
time to manage it. Experience tells us that management of so

© 2009 by Taylor & Francis Group, LLC

209CHAPTER 20: It All Comes Together Like This

many traces with a large amount of requirements could get
out of control if we don’t aggressively address it.

We would like the developers to wait until requirements are
delivered before they start design and development.

What we can change

We can’t change anything to exactly the way we want but
there are things we can do to make the testing run smoother.

We would like Use Cases to be part of the project, but know
the DER won’t go for it. So we will have to create them for our
own use as interim artifacts. These will be used to produce
artifacts the DER wants to see. We will keep the “Test” Use
Cases under the radar.

The requirements team knows they are in trouble but can’t see
a way out. They are all for providing quick deliveries of small
amounts of requirements but don’t see the value since that
won’t improve the quality. They still need to stick to plans of
reviewing requirements by functionality group.

We could send our senior requirements person, Sally, over to
work with them for two weeks to help get requirements in
order. The requirements team is open to this idea. We will have
to get involved with requirements sooner or later anyway.
Our plan is to let Sally review high level requirements a little
at a time from each functional area. Reviewing small amounts
will allow for quick feedback to the requirements team and
hopefully create a rhythm. While there, we expect Sally to get
feedback from the developers. This will help us understand
how far off the requirements and the code being developed
are, allow for valuable input into the requirements, and foster
some teamwork between groups. While doing this Sally can
also begin creating Use Cases which is a task we need to do
for ourselves. We don’t need to share the Use Cases unless
it would help move things along. As requirements become
clean, Sally can send them to our team that will build the tests

© 2009 by Taylor & Francis Group, LLC

210 CHAPTER 20: It All Comes Together Like This

for their informal review.

Although we would like the developers to change their
process to wait for requirements we know there is no way
that is going to happen. What we can do is involve them as
much as possible in our requirement activities so that they
can be kept up to date on the requirements we will be testing
against. This includes helping the requirements team get clean
requirements to the developers as they become available. Our
test developers will need to communicate with the developers
on a regular basis. While much of the communication will be
focused on testing, requirements will be addressed as well.

The development team doesn’t have time to make any major
changes to the simulation tool related to automation, but are
willing to let us make changes. We will take a look at the tool to
determine the effort and cost/benefit of making the changes.

We talked to the project manager for the client about a clear
approach to traceability. At this point the client is reluctant to
go into great detail on tracing roles. We do know the client
will be using a tool widely used in the industry. While we
aren’t crazy over the tool, we have a lot of experience with
it and know how it can best be used. We send the client
some processes and procedures we have used in the past for
using the tool for the type of traceability planned. We are still
concerned about traceability.

At this point it looks like we are going to be spending a lot
of time on work unrelated to our specific duties of verifying
a system. We don’t see a problem with that. We calculate the
work we are taking on early in the project will reduce project
risks and improve the quality of artifacts that we require to
do our job. This should help improve our efficiency over the
course of the project.

The decisions made so far relating to identifying potential
problems and taking action within our power to proactively
address them are based on experience. This is important to

© 2009 by Taylor & Francis Group, LLC

211CHAPTER 20: It All Comes Together Like This

note because taking these types of actions require confidence
that is usually gained by experience. We also know that as we
make these decisions, we are also making mistakes. That is ok
by us, because once we realize our mistakes we will fix them.
One of the concepts of Essential Testing is that you do what
it takes to do your job as efficiently as possible. Accepting
the current situation isn’t an option if you know it is sub
optimal.

Test Planning

During the first week, we send Sally, the requirements expert,
to the client’s site, while we prepare the verification plan. A
template for the plan is available and it outlines major testing
milestones, deliverables, and testing activities. This is adjusted
to the present project.

Identifying the Artifacts we will use

As one of the first steps of test planning we identify inputs
we plan to use in the testing process. Based on development
documentation we know what formal artifacts the project
will create that will be available for us to use. The major
artifacts that we will use include High Level requirements,
low level requirements, the source code, software builds, and
artifact traces. We will also be using coding standards, deign
standards, and the system level specification.

High level requirements will be used to write tests against.
These requirements will be presented formally in a System
Requirements Document, but our main access to the
requirements will be in the requirements management tool.
The system level specification created by the jet builder will
be used to help understand the context of the high level
requirements and to help identify safety related tests. These
will be part of a formal Software Design Document (SDD) and
will also be accessible via the requirements management tool.
The SDD will be used to understand the context of the low

© 2009 by Taylor & Francis Group, LLC

212 CHAPTER 20: It All Comes Together Like This

level requirements we will be writing tests against.

Code inspections will be performed against the code to verify
safety. The source code will also be used for understanding
as we build tests. Software builds will be used to run tests
against in order to verify the system. We will also instrument
the code with a coverage tool to verify complete coverage.

Identifying the artifacts we will create

Also early in the test planning process we identify the outputs
we will create. Besides the artifacts we will present as proof
the product was tested properly and works, we will also
identify interim artifacts used to create the final product.
These will help us map out process details later. The goal is to
keep the artifact list as small as possible. We want to identify
only things that will directly contribute to the proof of the
system. Unfortunately, the list tends to be rather large for
safety critical projects like this.

The primary artifacts that will be presented to the customer and
the FAA include black box tests against high level requirements
and many low level requirements, White box tests against the
remaining low level requirements, proof of test coverage of
requirements via traceability, test results, defect reports, proof
code follows safety standards, and proof of code coverage by
tests. Tests will consist of written Test Procedures, test input
files, and any associate automated tests.

Interim artifacts will include Use Case Specifications to help
us group requirements, Operational Variable tables, variant
tables for identifying tests. We also anticipate creating a
spreadsheet that will include our assumptions related to the
requirements.

Lay out the test process
Now that we understand our environment, know what inputs
we will be using and what we must produce to prove the
system,, we can lay out a process that will get us there. As

© 2009 by Taylor & Francis Group, LLC

213CHAPTER 20: It All Comes Together Like This

we do this we need to keep in mind that we are just creating
a guide to get us started. We can’t anticipate everything and
we most certainly will make mistakes. So if we are unsure of
some details, we will take our best guess and worry about it
later.

Start with what we know

We start with what we know the stakeholders want. Our
organization has done quite a bit verification of systems
certified by the FAA, so it is understood what is important
to the FAA. We have already incorporated details related to
artifacts to be produced in our verification plan template.

We also want to use things that have worked for us in the past. In
our case, we are very comfortable with Use Case driven testing.
We will adapt our existing Use Case based testing processes
to the current situation. Since Use Cases are not considered
requirements for the project, we will have to include activities
to create Use Cases to group requirements, and map tests to
traditional tests. We have tools and methodologies in place
for coverage analysis, code inspection, and test execution and
reporting. We will have to tweak these somewhat to match
the situation.

Consider patterns

Under other circumstances we would use test patterns
that help us reduce the number of tests to run. In this case
however, those patterns won’t do us any good since the FAA
expects complete requirements/code test coverage for level A
certification.

We have considered the Extended Use Case Test Design
pattern for identifying tests and plan to modify it to fit our
needs. This process will be detailed in the Test Plan. This is
also called a “Verification” plan by the FAA.

Start with the input documents and map out the process

© 2009 by Taylor & Francis Group, LLC

214 CHAPTER 20: It All Comes Together Like This

At this point we have a pretty clear idea of what processes and
methodology we are going to use to get the job done. Now we
have to lay out the details. We start with the inputs and work
our way through the process doing only what is necessary to
produce the outputs we need to prove the system.

We start with the requirement as inputs. First we will look at
high level requirements. These are the requirements we will
perform black box testing against. Here are the steps we will
use to identify tests from the requirements.

Create Use Cases

We know we are going to base our tests on Use Cases, so we
will need to create Use Cases to group requirements. We can
start with the major features the high level requirements are
categorized by (instrument displays) and identify initial Use
Cases. We will also use the system specification and insight
from the requirements analysts and developers to get an
understanding of the Actors and their interaction with the
system. Use Case details will be created and the Use Cases
will be peer reviewed by other test personnel.

Group and Verify Requirements

Requirements will be grouped by Use Cases. Since Use Cases
are not official documents for this project we won’t use the
requirements management tool to trace. We will manage the
relationship with a spreadsheet. The test designers will each
be assigned Use Cases to create tests. Each test designer will
be responsible for mapping high level requirements to their
Test Cases. As requirements are grouped, the test designers
will also inspect requirements for testability. Although we
anticipate a great deal of informal interaction between test and
the requirements analysts to address changes to requirements,
the plan will only address the formal process.

Identify tests

We plan to use a process based on the Extended Use Case Test

© 2009 by Taylor & Francis Group, LLC

215CHAPTER 20: It All Comes Together Like This

design pattern to identify and select tests. The plan is written to
describe the process in detail. We plan to identify Operational
Variables from the Use Cases and associate conditions that
could cause significant behavior from the system. We will
then build variant tables that combine combinations of
specific conditions of Operational Variables. These will be our
potential tests. We will then review high level requirements
related to the Use Cases and select tests from the variant table
to cover the requirements. We will then add tests to fill in
gaps.

Identify additional tests

Not all requirements will map to Use Cases. There will also
be non-functional requirements to deal with. For these we
will have to identify Test Cases. We will reference detailed
activities to perform for this task in the verification plan.

Create black box Tests

For this project there are no existing tests that can be used.
We will have to create all tests from scratch. We will have to
make some assumptions about the simulation tool in order
to identify the steps for creating black box tests. We want to
automate the tests as much as possible. We are going to try
to make adjustments to the tool to interact with automated
scripts, but we don’t know that we will be successful. So for
now we will define a process for creating manual tests. If it
turns out that we can easily automate later on, we will change
the process. We create Test Procedure and Test Case templates
to be used to create manual tests and reference them in the
verification plan.

Identify white box tests

Now we focus on the low level requirements. As we implement
the Test Plan there are still unknowns related to the low level
requirements. We are not completely clear what they look like
or the quality we can expect. We will describe activities for
the formal acceptance of the low level requirements, but have

© 2009 by Taylor & Francis Group, LLC

216 CHAPTER 20: It All Comes Together Like This

to add activities for further review to ensure testability. We
expect the low level requirements will be officially accepted
and baselined before they are really ready in order to meet
deadlines. We won’t put that in the Test Plan but we will add
some steps that will help us deal with the situation.

Design tests

We would like to take advantage of processes our team
is familiar with and will use processes we already have.
Test design will consist of reviewing the Use Cases and the
selected tests to group tests by Use Case flow. Each of these
groupings will make up a Test Case. Additional Test Cases
will be identified to cover any remaining selected tests. Test
Cases will be filled out for each identified Test Case using a
Test Case template. As part of the Test Case, Activity Diagrams
will be used to show how the test will be flow.

Create tests

Test Procedures will be created for each Test Case using a
template. Since we have the initial test environment available
to us, it will be possible to dry run tests to make sure they
make sense. We will schedule peer reviews in the form of
inspecting and running through the flow of the tests. We feel
the most efficient way to review tests is to have team members
swap tests with other team members for inspections. This will
allow a single reviewer for each Test Case rather than having
groups of individuals reviewing the same tests. If the team
was less experienced, group reviews would make sense at
first in order to get a level of consistency.

Trace tests

We don’t yet have all the details related to traceability so we
will make some assumption. We don’t want to do anymore
than we have to - so we concern ourselves only with tracing test
coverage to requirements - for now. We put in the plan that once
tests have been created team members will be responsible for

© 2009 by Taylor & Francis Group, LLC

217CHAPTER 20: It All Comes Together Like This

importing Test Procedures into the requirements management
tool and trace them to requirements.

Executing tests

The project is taking an approach where the development team
will deliver builds to us and we will test increasing amounts
of functionality on each build. Once the final build is released
we will test remaining functionality, make sure bugs are fixed,
make final adjustments to tests and send all tests to the client
so that they can perform final test. The verification plan will
have defect severity information and acceptance criteria.

Coverage analysis

We know that the FAA expects Modified Condition/Decision
Coverage for Level A software. We know which tool we will
be using for coverage analysis, and how we plan to use it and
report results. We describe all these details in the verification
plan.

Code Verification

Code verification will be required for some robustness testing
and ensuring that the code meets safety standards. We will
need source code as well as coding standards and safety
standards for this task.

Based on all the above information we are able to create a
verification plan with all pertinent details relating tools,
test types, and standards. The review is scheduled for the
following week.

Requirements help and Use Cases creation

While the test group is putting together the Test Plan, Sally,
our requirements expert is working on site with the client and
is having mixed results.

Sally begins by reviewing small amounts of requirements from
each functional category. This allows for quick feedback to

© 2009 by Taylor & Francis Group, LLC

218 CHAPTER 20: It All Comes Together Like This

the requirements analysts so that requirements they produce
in the future meet our expectations. This works and the new
requirements begin to improve.

Toward the end of the first week Sally had identified initial Use
Cases for the system and had brief descriptions for each. She
found that the Use Cases painted a better picture of the system
than the functional categories and didn’t always line up with
the categories. She approached the requirements analysts to
see if it was possible to regroup requirements. While they
liked the way the Use Cases grouped the requirements, the
answer was no. This would have made it easier for us to map
requirements when identifying tests, but won’t pose any real
problems or significantly slow us down.

Early in the second week Sally participates in the first
preliminary review of a group of requirements related to
the cabin pressure display. The developer responsible for
delivering cabin pressure functionality also participated. Many
problems were found and the requirements analyst resolved
to fix most of them before the official review. While Sally was
more concerned with understandability, many of the problems
the developer cited were related to stated functionality not
matching what he was developing. The requirements analyst
didn’t challenge the developer on any of the comments.

In the middle of the second week the requirements analysts
announced that their original process for requirements
approval was changing slightly. Instead of a traditional review
where there is a scribe and moderator, and everyone meets in
person to discuss problems found with the requirements, the
reviewers would email comments to the requirements analyst
and that person would respond by either challenging the
comments or make the changes. The time between publishing
the requirements and when comments were due was also
reduced from 3 days to 1. This was proposed to reduce the
time to approve a group of requirements. We are skeptical
and protest to the project manager. We get shot down. By

© 2009 by Taylor & Francis Group, LLC

219CHAPTER 20: It All Comes Together Like This

the end of the week the first group of requirements has been
“approved” and baselined.

Sally’s two weeks are up and she returns from the client
site. She announces that she can’t take it anymore. She will
leave the company after this project to pursue her dream of
becoming a figure skating columnist.

It is now clear to us that the requirements will not be of the
quality we wanted. We talk to the requirements lead and the
project manager and work an agreement where our testers
will review the approved requirements as they develop tests,
and make suggestions for clarity. These suggestions will be
discussed with the requirements analysts, changes can be
made, and a second baseline of requirements will take place
later in the project. The requirements analysts are agreeable
to this because now they can get deliverables out initially so
that testers and developers can use them, and they get some
help in writing clear requirements. The project manager is
agreeable because he knows the requirements being baselined
now are not going to be good enough to drive the rest of the
project and to present to the jet builder for final review. The
requirements will be formally presented to the jet builder
once the second baseline takes place. That means there is only
about a month before the second baseline. This isn’t much
time, but we should be able to make significant progress with
both requirements and tests during that time… And the entire
team has started to demonstrate an ability to be Agile.

Identify tests by Use Case
Use Cases are created with quite a bit of interaction with
the requirements analysts and developers. We find that
we are asking questions related to the context in which the
functionality is performed, but that hasn’t been considered
yet. This causes the requirements analysts to rethink some of
the requirements and spurs more questions for the jet maker to
answer. Most of our questions are answered. For the questions
not resolved, we make assumptions and note them in the Use

© 2009 by Taylor & Francis Group, LLC

220 CHAPTER 20: It All Comes Together Like This

Case Specification. The Use Cases are then peer reviewed. We
now have Use Cases good enough to drive testing.

We get the first groups of initially baselined high level
requirements to identify and build tests against. It looks
like we have a significant amount of work required to
clarify the requirement so we change our process slightly to
accommodate less than ideal high level requirements. We were
planning on using a spreadsheet to map the requirements to
Use Cases. We add some steps to first put the requirements
into the spreadsheet and add another column for suggested
requirements. The test designers then review each requirement.
If the requirement needs to be clarified, the test designer
modifies or rewrites the requirement and places the results
into the suggestion column. Use Cases are identified for each
requirement. In some cases requirements map to multiple
Use Cases/steps. Test designers send the spreadsheet with
the suggested changes to the requirements analysts on a daily
basis. Discussions on the changes take place as needed. With
the first set of requirements we found that the requirements
analysts were more than happy to take our suggestions at face
value and make the changes.

As requirements are mapped we begin the process to identify
tests which includes identifying Operational Variables in a
table and then creating variant tables.

We don’t wait for the high level requirements to get started
with the test identification process. Test designers that have
not yet received delivered requirements for the functionality
related to their assigned Use Cases start creating Operational
Variables. We don’t need the requirements to get started since
we have confidence in the Use Cases. We use the Use Cases,
unofficial requirements passed on to us by the requirements
team, and discussions with developers and requirements
analysts to identify potentially important conditions for each
Operational Variable. We can create the initial format of the
variant tables for the Use Case, but hold off on filling in much

© 2009 by Taylor & Francis Group, LLC

221CHAPTER 20: It All Comes Together Like This

of the details until the official requirements are delivered.
Each test designer has enough Use Cases to keep busy creating
Operational Variable tables until the official requirements are
delivered.

So we get heavily involved in test identification process and
most of the requirements are initially baselined and delivered.
We continue to make requirement change suggestions as
we go. If we had already started identifying Operational
Variables we review and update them based on the delivered
requirements. Variant tables are built for each Use Case and
each variant is numbered. We review the requirements against
the discovered variants and select the variants we need to cover
requirements. We add another column to our spreadsheet to
show variants corresponding to the requirements as they are
selected. This will allow us to map requirements to tests later
on.

Low Level Requirements delivered

The development team asks us to review the Software Design
Document (SDD) to confirm their interpretation of Low Level
requirements. This is very informal, but it helps get us on
the same page. It turns out the low level requirements are
in pretty good shape, but it is unclear how easily they will
trace to the high level requirements. The development team
will begin moving identified Low Level requirements into
the requirements management tool and formally delivering
them to us. We offer to help them trace the High Level
Requirements to Low Level, although the development team
will be responsible for maintaining traceability in the tool.
We have to understand the links anyway in order to create
additional tests for test coverage.

As low level requirements are delivered we review them
against the high level requirements in our spreadsheet and
any corresponding tests we are creating. We add yet another
column to our spreadsheet for low level requirements identifier.
In that column we identify the low level requirements that

© 2009 by Taylor & Francis Group, LLC

222 CHAPTER 20: It All Comes Together Like This

correspond to high level requirements. We can present this
information to the developers to aid in their traceability
effort.

Any low levels that do not trace to high level requirements
are examined and tests are identified to address them. These
are identified in a list for now with corresponding Low Level
requirements.

As we design the tests for High Level requirements we will
take a closer look at any related low level requirements to
see if our tests can cover those as well. We will identify any
additional tests at that point. Chances are those will be white
box tests.

We keep adding onto this informal spreadsheet as needed. This
is the easiest way for us to keep track of things by requirements
as we identify tests. As we use it, we can hide columns we don’t
need at the time. It is also useful for presenting information
to the requirements analysts and developers. This is just an
interim artifact and we are not worried about keeping all
traces up to date in the long run. That will happen in the
requirements management tool.

Requirements Baselined for 2nd time

As we move deeper into test identification the High Level
requirements are baselined for the second time. The deadline
came to meet with the jet builder and the requirements were
reviewed and accepted. The quality of the requirements
is much better now, but we still have some outstanding
questions that haven’t been addressed and a small number
of requirements we haven’t reviewed yet. We are told that the
requirements team will not be clarifying our requirements
any longer. We have been maintaining our spreadsheet by
periodically importing the high level requirements from
the requirements management tool. We instruct the test
designers to review the spreadsheet and clean up the column
for suggested requirements changes to only include any
unaddressed suggestions.

© 2009 by Taylor & Francis Group, LLC

223CHAPTER 20: It All Comes Together Like This

Some of the test designers are not sure what to do with
unclear requirements not addressed. They have gotten used
to getting the changes they requested. The test lead instructs
the team to write any discrepancies in the suggestion field of
the spreadsheet and move on. We will continue to present the
spreadsheet to the requirements analysts, the development
team and the project manager for feedback and to express our
interpretation of the requirements. Only for now on, we only
expect confirmation or clarification of the requirements with
no official action. We want to make sure everyone knows how
we are interpreting requirements to build our tests. We will
update the suggestion field for the common understanding of
the unclear requirement and use that to build our tests. When
we present our tests we will also present our interpretation of
the requirements.

Design tests

Tests are selected from the variant tables and grouped into
what we call Test Cases that combine tests that can be run
together. Each test designer is responsible for identifying the
Test Cases for their assigned Use Cases.

The process to design a Test Case consists of reviewing the
tests that will be included from the variant tables along
with corresponding requirements and filling out a Test Case
template. The high and low level requirements the Test Case
addresses are identified in the document. This helps us in
the design process. As the Test Case is built, the test designer
determines if the requirements are sufficiently tests. Any
additional tests are identified. The white box tests identified
for low level requirements will be address later.

The test designers create Activity Diagrams to outline the
test process and responsibilities. At this point the progress
in modifying the simulation tool to enhance automation is
moving slowly. So the test designers will design the tests
around the current version of the tool which means more
manual interaction.

© 2009 by Taylor & Francis Group, LLC

224 CHAPTER 20: It All Comes Together Like This

The design moves forward rapidly. The tests cases are peer
reviewed as they are created. Once Test Procedures are peer
reviewed they are ready to be used in test creation.

Develop tests

Using the Test Procedure template the test designers create
the tests based on the Test Cases. They use a template for a
Test Procedure includes test set up instructions, step-by-step
procedures for running the tests with expected results and
pass fail criteria, and test analysis instructions. The Activity
Diagrams in the Test Cases are used to help create the tests.
The Use Cases are also used to help understand scenarios that
will sequential run the tests.

As the procedures are being written we begin to realize how
labor intensive it will be to run the tests. As the right resources
free up, they are assigned to figure out a way to automate
tests. In the mean time the effort to create the tests continues
as planned.

Execute Tests
The order of creation of the black box tests were planned to
coincide with the delivery of corresponding functionality.
The first delivery of functionality takes place and tests are
run. We work closely with the developers to work through
what we perceive as defects that impede our ability to test.
The developers are quick to respond to get the product to
a testable state and we are in constant communication with
the developers. We notice that many of the defects are due
to the developers having a different understanding of the
requirements than we did. It turns out that much of the
misunderstanding is due to the developers beginning coding
before the requirements were ready and not keeping up with
requirement changes. The developers eventually resolve the
major defects. Once the first build is relatively clean we send
our tests to the client so that they can run them to get a feel
for what the testing will entail. They run the first batch of tests
and their first comment is that the tests take too long to run.

© 2009 by Taylor & Francis Group, LLC

225CHAPTER 20: It All Comes Together Like This

They will only have a couple of days to run the final tests with
three testers. They figure the timeframe will be too tight.

At about the same time our team assigned to modifying the
simulation tool is making progress and is testing an updated
version that allows the acceptance of simple scripts that
feed information into the simulator. By this time most of the
tests have been created. We make the decision to refactor the
existing tests for automation and create the remaining ones
for automation. We anticipated that this may happen and feel
that the extra work won’t be so bad.

Coverage analysis
As we run the tests we find the client isn’t able to provide us with
the coverage tool yet. They are having trouble instrumenting
the code with the tool they purchased. We are not scheduled
to perform coverage analysis until the final build but don’t
want to take any chances. We begin researching alternatives
to the chosen tool.

Code Inspections
As we get the first build we begin preliminary code inspections.
The bulk of the work is not scheduled until the final build. We
are doing the initial code inspections to train personnel on
what to look for and to get a feel of the condition of the code.
We find that most of the code is in pretty good shape. We
inform the development team of the problems we are finding
so that they can take action as they continue development.

Create white box tests
As the team completes the black box tests they begin on the
white box tests. In many cases this consists of writing code
to test specific portions of the design or specific low level
requirements.

Refactoring Tests
We finally have the modified version of the simulation tool
stable and verified. The team begins changing existing tests.

© 2009 by Taylor & Francis Group, LLC

226 CHAPTER 20: It All Comes Together Like This

We find that since we did a good job of writing the original
Test Procedures with all the input details, the automation
process is fairly strait forward. We have to build scripts and
test files for the tests, update the Test Procedures to reflect the
automation, and test the new tests by running the old and the
new tests to ensure no variations in results. After automating
a couple of tests we find that the test execution time is cut
significantly while the time to evaluate results is about the
same. This makes it well worth the effort.

We continue automating the existing tests as well as the black
box tests yet to be completed.

Final build delivered
As builds were being delivered we made adjustments to
accommodate expected and unexpected problems that
materialized along the way. As delivery of functionality
progressed, the quality of the delivered product improved
and things seemed to go smoother. The one thing we did
notice was that some functionality slated for earlier deliveries
was postponed until the final delivery. This concerned us, but
there wasn’t much we could do. We were able to get the final
build date adjusted so that we would have four weeks before
code and tests are sent to the client for final test instead of three
weeks. This gave us an extra week to test, debug, perform
code inspections, and perform coverage analysis.

There was a final push by the development team to get the
final functionality delivered on time. The final functionality
was delivered on time but at a cost. All process went out the
window for the final push. It takes a day to get the product
to run on our test environment. It takes another week of
working around the clock with the development team to get
the regression tests to pass. From there we continue testing
new functionality, reporting defects, and retesting bug
fixes. The week prior to final testing, the product begins to
stabilize with major bugs resolved. We keep a team together
to conduct remaining tests and move other team members to

© 2009 by Taylor & Francis Group, LLC

227CHAPTER 20: It All Comes Together Like This

help complete coverage analysis and code inspections.

Final coverage analysis
As final functionality is delivered, the client still hasn’t got
the coverage analysis tool running with delivered code yet.
This is a major problem because that is the tool we must use.
Fortunately, we started searching for alternative weeks ago
and came up with a decent approach. The tool we found
was easy to instrument to the code and had decent reporting
capabilities. The only problem was that it wasn’t qualified
with the FAA. That is, the tool hadn’t been proven to work
properly to the FAA. The tool the client would be supplying
had been qualified. The process to qualify the tool would take
more time than we have.

We have to get started analyzing coverage. We decided to use
the unqualified tool to get started and would use the client
supplied tool for final analysis. We got a free 30 day trial
version of the coverage tool we would use to do our initial
analysis and assigned two individuals to get it running and
perform analysis. They were able to begin work on this once
the final product was executable.

Initial analysis found that 90% of the code was satisfactorily
covered by black box tests. Running the additional white box
tests brought that number to 95%. The uncovered code was
inspected and the developers confirmed that some of the code
was not being used and eliminated it. The test team created
white box tests to cover the rest of the uncovered code.

In the last week of delivery the client finally gets the tool
working and is ready to run final coverage analysis. We give
them all the tests to run, they execute them and the final
analysis goes very smoothly since we had already addressed
most problems with the use of the unqualified tool.

Traceability
We continued to update our traces in the requirements
management tool as changes and additions were made to

© 2009 by Taylor & Francis Group, LLC

228 CHAPTER 20: It All Comes Together Like This

black box and white box tests. We haven’t paid attention to
the traceability of the rest of the artifacts. As the final week
of testing approaches, project management acknowledges
that traceability is a mess. The project manager assigns two
requirements analysts too work full time with a developer to
redo all traces. The developer is assigned to the effort part
time. Since we have quite a bit of experience with traceability,
we supply a part time resource to manage an effort. All traces
have to be revisited, but the effort pays off, traceability is
established, and reports are generated on time.

Follow Up
All deliverables were created and presented on time. There
were some flaws discovered by the Jet builder, the client, and
the DER. We spend another month resolving issues with the
rest of the project team. At this point we have two individuals
to manage this effort. The rest of the team has gone on to other
things.

Synopsis
Overall the project was a success because it more or less
completed on time. Of course, since this is made up, we can
create a successful ending. In creating this scenario, I added
as much dysfunction and bad things happening as possible
with potential solutions. I also tried to base the solutions on
environmental conditions related to the project. Real solutions
must take into consideration the project environment,
experience of the test team and others on the project, and
our ability to initiate change. In real life we don’t know if the
solutions proposed would pan out. The point is to make the
choice you think is best to get the job done, and adjust if things
don’t turn out like you planned.

It can be argued that the test team did a lot of extra work not
associated with testing in this scenario. That is certainly true.
Many of the activities, such as loaning requirements expertise,
helped other groups. In the case of the loan of the requirements
analyst there were mixed results. The extra work was done in

© 2009 by Taylor & Francis Group, LLC

229CHAPTER 20: It All Comes Together Like This

an effort to make the project a success and to take proactive
steps to avoid problems that would directly affect test when
we could least afford it.

This example tries to show what Essential Testing is all about.
That is to do what it takes to test the right thing to the right
level of detail at the right time as efficiently as possible.

© 2009 by Taylor & Francis Group, LLC

231

Chapter 21

Conclusion

Not long ago I found myself working on a project as a test
mentor. (No matter how much I insist I am not a tester I seem
to get those engagements!)

I was called into a meeting to discuss changing the direction
of testing on a project.

The developers were beginning to deliver code but were late.
Since a large part of testing would be delayed and it didn’t
look like the project allotted enough time for the testing under
the current approach, the existing Test Plan would put us
months past the implementation date, causing the project to
incur penalties.

The project manager wanted to know how we could make
changes in the testing approach to cut the time to get to
implementation without sacrificing the quality. I sketched out
a plan to streamline the way tests would be developed and
suggested using a pattern that would allow us to drop low
priority tests.

The senior tester was adamant that the Test Plan must stay
as is and the end date would just have to be moved back. He
continued to lament that the end date was irrational in the
first place and that it should come as no surprise that the date
would be missed. The same approach to testing was used on
the last project, which was late, and the amount of time to
develop tests is known.

© 2009 by Taylor & Francis Group, LLC

232 CHAPTER 21: Conclusion

I wondered to myself why someone would think an approach
that didn’t work on the last project with similar conditions
would work this time.

No decision was made in the meeting. After the meeting I asked
the senior tester to come by my cube. I told him I admired the
fact that he was willing to stand up for his principles related to
software quality and handed him the pair of pliers I received
from my friend years ago on my first project as a tester. I told
him the story behind them and that I figured he could use
them more than I could.

I was going to start the concluding chapter with a story about
a group of tester that were proactive in everything they did,
saved projects, and were highly regarded by everyone.

Then I figure, why lie?

Much of the premise of this book relates to being proactive
and taking our destiny in our own hands as much as possible.
That means that, when we test, we will step on toes. Although
we can try to minimize the number of toes we step on, there
will always be some animosity generated and our efforts will
never be fully appreciated.

Accepting that takes courage.

© 2009 by Taylor & Francis Group, LLC

233

Appendix A

Additional Information for Top Notch Conveyor
System
Technical explanation of a typical conveyor system

The following scenario illustrates the path packages that
travel a typical Top Notch conveyor system take. Figure A-1
shows the conveyor system.

Pick Station

A typical package is filled with items and sealed at a picking
station. At that point, a bar code is produced that indicates the
package’s destination and a unique identifier. At creation of the
barcode, the information is sent to a dispatching application
that is responsible for determining the final lane/truck the
package will be sent to. The dispatching program is a legacy
application that the current conveyor systems interact with.
This application will not be rewritten anytime soon although
there is a project underway to enhance the application to
support web services.

Accumulation

Once a package has been sealed and a barcode has been placed
on it, it is placed on a conveyor belt and transported to a
location where packages are accumulated. The accumulation
process consists of grouping packages into lots and holding
the lots until they are to be released into the conveyor
system. A typical lot contains ten to twelve packages that are
bunched back-to-back in a release area. The lot information
is sent to the dispatch application. The final portion of the
accumulation process consists of releasing package lots to the
main conveyor system. The accumulation process is controlled
by an existing system made up of conveyor hardware and a

© 2009 by Taylor & Francis Group, LLC

234

software application. The current accumulation subsystem
runs independently of the main conveyor system. There are no
immediate plans to change this subsystem functionality. The
only changes that would be considered at this time would be
communication related to support the new conveyor system.

Induction Merging and Spacing

Once a package is released into the system as part of a lot, it
will find its way to one of several induction lanes. (The current
system can be configured with one or two lanes only. The
new system may have up to five.) The induction process is
fairly complex. First a package is recognized by the conveyor
system as it passes a package detector. (Current package
detectors are photo eyes.) It is also measured. At this point
the package is first recognized by the system. The induction
line consists of multiple belts. The speed of each belt can be
controlled to create space between packages. Each induction
lane is responsible for creating spaces between packages. All
induction lanes merge into a single lane. A package should
arrive at the end of its induction lane in a position to be able
to merge into the single lane without running into packages
merging from other lanes. This is complex because not only
does a package have to be spaced properly with the package in
front of it, but must be spaced properly with packages on other
lanes. There is an existing spacing algorithm that will have to
be incorporated into the new system. While the company has
legacy four belt spacing systems (induction lanes), it has just
purchased a company that has build the hardware for an eight
belt system with different hard sensors. It is felt that if the
software is developed correctly, the software controlling the
spacing should work with both systems. There will be minor
modifications to the lower level sensor software.

Transportation

Once on the single conveyor lane the package should take an
uneventful ride toward its final destination. The main concern
in this part of the ride is to ensure that nothing bad happens

© 2009 by Taylor & Francis Group, LLC

235

to the package such as jams or changes in its spacing with
packages in front and back of it. During this portion of the trip,
the package is scanned and the conveyor system accesses the
dispatch system to determine the diversion lane destination.
The dispatch application determines the lane based on trucks
available, and how many packages in the divert lanes. Once
a diversion lane has been determined the system will predict
when the package will arrive ate the appropriate diversion
lane.

Diversion

As a package passes the lane it is to be diverted onto, it is
mechanically pushed onto the diversion lane and transported
to the final destination where it is loaded onto a truck. After
successful diversion, the dispatch system is informed of the
success. The current system handles the diversion of packages.
There is now new diversion hardware created as a subsystem
that is supposed to be better than the existing hardware.
The software to support this hardware will be created in a
separate project and will not be part of the new conveyor
system project. It is understood that the supporting software
must communicate with the new conveyor system software.

Figure A-1 Example of typical conveyor system

© 2009 by Taylor & Francis Group, LLC

237

Appendix B Examples

Variant Table example for Open a Lane Basic Flow
The following table represents the entire Variant Table for the
example used in chapter 14.

Var. Sys State
Open
Lane

Request
Dest. ID

Lane
Selection

Package
Limit

Open
Gate

Gate
Response

Expected
Results

Comments

1
Operational

– lanes
available

Valid
Request

N/A N/A N/A N/A N/A
The system

prompts for a
destination

2
Operational

– lanes
available

Invalid
Request

N/A N/A N/A N/A N/A Not specified

No
requirement
yet. Consider

an off
nominal test

for now

3
Operational

– lanes
available

Valid
Request

Valid N/A N/A N/A N/A

The system
displays lanes

currently
assigned to

the requested
destination

and the lanes
currently
available

4
Operational

– lanes
available

Valid
Request

Invalid
Format

N/A N/A N/A N/A
Error Message

returned for
invalid format

No
requirement

5
Operational

– lanes
available

Valid
Request

Non
existent

destination
N/A N/A N/A N/A

System
responds that
couldn’t find
destination

No
requirement

6
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid N/A N/A

The system
assigns the

lane and
prompts to
open the

gate on the
conveyor

associated with
the lane.

© 2009 by Taylor & Francis Group, LLC

238

7
Operational

– lanes
available

Valid
Request

Valid
Held Lane
selected

Valid N/A N/A

The system
doesn’t allow
selection of a

held lane

8
Operational

– lanes
available

Valid
Request

Valid
Assigned

lane
selected

Valid N/A N/A

The system
doesn’t allow

selection of an
assigned lane

9
Operational

– lanes
available

Valid
Request

Valid
Invalid
Lane

Valid N/A N/A
The system

prompts for a
valid lane

10
Operational

– lanes
available

Valid
Request

Valid
No Lane
Selected

Valid N/A N/A
The system
prompts for

entry of a lane

11
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Value
of 0

N/A N/A

The system
prompts for

a value other
than 0.

No
requirement

yet.

12
Operational

– lanes
available

Valid
Request

Valid
Held Lane
selected

Value
of 0

N/A N/A

The system
doesn’t allow
selection of a

held lane

Two negative
values

13
Operational

– lanes
available

Valid
Request

Valid
Assigned

lane
selected

Value
of 0

N/A N/A

The system
doesn’t allow

selection of an
assigned lane

Two negative
values

14
Operational

– lanes
available

Valid
Request

Valid
Invalid
Lane

Value
of 0

N/A N/A
The system

prompts for a
valid lane

Two negative
values

15
Operational

– lanes
available

Valid
Request

Valid
No Lane
Selected

Value
of 0

N/A N/A
The system
prompts for

entry of a lane

Two negative
values

16
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Invalid
format

N/A N/A
The system

prompts for a
valid format

Need a
requirement

17
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

No value
entered

N/A N/A
The system

prompts for a
value

Need a
requirement

18
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid Valid N/A

The system
responds by
sending a

request to the
divert lane

control system
to open the

gate.

19
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid
Invalid
format

N/A
System

prompts for
valid format

Var. Sys State
Open
Lane

Request
Dest. ID

Lane
Selection

Package
Limit

Open
Gate

Gate
Response

Expected
Results

Comments

© 2009 by Taylor & Francis Group, LLC

239

20
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid
Wrong
gate N/A

System
indicated the

gate cannot be
opened and

prompts for a
different gate.

21
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid
No

Command
N/A

The system
waits for
an open

command

22
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid Valid Gate Open

The system:
Stores the gate
and destination

information
Sends the
Dispatch

System with
the lane and
destination
assignment
information
indicating

packages can
be assigned to

the lane.

Conveyor
Operator

23
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid Valid
Gate

Locked
Error

The system
informs the
operator the

gate could not
be opened

24
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid Valid
No

response

After ten
seconds

the system
determines the
gate can’t be
opened and
informs the

operator

25
Operational

– all lanes held
or assigned

Valid
Request

N/A N/A N/A N/A N/A

The system
informs the

operator that
there are no

lanes available
for assignment

26

Operational
– Destination

selected at max
assignments

Valid
Request

Valid N/A N/A N/A N/A

The system
informs the

operator that
no lanes can
be assigned

to that
destination.

Var. Sys State
Open
Lane

Request
Dest. ID

Lane
Selection

Package
Limit

Open
Gate

Gate
Response

Expected
Results

Comments

© 2009 by Taylor & Francis Group, LLC

240

27
Operational

– Selected gate
already opened

Valid
Request

Valid
Available

lane
Selected

Valid Valid N/A

The system
informs the
Conveyor

Operator that
the selected

gate is already
open

28

No
Communication
with Dispatch

system

Valid
Request

Valid
Available

lane
Selected

Valid Valid Gate Open
Not sure what

the response is
No

requirement

Table B1 Open a Lane Basic Flow Variant Table

Example of Multiple Variant Tables for a Single
Use Case Flow
This is an example of using multiple tables to identify potential
tests. The same example for the Open a Lane flow as used in
chapter 17 is illustrated.

The reason to use multiple tables is for readability.

As mentioned in chapter 17, a good place to split the table is
between Package Limit and Open Gate. This is because Package
Limit is the last input for the steps leading up to assigning a
gate, and Open Gate is the first input into the steps related to
coordinating the physical opening of a gate. The first table is
created the same as in the example for one table in chapter
17 with the exception that there are less operational variables
listed. The System State used is the same as in the other
example.

Var. Sys State
Open
Lane

Request
Dest. ID

Lane
Selection

Package
Limit

Open
Gate

Gate
Response

Expected
Results

Comments

© 2009 by Taylor & Francis Group, LLC

241

Here is the first table

Variant Sys State
Open Lane

Request
Destination

ID
Lane

Selection
Package

Limit
Expected
Results

Comments

1
Operational

– lanes
available

Valid
Request

N/A N/A N/A
The system

prompts for a
destination

2
Operational

– lanes
available

Invalid
Request

N/A N/A N/A Not specified

No requirement
yet. Consider an
off nominal test

for now

3
Operational

– lanes
available

Valid
Request

Valid N/A N/A

The system
displays lanes

currently assigned
to the requested
destination and

the lanes currently
available

4
Operational

– lanes
available

Valid
Request

Invalid
Format

N/A N/A
Error Message

returned for invalid
format

No requirement

5
Operational

– lanes
available

Valid
Request

Non
existent

destination
N/A N/A

System responds
that couldn’t find

destination
No requirement

6
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Valid

The system
assigns the lane
and prompts to
open the gate

on the conveyor
associated with

the lane.

7
Operational

– lanes
available

Valid
Request

Valid
Held Lane
selected

Valid

The system
doesn’t allow

selection of a held
lane

8
Operational

– lanes
available

Valid
Request

Valid
Assigned

lane
selected

Valid

The system
doesn’t allow

selection of an
assigned lane

9
Operational

– lanes
available

Valid
Request

Valid
Invalid
Lane

Valid
The system

prompts for a valid
lane

10
Operational

– lanes
available

Valid
Request

Valid
No Lane
Selected

Valid
The system

prompts for entry
of a lane

© 2009 by Taylor & Francis Group, LLC

242

11
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Value
of 0

The system
prompts for a

value other than 0.

No requirement
yet.

12
Operational

– lanes
available

Valid
Request

Valid
Held Lane
selected

Value
of 0

The system
doesn’t allow

selection of a held
lane

Two negative
values

13
Operational

– lanes
available

Valid
Request

Valid
Assigned

lane
selected

Value
of 0

The system
doesn’t allow

selection of an
assigned lane

Two negative
values

14
Operational

– lanes
available

Valid
Request

Valid
Invalid
Lane

Value
of 0

The system
prompts for a valid

lane

Two negative
values

15
Operational

– lanes
available

Valid
Request

Valid
No Lane
Selected

Value
of 0

The system
prompts for entry

of a lane

Two negative
values

16
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

Invalid
format

The system
prompts for a valid

format

Need a
requirement

17
Operational

– lanes
available

Valid
Request

Valid
Available

lane
Selected

No value
entered

The system
prompts for a

value

Need a
requirement

18

Operational
– all lanes

held or
assigned

Valid
Request

N/A N/A N/A

The system
informs the

operator that
there are no

lanes available for
assignment

19

Operational
– Destination

selected
at max

assignments

Valid
Request

Valid N/A N/A

The system
informs the

operator that no
lanes can be

assigned to that
destination.

Table B-2: 1st variant table example for Open a Lane Basic Flow

For the second table the operational variables of Open Gate
and Gate Response are the only operational variable listed.
The starting System State for each potential test is the ending
state of the condition required to begin testing Open Gate
values. In this case that state is the same as the expected result

has been assigned, gate not opened “.

Variant Sys State
Open Lane

Request
Destination

ID
Lane

Selection
Package

Limit
Expected
Results

Comments

© 2009 by Taylor & Francis Group, LLC

243

Here is the second variant table.

Variant Sys State
Open
Gate

Gate
Response

Expected Results Comments

20
Lane has been
assigned, gate

not opened
Valid N/A

The system responds by
sending a request to the

divert lane control system
to open the gate.

21
Lane has been
assigned, gate

not opened

Invalid
format

N/A
System prompts for valid

format

22
Lane has been
assigned, gate

not opened

Wrong
gate

specified
N/A

System indicated the
gate cannot be opened

and prompts for a
different gate.

23
Lane has been
assigned, gate

not opened

No
Command

N/A
The system waits for an

open command

24
Lane has been
assigned, gate

not opened
Valid Gate Open

The system:
Stores the gate and

destination information
Sends the Dispatch

System with the lane and
destination assignment
information indicating

packages can be
assigned to the lane.
Notifies the Conveyor

Operator

25
Lane has been
assigned, gate

not opened
Valid

Gate Locked
Error

The system informs the
operator the gate could

not be opened

26
Lane has been
assigned, gate

not opened
Valid No response

After ten seconds the
system determines the

gate can’t be opened and
informs the operator

27

Lane has been
assigned, gate

not opened
Selected gate

already opened

Valid N/A

The system informs
the Conveyor Operator
that the selected gate is

already open

28

No
Communication
with Dispatch

system

Valid Gate Open
Not sure what the

response is
No requirement

Table B3: 2nd variant table example for Open a Lane Basic Flow

© 2009 by Taylor & Francis Group, LLC

244

Example of a Test Procedure
For a Manual GUI Test

Test Procedures for Open a Lane Basic flow Positive
Test
Test Procedure 1
Procedure Specific Files

System Output log file: This file contains a log of
activity including messages sent, messages received,
and information stored during system operation. This
file is automatically initialized when the Conveyor
Control application is run. No set up is required. File
name is SystemLogFile.txt
Dispatch System Output log file: This file contains
a log of messages received from the system under
test. This file is automatically initialized when the
application Dispatch Application is run. No set up is
required. File name is DispatchLogFile.txt.
Conveyor Simulator log file: This file contains a log of
activities including messages received and sent. This
file is automatically initialized when the application
Conveyor Simulator Application is run. No set up is
required. File name is ConveyorSimulatorLogFile.
txt.
Conveyor Simulator parameter table: This file
contains parameters to simulate an active conveyor
system. It holds information that describes lane
assignments the simulated system will be initialized
to and the packages that will be simulated as moving
through the simulated conveyor system.
File Format: As description of file format can be found
in document ConveyorSimulatorParameterFile.doc.
File Parameters: Parameter specifics for this
file are described in the document called
SimulatorSetUpTP1
File location name: ConveyorSetUpTP1

© 2009 by Taylor & Francis Group, LLC

245

File location: PC2 folder location c:\Simulator
Set Up: prior to testing access PC2 and copy file
ConveyorSetUpTP1 from c:\simulatorSetUpFiles to
c:\Simulator

Test Environment Set Up
Test environment setup steps are as follows:
•	 Turn on Monitor for PC1 (labeled)
•	 Turn on Monitor for PC2
•	� Turn on power (black button) for the Conveyor Box

(labeled “Conveyor System Box”).
•	� Windows system will be displayed in monitor for

PC1.
•	� Windows System will be displayed in monitor for

PC2.
•	� Select Conveyor Simulator Icon on PC2 using the

arrows on the keypad labeled (PC2)
•	� The monitor for PC Two will display message that

the conveyor is running
•	� Select the Dispatch System on PC1 using the arrows

on the keypad labeled (PC1)
•	� The monitor for PC1 will display message indicating

the Dispatch System is running.
•	� the System Under test (SUT) icon on PC1 using the

arrows on the keypad labeled (PC1)
•	� The monitor for PC1 will display message indicating

SUT is running. The Window for Conveyor
Monitoring is displayed.

© 2009 by Taylor & Francis Group, LLC

246

Test Procedure Steps

Step# TEST Step EXPECTED RESULT Pass/Fail Req Comments

1
At the Conveyor monitoring
display select the “Assign

Lane” button.

The Assign Lane window is
displayed with the prompt for a

destination
SRS5

2
Select the drop down menu

for Destination

The Drop Down Menu shows all
available destinations (AAX, BAX,

CCS, and CCD)
SRS2

3

Select AAX from the
destination Drop down menu

The Lanes assigned to destination
AAX are displayed (Lane 1, 3, 6)

SRS2

4
Available lanes are displayed ($

and 7)
SRS2

5
Select Lane 7, enter 100 in

Max package field, and select
the “Assign Lane” button

Lane 7 is assigned to destination
AAX. !00 is set to maximum

packages limit. (Verify with the
system run log)

SRS5,
SRS19

6
Lane assignment of lane 7 to

destination AAX is displayed with a
button titled “Open Lane”

SRS6

7 Click on “Open Lane” button
Open Lane command specifying

lane 7 is sent to Divert Lane.
(Verify with the simulator log report.

SRS6

8

View that the simulator
displays that the “Gate for
Lane 7 Opened” message
sent to system under test

System receives message and
marks gate 7 as OPEN(Verify in

system log)

SRS7
SRS8

9
Gate and destination information is

stored (verify in system log)
SRS12

10

Lane and destination assignment
(lane 7 and AAX) is sent to the

dispatch system (Verify in dispatch
system log file)

SRS13

11
A message indicating gate for lane

7 has been opened is displayed
SRS7
SRS8

Test Evaluation Instructions

Display the system log file (file “SystemLogFile.txt”. View the file and
verify steps 5, 8, and 9 in the table above.

Display the Simulator system log file (file “ConveyorSimulatorLogFile.
txt”. View the file and verify step 7 in the table above.

Display the Dispatch system log file (file “DispatchSystemLogFile.txt”.
View the file and verify step 10 in the table above.

© 2009 by Taylor & Francis Group, LLC

247

Appendix C Templates

A Test Case Template
Test Case Name/Identifier
Description:
This Test Case validates …. <This can be things such as
nominal (happy) path of a UC, Negative tests, etc.>
Add info on how the TC starts and what happens at a
general level

Objective:
List high level functionality verified or references to
requirements>

•	� Verify the <system> software performs the
functionality of the requirements allocated to this Test
Case, per <reference>.

•	� Verify the <system> software performs the
functionality of the <reference use case, sequence
diagrams, functions, etc.

Test Items/Requirements Addressed:
List items to test by feature and corresponding requirements.
Use requirement ID and description.
For each item, consider supplying references to the following
test item documentation:

a) Requirements specification;
b) Design specification;
c) Users guide;
d) Operations guide;
e) Installation guide.

Prerequisite Conditions:
List conditions including other test cases that must run,
system states, etc. that must be in place for this test case to
run.

© 2009 by Taylor & Francis Group, LLC

248

Test Inputs (Input Specifications)
Specify each input required to execute the test case. Some of
the inputs will be specified by value (with
tolerances where appropriate), while others, such as constant
tables or transaction files, will be specified by name. Identify
all appropriate databases, files, terminal messages, memory
resident areas, and values passed by the operating system.
Specify all required relationships between inputs (e.g.,
timing).

Expected Test Results (Output Specifications):
Specify all of the outputs and features (e.g., response time)
required of the test items. Provide the exact value
(with tolerances where appropriate) for each required output
or feature.

Criteria for Evaluating Results:
List any details related to result evaluation. Pass/fail.

Environmental needs

Hardware
Specify the characteristics and configurations of the
hardware required to execute this test case.

Software
Specify the system and application software required to
execute this test case. This may include system software
such as operating systems, compilers, simulators, and test
tools. In addition, the test item may interact with application
software.

Other
Specify any other requirements such as unique facility needs
or specially trained personnel.

© 2009 by Taylor & Francis Group, LLC

249

Special procedural requirements
Describe any special constraints on the test procedures
that execute this test case. These constraints may involve
special set up, operator intervention, output determination
procedures, and special wrap up.

Test Design (Activity Diagrams):
Activity diagrams or other documentation that tells how the
test will be performed go here

Intercase dependencies
List the identifiers of test cases that must be executed prior
to this test case. Summarize the nature of the
dependencies.

Assumptions and Constraints

© 2009 by Taylor & Francis Group, LLC

250

A Test Procedure Template

Test Procedures for <test case Name>
Test Procedure 1
Procedure Specific Files and Set up

List the files that need to be set up and their formats including
specific values for this procedure. These can include
configuration files and specific flight data files that may
simulate specific situations.

Test Environment Set Up

Test environment setups are described here. Detailed
instructions can be kept in other documents and referred to
here.

Test Procedure Steps

The table below will list the steps taken to set up and run the
tests. It documents manual activities.

Step# TEST Step
EXPECTED

RESULT
Pass/Fl Req Comments

1 Procedure Step 1
Requirement

covered

2 Procedure Step 2

3

4

Test Evaluation Instructions

List evaluation instructions here.

© 2009 by Taylor & Francis Group, LLC

	au9811_c000.pdf
	Essential Software Testing: A Use-Case Approach
	TABLE OF CONTENTS
	DEDICATION
	PREFACE
	Why this book is important
	Who this book is for
	How to use this book

	ACKNOWLEDGMENTS
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c001.pdf
	TABLE OF CONTENTS
	Part One: Testing Essentially
	Chapter 1: On Being A Tester
	Testing Perceptions and Realities
	Perceptions
	Reality
	Another testing approach to deal with reality

	Testing In an Agile Way.... But Not Agile Testing
	Being Agile and Proactive
	Dealing With Governance

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c002.pdf
	TABLE OF CONTENTS
	CHAPTER 2: Basic Concepts Boot Camp
	The Real Basics
	Black Box Testing
	White Box Testing
	Unit Testing
	Functional Requirements
	Non-Functional Requirements
	Stakeholder Needs
	Features

	Testing Concepts
	Traceability
	Coverage

	Varieties of Essential Requirements
	Traditional Requirements
	Use Cases
	User Stories
	Safety Critical Requirements
	High Level Requirements
	Low Level Requirements
	Derived Requirements

	Organizing Your Testing
	Test Plans
	Test Cases
	Test Procedures
	Test Scripts

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c003.pdf
	TABLE OF CONTENTS
	CHAPTER 3: Examples From My Experience We’ll Work With
	Experience 1: Rinkratz
	The Testing Perspective

	Experience 2: The Conveyor System Project
	The Testing Perspective

	Experience 3: Aircraft Engine Monitoring System
	The Testing Perspective

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c004.pdf
	TABLE OF CONTENTS
	CHAPTER 4: What Is Essential Testing?
	Testing The Right Things
	Testing To The Right Level of Detail
	Testing At The Right Time
	Bad Tester
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c005.pdf
	TABLE OF CONTENTS
	CHAPTER 5: Essential and Efficient Testing
	The Idea of Agility
	Agile Methodologies
	Applying Agile Methodologies to Testing

	Agile Testing
	How Agile Folks See Agile Testing

	Essential Testing and Agile Testing
	Apply Agility to Any Development Methodology
	How Essential Testing Addresses Agility

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c006.pdf
	TABLE OF CONTENTS
	CHAPTER 6: Being Essentially Agile
	The Agility Basics
	Understand What Needs To Be Done
	Know Your Environment
	Communicate A Lot
	Expect Change
	Be A Minimalist
	Be Ready To Explain Yourself
	Don’t Sleepwalk
	Encourage Feedback
	Courage
	Respect

	Conclusion
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c007.pdf
	TABLE OF CONTENTS
	CHAPTER 7: Build Testing Agility Into Any Project
	Agile Iterative
	Applying Essential Testing to Agile Iterative

	Heavy Iterative
	Applying Essential Testing to Heavy Iterative

	Heavy Waterfall
	Applying Essential Testing to Heavy Waterfall

	Safety Regulated Systems (for example FAA D0178b)
	What Regulated Systems Are
	Certifying Regulated Systems
	Applying Essential Testing to Regulated Systems

	Conclusion
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c008.pdf
	TABLE OF CONTENTS
	Part Two: Fundamentals For Testing Success
	CHAPTER 8: Requirements–Fundamentals For Testing Success
	Good Requirements
	What Makes Up Good Requirements

	Not So Good Requirements
	What To Do When Requirements Aren’t So Good
	Be Proactive: Anticipate Requirements

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c009.pdf
	TABLE OF CONTENTS
	CHAPTER 9: Use Cases For Testers
	Working With Use Cases
	Use Case Diagrams
	Use Case Specifications
	Why Use Use Cases

	Use Cases In Essential Testing
	Perceived Problems Testing Against Use Cases
	Make ‘Em If You Aint Got ‘Em

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c010.pdf
	TABLE OF CONTENTS
	CHAPTER 10: Building A Test Process That Fits
	Test Process: Scoping
	Stakeholder Needs and Perceptions
	Big vs. Small

	Test Process: Inputs and Outputs
	Requirements as Test Inputs
	Design Artifacts as Test Inputs
	Outputs

	Shaping The Test Process
	Understand Project Needs
	Plan For The Minimum Artifact Set To Get By With
	Team Dynamics
	Delivery
	Things To Worry About

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c011.pdf
	TABLE OF CONTENTS
	Part Three: The Successful Testing Process
	CHAPTER 11: Essential Test Planning
	Test Planning Realities
	Test Planning Tasks

	Planning Starts With Understanding
	Understand What It Will Take To Prove The System
	Understand What Input Artifacts Are Available
	Understand What Can Be Done With Artifacts

	After Understanding, Analyze
	Bag of Tricks
	Patterns

	Creating A Testing Solution
	Bring The Pieces Together

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c012.pdf
	TABLE OF CONTENTS
	Chapter 12: Grouping Requirements With Use Cases
	You Need Use Cases to Be Use Case Driven
	The Problems With Testing Individual Requirements, and Why Use Cases Are The Solution

	Example of Grouping Traditional Requirements With Use Cases
	The Business Context
	Initial System View

	Understanding The Requirements
	Essential Testing Analysis
	Supplied Software Requirements: A Sample
	Requirements Sample Considered

	Getting To Use Cases
	A Use Case Example

	Open a Lane Use Case
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c013.pdf
	TABLE OF CONTENTS
	Chapter 13: Extending Use Cases For Testing
	Some Definitions
	Condition
	Operational Variable
	System State
	Nominal Tests
	Off Nominal Tests

	The Extended Use Case Test Design Pattern
	Binder’s Premises
	The Extended Use Case Solution
	Adapting the pattern

	The Essential Test Identification Approach
	Identifying Operational Variables
	Discovering Operational Variables Example Based on Open a Lane Use Case For The Conveyor System

	Basic Flow
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c014.pdf
	TABLE OF CONTENTS
	Chapter 14: Identifying Tests
	Overview
	Organizing A Variant Table
	Filling In A Variant Table
	Conclusion
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c015.pdf
	TABLE OF CONTENTS
	Chapter 15: Essential Test Cases
	Grouping Tests into Test Cases
	An Example using the process

	Selecting Tests
	Determine What Tests MUST Be Run
	Eliminate Unnecessary Tests
	Drop Insignificant Tests

	Defining Essential Test Cases
	Filling In Test Cases I: The Test Definition Section
	Test Case Example 1
	Comments On This Example

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c016.pdf
	TABLE OF CONTENTS
	Chapter 16: Adding Test Design To Your Test Case
	Test Environment
	An Example of Test Environment
	Test Participants

	Procedures: How A Test Will Be Performed
	Activity Diagrams For Testers
	Describing the Test With An Activity Diagram
	An Example Of An Activity Diagram For a Test Case

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c017.pdf
	TABLE OF CONTENTS
	Chapter 17: Creating Tests
	Harvesting Tests
	Creating Test Procedures
	Use Activity Diagrams to Create Test Procedures
	Test Procedure Components
	The First Pass
	The Final Pass
	A Test Procedure Example for the Open Lane Basic Flow Positive Test Test Case

	Conclusion
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c018.pdf
	TABLE OF CONTENTS
	Chapter 18: Executing Tests
	Execution Problems and Their Solution
	DOA Deliveries
	Changing Stakeholder Perception
	Timing of Tests

	Special Considerations at Test Execution Time
	Executing Regression Tests
	Executing Manual and Automatic Tests

	Recording and Reporting Test Results
	Test Recording
	Test Reporting

	Knowing When to Stop Testing
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c019.pdf
	TABLE OF CONTENTS
	Chapter 19: Essential Traceability
	Traceability
	Tracing Artifacts

	Coverage
	Requirements Coverage
	Design Coverage
	Code Coverage
	Showing Coverage via Traces
	Other Things To Trace

	Traceability In Practice
	A Requirements Perspective
	The Impact of Change

	Problems With Traceability - And Some Suggested Solutions
	What Really Needs To Be Traced?
	Who Will Do The Tracing And When
	Whether/What Tools To Use In Managing Traceability

	Conclusion
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c020.pdf
	TABLE OF CONTENTS
	Chapter 20: It All Comes Together Like This
	Situation
	First steps
	Understanding who will accept the system
	Understand what needs to be done
	Understand the environment
	Requirements
	Development
	What we would like changed
	What we can change

	Test Planning
	Identifying the Artifacts we will use
	Identifying the artifacts we will create

	Lay out the test process
	Start with what we know
	Consider patterns
	Start with the input documents and map out the process
	Create Use Cases
	Group and Verify Requirements
	Identify tests
	Identify additional tests
	Create black box Tests
	Identify white box tests
	Design tests
	Create tests
	Trace tests
	Executing tests
	Coverage analysis
	Code Verification

	Requirements help and Use Cases creation
	Identify tests by Use Case
	Low Level Requirements delivered
	Requirements Baselined for 2nd time
	Design tests
	Develop tests
	Execute Tests
	Coverage analysis
	Code Inspections
	Create white box tests
	Refactoring Tests
	Final build delivered
	Final coverage analysis
	Traceability
	Follow Up
	Synopsis

	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_c021.pdf
	TABLE OF CONTENTS
	Chapter 21: Conclusion
	Appendix A
	Appendix B Examples
	Appendix C Templates

	AU9811_a001.pdf
	TABLE OF CONTENTS
	Appendix A
	Additional Information for Top Notch Conveyor System
	Technical explanation of a typical conveyor system

	Pick Station
	Accumulation
	Induction Merging and Spacing
	Transportation
	Diversion
	Appendix B Examples
	Appendix C Templates

	AU9811_a002.pdf
	TABLE OF CONTENTS
	Appendix B Examples
	Variant Table example for Open a Lane Basic Flow
	Example of Multiple Variant Tables for a Single Use Case Flow
	Example of a Test Procedure For a Manual GUI Test
	Test Procedure 1
	Procedure Specific Files
	Test Environment Set Up
	Test Evaluation Instructions

	Appendix A
	Appendix C Templates

	AU9811_a003.pdf
	TABLE OF CONTENTS
	Appendix C Templates
	A Test Case Template
	Test Case Name/Identifier
	Test Inputs (Input Specifications)

	Environmental needs
	Hardware
	Software
	Other
	Special procedural requirements
	Intercase dependencies
	Assumptions and Constraints

	A Test Procedure Template
	Test Procedures for <test case Name>
	Test Procedure 1

	Procedure Specific Files and Set up
	Test Environment Set Up
	Test Procedure Steps
	Test Evaluation Instructions

	Appendix A
	Appendix B Examples

