

Fifty	Quick	Ideas	to	Improve	Your	Tests

	

Gojko	Adzic,	David	Evans	and	Tom	Roden
	

©	2014	-	2015	Neuri	Consulting	LLP

Table	of	Contents

Introduction

Generating	test	ideas
Define	a	shared	big-picture	view	of	quality
Explore	capabilities,	not	features
Start	with	always/never
Tap	into	your	emotions
Test	benefit	as	well	as	implementation
Quantify	even	if	you	cannot	measure
Organise	test	ideas	using	an	ACC	matrix
Use	risk	checklists	for	cross-cutting	concerns
Document	trust	boundaries
Monitor	trends	in	logs	and	consoles
Mob	your	test	sessions
Don’t	let	the	pen	be	the	bottleneck
Snoop	on	the	competition

Designing	good	checks
Focus	on	key	examples
Contrast	examples	with	counter-examples
Describe	what,	not	how
Avoid	mathematical	formulas
Flip	equivalence	classes	between	inputs	and	outputs
Clearly	separate	inputs	and	outputs
Ask	‘what	happens	instead?’
Use	Given-When-Then	in	a	strict	sequence
One	test,	one	topic
Treat	too	many	boundaries	as	a	modelling	problem
Prefer	smaller	tables
Balance	three	competing	forces
Write	assertions	first
Split	technical	and	business	checks

Don’t	automate	manual	tests

Improving	testability
Wrap	synchronous	database	tests	in	transactions
Set	up	before	asynchronous	data	tests,	don’t	clean	up	after
Introduce	business	time
Provide	atomic	external	resources
Wait	for	events,	not	time
Split	data	generators	from	tests
Minimise	UI	interactions
Separate	decisions,	workflows	and	technical	interactions
Use	production	metrics	for	expensive	tests

Managing	large	test	suites
Make	developers	responsible	for	checking
Design	tests	together	with	other	teams
Avoid	organising	tests	by	work	items
Version	control	tests	along	with	software
Create	a	gallery	of	examples	for	automation	patterns
Decouple	coverage	from	purpose
Avoid	having	strict	coverage	targets
Measure	your	tests’	half-life
Optimise	for	reading,	not	writing
Name	tests	for	search	engine	optimisation
Explain	the	purpose	of	a	test	in	the	introduction
Split	just-in-case	tests	from	key	examples
Let	the	chaos	monkey	out	periodically

The	End
Authors
Bibliography	and	resources
Legal	Stuff

Introduction

This	book	will	help	you	test	your	software	better,	easier	and	faster.	It’s	a
collection	of	ideas	we’ve	used	with	various	clients	in	many	different	contexts,
from	small	web	start-ups	to	the	world’s	largest	banks,	to	help	team	members
collaborate	better	on	defining	and	executing	tests.	Many	of	these	ideas	also	help
teams	engage	their	business	stakeholders	better	in	defining	key	expectations	and
improve	the	quality	of	their	software	products.

Who	is	this	book	for?
This	book	is	primarily	aimed	at	cross-functional	teams	working	in	an	iterative
delivery	environment,	planning	with	user	stories	and	testing	frequently	changing
software	under	the	tough	time	pressure	of	short	iterations.	The	intended	audience
are	people	with	a	solid	understanding	of	the	basics	of	software	testing,	who	are
looking	for	ideas	on	how	to	improve	their	tests	and	testing-related	activities.	The
ideas	in	this	book	will	be	useful	to	many	different	roles,	including	testers,
analysts	and	developers.	You	will	find	plenty	of	tips	on	how	to	organise	your

work	better	so	that	it	fits	into	short	iterative	cycles	or	flow-based	processes,	and
how	to	help	your	team	define	and	organise	testing	activities	better.

Who	is	this	book	not	for?
This	book	doesn’t	cover	the	basics	of	software	testing,	nor	does	it	try	to	present	a
complete	taxonomy	of	all	the	activities	a	team	needs	to	perform	to	inspect	and
improve	the	quality	of	their	software.	It’s	a	book	about	improving	testing
activities,	not	setting	up	the	basics.	We	assume	that	readers	know	about
exploratory	testing	and	test	automation,	the	difference	between	unit	tests	and
integration	tests,	and	the	key	approaches	to	defining	tests.	In	short,	this	isn’t	the
first	book	about	testing	you	should	read.	There	are	plenty	of	good	basic	books
out	there,	so	read	them	first	and	then	come	back.	Please	don’t	hate	us	because	we
skipped	the	basics,	but	there	is	only	so	much	space	in	the	book	and	other	people
cover	the	basics	well	enough	already.

What’s	inside?
Unsurprisingly,	the	book	contains	exactly	fifty	ideas.	They	are	grouped	into	four
major	parts:

Generating	testing	ideas:	This	part	deals	with	activities	for	teams	to	engage
stakeholders	in	more	productive	discussions	around	needs	and	expectations.
The	ideas	in	this	part	are	equally	applicable	to	manual	and	automated
testing,	and	should	be	particularly	useful	to	people	looking	for	inspiration
on	improving	exploratory	testing	activities.
Designing	good	checks:	This	part	deals	with	defining	good	deterministic
checks	that	can	be	easily	automated.	The	ideas	in	this	part	will	help	you
select	better	examples	for	your	tests	and	specifications,	and	in	particular
help	with	the	given-when-then	style	of	acceptance	criteria.
Improving	testability:	This	part	contains	useful	architectural	and	modelling
tricks	for	making	software	easier	to	observe	and	control,	improve	the
reliability	of	testing	systems	and	make	test	automation	code	easier	to
manage.	It	should	be	particularly	useful	for	teams	that	suffer	from
unreliable	automated	tests	due	to	complex	architectural	constraints.
Managing	large	test	suites:	This	part	provides	tips	and	suggestions	on
dealing	with	the	long-term	consequences	of	iterative	delivery.	In	it,	you’ll
find	ideas	on	how	to	organise	large	groups	of	test	cases	so	that	they	are	easy
to	manage	and	update,	and	how	to	improve	the	structure	of	individual	tests

to	simplify	maintenance	and	reduce	the	costs	associated	with	keeping	your
tests	in	sync	with	the	frequently	changing	underlying	software.

Each	part	contains	ideas	that	we’ve	used	with	teams	over	the	last	five	or	six
years	to	help	them	manage	testing	activities	better	and	get	more	value	out	of
iterative	delivery.	Software	delivery	is	incredibly	contextual,	so	some	stories	will
apply	to	your	situation,	and	some	won’t.	Treat	all	the	proposals	in	this	book	as
experiments.

Where	to	find	more	ideas?
There	is	only	so	much	space	in	a	book,	and	some	of	the	ideas	described	deserve
entire	books	of	their	own.	We	provide	plenty	of	references	for	further	study	and
pointers	for	more	detailed	research	in	the	bibliography	at	the	end	of	this	book.	If
you’re	reading	this	book	in	electronic	form,	all	the	related	books	and	articles	are
clickable	links.	If	you’re	reading	the	book	on	paper,	tapping	the	text	won’t	help.
To	save	you	from	having	to	type	in	long	hyperlinks,	we	provide	all	the
references	online	at	50quickideas.com.

If	you’d	like	to	get	more	information	on	any	of	the	ideas,	get	additional	tips	or
discuss	your	experiences	with	peers,	join	the	discussion	group	50quickideas.

This	book	is	part	of	a	series	of	books	on	improving	various	aspects	of	iterative
delivery.	If	you	like	it,	check	out	the	other	books	from	the	series	at
50quickideas.com.

http://50quickideas.com/l/ts_1
https://groups.google.com/forum/#!forum/50quickideas
http://50quickideas.com/l/ts_2

GENERATING	TEST	IDEAS

Define	a	shared	big-picture	view	of	quality

Quality	is	a	notoriously	difficult	concept	to	pin	down.	Users	mostly	look	at
externally	observable	attributes,	such	as	speed	and	usability.	Business
stakeholders	look	at	financial	performance.	Developers	mostly	care	about
internal	code	structure.	Testers	sit	somewhere	between	and	try	to	connect	all	the
dots.	So	many	different	levels	of	quality,	and	so	many	different	perspectives,
often	lead	to	disagreements.	A	user	might	consider	something	a	bug,	but
developers	might	classify	it	as	an	improvement	request.	Something	one	person
considers	critical	might	not	even	register	on	the	scale	of	importance	for	someone
from	a	different	group.	That	is	why	a	seemingly	critical	defect	can	be	left	in	a
software	product	for	months,	sitting	in	a	bug	tracking	tool	often	serving	just	to
prevent	people	sending	more	notifications	about	the	same	issue.	This	is	also	why
software	can	be	released	to	customers	even	when	people	on	the	delivery	team
know	it	contains	a	lot	of	‘technical	debt’.	Situations	such	as	this	create	a	divisive
atmosphere,	us	against	them,	testers	who	feel	that	they	are	not	listened	to	and
developers	who	feel	that	testers	are	nit-picking	about	unimportant	issues.

Business	stakeholders	start	resenting	delivery	teams	for	gold-plating	the	product
when	time	is	pressing,	and	delivery	teams	start	resenting	business	stakeholders
for	insisting	on	an	unsustainable	pace	of	delivery.	These	disagreements	are
particularly	problematic	for	delivery	teams	that	are	not	in	direct	contact	with
customers.

It’s	easy	to	blame	another	group	for	being	ignorant	and	causing	this
misunderstanding,	but	the	real	issue	is	that	people	often	have	a	simplistic	view	of
quality,	and	very	rarely	see	the	big	picture.	A	good	solution	for	this
misunderstanding	is	to	create	a	multi-layered,	multi-faced	view	of	quality	that
different	groups	can	agree	on.

One	model	that	works	relatively	well	in	many	situations	is	based	on	Maslow’s
hierarchy	of	human	needs.	The	famous	Maslow’s	hierarchy	lists	human	needs	as
a	pyramid	with	those	necessary	for	basic	functions	(such	as	food,	water)	on	the
bottom	level,	safety	(personal	security,	health,	financial	security),	love	and
belonging	(friendship,	intimacy),	and	esteem	(competence,	respect)	on	the
middle	levels	and	self-actualisation	(fulfilling	one’s	potential)	at	the	top.	The
premise	of	the	hierarchy	of	needs	is	that	when	a	lower-level	need	is	not	met,	we
disregard	higher-level	needs.	For	example,	when	a	person	doesn’t	have	enough
food,	intimacy	and	respect,	food	is	the	most	pressing	thing.	Another	premise	is
that	satisfying	needs	on	the	lower-levels	of	the	pyramid	brings	diminishing
returns	after	some	point.	Eating	more	food	than	we	need	brings	obesity.	More
airport	security	than	needed	becomes	a	hassle.	Our	quality	of	life	improves	by
satisfying	higher-level	needs	after	lower-level	needs	are	satisfied.	As	with	any
other	models,	this	one	is	an	abstraction	and	it’s	easy	to	find	all	kinds	of
exceptions	to	it,	but	in	general	it	captures	the	situation	relatively	well.	We	can	do
something	similar	for	software.

Drawing	parallels	between	the	different	levels	of	needs,	we	can	create	a	pyramid
of	software	quality	levels:

1.	 Does	it	work	at	all?	What	are	the	key	features,	key	technical	qualities?
2.	 Does	it	work	well?	What	are	the	key	performance,	security,	scalability

aspects?
3.	 Is	it	usable?	What	are	the	key	usability	scenarios?
4.	 Is	it	useful?	What	production	metrics	will	show	that	it	is	used	in	real	work?
5.	 Is	it	successful?	What	business	metrics	will	show	that	this	was	worth

doing?	Is	it	operating	within	financial	constraints?

Such	a	pyramid	can	help	teams	to	define	acceptance	criteria	at	each	of	the	levels,
and	create	shared	agreement	on	what	the	entire	group	means	when	they	think
about	quality.

Key	benefits
A	shared	visualisation	of	different	aspects	of	quality	helps	to	paint	the	big	picture
for	everyone.	People	can	avoid	spending	too	much	time	improving	aspects	that
are	already	de-risked	to	a	satisfactory	level.	At	the	same	time,	everyone	will
understand	what	constitutes	a	critical	problem	–	if	any	of	the	things	in	the
pyramid	is	broken,	it’s	pretty	serious,	regardless	of	what	level	it	is	on.

Although	higher	levels	of	the	pyramid	–	typically	characterised	by	production
metrics,	usage	scenarios	and	operational	constraints	–	might	not	be	fully	testable
during	development,	they	provide	a	useful	context	for	designing	the	right
solution	and	they	might	inform	exploratory	testing	sessions.

How	to	make	it	work
The	whole	purpose	of	creating	a	shared	big	picture	is	to	align	expectations
across	different	groups,	so	it	only	makes	sense	to	do	it	in	a	cross-functional
setting,	with	representatives	of	developers,	testers,	analysts	and	business
stakeholders.	Try	to	get	senior	representatives	from	each	of	those	groups	into	a
room,	and	draw	the	pyramid	on	a	large	whiteboard.	Then	let	people	add	their
expectations	with	sticky	notes	to	each	of	the	levels.	After	fifteen	or	twenty
minutes,	or	when	the	discussion	stops	and	people	have	no	more	ideas,	go
through	the	notes	and	try	to	quantify	expectations.	For	example,	if	someone
added	‘people	can	quickly	create	documents’	to	the	third	level,	define	together
what	‘quickly’	actually	means.

We	like	doing	such	pyramids	once	per	milestone,	to	guide	work	over	the	next
three	to	six	months.	Items	on	the	sticky	notes	should	be	relatively	high	level,
representing	global	criteria	and	key	activities,	rather	than	low-level	actions.
Avoid	trying	to	capture	all	possible	test	cases,	and	focus	on	the	broad
understanding	that	will	allow	you	to	make	better	low-level	decisions	later.

Explore	capabilities,	not	features

As	software	features	are	implemented,	and	user	stories	become	ready	for
exploratory	testing,	it’s	only	logical	to	base	exploratory	testing	sessions	on	new
stories	or	changed	features.	Although	it	might	sound	counter-intuitive,	story-
oriented	exploratory	testing	sessions	lead	to	tunnel	vision	and	prevent	teams
from	getting	the	most	out	of	their	effort.

Stories	and	features	are	a	solid	starting	point	for	coming	up	with	good
deterministic	checks.	However,	they	aren’t	so	good	for	exploratory	testing.
When	exploratory	testing	is	focused	on	a	feature,	or	a	set	of	changes	delivered
by	a	user	story,	people	end	up	evaluating	whether	the	feature	works,	and	rarely
stray	off	the	path.	In	a	sense,	teams	end	up	proving	what	they	expect	to	see.
However,	exploratory	testing	is	most	powerful	when	it	deals	with	the	unexpected
and	the	unknown.	For	this,	we	need	to	allow	tangential	observations	and
insights,	and	design	new	tests	around	unexpected	discoveries.	To	achieve	this,
exploratory	testing	can’t	be	focused	purely	on	features.

Good	exploratory	testing	deals	with	unexpected	risks,	and	for	this	we	need	to
look	beyond	the	current	piece	of	work.	On	the	other	hand,	we	can’t	cast	the	net
too	widely,	because	testing	would	lack	focus.	A	good	perspective	for
investigations	that	balances	wider	scope	with	focus	is	around	user	capabilities.
Features	provide	capabilities	to	users	to	do	something	useful,	or	take	away	user
capabilities	to	do	something	dangerous	or	damaging.	A	good	way	to	look	for
unexpected	risks	is	not	to	explore	features,	but	related	capabilities	instead.

Key	benefits
Focusing	exploratory	testing	on	capabilities	instead	of	features	leads	to	deeper
insights	and	prevents	tunnel	vision.

A	good	example	is	the	contact	form	we	built	for	MindMup.	The	related	software
feature	was	that	a	support	request	is	sent	when	a	user	fills	in	the	form.	We	could
have	explored	the	feature	using	multiple	vectors,	such	as	field	content	length,
email	formats,	international	character	sets	in	the	name	or	the	message,	but
ultimately	this	would	only	focus	on	proving	that	the	form	worked.	Casting	the
net	a	bit	wider,	we	identified	two	capabilities	related	to	the	contact	form:

A	user	should	be	able	to	contact	us	for	support	easily	in	case	of	trouble.	We
should	be	able	to	support	them	easily,	and	solve	their	problems.
Nobody	should	be	able	to	block	or	break	the	contact	channels	for	other
users	through	intentional	or	unintentional	misuse.

We	set	those	capabilities	as	the	focus	of	our	exploratory	testing	session,	and	this
led	us	to	look	at	the	accessibility	of	the	contact	form	in	case	of	trouble,	and	the
ease	of	reporting	typical	problem	scenarios.	We	discovered	two	critically
important	insights.

The	first	was	that	a	major	cause	of	trouble	would	not	be	covered	by	the	initial
solution.	Flaky	and	unreliable	network	access	was	responsible	for	many
incoming	support	requests.	But	when	the	Internet	connection	for	users	went
down	randomly,	even	though	the	form	was	filled	in	correctly,	the	browser	might
fail	to	connect	to	our	servers.	If	someone	suddenly	went	completely	offline,	the
contact	form	wouldn’t	actually	help	at	all.	None	of	those	situations	should
happen	in	an	ideal	world,	but	when	they	did,	that’s	when	users	actually	needed
support.	So	the	feature	was	implemented	correctly,	but	there	was	still	a	big
capability	risk.	This	led	us	to	offer	an	alternative	contact	channel	for	when	the
network	was	not	accessible.	We	displayed	the	alternative	contact	email	address

prominently	on	the	form,	and	also	repeated	it	in	the	error	message	if	the	form
submission	failed.

The	second	big	insight	was	that	people	might	be	able	to	contact	us,	but	without
knowing	the	internals	of	the	application,	they	wouldn’t	be	able	to	provide
information	for	troubleshooting	in	case	of	data	corruption	or	software	bugs.	That
would	pretty	much	leave	us	in	the	dark,	and	disrupt	our	ability	to	provide
support.	As	a	result,	we	decided	not	to	even	ask	for	common	troubleshooting
information,	but	instead	obtain	and	send	it	automatically	in	the	background.	We
also	pulled	out	the	last	1000	events	that	happened	in	the	user	interface,	and	sent
them	automatically	with	the	support	request,	so	that	we	could	replay	and
investigate	what	exactly	happened.

How	to	make	it	work
To	get	to	good	capabilities	for	exploring,	brainstorm	what	a	feature	allows	users
to	do,	or	what	it	prevents	them	from	doing.	When	exploring	user	stories,	try	to
focus	on	the	user	value	part	(‘In	order	to…’)	rather	than	the	feature	description
(‘I	want	…’).

If	you	use	impact	maps	for	planning	work,	the	third	level	of	the	map	(actor
impacts)	are	a	good	starting	point	for	discussing	capabilities.	Impacts	are
typically	changes	to	capabilities.	If	you	use	user	story	maps,	the	top-level	item	in
the	user	story	map	spine	related	to	the	current	user	story	is	a	nice	starting	point
for	discussion.

Start	with	always/never

The	first	time	a	team	works	on	a	new	component,	or	in	an	unfamiliar	part	of
some	business	domain,	they	often	face	a	chicken-and-egg	situation	in	coming	up
with	test	ideas.	Good	examples	can	quickly	lead	to	more	good	counter-examples,
but	people	need	at	least	a	few	good	initial	examples	to	get	a	broad	picture	of	the
entire	problem	space.	When	people	work	in	an	unfamiliar	area,	their	lack	of
experience	makes	it’s	tricky	to	recognise	when	they	have	covered	the	basics	and
can	start	looking	at	more	difficult	boundaries.	That	is	a	dangerous	situation
because	the	whole	team	might	think	that	they	have	identified	all	the	key
assumptions	and	ensured	shared	understanding,	but	their	limited	domain
knowledge	might	prevent	people	from	seeing	horrible	problems.	In	the	famous
Rumsfeld	classification	of	knowledge,	the	‘unknown	unknowns’	could	hide
many	problems	and	we	might	be	blinded	by	our	inexperience.

This	is	where	the	always/never	heuristic	is	incredibly	useful.	In	order	to	paint	the
big	picture	quickly,	we	often	kick	things	off	with	a	ten-minute	session	on
identifying	things	that	should	always	happen	or	that	should	never	be	allowed.
This	helps	to	set	the	stage	for	more	interesting	questions	quickly,	because
absolute	statements	such	as	‘should	always’	and	‘should	never’	urge	people	to
come	up	with	exceptions.

For	example,	when	working	on	the	compliance	part	of	an	e-commerce	system,
we	asked	business	stakeholders	to	write	down	a	few	things	they	felt	should	never
happen.	The	first	suggestion	from	a	stakeholder	was	‘never	lose	a	transaction’.
This	led	to	another	statement,	‘always	audit	a	transaction’,	which	then	caused
developers	to	ask	if	we	should	audit	failed	transactions	as	well.	We	then
identified	two	opposing	views	of	a	transaction:	business	people	regarded	any
attempt	to	buy	anything	as	a	transaction,	even	if	the	purchase	was	declined.	But
developers	regarded	only	successful	purchases	as	transactions.	It	turned	out	that
for	it	was	actually	quite	important	to	capture	attempted	and	failed	purchases
fraud	prevention	purposes.	Starting	with	always/never	scenarios	helped	us
quickly	identify	some	wrong	assumptions	about	the	domain.

Key	benefits
Absolute	statements	about	a	feature	or	a	component	are	a	great	way	to	frame	the
discussion	about	key	risks.	Statements	starting	with	‘always’	or	‘never’	often
point	to	the	biggest	business	risks,	and	once	people	have	analysed	them,	they
have	a	much	better	context	for	understanding	the	rest	of	the	functionality.

Another	nice	aspect	of	absolute	statements	is	that	they	can	easily	be	refuted	–
people	have	to	find	just	one	case	when	the	statement	is	not	true	to	invalidate	it
and	open	a	good	discussion.	Because	of	this,	writing	down	the	absolute	truths
helps	to	surface	different	assumptions	quickly,	especially	if	someone	easily
comes	up	with	counter-examples.	This	often	points	to	differences	in	terminology,
lack	of	insight,	or	different	mental	models.

This	is	especially	important	for	working	on	difficult	legacy	systems,	because
someone	can	quickly	check	whether	the	proposed	truths	are	actually	true	for	the
old	solution.	For	example,	if	a	stakeholder	claims	that	each	purchase	should	lead
to	an	audit	record,	we	can	quickly	compare	the	number	of	purchases	and	the
number	of	audit	records	for	the	previous	six	months	in	the	legacy	database.	If
they	don’t	match,	that	is	an	interesting	discovery	about	complex	internal	system
interactions	that	people	weren’t	aware	of.

How	to	make	it	work
Because	the	discussion	on	absolute	truths	should	lead	to	group	discovery	of
different	assumptions,	try	to	avoid	a	single	person	being	responsible	for
providing	the	list	of	all	always/never	statements.	Split	into	several	groups	and
brainstorm	for	ten	or	fifteen	minutes	separately,	then	bring	groups	together	to

compare	results.	Alternatively,	give	people	sticky	notes	and	let	them	write	down
ideas	in	silence	for	a	while,	then	put	all	the	notes	on	a	wall	and	cluster	together
similar	items.

Once	you’ve	identified	the	first	batch	of	absolute	truths,	pick	them	up	one	by
one	and	attempt	to	invalidate	them.	For	each	statement,	try	to	come	up	with
counter-examples	or	cases	where	the	absolute	truth	might	not	hold.	It’s	also
interesting	to	list	cases	that	could	be	easily	misunderstood	by	someone	with	less
domain	experience,	or	without	a	good	insight	into	internal	workings.	Those	are
good	scenarios	for	feedback	exercises	and	group	discussions.

After	discussing	a	statement	about	something	that	should	never	happen,
remember	to	probe	for	alternative	events	(see	the	section	Ask	‘what	happens
instead?’).

It	goes	without	saying	that	any	examples	that	violate	a	seemingly	absolute	truth
should	become	critical	test	cases.	But	even	if	an	absolute	statement	still	holds
true	by	the	end	of	the	discussion,	capture	the	key	scenarios	that	you’ve	used	to
challenge	it,	and	use	them	as	tests	in	the	future.	Such	examples	protect	against
potential	misunderstandings	and	wrong	assumptions	and	are	particularly	useful
to	people	with	less	domain	experience.

Tap	into	your	emotions

As	testers	are	usually	very	quick	to	point	out,	the	happy	path	is	just	the	tip	of	the
iceberg	when	it	comes	to	the	types	of	tests	needed	for	adequately	covering	the
many	risks	of	any	new	software	feature.

Starting	with	the	happy	path	scenario	certainly	makes	sense,	as	it	provides	us
with	a	strong	initial	key	example	and	a	basis	from	which	to	think	about	other
possibilities,	but	we	don’t	want	to	get	stuck	there.

It	is	not	always	easy	to	see	what	other	paths	to	take,	what	other	permutations	to
try	and	techniques	to	use.	Commonly	taught	techniques	like	boundary	value
analysis	and	equivalence	partitioning	are	good	ways	of	flushing	out	specific	tests
and	focusing	coverage,	but	they	are	not	enough	in	themselves.

Whether	in	a	specification	workshop,	designing	test	ideas	afterwards	or	in	an
exploratory	test	session,	having	a	heuristic	for	test	design	can	stimulate	some
very	useful	discussion	and	upturn	some	stones	that	otherwise	might	have	been
left	untouched.

The	heuristic	we	propose	is	based	on	nine	emotions	or	types	of	behaviour:	scary,
happy,	angry,	delinquent,	embarrassing,	desolate,	forgetful,	indecisive,	greedy,
stressful.	As	a	mnemonic,	‘shaded	figs’	is	the	best	we	can	come	up	with,	but
even	if	it	is	too	long	to	remember	what	each	one	stands	for,	hopefully	it	will
trigger	the	thought	to	look	it	up.

Key	benefits
The	‘shaded	figs’	heuristic	helps	teams	design	more	complete	tests,	whether	up-
front,	say	in	a	specification	workshop,	or	during	an	exploratory	session.	It
stimulates	new	ideas	for	tests	and	exposes	other	areas	of	risk	for	consideration.

Using	this	spectrum	of	test	type	ideas	can	deliver	good	broad	coverage	pretty
quickly	when	designing	or	executing	tests.	It	can	also	be	a	nice	reminder	in	a
specification	workshop	if	you	are	looking	for	alternatives	to	the	initial	key
example	and	for	negative	cases	from	a	variety	of	perspectives.

How	to	make	it	work
One	way	to	make	this	work	is	to	start	with	the	happy	path	and	look	along	it	for
alternatives.	As	we	step	through	the	happy	path,	start	thinking	of	other	paths	that
could	be	taken	using	on	this	checklist.

Have	the	heuristic	by	your	side	and	refer	to	it	or	work	through	it	as	a	team	as	you
explore	a	story	or	feature.

Here	is	our	set	of	emotional	heuristics	to	stimulate	test	design,	taking	an
emotional	roller	coaster	of	a	ride	along	the	way:

The	scary	path	–	if	this	path	was	followed	it	would	really	tear	the	house
down,	and	everything	else	with	it.	Flush	out	those	areas	of	the	highest	risk
to	the	stakeholders.	Think	what	would	scare	each	stakeholder	the	most
about	this	piece	of	functionality	or	change.
The	happy	path	–	the	key	example,	positive	test,	that	describes	the
straightforward	case.	This	is	the	simplest	path	through	the	particular	area	of
behaviour	and	functionality	that	we	can	think	of,	it	is	the	simplest	user
interaction	and	we	expect	it	to	pass	every	time	(other	than	its	first	ever	run
maybe).
The	angry	path	–	with	the	angry	path	we	are	looking	for	tests	which	we
think	will	make	the	application	react	badly,	throw	errors	and	get	cross	with

us	for	not	playing	nicely.	These	might	be	validation	errors,	bad	inputs,	logic
errors.
The	delinquent	path	–	consider	the	security	risks	that	need	testing,	like
authentication,	authorisation,	permissions,	data	confidentiality	and	so	on.
The	embarrassing	path	–	think	of	the	things	that,	should	they	break,	would
cause	huge	embarrassment	all	round.	Even	if	they	wouldn’t	be	an
immediate	catastrophe	in	loss	of	business	they	might	have	a	significant
impact	on	credibility,	internally	or	externally.	This	could	be	as	simple	as
something	like	spelling	quality	as	‘Qality’,	as	we	once	saw	on	a	testing
journal	(just	think	of	the	glee	on	all	those	testersâ€™	faces).
The	desolate	path	–	provide	the	application	or	component	with	bleakness.
Try	zeros,	nulls,	blanks	or	missing	data,	truncated	data	and	any	other	kind
of	incomplete	input,	file	or	event	that	might	cause	some	sort	of	equally
desolate	reaction.
The	forgetful	path	–	fill	up	all	the	memory	and	CPU	capacity	so	that	the
application	has	nowhere	left	to	store	anything.	See	how	forgetful	it	becomes
and	whether	it	starts	losing	data,	either	something	that	had	just	been	stored,
or	something	it	was	already	holding.
The	indecisive	path	–	simulate	being	an	indecisive	user,	unable	to	quite
settle	on	one	course	of	action.	Turn	things	on	and	off,	clicking	back	buttons
on	the	browser,	move	between	breadcrumb	trails	with	half-entered	data.
These	kinds	of	actions	can	cause	errors	in	what	the	system	remembers	as
the	last	known	state.
The	greedy	path	–	select	everything,	tick	every	box,	opt	into	every	option,
order	lots	of	everything,	just	generally	load	up	the	functionality	with	as
much	of	everything	as	it	allows	to	see	how	it	behaves.
The	stressful	path	–	find	the	breaking	point	of	the	functions	and
components	so	you	can	see	what	scale	of	solution	you	currently	have	and
give	you	projections	for	future	changes	in	business	volumes.

This	technique	works	really	well	in	specification	workshops	when	multiple
people	are	present,	because	the	non-happy-path	ideas	are	likely	to	generate
interesting	conversations,	asking	questions	that	have	not	been	thought	of	yet	and
that	are	hard	to	answer.	Some	questions	may	need	to	be	taken	away	and
investigated	further	(non-functional	characteristics	repeatedly	have	this
tendency).

Test	benefit	as	well	as	implementation

User	stories	often	impact	several	features,	and	a	single	feature	can	be	extended
and	modified	by	many	user	stories.	Because	of	this,	acceptance	criteria	for	a
story	are	often	organised	around	individual	features,	and	expressed	in	terms	of
technical	impacts.	This	organisation	makes	a	lot	of	sense	for	long-term
maintenance	(see	the	section	Avoid	organising	tests	by	work	items),	but	it	also
introduces	the	risk	of	losing	the	big	picture.

For	example,	imagine	a	story	about	upgrading	the	video	codec	library	for	a
teleconferencing	system.	The	story	might	imply	a	range	of	integration	tests	to
ensure	that	commands	are	sent	correctly.	It	would	probably	imply	a	large	number
of	regression	checks	to	ensure	that	the	new	library	supports	all	the	critical
features	of	the	old	library.	Taken	together,	these	two	groups	of	tests	prove	that
we	upgraded	the	library	correctly,	but	this	does	not	necessarily	mean	that	the
story	is	done.	One	of	our	colleagues	worked	on	such	a	story,	prompted	by
customer	complaints	about	video	quality.	The	completed	story	was	delivered	to
production,	the	team	declared	victory	and	moved	on,	but	the	complaints	kept
coming	in.	The	problem	was	that	the	proposed	solution	(library	upgrade)	looked

good	as	a	prototype,	but	did	not	really	solve	the	video	quality	problems.	Because
of	the	technical	complexity	of	the	story,	the	team	got	lost	in	the	details	and	never
measured	whether	the	overall	solution	was	complete.

This	issue	is	particularly	problematic	for	larger	teams,	or	organisations	where	a
single	story	is	delivered	by	multiple	teams.

Usually	even	when	there	are	overall	tests	that	show	how	individual	parts	of	a
story	come	together,	they	are	still	described	in	terms	of	the	implementation.	For
example,	a	user	story	that	introduces	a	new	report	might	be	broken	down	into
lots	of	small	data	filter	tasks	or	column	calculation	rules,	and	there	would	be	one
overall	test	executing	the	entire	report.	But	another	test	is	needed,	one	that
checks	that	the	benefits	are	actually	delivered	to	the	users.

To	expand	on	this	example,	if	the	initial	assumption	was	that	a	different	report
would	help	users	to	identify	trade	exceptions	faster,	the	final	test	could	create	a
few	historically	recorded	exceptions	and	check	how	quickly	they	can	be
identified	using	the	report.

Key	benefits
When	teams	describe	an	overall	test	through	a	potential	benefit,	rather	than	using
implementation	details,	they	can	spot	missing	functionality	and	bad	solutions.	In
a	sense,	individual	tests	allow	us	to	check	if	we	did	what	we	agreed	to	do,	but
the	overall	benefit	test	checks	if	the	thing	we	agreed	to	do	was	actually	a	good
solution.

For	example,	while	working	on	MindMup,	we	had	a	story	about	enabling
conference	speakers	to	create	storyboards	from	mind	maps.	The	expected	benefit
was	that	speakers	could	use	a	mind	map	to	prepare	the	first	version	of	their
conference	talk	slides.	Because	it	was	a	pretty	big	story,	we	sliced	it	down	into
several	smaller	stories,	then	broke	those	stories	down	into	twenty	or	so	tasks,
and	attached	tests	to	the	tasks.	When	all	the	tests	passed,	theoretically	the	story
was	done.	However,	we	also	had	two	overall	tests.	One	of	them	specified	that	it
should	now	be	possible	to	assemble	a	set	of	slides	for	a	typical	conference
presentation.	Using	my	typical	talks	as	a	guideline,	this	meant	25	to	30	slides,
most	of	them	containing	an	image.	Running	this	test	at	the	end,	we	discovered
that	the	server-side	components	fell	over	due	to	memory	consumption.	We	had
to	go	back	to	the	drawing	board	and	implement	several	new	features,	such	as

image	caching	and	different	work	distribution	between	server	and	client
components,	to	really	complete	the	story.

How	to	make	it	work
Instead	of	just	asking	‘does	it	work?’	when	discussing	overall	story	tests,	ask
‘how	would	you	know	if	it	actually	works	well?’	Try	to	define	what	‘good
enough’	means	in	terms	of	user	capabilities	and	benefits,	without	tying	it	to	a
particular	technical	solution	or	implementation.	In	the	video	teleconferencing
example,	the	overall	benefit	test	could	have	been	expressed	as	an	improved	bit-
rate	or	a	reduction	in	dropped	video	frames	for	a	particular	customer	segment.

In	Fifty	Quick	Ideas	To	Improve	your	User	Stories,	we	propose	that	stories
should	try	to	describe	a	behaviour	change.	If	your	stories	describe	behaviour
changes,	then	design	tests	around	those	changes.	Measure	the	capability	or
potential	to	achieve	such	a	change	before	deployment,	for	example,	can	a
knowledgeable	user	now	discover	trade	exceptions	faster?	Consider	checking
whether	the	benefit	was	actually	delivered	to	real	users	after	the	story	was
shipped	to	production.	Checking	the	benefits	in	actual	use	is	the	final	test	that
can	confirm	whether	the	solution	was	actually	any	good.

Overall	benefits	tests	do	not	necessarily	need	to	be	managed	the	same	way	as	the
other	story	tests.	Even	if	the	expected	benefit	is	completely	deterministic,	you
might	get	more	value	out	of	running	manual	exploratory	tests	around	it	instead
of	automating	the	checks.	Testing	if	something	works	well	often	leads	to
tangential	information	discovery,	and	unattended	automated	execution	won’t
provide	that	learning.

http://www.amazon.com/gp/product/B00OGT2U7M/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00OGT2U7M&linkCode=as2&tag=swingwiki-20&linkId=3M3ZO55CDBNSCOKZ

Quantify	even	if	you	cannot	measure

Qualities	that	are	difficult	to	measure,	such	as	usability	or	performance,	rarely
get	the	testing	attention	they	deserve.	They	are	mostly	inspected	as	an
afterthought,	typically	when	someone	complains.	Even	then,	because	there	is	no
clear	success	criteria,	it’s	difficult	to	prove	that	problems	have	been	completely
fixed.

Teams	often	don’t	even	bother	capturing	or	specifying	stakeholders’	expectations
for	aspects	that	are	difficult	to	test,	apart	from	vague	statements	such	as	‘It	has	to
be	fast’.	Without	a	clear	set	of	expectations,	any	discussions	on	features	or
improvements	become	highly	subjective,	and	different	people	have	different
ideas	about	how	well	the	system	needs	to	perform.	This	leads	to	unchecked
wrong	assumptions,	design	problems,	subjective	arguments	between
stakeholders	and	delivery	team	members	and	generally	a	lot	of
misunderstanding.

Just	because	something	is	difficult	to	test,	we	shouldn’t	give	up	on	capturing	or
expressing	expectations.	If	an	aspect	of	a	system	is	difficult	to	test,	this	should
not	prevent	people	from	discussing	how	well	the	system	needs	to	perform	before
development	starts.	Even	if	you’re	not	going	to	actively	measure	an	important
aspect	of	quality,	try	to	quantify	it.

Key	benefits
Quantifying	important	aspects	of	quality	helps	teams	have	better	design
discussions.	A	requirement	for	the	homepage	of	a	website	to	load	in	under	two
seconds	with	50,000	concurrent	users	needs	a	completely	different	technical
solution	than	a	requirement	to	load	in	under	ten	seconds	when	5,000	people	are
online.	Without	a	clear	quantified	target,	it’s	impossible	to	choose	between	the
two	options,	so	teams	might	end	up	either	delivering	an	underperforming
system,	or	wasting	time	unnecessarily	gold-plating	it.

Even	if	something	can’t	be	measured	easily	or	cheaply	before	delivery,	it	can
often	be	evaluated	cheaply	after	it	is	shipped.	This	can	help	inform	future
product	management	decisions.	For	example,	if	a	team	wanted	to	improve
average	homepage	load	time,	they	could	monitor	actual	system	performance	in
production,	compare	it	to	expectations,	then	come	up	with	a	target	improvement.
If	the	target	improvement	is	quantified,	product	managers	can	decide	easily	if	it
has	been	delivered,	or	if	they	need	to	prioritise	more	performance	improvement
work.	This	helps	to	avoid	over-investing	in	aspects	that	are	already	good	enough.

Finally,	when	an	aspect	of	quality	is	quantified,	teams	can	better	evaluate	the
cost	and	difficulty	of	measuring.	For	example,	we	quantified	a	key	usability
scenario	for	MindMup	as	‘Novice	users	will	be	able	to	create	and	share	simple
mind	maps	in	under	five	minutes’.	Once	the	definition	was	that	clear,	it	turned
out	not	to	be	so	impossible	or	expensive	to	measure	it.	We	often	approach
random	people	at	conferences	and	ask	them	to	try	out	new	versions	of	the
system,	and	measure	how	long	it	takes	them	to	create	and	share	a	simple	map.

How	to	make	it	work
A	good	way	to	start	quantifying	difficult	aspects	is	to	try	to	capture	key
representative	scenarios	that	are	good	indicators	of	speed.	Work	with
stakeholders	to	identify	them.	For	example,	instead	of	just	saying	that	a	website
needs	to	be	fast,	select	scenarios	such	as	initial	access	to	the	homepage,
browsing	and	searching	for	products,	and	checking	out	with	a	shopping	cart.	It’s

likely	that	all	such	scenarios	have	slightly	different	target	performance
requirements.	A	homepage	might	need	to	load	in	less	than	two	seconds,	but
shopping	cart	checkout	might	be	fine	taking	ten	or	fifteen	seconds.	Once	the	key
scenarios	are	identified,	identify	the	conditions	that	might	impact	the	scenarios.
For	example,	the	number	of	concurrent	users	has	a	huge	impact	on	the	cost	of
speeding	up	a	web	page.	Lastly,	work	with	stakeholders	to	capture	their
expectations	under	various	example	conditions.	For	example,	investigate
expected	homepage	load	times	when	5,000	users	are	looking	at	it,	or	when
50,000	suddenly	decide	to	hit	your	site.	It’s	also	useful	to	specify	a	percentage	of
success,	such	as	‘99%	of	the	time’,	or	‘99.999%	of	the	time’.	This	helps	to
establish	good	service	level	agreements	for	production	monitoring.

Another	useful	trick	is	to	try	defining	such	expectations	as	intervals	instead	of
discrete	values.	For	example,	instead	of	saying	that	the	homepage	needs	to	load
in	under	four	seconds,	specify	that	it	should	be	at	least	under	four	seconds	but
does	not	need	to	be	under	two.	This	provides	clarity	for	design	discussions,	so
that	the	team	can	come	up	with	solutions	that	will	scale	nicely.

Once	you	know	the	key	scenarios,	it’s	often	useful	to	gather	competitor	or
market	data	about	them,	as	a	way	of	depersonalising	the	discussions.	It’s	much
easier	to	argue	a	case	for	a	specific	target	if	some	aspect	needs	to	exceed	or
match	the	market	leaders	than	it	is	if	you	are	trying	to	nail	a	target	out	of	the	blue
sky.	A	particularly	good	way	to	start	such	discussions	is	to	use	the	QUPER
model,	which	visually	compares	proposed	solutions	to	market	utility,
differentiation	and	saturation	levels.	For	more	information	on	this,	see	our	book
Fifty	Quick	Ideas	To	Improve	Your	User	Stories	and	quper.org.

http://www.amazon.com/gp/product/B00OGT2U7M/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00OGT2U7M&linkCode=as2&tag=swingwiki-20&linkId=3M3ZO55CDBNSCOKZ
http://quper.org

Organise	test	ideas	using	an	ACC	matrix

In	order	to	deliver	frequently,	teams	need	to	have	a	clear	idea	of	when	it	is	safe
to	release	a	new	version	of	software.	However,	with	frequent	deliveries,	the	time
available	for	testing	is	scarce,	and	it’s	difficult	to	establish	a	clear,	impartial	and
objective	criterion	for	how	much	testing	is	enough.	It’s	easy	to	say	that	all
automated	tests	need	to	pass,	but	teams	rarely	have	a	clear	idea	about	how	much
additional	exploratory	testing	is	required.	To	add	insult	to	injury,	frequent
delivery	pretty	much	guarantees	that	the	system	is	changing	faster	than	it’s
possible	to	keep	test	documentation	up	to	date.

Story	maps	and	impact	maps	lose	value	after	the	related	software	milestone	is
delivered,	but	the	list	of	changes	implemented	as	part	of	the	milestone	needs	to
be	preserved	for	future	regression	testing.	Without	a	good	way	to	capture	that
information,	teams	keep	previous	backlog	plans	lying	around,	and	try	to	manage
exploratory	testing	using	past	work	items.	This	causes	the	same	problems	for
exploratory	testing	as	for	automated	tests,	as	described	in	Avoid	organising	tests

by	work	items.	In	order	to	be	able	to	prioritise	and	coordinate	testing,	we	need
an	effective	way	to	capture	and	organise	information	about	what	the	system	does
now	which	can	easily	incorporate	future	changes.

This	is	where	the	attribute-component-capability	matrix	comes	into	play.	The
attribute-component-capability	(ACC)	matrix	is	a	technique	for	visualising	and
organising	test	ideas	and	risk	information,	developed	by	James	Whittaker	during
his	work	at	Microsoft	and	Google,	and	described	in	How	Google	Tests	Software.
The	ACC	matrix	charts	different	capabilities	in	relation	to	system	components
and	quality	attributes.	It	is	a	table	in	which	columns	have	the	names	of	quality
attributes,	system	components	are	represented	by	rows,	and	system	capabilities
provided	by	the	components	to	satisfy	quality	attributes	sit	in	the	table	cells.	For
example,	in	the	ACC	matrix	for	MindMup	we	capture	the	fact	that	the	Amazon
S3	integration	(component)	allows	users	to	save	simple	mind	maps	without
registering	(capability)	to	make	the	experience	frictionless	(attribute).	The
capability	is	captured	in	a	cell	at	the	intersection	of	the	‘Frictionless’	column	and
the	‘Amazon	S3’	row.

Key	benefits
ACC	is	a	quick	and	iterative	way	to	establish	a	test	plan	that	is	easily
maintainable	in	the	future.	The	list	of	system	components	and	the	set	of	quality
attributes	tend	to	change	much	less	frequently	than	the	related	features,	so	an
ACC	matrix	provides	a	relatively	stable	structure	for	discussions	and
prioritisation.	As	user	stories	are	delivered,	the	related	capabilities	can	easily	be
added	to	the	matrix	if	needed.	The	links	between	components	and	capabilities
help	teams	to	see	where	to	concentrate	their	testing	effort	when	a	part	of	the
system	changes.	For	example,	for	MindMup	we	have	a	policy	of	exploring	all
medium-risk	capabilities	linked	to	any	component	that	changes,	and	all	critical
capabilities	linked	to	other	components.

Because	quality	attributes	and	capabilities	are	easier	to	compare	and	evaluate
than	features,	each	capability	in	an	ACC	matrix	can	have	a	risk	score	agreed	by
multiple	stakeholders.	This	helps	teams	effectively	capture	the	risk	profile	of	a
large	system	and	inform	testing	activities.	Ideally,	the	ACC	matrix	should
describe	at	a	high	level	everything	people	could	test	with	an	infinite	amount	of
time	and	money	available.	Teams	can	then	use	the	matrix	to	create	an	objective,
impartial	criterion	for	what	makes	a	system	releasable	under	a	particular	testing
budget.	Even	better,	rather	than	establishing	only	one	criterion,	an	ACC	matrix

http://www.amazon.com/gp/product/0321803027/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321803027&linkCode=as2&tag=swingwiki-20&linkId=WYCWLUXYCS4C7EZG

also	allows	people	to	quickly	plan	different	testing	activities	around	different
development	cycles.	Teams	can	decide	what	the	criteria	are	for	major	upgrades
and	smaller	releases,	and	what	should	be	done	periodically	to	test	less	risky
items.

How	to	make	it	work
The	biggest	challenge	in	creating	an	ACC	matrix	is	identifying	and	capturing
capabilities.	While	system	attributes	and	components	tend	to	be	easy	to	identify,
capabilities	are	more	difficult.	They	should	be	relatively	high-level,	and	they
might	describe	a	whole	range	of	scenarios.	For	example,	the	capability	of	saving
simple	mind	maps	includes	saving	new	maps,	updating	old	maps,	saving	maps
with	right-to-left	text,	saving	maps	with	images	and	regional	character	sets	and
so	on.	The	key	aspect	of	good	capabilities	is	that	they	are	testable,	but	a	single
capability	shouldn’t	fully	describe	a	test	case.	Avoid	putting	in	specific	data	or
values	in	capabilities.

In	How	Google	Tests	Software,	the	authors	suggest	the	following	guidelines	for
identifying	capabilities:

Write	a	capability	as	an	action,	ideally	from	the	sense	of	a	user
accomplishing	some	task
Provide	enough	information	for	a	tester	to	understand	what	variables	are
involved	in	the	related	test	cases,	and	do	not	aim	to	provide	full	details	of
the	test	cases.
A	capability	should	work	together	with	other	capabilities.	Don’t	aim	to
describe	a	use	case	or	a	user	story	with	a	single	capability.

If	you’re	using	user	story	maps	to	organise	the	backlog	of	work,	the	activities
listed	in	the	backbone	of	the	story	maps	are	a	good	starting	point	for	identifying
capabilities.	If	you’re	using	an	impact	map,	then	investigate	the	behaviours
changed	or	enhanced	by	the	items	on	the	third	level	(impacts)	of	the	map.

http://www.amazon.com/gp/product/0321803027/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321803027&linkCode=as2&tag=swingwiki-20&linkId=WYCWLUXYCS4C7EZG

Use	risk	checklists	for	cross-cutting	concerns

Tests	for	wide	cross-cutting	concerns	are	often	tricky	to	describe,	because	they
generally	apply	across	a	broad	set	of	features.	For	example,	look	and	feel	should
ideally	be	consistent	across	all	input	screens	in	an	application.	Describing	look
and	feel	individually	for	each	form	is	an	overkill,	and	introduces	unnecessary
duplication.	That’s	why	teams	often	put	aspects	such	as	usability	and
performance	outside	the	normal	testing	activities	and	handle	them	separately.

However,	just	testing	such	things	at	a	global	level	causes	teams	to	miss	the
peculiarities	of	how	they	relate	to	a	particular	feature,	and	delay	feedback.	Small
updates	to	features	might	not	pose	a	big	risk	to	cross-cutting	concerns,	so
running	a	whole	set	of	cross-cutting	tests	might	not	be	needed	every	time.	But
some	changes	might	actually	introduce	a	lot	of	risk	and	have	a	huge	impact.
Without	some	kind	of	test	plan,	it’s	almost	impossible	to	evaluate	the	impact	on
a	case-by-case	basis	and	prioritise	tests.	Leaving	global	concerns	to	a	separate
testing	cycle	prevents	teams	from	doing	effective	short	iterative	cycles	that
identify	impacts.

With	cross-cutting	concerns,	the	same	risks	and	test	ideas	apply	to	a	large	set	of
things	to	test,	leading	to	a	lot	of	repetition	and	routine	work,	regardless	of
whether	the	tests	are	automated	or	manual.	In	the	Checklist	Manifesto,	Atul
Gawande	talks	about	the	risks	of	routine	and	repetitive	tasks	in	a	complex
environment,	where	experts	are	up	against	two	main	difficulties.	The	first	is	that

http://www.amazon.com/gp/product/B0030V0PEW/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B0030V0PEW&linkCode=as2&tag=swingwiki-20&linkId=I4HFS4ZKGOZBGBSY

human	memory	and	attention	are	not	that	great.	That’s	why	people	tend	to
overlook	mundane	and	routine	tasks	when	there	is	something	else	that	seems
more	important.	The	second	is	that	people	talk	themselves	into	skipping	steps
under	time	pressure,	even	when	they	remember	them.

Trying	to	capture	all	cross-cutting	concerns	with	deterministic	checks	is	overkill
and	leads	to	too	many	repetitive	tests,	causing	test	maintenance	problems.
Leaving	them	for	manual	testing	requires	good	guidelines	on	what	to	test,	and	a
solid	plan	that	can	be	evaluated	and	reviewed	on	a	case-by-case	basis.	This	is
where	effective	checklists	play	a	crucial	role.

The	big	trick	to	make	such	checklists	work	is	to	avoid	listing	individual	test
scenarios.	Checklists	with	detailed	scenarios	or	steps	grow	too	long	to	be
practical	over	time.	They	cause	people	to	turn	their	brains	off	and	follow	a	set	of
instructions,	instead	of	using	their	expertise	and	intuition	to	prioritise	and	select
risks	to	explore.	The	most	useful	global	checklists	spell	out	the	key	risks,	and
serve	as	a	reminder	for	experts.

Instead	of	describing	individual	test	scenarios,	try	to	name	the	key	risks	in	global
checklists.

Key	benefits
Global	risk	checklists	remind	and	inspire	people	to	explore	the	right	things,	and
prevent	them	from	skipping	critical	risks,	while	allowing	for	individual
variation.	They	allow	teams	to	effectively	prioritise	and	plan	tests	within	short
iterative	cycles.	Teams	can	consider	checklists	in	the	context	of	individual
impacts,	and	decide	which	risks	need	to	be	covered	to	address	overall	concerns
after	a	small	feature	change.	Because	the	checklists	do	not	specify	test	steps,
teams	can	decide	on	the	best	way	to	address	each	risk.	This	leads	to	better
focused	tests,	and	does	not	require	expensive	test	maintenance	for	individual
scenarios.

Having	a	clear	list	of	risks	for	each	cross-cutting	concern	allows	teams	to	speed
up	user	story	discussions.	Instead	of	coming	up	with	the	same	things	over	and
over,	people	can	quickly	go	through	a	checklist	and	discuss	how	the	items	on	it
apply	to	a	particular	feature.	They	can	also	consider	the	risks	in	the	context	of	a
particular	change	and	evaluate	whether	there	are	any	specific	impacts	to	test	for.

An	additional	benefit	of	reviewing	checklists	before	each	user	story	is	that
people	are	more	likely	to	note	problems	and	offer	solutions.	Gawande	quotes
research	from	the	Johns	Hopkins	hospital	in	Baltimore,	where	they	noticed	this
effect	with	using	checklists	for	surgery	procedures.	This	effect	is	known	as	an
‘activation	phenomenon’,	where	giving	people	a	chance	to	say	something	at	the
start	activates	their	sense	of	participation	and	responsibility,	and	their	willingness
to	speak	up.

How	to	make	it	work
Gawande	says	that	good	checklists	should	not	aim	to	be	comprehensive	how-to
guides,	but	need	to	be	‘quick	and	simple	tools	to	buttress	the	skills	of	expert
professionals’.	He	advises	creating	checklists	that	are	five	to	nine	items	long,
because	that	is	the	limit	of	people’s	working	memory.	This	means	that	it’s	better
to	have	several	sets	of	small,	focused	checklists,	instead	of	one	huge	list.	We
tend	to	create	one	checklist	for	each	critical	concern,	and	if	one	of	the	lists
becomes	too	big,	split	it	into	a	set	of	more	focused	lists.	For	example,	an	overall
usability	checklist	for	a	website	would	probably	be	too	long,	but	a	usability
checklist	for	input	forms	rarely	needs	to	be	more	than	ten	items	long.

Avoid	checklists	that	are	used	to	tick	items	off	as	people	work	(Gawande	calls
those	Read-Do	lists).	Instead,	aim	to	create	lists	that	allow	people	to	work,	then
pause	and	review	to	see	if	they	missed	anything	(‘Do-Confirm’	in	Gawande’s
terminology).

Document	trust	boundaries

Complex	systems	often	suffer	from	trust	issues.	When	teams	work	on	small
pieces	of	a	larger	system,	it’s	rarely	easy	to	know	how	much	they	can	trust
components	created	by	other	teams.	If	a	team	trusts	too	much,	they	open
themselves	up	to	code	from	the	other	teams	introducing	weird	issues	that	are
difficult	to	troubleshoot.	If	a	team	trusts	too	little,	they	can	waste	time	on
building	defences	against	threats	that	don’t	exist,	and	testing	features	that	are
already	being	verified	somewhere	else.

For	example,	a	payroll	processing	system	needs	a	list	of	employees	and	their
contractual	salaries	to	calculate	net	payments.	In	a	large	system,	the	employee
data	typically	comes	from	a	component	maintained	by	a	completely	different
team.	If	we	suspect	that	this	component	might	give	us	duplicate	records,	people
without	an	account	number,	or	invalid	salary	amounts,	the	payroll	component
needs	to	be	able	to	identify	problematic	records,	issue	alerts	on	them,	and
provide	some	way	of	resolving	inconsistencies.	All	these	features	need	to	be

properly	tested	as	well.	However,	if	we	know	that	the	other	team	has	things
under	control,	and	that	the	employee	data	is	solid,	then	we	don’t	need	to	discuss
and	specify	how	to	handle	data	problems.	Checking	for	such	conditions	would
be	a	waste	of	time	and	resources.	To	add	insult	to	injury,	it’s	often	the	cross-
component	integration	tests	that	are	the	bulkiest,	the	most	fragile,	the	slowest
and	the	most	expensive	to	maintain.

Trust	boundaries	change	over	time	–	something	that	was	unreliable	can	be
cleaned	up,	and	something	that	we	trusted	implicitly	can	be	messed	up.	When
dependencies	are	managed	by	different	teams,	changes	in	internals	that	might
cause	problems	are	rarely	communicated.	For	example,	the	employee	data
component	might	start	supporting	external	import,	and	suddenly	low-quality	data
might	start	entering	the	system.	The	team	that	manages	the	payroll	component
won’t	know	about	the	change	until	weird	problems	appear	with	payments	and
someone	reports	a	bug.

Trust	problems	can	happen	within	a	single	team,	not	just	across	different	teams.
Developers	usually	know	system	internals	better	than	business	stakeholders,	and
testers	are	typically	more	aware	of	past	problems	than	developers.	These
knowledge	gaps	often	lead	to	different	assumptions	about	potential	problems	and
the	scope	of	development	and	testing.	The	groups	can	have	different	implied
trust	boundaries,	leading	to	much	disagreement	between	business	stakeholders,
testers	and	developers.	Less	trusting	people	are	blamed	for	inventing	impossible
edge	cases	and	nitpicking,	while	more	trusting	team	members	are	blamed	for
being	ignorant	and	not	caring	about	quality.

To	prevent	such	trust	issues,	explicitly	identify	and	document	trust	boundaries	as
a	group,	including	developers,	testers	and	business	stakeholders.	Once	the	trust
boundaries	are	agreed,	it	becomes	easy	to	decide	whether	a	particular	module
needs	strong	defences	and	we	need	to	make	decisions	about	all	sorts	of	weird
data	cases,	or	if	we	can	just	focus	on	the	common	scenarios	and	get	on	with	the
work.

Key	benefits
Identifying	and	documenting	trust	boundaries	allows	teams	to	set	up	a	common
discussion	framework	for	expected	behaviour.	This	helps	to	avoid	unproductive
disagreements	on	whether	people	are	nitpicking	or	ignoring	a	potential	disaster.
It	helps	people	differentiate	between	a	normal	invalid	input	and	a	genuine

unexpected	exception.	Not	only	do	we	avoid	duplicate	tests	and	speed	up
feedback	where	we	can	trust	more,	we	can	also	design	and	build	more	resilient
systems	where	we	have	to	trust	less.

Explicitly	stated	boundaries	allow	teams	to	react	more	effectively	to	unexpected
violations,	because	it	is	easy	to	identify	related	tests	that	need	to	be	revisited.

How	to	make	it	work
Before	starting	a	discussion	on	a	feature	or	a	system	area,	discuss	and	note	down
how	much	you	trust	other	teams	or	third	parties	to	set	the	context.	Then	design
checks	and	specifications	within	the	specified	trust	boundary.	Plan	exploratory
tests	to	probe	the	boundary	and	try	to	break	it,	to	see	if	it	really	holds.

In	Explore	It,	Elisabeth	Hendrickson	advises	running	a	‘what	if?’	question
session	to	probe	boundaries.

It’s	useful	to	put	a	note	about	the	trust	boundary	on	integration	tests	for	future
reference.	When	you	amend	a	test,	investigate	whether	the	documented
boundaries	still	hold.

In	larger	organisations,	it’s	also	a	good	idea	to	set	up	triggers	and	alerts	for	trust
boundary	violations,	so	you	can	at	least	react	appropriately	when	a	different
team	does	something	unexpected.	Some	examples	that	work	well	are	validating
consistency	at	system	boundaries	and	sending	email	notifications	to	developers,
or	raising	alerts	when	unexpected	data	crops	up	in	the	production	environment.

Finally,	watch	out	for	bugs	that	point	to	violations	of	trust	boundaries.	Instead	of
just	fixing	one	such	bug	and	moving	on,	revisit	all	related	tests	around	the	same
boundary	and	see	if	any	other	features	need	to	be	discussed.

http://www.amazon.com/gp/product/1937785025/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1937785025&linkCode=as2&tag=swingwiki-20&linkId=4TTMKJLSHPVU4GZC

Monitor	trends	in	logs	and	consoles

The	internal	workings	of	complex	systems	are	not	easy	to	control	and	analyse,
especially	if	the	developers	working	on	one	part	have	no	influence	over	other
parts.	This	is	why	it	will	never	be	possible	to	specify	a	complete	set	of	tests	for	a
complex	system.	We	never	know	what	else	is	there,	and	what	unexpected
variables	might	cause	problems.	Small	changes	don’t	necessarily	manifest
immediately,	but	compound	effects	can	be	huge.	And	such	compound	effects	are
particularly	tricky	to	analyse,	because	combined	symptoms	are	often	misleading,
and	one	person	seldom	has	the	entire	picture.	And,	of	course,	compound
problems	tend	to	show	up	at	the	worst	possible	moment.

A	year	or	so	ago,	Gojko	had	a	relatively	long	stop-over	between	two	flights	in
Paris,	planning	to	use	it	to	grab	some	decent	food	in	the	city.	But	the	Internet
pixies	had	other	plans.	As	soon	as	Gojko	turned	on	his	phone	after	landing,	a	ton
of	email	alerts	and	customer	complaints	came	through.	Instead	of	a	hot	lunch	at
a	nice	quiet	restaurant,	he	ended	up	hot-fixing	a	production	system	in	a	noisy,

crowded	airport.	Weird,	complex	problems	somehow	always	show	up	at	the
worst	possible	moment.	MindMup	integration	with	Google	Drive	Realtime	API
had	mysteriously	stopped	working,	without	any	changes	on	our	side,	and	an
unstable	airport	wifi	made	troubleshooting	particularly	difficult.	At	the	end,	it
turned	out	that	two	event	notifications	were	now	being	fired	differently,	and	the
system	interpreted	the	new	sequence	wrongly	as	lack	of	privileges	to	access
files.

Although	it’s	easy	to	blame	a	third	party	for	changing	their	API	without	telling
anyone,	in	retrospect	there	was	no	need	for	this	to	cause	a	huge	outage.	In	fact,
we	had	had	plenty	of	warnings	but	we	had	just	ignored	them.	We	monitor	end-
user	errors	and	warnings	to	check	for	unexpected	problems,	and	there	had	been
occasional	spikes	of	privilege	errors	with	the	Realtime	API	over	the	previous
month,	but	we	had	just	dismissed	them	as	people	trying	to	access	files	without
being	logged	in.	The	fact	that	they	were	spikes	probably	meant	it	was	the	API
developers	gradually	releasing	the	new	version	of	their	software	and	fixing	it.	If
we	had	known	what	to	look	for,	the	problem	was	perfectly	preventable.

Many	systems	have	logs,	monitoring	consoles	or	automated	end-user	error
reports,	but	these	are	mostly	used	for	troubleshooting	and	diagnostics	when	users
report	problems.	To	prevent	really	tricky	compound	problems	from
accumulating,	review	such	system	outputs	periodically,	or	monitor	them	using
automated	tools	to	look	for	unexpected	trends.	Look	for	errors,	exception	stack
traces	or	warnings	in	system	logs	and	consoles	during	testing.	Read	through	the
production	logs	occasionally	even	if	you’re	not	looking	for	a	particular	problem,
just	to	see	if	there	is	something	unusual	going	on.	You	might	spot	early	signs	of
trouble	before	anyone	else.	For	example,	after	the	airport	hot-fixing	episode,	we
created	a	monitoring	system	for	error	spikes.	Six	months	later,	it	warned	us
about	strange	Dropbox	integration	errors.	We	caught	a	change	in	their	API	and
fixed	it	before	any	of	our	users	started	complaining.

Key	benefits
Apart	from	early	warnings	about	potential	compound	problems,	system	logs	and
consoles	are	often	the	only	reliable	source	of	information	about	what	really	goes
on	in	complex	workflows	or	systems	with	many	components.	Tracing	through	a
log	can	provide	useful	insights	on	what	else	needs	to	be	checked	or	explored
after	a	software	change.	A	client	of	ours	was	extending	a	financial	trading
platform	built	by	a	third	party,	and	they	were	never	sure	which	platform	services

were	involved	in	the	workflows	that	had	to	be	modified.	We	would	run	a	trade
through	the	system,	and	then	inspect	system	logs	to	see	which	services	printed
log	notifications.	This	helped	us	catch	unforeseen	impacts	many	times.	Logs	and
consoles	can	provide	fantastic	insights	about	what	additional	tests	you	need	to
write.

How	to	make	it	work
Many	infrastructural	components	and	tools	today	come	with	ready-made
consoles.	For	example,	all	popular	browsers	have	a	JavaScript	console
(sometimes	called	error	console),	and	most	server	software	has	some	kind	of
troubleshooting	console	you	can	connect	to	using	TCP.	Servers	also	often
support	a	way	to	remotely	capture	logs.	Whenever	possible,	have	a	system
console	or	log	monitor	open	during	exploratory	testing,	and	try	to	read	through
the	outputs	caused	by	your	actions.	There	will	probably	be	a	lot	of	garbage	there,
but	you	will	at	least	learn	what	to	expect	and	be	able	to	spot	new	trends	or	events
out	of	the	normal.

For	automated	tests,	it’s	more	useful	to	keep	an	eye	on	file	sizes.	For	example,	if
a	test	suite	run	normally	generates	20	KB	of	logs,	and	the	most	recent	execution
dumped	200	KB,	something	important	changed.	Maybe	the	change	is	perfectly
OK,	but	it	deserves	investigating.	Error	stack	traces	tend	to	be	long,	so	they
stand	out	easily.

Any	but	the	most	trivial	systems	built	today	involve	multiple	components	and
networking,	so	they	are	designed	to	be	fault	tolerant	and	some	errors	are	normal.
For	example,	a	web	system	might	log	database	access	errors	and	reconnect
automatically.	Production	logs	have	some	normal	error	log	trends,	so	early
warnings	about	unexpected	complex	faults	can	be	difficult	to	spot.	A	good	trick
to	make	them	stand	out	is	to	log	all	exceptions,	errors	and	warnings	and	break
them	down	into	groups	for	monitoring.	That	way	it’s	easy	to	spot	unusual	trends.
For	example,	the	monitoring	console	for	MindMup	shows	errors	grouped	by
external	API	used,	and	we	show	the	number	of	errors,	number	of	timeouts	and
number	of	total	requests	each	day.	Due	to	networking,	browser	issues	and	a	ton
of	other	factors	outside	of	our	control,	some	small	percentage	of	requests	will
fail	or	time	out	each	day.	But	if	one	of	those	figures	starts	growing	differently
from	the	others,	we	know	there	is	a	problem	to	investigate.

Mob	your	test	sessions

When	planning	or	designing	tests,	a	single	person	can	think	of	many	scenarios.
However,	any	individual	quickly	finds	diminishing	returns	in	generating
valuable	new	ideas	for	tests.	We	tend	to	lean	towards	the	same	techniques	and
types	of	tests	(we	can’t	help	thinking	the	way	we	think),	covering	one	class	of
risks	well,	but	not	others.	It	becomes	an	exercise	in	creating	remote	edge	cases
that	have	little	practical	value	in	terms	of	risk	mitigation.

The	same	can	be	true	for	running	testing	sessions.	A	single	person’s	gaze	is
naturally	drawn	to	the	specific	thing	under	test,	making	it	hard	to	see	other
simultaneous	behaviours	in	the	product.	A	pair	provides	wider	visibility,	but	the
partner	is	likely	to	be	drawn	into	focusing	on	the	same	goal.	Also,	in	many
paired	sessions,	the	person	who	isn’t	actively	testing	is	scribing	notes	and
observing	what	the	active	person	is	doing.	This	consumes	time	and	brain	power.

Instead	of	working	alone,	try	running	a	mobbed	testing	session.	Involve	a	group
of	people,	maybe	your	whole	team	or	a	wider	group	including	members	from

other	teams	or	other	stakeholders.

Use	mobbed	test	design	to	generate	lots	of	test	ideas	rapidly,	which	can	be	easily
distilled	down	to	the	most	valuable	tests	for	automating.	Or	use	it	in	exploratory
sessions	for	fast	group	feedback	and	spotting	directional	changes	needed,
assessment	of	multiple	areas	and	getting	powerful	consensus	on	risks	and
quality.

Key	Benefits
This	approach	generates	lots	of	ideas	for	tests	very	quickly,	much	more	quickly
than	an	individual	or	pair	can.	This	diversity	of	thought	results	in	a	far	greater
range	of	coverage.	Mobbed	test	design	provides	the	fastest	possible	feedback
and	identification	of	directional	changes	needed	so	that	you	are	always
addressing	the	biggest	risks	and	extracting	the	most	valuable	information.

With	a	mob,	you	have	the	ability	to	diverge	into	multiple	strands	when	more
than	one	avenue	of	exploration	opens	up	and	then	merge	again,	all	within	the
same	session.	An	interesting	effect	we’ve	found	involving	people	outside	the
immediate	team	is	that	their	lack	of	prior	knowledge	allows	for	some	freer	and
more	radical	test	design,	uncovering	information	and	defects	that	would	never
have	been	found	by	the	smaller	team.

Mobbed	testing	sessions	are	also	a	good	way	of	opening	up	more	cross-team	and
departmental	collaboration,	improving	relationships	and	increasing	the	exchange
of	approaches	and	ideas.

How	to	make	it	work
Start	with	the	scope	and	purpose	of	the	session.	Is	it	for	a	specific	feature,	user
story,	defect	or	area	of	weakness	in	the	system,	or	is	it	product	wide?

Decide	on	an	appropriate	level	of	preparation	for	the	session:	details	about	the
requirement,	acceptance	criteria,	the	design,	the	test	environment	and	data
concerns,	the	information	objectives,	and	so	on.

Decide	who	to	invite:	the	whole	team,	customer	representatives,	another	team,
sales	or	marketing	(remember	diversity	breeds	fresh	ideas).	Think	about	the
number	of	people,	how	to	arrange	the	area	to	engage	everyone,	how	to	structure
and	facilitate	the	session.	The	majority	of	mobbed	sessions	we’ve	attended	have

involved	between	four	and	eight	people.	They	can	still	work	well	with	as	many
as	20	to	30	people,	though	for	a	larger	number	think	about	diverging	into	smaller
groups	and	merging	again	to	ensure	information	is	collected	and	shared.	Smaller
sessions	allow	for	more	informality	and	a	more	natural	sharing	of	feedback.	In
any	case	set	clear	information	objectives	and	a	time-	box	to	give	some	bounds
and	direction.

Start	by	explaining	the	requirement,	product,	feature,	problem	statement,	design
and	any	other	useful	context	to	get	everyone	involved	up	to	speed.

For	a	test	design	session	just	start	coming	up	with	test	ideas,	don’t	try	to	remove
duplicates	or	theme	them	too	early,	leave	this	to	the	end	so	as	not	constrain
people.	Keep	people	thinking	of	ideas	for	slightly	longer	than	seems
comfortable.	After	quickly	generating	the	most	obvious	ideas,	people	will	start
to	dry	up.	If	you	let	them	think	for	a	bit	longer,	rather	than	stopping	straight
away,	some	unusual	but	potentially	very	valuable	ideas	will	almost	certainly
emerge,	exposing	new	risks,	requirement	gaps	or	design	limitations.	Collect	all
the	ideas	generated	then	group,	refine	and	risk-prioritise	them	(likelihood	and
impact).	Use	these	to	drive	development.

Experiment	with	the	format	of	your	mobbed	testing	sessions.	Many	start	by
someone	giving	a	tour	of	the	feature,	working	through	some	typical	routes	while
the	supporting	cast	observe,	take	notes,	request	information	and	flag	areas	for
investigation.	It	becomes	more	interesting	when	the	mob	requests	closer
inspection	of	something.	For	example	someone	tries	to	run	a	report	that
demonstrates	a	newly	designed	test,	and	the	report	doesn’t	contain	the	expected
information.	The	group	calls	out	additional	test	ideas	to	try	out.	Some	may	split
off	to	investigate	possible	causes	in	the	code	or	the	group	might	split	in	two	to
follow	up	on	different	lines	of	enquiry.

The	larger	group	size	allows	exploration	of	different	ideas	and	testing	many
theories	within	the	bounds	of	a	single	session,	whilst	keeping	constant
communication	with	each	other	and	merging	periodically	to	align	to	the	session
objectives.

Consider	having	a	whiteboard	to	scribe	notes	and	ideas	down	on.	A	single
notepad	does	not	allow	communication	of	ideas	as	easily	for	a	large	group.

Don’t	let	the	pen	be	the	bottleneck

Sometimes	specification	workshops	are	less	like	collaborative	brainstorming	and
more	like	lectures,	with	one	‘expert’	doing	all	the	talking	and	writing,	and	others
standing	around	watching.	This	can	be	quite	off-putting	and	prevent	people	from
engaging.

This	also	happens	by	accident	when	the	person	leading	the	walkthrough	of
stories	has	over-prepared	for	the	session,	for	example,	they	might	have	already
designed	the	key	examples	and	then	present	them	to	the	team	at	the	group
session.	When	they	want	these	examples	to	be	scrutinised	and	challenged,	they
actually	find	that	the	other	attendees	don’t	offer	constructive	criticism	because	it
appears	that	the	specification	has	already	been	finished.

Whatever	the	reason,	when	there	is	a	single	pen	being	wielded	by	one	person,	it
can	be	very	difficult	for	a	group	to	get	into	the	flow	of	collaboration,	idea
generation	and	constructive	criticism.

If	this	happens	at	your	specification	workshops,	give	everyone	a	pen	so	that	they
can	write	on	the	whiteboard	or	flipchart,	and	encourage	them	all	to	stand	within
writing	range	of	the	board.	As	soon	as	someone	has	an	idea,	they	can	get	it	out	in
the	open	for	everyone	to	see,	understand,	build	upon	or	improve.

Key	benefits
This	idea	is	especially	useful	for	overcoming	‘alpha	dog’	behaviour,	where	one
person	tends	to	dominate	the	discussions,	limiting	the	opportunity	for	other
members	to	contribute	or	challenge	ideas.	Simply	giving	everyone	a	pen	can
level	the	playing	field	and	make	everyone	feel	equally	entitled	to	contribute	their
views	and	ideas.

By	giving	everyone	the	mechanism	to	write	their	ideas	down	quickly,	the
differences	between	assumptions	from	different	people	become	more	visible.
Changes	and	crossed-out	values	are	evidence	that	our	first	thoughts	were	not
correct,	or	that	there	was	disagreement	or	a	lack	of	shared	understanding	in	the
group.	These	are	exactly	the	areas	and	examples	that	merit	deeper	examination
or	discussion,	as	these	conflicts	and	disagreements	are	pointers	to	areas	of	risk	in
our	feature,	and	need	to	be	resolved.

This	also	helps	the	collaboration	process	to	become	much	quicker	and	more
productive.	One	person’s	idea	or	example	immediately	sparks	thoughts	in	other
people’s	minds,	and	they	can	enhance	the	idea	or	fine-tune	the	details	quickly
themselves,	without	having	to	give	instructions	to	the	person	with	the	pen.

How	to	make	it	work
When	you	hold	a	specification	workshop,	always	start	with	a	low-tech	medium,
such	as	whiteboards	or	flipcharts,	and	transfer	your	cleaned-up	results	to	a	tool
later.	Our	thinking	about	a	problem	is	influenced	by	the	medium	we	use	to
capture	our	ideas	and	examples.	When	people	use	a	word	processor,	they	tend	to
be	verbose	and	use	fewer	concrete	examples,	because	tables	can	be	a	hassle	to
create.	When	using	Excel,	teams	have	the	opposite	problem.	They	try	to	make
relationships	formulaic	and	avoid	descriptions,	because	composing	and
formatting	text	nicely	is	a	hassle.

For	workshops	involving	larger	groups,	split	the	team	into	at	least	two	groups.
We	find	that	limiting	each	group	to	three	or	four	people,	ideally	with	a	mix	of
roles	in	each,	gives	the	best	results.	Each	group	can	work	on	the	same	problem
independently,	then	reconvene	to	compare	progress	and	ideas.

Give	each	person	a	different	coloured	pen	(but	avoid	light	colours	that	are	harder
to	see).	If	you	are	using	regular	whiteboards,	keep	a	stock	of	working
whiteboard	pens,	as	fading	pens	are	a	great	source	of	frustration	when	people	are

trying	to	get	the	discussion	going.	Fine-point	Sharpies	are	good	for	flipcharts	or
portable	whiteboard	sheets,	and	are	sometimes	a	better	alternative	than
whiteboard	pens,	as	using	them	keeps	the	signs	of	battle	visible.	If	you	are	using
whiteboard	pens,	encourage	people	to	cross	values	out	initially	rather	than
erasing	them,	for	this	reason.

Make	sure	each	person	has	enough	room	to	see	and	access	the	whiteboard	or
flipchart	easily.	This	is	another	reason	why	small	groups	work	best.	Even	when
everyone	is	standing	up,	if	there	are	five	or	more	people,	someone	can	end	up
being	on	the	periphery	and	perhaps	less	engaged	in	the	discussion.

Encourage	multi-tasking	to	find	a	lot	of	examples	quickly:	discuss	the	first	few
cases	together,	but	as	you	get	into	the	flow,	let	people	add	new	examples
simultaneously.	Once	everyone’s	ideas	have	been	captured,	pause	the	group	and
check	for	duplication	and	conflicts	to	identify	key	examples.

Try	silent	reviews:	when	your	sheet	is	full	of	examples,	silently	review	your
work	and	consider	what	needs	correcting	or	improving,	or	which	examples	are
not	as	informative	as	the	others,	and	mark	these	with	your	pen.	Discuss	them
when	everyone	has	had	time	to	think	for	themselves.

Finally,	remember	that	even	the	shape	of	the	blank	space	in	front	of	us	influences
the	way	we	fill	that	space.	For	example,	when	we	conduct	training,	and	give
different	groups	the	same	problem	to	discuss,	those	groups	given	a	landscape-
oriented	flipchart	sheet	tend	to	create	examples	using	a	sequence	style	(‘A	then
B	then	C’),	those	given	a	portrait-oriented	sheet	tend	to	create	tables	with	only	a
few	columns,	and	those	given	a	large	whiteboard	often	create	a	comprehensive
matrix	of	possibilities,	simply	because	the	space	encourages	it.	Change	the
orientation	of	your	flipchart	paper	and	see	if	that	leads	to	subtle	changes	in	the
way	you	express	your	examples.

Snoop	on	the	competition

As	a	general	rule,	teams	focus	the	majority	of	testing	activities	on	their	zone	of
control,	on	the	modules	they	develop,	or	the	software	that	they	are	directly
delivering.	But	it’s	just	as	irresponsible	not	to	consider	competition	when
planning	testing	as	it	is	in	the	management	of	product	development	in	general,
whether	the	field	is	software	or	consumer	electronics.

Software	products	that	are	unique	are	very	rare,	and	it’s	likely	that	someone	else
is	working	on	something	similar	to	the	product	or	project	that	you	are	involved
with	at	the	moment.	Although	the	products	might	be	built	using	different
technical	platforms	and	address	different	segments,	key	usage	scenarios
probably	translate	well	across	teams	and	products,	as	do	the	key	risks	and	major
things	that	can	go	wrong.

When	planning	your	testing	activities,	look	at	the	competition	for	inspiration	–
the	cheapest	mistakes	to	fix	are	the	ones	already	made	by	other	people.	Although

it	might	seem	logical	that	people	won’t	openly	disclose	information	about	their
mistakes,	it’s	actually	quite	easy	to	get	this	data	if	you	know	where	to	look.

Teams	working	in	regulated	industries	typically	have	to	submit	detailed	reports
on	problems	caught	by	users	in	the	field.	Such	reports	are	kept	by	the	regulators
and	can	typically	be	accessed	in	their	archives.	Past	regulatory	reports	are	a
priceless	treasure	trove	of	information	on	what	typically	goes	wrong,	especially
because	of	the	huge	financial	and	reputation	impact	of	incidents	that	are
escalated	to	such	a	level.

For	teams	that	do	not	work	in	regulated	environments,	similar	sources	of	data
could	be	news	websites	or	even	social	media	networks.	Users	today	are	quite
vocal	when	they	encounter	problems,	and	a	quick	search	for	competing	products
on	Facebook	or	Twitter	might	uncover	quite	a	few	interesting	testing	ideas.

Lastly,	most	companies	today	operate	free	online	support	forums	for	their
customers.	If	your	competitors	have	a	publicly	available	bug	tracking	system	or
a	discussion	forum	for	customers,	sign	up	and	monitor	it.	Look	for	categories	of
problems	that	people	typically	inquire	about	and	try	to	translate	them	to	your
product,	to	get	more	testing	ideas.

For	high-profile	incidents	that	have	happened	to	your	competitors,	especially
ones	in	regulated	industries,	it’s	often	useful	to	conduct	a	fake	post-mortem.
Imagine	that	a	similar	problem	was	caught	by	users	of	your	product	in	the	field
and	reported	to	the	news.	Try	to	come	up	with	a	plausible	excuse	for	how	it
might	have	happened,	and	hold	a	fake	retrospective	about	what	went	wrong	and
why	such	a	problem	would	be	allowed	to	escape	undetected.	This	can	help	to
significantly	tighten	up	testing	activities.

Key	benefits
Investigating	competing	products	and	their	problems	is	a	cheap	way	of	getting
additional	testing	ideas,	not	about	theoretical	risks	that	might	happen,	but	about
things	that	actually	happened	to	someone	else	in	the	same	market	segment.	This
is	incredibly	useful	for	teams	working	on	a	new	piece	of	software	or	an
unfamiliar	part	of	the	business	domain,	when	they	can’t	rely	on	their	own
historical	data	for	inspiration.

Running	a	fake	post-mortem	can	help	to	discover	blind	spots	and	potential
process	improvements,	both	in	software	testing	and	in	support	activities.	High-

profile	problems	often	surface	because	information	falls	through	the	cracks	in	an
organisation,	or	people	do	not	have	sufficiently	powerful	tools	to	inspect	and
observe	the	software	in	use.	Thinking	about	a	problem	that	happened	to	someone
else	and	translating	it	to	your	situation	can	help	establish	checks	and	make	the
system	more	supportable,	so	that	problems	do	not	escalate	to	that	level.	Such
activities	also	communicate	potential	risks	to	a	larger	group	of	people,	so
developers	can	be	more	aware	of	similar	risks	when	they	design	the	system,	and
testers	can	get	additional	testing	ideas	to	check.

The	post-mortem	suggestions,	especially	around	improving	the	support
procedures	or	observability,	help	the	organisation	to	handle	‘black	swans’	–
unexpected	and	unknown	incidents	that	won’t	be	prevented	by	any	kind	of
regression	testing.	We	can’t	know	upfront	what	those	risks	are	(otherwise	they
wouldn’t	be	unexpected),	but	we	can	train	the	organisation	to	react	faster	and
better	to	such	incidents.	This	is	akin	to	government	disaster	relief	organisations
holding	simulations	of	floods	and	earthquakes	to	discover	facilitation	and
coordination	problems.	It’s	much	cheaper	and	less	risky	to	discover	things	like
this	in	a	safe	simulated	environment	than	learn	about	organisational	cracks	when
the	disaster	actually	happens.

How	to	make	it	work
When	investigating	support	forums,	look	for	patterns	and	categories	rather	than
individual	problems.	Due	to	different	implementations	and	technology	choices,
it’s	unlikely	that	third-party	product	issues	will	directly	translate	to	your
situation,	but	problem	trends	or	areas	of	influence	will	probably	be	similar.

One	particularly	useful	trick	is	to	look	at	the	root	cause	analyses	in	the	reports,
and	try	to	identify	similar	categories	of	problems	in	your	software	that	could	be
caused	by	the	same	root	causes.

DESIGNING	GOOD	CHECKS

Focus	on	key	examples

User	stories	need	clear,	precise	and	testable	acceptance	criteria	so	that	they	can
be	objectively	measured.	At	the	same	time,	regardless	of	how	many	scenarios
teams	use	for	testing,	there	are	always	more	things	that	can	be	tested.	It	can	be
tempting	to	describe	acceptance	criteria	with	loads	of	scenarios,	and	look	at	all
possible	variations	for	the	sake	of	completeness.	Although	trying	to	identify	all
possible	variations	might	seem	to	lead	to	more	complete	testing	and	better
stories,	this	is	a	sure	way	to	destroy	a	good	user	story.

Because	fast	iterative	work	does	not	allow	time	for	unnecessary	documentation,
acceptance	criteria	often	doubles	as	a	specification.	If	this	specification	is
complex	and	difficult	to	understand,	it	is	unlikely	to	lead	to	good	results.
Complex	specifications	don’t	invite	discussion.	People	tend	to	read	such
documents	alone	and	selectively	ignore	parts	which	they	feel	are	less	important.
This	does	not	really	create	shared	understanding,	but	instead	just	provides	an
illusion	of	precision	and	completeness.

Here	is	a	typical	example	(this	one	was	followed	by	ten	more	pages	of	similar
stuff):

The	team	that	implemented	the	related	story	suffered	from	a	ton	of	bugs	and
difficult	maintenance,	largely	caused	by	the	way	they	captured	examples.	A	huge
list	such	as	this	one	is	not	easy	to	break	into	separate	tasks.	This	means	that	only
one	pair	of	developers	could	work	on	it	instead	of	sharing	the	load	with	others.
Because	of	this,	the	initial	implementation	of	underlying	features	took	a	few
weeks.	There	was	so	much	complexity	in	the	scenarios,	but	nobody	could	say	if
they	painted	the	complete	picture.	Because	the	list	of	scenarios	was	difficult	to
understand,	automated	tests	did	not	give	business	users	any	confidence,	and	they
had	to	spend	time	manually	testing	the	story	as	well.	The	long	list	of	scenarios
gave	the	delivery	team	a	false	sense	of	completeness,	so	it	prevented	them	from
discussing	important	boundary	conditions	with	business	stakeholders.	Several
important	cases	were	interpreted	by	different	people	in	different	ways.	This
surfaced	only	after	a	few	weeks	of	running	in	production,	when	someone	spotted
increased	transaction	costs.

Although	each	individual	scenario	might	seem	understandable,	pages	and	pages
of	this	sort	of	stuff	make	it	hard	to	see	the	big	picture.	These	examples	try	to

show	how	to	select	a	payment	processor,	but	the	rules	aren’t	really	clear	from	the
examples.	The	objective	was	to	send	low-risk	transactions	to	a	cheaper
processor,	and	high-risk	transactions	to	a	more	expensive	processor	with	better
fraud	controls.

An	overly	complex	specification	is	often	a	sign	that	the	technical	model	is
misaligned	with	the	business	model,	or	that	the	specification	is	described	at	the
wrong	level	of	abstraction.	Even	when	correctly	understood,	such	specifications
lead	to	software	that	is	hard	to	maintain,	because	small	changes	in	the	business
environment	can	lead	to	disproportionately	huge	changes	in	the	software.

For	example,	important	business	concepts	such	as	transaction	risk	score,
processor	cost	or	fraud	capabilities	were	not	captured	in	the	examples	for
payment	routing.	Because	of	this,	small	changes	to	the	business	rules	required
huge	changes	to	a	complex	network	of	special	cases	in	the	software.	Minor
adjustments	to	risk	thresholds	led	to	a	ton	of	unexpected	consequences.	When
one	of	the	processors	with	good	fraud-control	capabilities	reduced	prices,	most
of	the	examples	had	to	change	and	the	underlying	functions	were	difficult	to
adjust.	That	means	that	the	organisation	couldn’t	take	advantage	of	the	new
business	opportunity	quickly.

Instead	of	capturing	complex	scenarios,	it	is	far	better	to	focus	on	illustrating
user	stories	with	key	examples.	Key	examples	are	a	small	number	of	relatively
simple	scenarios	that	are	easy	to	understand,	evaluate	for	completeness	and
critique.	This	doesn’t	mean	throwing	away	precision	–	quite	the	opposite	–	it
means	finding	the	right	level	of	abstraction	and	the	right	mental	model	that	can
describe	a	complex	situation	better.

The	payment	routing	case	could	be	broken	down	into	several	groups	of	smaller
examples.	One	group	would	show	transaction	risk	based	on	the	country	of
residence	and	country	of	purchase.	Another	group	of	examples	would	describe
how	to	score	transactions	based	on	payment	amount	and	currency.	Several	more
groups	of	examples	would	describe	other	transaction	scoring	rules,	focused	only
on	the	relevant	characteristics.	One	overall	set	of	examples	would	describe	how
to	combine	different	scores,	regardless	of	how	they	were	calculated.	A	final
group	of	examples	would	describe	how	to	match	the	risk	score	with	compatible
payment	processors,	based	on	processing	cost	and	fraud	capabilities.	Each	of
these	groups	might	have	five	to	ten	important	examples.	Individual	groups
would	be	much	easier	to	understand.	Taken	together,	these	key	examples	would

allow	the	team	to	describe	the	same	set	of	rules	much	more	precisely	but	with	far
fewer	examples	than	before.

Key	benefits
Several	simple	groups	of	key	examples	are	much	easier	to	understand	and
implement	than	a	huge	list	of	complex	scenarios.	Smaller	groups	make	it	easier
to	evaluate	completeness	and	argue	about	boundary	conditions,	so	they	allow
teams	to	discover	and	resolve	inconsistencies	and	differences	in	understanding.

Breaking	down	complex	examples	into	several	smaller	and	focused	groups	leads
to	more	modular	software,	which	reduces	future	maintenance	costs.	If	the
transaction	risk	was	modelled	with	examples	of	individual	scoring	rules,	that
would	give	a	strong	hint	to	the	delivery	team	to	capture	those	rules	as	separate
functions.	Changes	to	an	individual	scoring	threshold	would	not	impact	all	the
other	rules.	This	would	avoid	unexpected	consequences	when	rules	change.
Changing	the	preferred	processor	when	they	reduce	prices	would	require	small
localised	changes	instead	of	causing	weeks	of	confusion.

Describing	different	aspects	of	a	story	with	smaller	and	focused	groups	of	key
examples	allows	teams	to	divide	work	better.	Two	people	can	take	the	country-
based	scoring	rules,	two	other	people	could	implement	routing	based	on	final
score.	Smaller	groups	of	examples	also	become	a	natural	way	of	slicing	the	story
–	some	more	complex	rules	could	be	postponed	for	a	future	iteration,	but	a	basic
set	of	rules	could	be	deployed	in	a	week	and	provide	some	useful	business	value.

Finally,	focusing	on	key	examples	significantly	reduces	the	sheer	volume	of
scenarios	that	need	to	be	checked.	Assuming	that	there	are	six	or	seven	different
scoring	rules	and	that	each	has	five	key	examples,	the	entire	process	can	be
described	with	roughly	eighty	thousand	examples	(five	to	the	power	of	seven).
Breaking	it	down	into	groups	would	allow	us	to	describe	the	same	concepts	with
forty	or	so	examples	(five	times	seven,	plus	a	few	overall	examples	to	show	that
the	rules	are	connected	correctly).	This	significantly	reduces	the	time	required	to
describe	and	discuss	the	examples.	It	also	makes	the	testing	much	faster,	whether
it	was	automated	or	manual.	Clearer	coverage	of	examples	and	models	also
provide	a	much	better	starting	point	for	any	further	exploratory	testing.

How	to	make	it	work

The	most	important	thing	to	remember	is	that	if	the	examples	are	too	complex,
your	work	on	refining	a	story	isn’t	complete.	There	are	many	good	strategies	for
dealing	with	complexity.	Here	are	four	that	we	often	use:

Look	for	missing	concepts
Group	by	commonality	and	focus	only	on	variations
Split	validation	and	processing
Summarise	and	explore	important	boundaries

Overly	complex	examples,	or	too	many	examples,	are	often	a	sign	that	some
important	business	concepts	are	not	explicitly	described.	In	the	payment	routing
examples,	transaction	risk	is	implied	but	not	explicitly	described.	Discovering
these	concepts	allows	teams	to	offer	alternative	models	and	break	down	both	the
specification	and	the	overall	story	into	more	manageable	chunks.	We	can	use	one
set	of	examples	to	describe	how	to	calculate	the	risk	score,	and	another	for	how
to	use	a	score	once	it	is	calculated.

Avoid	mixing	validation	and	usage	–	this	is	a	common	way	of	hiding	business
concepts.	For	example,	teams	often	use	the	same	set	of	examples	to	describe
how	to	process	a	transaction	and	all	the	ways	to	reject	a	transaction	without
processing	(card	number	in	incorrect	format,	invalid	card	type	based	on	first	set
of	digits,	incomplete	user	information	etc).	The	hidden	business	concept	in	that
case	is	‘valid	transaction’.	Making	this	explicit	would	allow	splitting	a	single
large	set	of	complex	examples	into	two	groups	–	determining	whether	a
transaction	is	valid,	and	working	with	a	valid	transaction.	These	groups	can	then
be	broken	down	further	based	on	structure.

Long	lists	of	examples	often	contain	groups	that	are	similar	in	structure	or	have
similar	values.	In	the	payment	routing	story,	there	were	several	pages	of
scenarios	with	card	numbers	and	country	of	purchase,	a	cluster	of	examples
involving	two	countries	(residence	and	delivery,	and	some	scenarios	where	the
value	of	a	transaction	was	important.	Identifying	commonalities	in	structure	is
often	a	valuable	first	step	for	discovering	meaningful	groups.	Each	group	can
then	be	restructured	to	show	only	the	important	differences	between	examples,
reducing	the	cognitive	load.

The	fourth	good	strategy	is	to	identify	important	boundary	conditions	and	focus
on	them,	ignoring	examples	that	do	not	increase	our	understanding.	For	example,

if	50	USD	is	the	risk	threshold	for	low-risk	countries,	and	25	USD	for	high-risk
countries,	then	the	important	boundaries	are:

24.99	USD	from	a	high-risk	country
25	USD	from	a	high-risk	country
25	USD	from	a	low-risk	country
49.99	USD	from	a	low-risk	country
50	USD	from	a	low-risk	country

A	major	problem	causing	overly	complex	examples	is	the	misunderstanding	that
testing	can	somehow	be	completely	replaced	by	a	set	of	carefully	chosen
examples.	For	most	situations	we’ve	seen,	this	is	a	false	premise.	Checking
examples	can	be	a	good	start,	but	there	are	still	plenty	of	other	types	of	tests	that
are	useful	to	do.

Don’t	aim	to	fully	replace	testing	with	examples	in	user	stories	–	aim	to	create	a
good	shared	understanding,	and	give	people	the	context	to	do	a	good	job.	Five
examples	that	are	easy	to	understand	and	at	the	right	level	of	abstraction	are
much	more	effective	for	this	than	hundreds	of	very	complex	test	cases.

Contrast	examples	with	counter-examples

Specification	by	example	requires	us	to	collaboratively	discuss	and	explore	the
key	examples	that	demonstrate	how	a	desired	feature	should	behave	in	different
scenarios.	The	examples	we	choose	are	extremely	important,	as	they	must
demonstrate	the	essence	of	the	business	rules	of	the	feature.	However,	no	matter
how	accurate	or	appropriate	our	examples,	they	will	become	more	powerful	and
more	valuable	if	supported	by	counter-examples.

Counter-examples	are	cases	that	show	when	the	feature	does	not	apply,	or	when
the	new	behaviour	is	not	invoked.	In	a	test	for	a	free	delivery	feature,	we	would
of	course	expect	to	see	examples	of	shopping	scenarios	where	a	customer	order
is	eligible	for	free	delivery.	Counter-examples,	on	the	other	hand,	would	show
important	scenarios	where	the	order	is	not	eligible	for	free	delivery.

Testers	sometimes	call	these	cases	‘negative	tests’.	We	tend	to	avoid	that
terminology	as	it	devalues	the	importance	of	such	scenarios.	The	reason	counter-
examples	are	so	valuable	is	that	they	provide	contrast.

Key	benefits
What	makes	something	stand	out	visually	is	the	sharpness	of	the	contrast	against
its	background.	But	this	does	not	mean	that	counter-examples	should	be	wildly
different	from	the	key	examples.	In	fact,	good	counter-examples	are	those	where
the	inputs	are	as	close	as	possible	to	the	positive	cases,	but	lead	to	different
outputs.	In	general,	we	should	use	a	set	of	counter-examples	for	each	key
example,	where	each	counter-example	highlights	a	different	contributing	factor
or	parameter	that	affects	the	rule.

Let’s	illustrate	this	with	a	free	delivery	example.	The	business	rule	for	our	new
free	delivery	feature	is	as	follows:

The	first	key	example	to	support	this	rule	would	probably	be:

This	is	arguably	the	most	concise	example	of	the	business	rule,	but	on	its	own	it
would	not	give	us	confidence	that	we	have	a	specification	by	example	of	the	free
delivery	feature.	Nor	would	we	accept	the	feature	if	this	was	the	only	case	that
was	checked	against	the	implementation.	To	be	confident	that	we	offer	free
delivery	if	and	only	if	the	required	criteria	are	met,	we	need	to	check	some
example	cases	where	we	do	not	offer	free	delivery.

To	do	so,	we	take	the	variables	that	affect	the	rule,	and	modify	the	value	of	just
one	at	a	time.	We	take	quantity	first.	Hence:

We	can	do	the	same	for	customer	status:

Is	that	all	that	affects	the	rule?	We	mention	books	in	the	definition,	but	we	also
sell	larger	items	that	might	be	expensive	to	deliver.	Examples	allow	us	to	be
explicit	about	the	status	of	orders	like	this:

How	to	make	it	work
Here’s	a	sequence	that	might	help	you	get	started.	Try	it	first	by	following	each
step.	Once	the	idea	of	thinking	about	examples	and	counter-examples	becomes
the	norm	in	your	team,	you	won’t	have	to	follow	this	sequence	methodically,	you
will	just	tend	to	create	tables	naturally	as	part	of	your	discussions.

1.	 Start	with	the	simplest	example	you	can	think	of	that	shows	a	scenario
where	the	feature	or	business	rule	takes	effect.	Write	the	example	so	that	it
makes	sense	when	read	aloud.	(For	example,	in	the	‘Given,	When,	Then’
format.)	Always	prefer	actual	values	over	generalisations	unless	the	value	is
irrelevant	to	the	rule.

2.	 Underline	the	parts	of	the	example	that	are	most	relevant	to	the	feature	or
rule.	Make	sure	you	distinguish	between	inputs	(for	example,	customer
type,	item	type,	quantity)	and	outputs	(for	example,	free	delivery
eligibility).	Using	the	values	you	have	underlined,	create	a	table	with
column	names	for	each	input	and	each	output.

3.	 Put	the	data	values	from	the	first	example	into	the	table,	as	the	first	row.
4.	 For	each	output,	identify	a	different	possible	value	this	output	could	take.

Create	an	example	that	shows	how	this	output	value	arises,	using	the
smallest	variation	of	the	input	values.	Put	these	values	into	the	table.

5.	 Repeat	steps	2	and	3	until	you	have	examples	that	include	at	least	one	row
for	each	valid	combination	of	the	outputs.

When	exploring	key	examples	and	counter-examples	to	illustrate	the	business
rules,	we	are	often	not	clear	about	the	rules	until	we	have	explored	and	critiqued
several	good	examples.	Agreeing	on	the	examples	often	leads	to	the	need	to
restate	the	rules,	or	at	least	express	them	in	clearer	terms.	For	example,	after
discussing	the	examples	about	refrigerators,	we	would	probably	want	to	modify
the	free	delivery	rule	to	say	something	like:

Describe	what,	not	how

By	far	the	most	common	mistake	inexperienced	teams	make	when	describing
acceptance	criteria	for	a	story	is	to	mix	the	mechanics	of	test	execution	with	the
purpose	of	the	test.	They	try	to	describe	what	they	want	to	test	and	how
something	will	be	tested	all	at	once,	and	get	lost	very	quickly.

Here	is	a	typical	example	of	a	description	of	how	something	is	to	be	tested:

This	is	a	good	test	only	in	the	sense	that	someone	with	half	a	brain	can	follow
the	steps	mechanically	and	check	whether	the	end	result	is	3	USD.	It	is	not	a
particularly	useful	test,	because	it	hides	the	purpose	in	all	the	clicks	and	reloads,
and	leaves	the	team	with	only	one	choice	for	validating	the	story.	Even	if	only	a
tiny	fraction	of	the	code	contains	most	of	the	risk	for	this	scenario,	it’s
impossible	to	narrow	down	the	execution.	Every	time	we	need	to	run	the	test,	it
will	have	to	involve	the	entire	end-to-end	application	stack.	Such	tests
unnecessarily	slow	down	validation,	make	automation	more	expensive,	make
tests	more	difficult	to	maintain	in	the	future,	and	generally	just	create	a	headache
for	everyone	involved.

An	even	worse	problem	is	that	specifying	acceptance	criteria	like	this	pretty
much	defeats	the	point	of	user	stories	–	to	have	a	useful	conversation.	This	level
of	detail	is	too	low	to	keep	people	interested	in	discussing	the	underlying
assumptions.

Avoid	describing	the	mechanics	of	test	execution	or	implementation	details	with
user	stories.	Don’t	describe	how	you	will	be	testing	something,	keep	the
discussion	focused	on	what	you	want	to	test	instead.	For	example:

When	most	of	the	clutter	is	gone,	it’s	easier	to	discuss	more	examples.	For
example,	what	if	there	is	not	enough	money	in	the	account?

Pre-paid
balance

Ticket
cost

Purchase
status

Resulting
balance

10	USD 7	USD approved 3	USD
5	USD 7	USD rejected 5	USD

This	is	where	the	really	interesting	part	comes	in.	Once	we	remove	the	noise,	it’s
easy	to	spot	interesting	boundaries	and	discuss	them.	For	example,	what	if	the
pre-paid	balance	is	6.99	and	someone	wants	to	buy	a	7	USD	ticket?

As	an	experiment,	go	and	talk	to	someone	in	sales	about	that	case	–	most	likely
they’ll	tell	you	that	you	should	take	the	customer’s	money.	Talk	to	a	developer,
and	most	likely	they’ll	tell	you	that	the	purchase	should	be	rejected.	Such
discussions	are	impossible	to	have	when	the	difficult	decisions	are	hidden	behind
clicks	and	page	loads.

Key	benefits
It’s	much	faster	to	discuss	what	needs	to	be	done	instead	of	how	it	will	be	tested
in	detail,	so	keeping	the	discussion	on	a	higher	level	allows	the	team	to	go
through	more	stories	faster,	or	in	more	depth.	This	is	particularly	important	for
teams	that	have	limited	access	to	business	sponsors,	and	need	to	use	their	time
effectively.

Separately	describing	the	purpose	and	the	mechanics	of	a	test	makes	it	easier	to
use	tests	for	communication	and	documentation.	The	next	time	a	team	needs	to
discuss	purchase	approval	rules	with	business	stakeholders,	such	tests	will	be	a
great	help.	Although	the	mechanics	of	testing	will	probably	be	irrelevant,	a	clear
description	of	what	the	current	system	does	will	be	an	excellent	start	for	the
discussion.	In	particular	it	will	help	to	remind	the	team	of	all	the	difficult
business	decisions	that	were	made	months	ago	while	working	on	previous
stories.	An	acceptance	criterion	that	mixes	clicks	and	page	loads	with	business
decisions	is	useless	for	this.

Decoupling	how	something	will	be	tested	from	what	is	being	tested	significantly
reduces	future	test	maintenance	costs.	When	a	link	on	a	web	page	becomes	a
button,	or	users	are	required	to	log	in	before	selecting	products,	we	only	have	to
update	the	mechanics	of	testing.	If	the	purpose	and	the	mechanics	are	mixed
together,	it	is	impossible	to	identify	what	needs	to	change.	That’s	the	reason	why
so	many	teams	suffer	from	record-and-replay	test	maintenance.

How	to	make	it	work
A	good	rule	of	thumb	is	to	split	the	discussions	on	how	and	what	into	two
separate	meetings.	Business	sponsors	are	most	likely	not	interested	in	the
mechanics	of	testing,	but	they	need	to	make	decisions	such	as	the	$6.99
purchase.	Engage	decision-makers	in	whiteboard	discussions	on	what	needs	to
be	tested,	and	postpone	the	discussion	on	how	to	test	it	for	the	delivery	team
later.

If	you	use	a	tool	to	capture	specifications	with	examples,	such	as	Cucumber,
FitNesse	or	Concordion,	keep	the	human-readable	level	focused	on	what	needs
to	be	tested,	and	keep	the	automation	level	focused	on	how	you’re	checking	the
examples.	If	you	use	a	different	tool,	then	clearly	divide	the	purpose	of	the	test
and	the	mechanics	of	execution	into	different	layers.

Avoid	mathematical	formulas

One	typical	way	to	waste	time	when	specifying	acceptance	criteria	through
examples	is	to	use	mathematical	formulas	to	describe	categories	of	scenarios.
This	is	a	common	beginner’s	mistake,	and	often	comes	from	business
stakeholders	or	analysts	who	are	told	that	they	need	to	provide	examples	with
stories.	By	including	mathematical	formulas,	people	follow	the	form,	but	lose
the	substance.	Here	is	an	example	we	had	recently	with	a	reporting	system:

Include	all	transactions	in	the	thirty	day	period	before	the	report	date.

Transaction	date report?
Report	date	-	30	<	Transaction exclude
Report	date	-	30	<	Transaction	<	Report	date include
Transaction	>	Report	date exclude

At	first	glance,	this	looks	simple	and	complete.	What	could	possibly	go	wrong
with	it?

The	key	issue	with	such	examples	expressed	as	formulas	is	that	they	effectively
just	restate	the	rules	already	specified	somewhere	else.	The	examples	in	the	table
only	repeat	the	same	information	that	we	already	have	in	the	header	sentence,
and	they	do	not	communicate	any	more	knowledge.	We	would	have	the	same
information	even	without	the	table.	The	examples	do	not	provide	any	better
structure	for	evaluating	missing	cases,	measuring	shared	understanding	or
spotting	potential	mistakes.	Even	worse,	examples	such	as	these	provide	a	false
sense	of	completeness	but	can	still	hide	quite	a	few	questionable	assumptions.

First	of	all,	the	data	types	aren’t	clear.	Are	both	the	report	date	and	the
transaction	date	only	dates,	or	do	they	include	time	as	well?	Are	time	zones
important?	What	happens	at	the	boundaries?	Should	we	include	the	transactions
that	took	place	on	the	report	date,	or	exactly	30	days	before	the	report	date?	If
the	data	types	are	different,	for	example	if	the	transaction	date	is	actually	a
millisecond-accurate	timestamp	and	the	report	date	is	a	calendar	date,	should	the
transaction	that	happened	at	00:01	on	3/3/2015	be	included	in	the	report	for
3/3/2015?	Or	do	we	only	include	transactions	that	took	place	up	to	midnight	that
day?	Or	just	the	ones	until	23:59:59	the	day	before?	If	the	report	date	is	a
timestamp,	what	happens	during	leap	hours	or	at	daylight	saving	time	change
boundaries?

As	much	as	possible,	avoid	using	mathematical	formulas	in	scenarios.	In
particular,	avoid	selecting	equivalence	classes	for	parameters	or	inputs	based	on
formulas.	Make	the	scenarios	more	precise	by	listing	actual	values,	and	try	to
provide	representative	examples	for	such	values.

Key	benefits
Concrete	examples	make	it	much	easier	to	discuss	boundaries,	compared	to
examples	specified	using	abstract	mathematical	formulas.	A	real	timestamp
makes	it	obvious	that	we	need	to	consider	minutes	or	even	milliseconds	when
looking	at	edge	cases.	Adding	or	removing	time	zone	information	to	the
examples	prompts	people	to	ask	about	global	or	local	execution,	and	how	to	do
comparisons	in	the	case	of	daylight	time	saving	changes.

Real	examples	make	it	much	more	difficult	to	hide	assumptions.	A	few	concrete
dates	in	the	table	would	prompt	someone	to	ask	questions	about	boundaries,

what	happens	when	the	transaction	date	and	the	report	date	are	the	same,	and
what	does	it	mean	for	them	to	be	same.	This	will	help	teams	discuss	and
discover	requirements	before	delivery.

How	to	make	it	work
Avoid	specifying	input	equivalence	classes	using	intervals	or	formulas.	Insist	on
concrete	examples	around	the	relevant	boundaries	instead.	Examples	with
formulas	might	be	a	nice	start	for	the	discussion,	but	transform	each	formula	into
at	least	two	concrete	boundaries	as	a	group	once	the	discussion	starts.	The
problem	with	formulas	is	mostly	related	to	inputs.	Ranges	and	intervals	are	OK
for	output	equivalence	classes,	for	example	with	non-deterministic	processes
where	acceptable	values	can	have	a	margin	of	error.

Sometimes	people	write	formulas	or	intervals	because	it’s	not	clear	why	certain
concrete	values	indicate	important	boundaries.	For	example,	if	we	just	used	a
transaction	at	29:59:59.999	on	3/3/2015	for	a	report	executed	on	3	April,	the
complexity	of	the	time-stamp	value	might	confuse	readers,	and	it	may	not	be
immediately	obvious	why	that	particular	value	was	chosen.	In	cases	such	as	this,
it’s	perfectly	fine	to	add	a	comment	or	a	description	next	to	the	example	–	even
if	it’s	specified	as	an	interval	or	a	formula.	But	it’s	critical	to	also	include	a
concrete	example,	and	use	that	to	automate	testing.

To	avoid	a	more	general	related	problem,	evaluate	examples	and	scenarios	and
check	whether	they	simply	restate	the	knowledge	you	already	have	from	the
contextual	description	or	the	title	of	the	test.	Do	your	examples	make	things
more	concrete,	or	just	repeat	the	information	you	already	have?	Unless	examples
are	making	things	more	concrete,	they	will	mislead	people	into	a	false
assumption	of	completeness,	so	they	need	to	be	restated.

Flip	equivalence	classes	between	inputs	and
outputs

Choosing	a	representative	example	for	a	whole	class	of	items	is	one	of	the	key
techniques	for	good	test	design,	and	most	people	understand	it	intuitively.	For
example,	if	we’re	exploring	an	application	that	allows	users	to	log	in	through
external	identity	providers,	we’d	check	it	with	one	Google	account,	one
Facebook	account	and	one	Twitter	account.	Unless	there	is	some	very
compelling	reason	that	would	make	one	Google	account	significantly	different
from	another,	we	wouldn’t	try	the	same	tests	with	additional	Google	e-mails.
That	would	be	a	waste	of	time.	However,	this	intuitive	approach	can	also	be
quite	misleading.

Teams	often	apply	equivalence	class	reduction	only	to	inputs,	which	can	result	in
a	false	assumption	of	completeness.	There	are	two	sides	to	explore	for
equivalence	class	design:	inputs	and	outputs.	Choosing	the	wrong	set	can	easily
deceive	teams	into	thinking	that	the	system	has	been	thoroughly	tested,	when	in
fact	serious	problems	are	hiding.	This	is	particularly	problematic	when
describing	actions	with	several	types	of	outputs.

For	example,	validation	messages	are	just	another	output	type,	but	they	are
rarely	considered	as	important	as	the	primary	workflow.	As	a	really	simplistic
illustration,	several	invalid	combinations	of	usernames	and	email	addresses
could	all	be	classified	as	equivalent	from	the	input	perspective	in	a	user

registration	scenario,	but	they	might	be	importantly	different	from	the	output
perspective.	An	attempt	to	register	with	empty	username	and	email	address
should	definitely	fail,	and	we	can	check	that	the	registration	was	rejected.
However,	this	does	not	prove	that	validation	works.	Validation	errors	in	one	field
can	mask	or	hide	validation	errors	in	another	field.	Email	address	validation
might	be	completely	broken,	yet	the	action	would	have	been	rejected	just
because	of	the	username,	or	the	other	way	around.	To	really	de-risk	this	action,
we	have	to	check	lots	of	different	combinations	of	valid	and	invalid	usernames
and	email	addresss.	These	are	all	equivalent	from	the	input	perspective	(all
invalid),	but	significantly	different	from	the	output	perspective,	since	validation
errors	are	also	outputs.

If	the	activity	you’re	describing	has	several	types	of	outputs,	make	sure	that	you
explore	equivalence	classes	for	all	of	them.

Key	benefits
Considering	several	different	perspectives	for	equivalence	classes	provides
better	conceptual	test	coverage,	while	still	keeping	the	number	of	examples	that
need	to	be	tested	relatively	small.	It’s	a	good	way	of	avoiding	tunnel	vision	and
preventing	rare	but	catastrophic	failures.

Primary	workflows	and	paths	tend	to	be	better	explained	and	communicated,	and
teams	pay	more	attention	when	implementing	and	checking	them.	But	secondary
outputs	don’t	receive	nearly	as	much	attention.	As	a	result,	error	handling
procedures	are	often	much	weaker	than	the	main	thread	of	work.	According	to
CWE/SANS	Top	25	Most	Dangerous	Software	Errors	the	top	four	riskiest
programming	mistakes	are	caused	by	bad	handling	of	invalid	inputs.	Problems	in
secondary	outputs	tend	to	cascade	and	spread,	causing	other	issues,	so	they	are
particularly	troublesome.	Yuan,	Zhang,	Rodrigues	et	al.	suggest	that	stricter
testing	of	error	handling	could	have	prevented	several	catastrophic	failures	at
large	online	systems	such	as	Amazon	and	Facebook	in	their	presentation
Analysis	of	Production	Failures	in	Distributed	Data-Intensive	Systems.

Looking	at	different	ways	to	slice	equivalence	classes	can	also	open	up	a	fruitful
discussion	on	software	design.	For	example,	after	exploring	equivalence	classes
for	secondary	outputs,	a	team	we	worked	with	realised	that	they	had	similar
auditing	requirements	for	many	of	their	workflows.	Before	that,	each	workflow
duplicated	auditing	procedures	and	there	was	a	lot	of	inconsistency	in	audit	trail

http://cwe.mitre.org/top25/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan

handling.	Once	the	team	noticed	the	similarities,	they	created	a	common	auditing
module,	and	engaged	their	business	stakeholders	in	a	discussion	on	auditing
needs.	This	removed	a	lot	of	unnecessary	code,	reduced	future	maintenance
costs	and	allowed	the	team	to	bring	in	new	features	faster.	In	addition,	it
provided	business	stakeholders	with	a	consistent	and	direct	access	to	all	audit
trail	activities.

How	to	make	it	work
To	make	sure	all	perspectives	are	considered,	experiment	with	splitting	into
groups	when	you	design	equivalence	classes,	and	get	one	group	to	focus	on
inputs,	and	another	on	outputs.	This	often	leads	to	useful	discussions	when	the
groups	come	back	together.

A	useful	reminder	is	to	explore	input	equivalence	for	processing	valid	cases,	and
output	equivalence	for	processing	invalid	cases.	Bach,	Caner	and	Pettichord	call
this	heuristic	‘Test	Every	Error	Message’	in	Lessons	Learned	in	Software
Testing.	However,	consider	this	as	part	of	a	more	general	rule.	There	are	many
other	types	of	secondary	outputs	that	teams	often	do	not	think	about.	Common
examples	are	audit	trails,	archive	logs,	alerts	and	post-processing	tasks.

http://www.amazon.com/gp/product/0471081124/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0471081124&linkCode=as2&tag=swingwiki-20&linkId=Z4GI2C2ZP6EMJWOC

Clearly	separate	inputs	and	outputs

In	Fifty	Quick	Ideas	To	Improve	Your	User	Stories,	we	recommended	not
getting	too	stuck	on	format	consistency.	User	stories	are	all	about	facilitating
fruitful	discussions.	In	order	to	achieve	this,	it’s	better	to	be	flexible	and	not
enforce	a	particular	structure	or	format	of	story	cards.	The	same	holds	for	story
conversations,	enforcing	a	particular	format	or	tool	is	not	effective.	But	the	third
aspect	of	good	stories	–	the	confirmation	criteria	–	does	not	follow	the	same
pattern.	Good	structure	and	strict	rules	on	formatting	are	quite	beneficial	here.

Inexperienced	teams	often	mess	up	the	acceptance	criteria	by	mixing	up
information	in	an	unstructured	way,	so	that	it	is	unclear	what	is	actually	being
checked.	Here’s	a	typical	example:

http://www.amazon.com/gp/product/B00OGT2U7M/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00OGT2U7M&linkCode=as2&tag=swingwiki-20&linkId=3M3ZO55CDBNSCOKZ

Try	to	read	through	the	example	and	work	out	what	causes	transactions	to	be
marked	as	suspicious.	Is	it	the	amount?	Is	it	the	country	of	registration	being
different	than	the	delivery	country?	What’s	the	purpose	of	the	third	example	and
how	is	it	different	from	the	first	one?	Is	there	a	difference	between	‘the	user
completes	an	order’	in	the	first	example	and	‘the	user	places	an	order’	in	the
second	and	third	examples?

Acceptance	criteria	for	stories	are	pretty	useless	if	people	can’t	quickly
understand	their	purpose.	The	previous	example	comes	from	a	delivery	system,
where	orders	are	suspicious	if	the	delivery	country	differs	from	the	country	of
registration,	unless	the	address	was	previously	used	for	an	approved	order.	Is	that
what	you	guessed?	The	amount	is	pretty	irrelevant,	and	the	address	is	not
captured	in	the	examples.	It	was	hidden	in	the	configuration	of	test	automation.

Scenarios	with	unclear	structure	are	misleading.	They	just	cause	problems.
People	can	easily	understand	them	differently.	Someone	can	implement	the	story
and	make	the	tests	pass,	while	completely	missing	the	point	and	introducing	lots
of	bugs.	If	the	suspicious	transaction	scenario	is	automated	as	a	test,	it	will	be
difficult	to	understand	what	was	covered	in	automation	and	what	was	left	for
testers	to	check	manually,	and	it	won’t	be	easy	to	figure	out	good	variables	for
exploratory	testing	either.	Enforcing	a	strict	structure	is	a	good	way	to	prevent
such	issues.

Another	typical	example	of	bad	test	structure	is	an	output	or	assertion	without
any	clear	inputs.	It’s	easy	to	spot	these	when	the	acceptance	criterion	only	has	a
wireframe	or	a	report	screenshot,	with	an	assumption	to	‘test	it	is	like	this’.	That
is	not	a	useful	criterion	unless	we	know	under	which	conditions.	And	before
someone	says	‘always’,	look	at	some	input	fields	on	the	wireframe	and	ask
questions.	What	happens	if	the	content	is	too	long?	What	if	it	starts	scrolling?
What	if	there	are	more	than	two	pictures?	Assumptions	about	something	always
happening	are	frequently	wrong.

One	of	the	best	ways	of	untangling	messy	scenarios	is	to	separate	inputs	and
outputs.

Key	benefits
An	acceptance	criterion	where	inputs	and	outputs	are	clearly	separated	is	much
easier	to	understand	than	scenarios	of	interleaved	information	without	context.	If
the	specification	of	acceptance	is	easier	to	understand,	it	is	easier	to	check	for
completeness,	easier	to	implement	and	easier	to	verify.

A	clear	structure	is	also	a	better	starting	point	for	both	test	automation	and
exploratory	testing.	Well-structured	examples	make	it	easier	to	see	where	to	put
in	automation	hooks.	Clearly	separated	inputs	also	make	it	easy	to	think	about
experiments	with	those	values,	and	identify	any	boundary	conditions	that	have
not	been	covered.	Once	the	inputs	are	identified,	experimenting	with	inputs	can
help	to	uncover	those	fake	assumptions	about	something	always	happening.

How	to	make	it	work
For	information	captured	in	tables,	it’s	good	to	pull	inputs	to	the	left	and	keep
outputs	on	the	right.	Most	people	find	this	intuitive.	It’s	then	easy	to	see	if	all
examples	have	some	common	input	values,	and	make	tables	even	smaller	by
pulling	such	common	values	into	a	background	or	a	set-up	section.

For	information	captured	in	sentences	or	bullet	points,	put	inputs	at	the	top	and
outputs	at	the	bottom.	If	you’re	using	one	of	the	tools	where	examples	are
described	as	given-when-then,	this	translates	to	putting	the	‘given’	statements	at
the	top,	and	‘then’	statements	at	the	bottom	of	your	scenarios.	Ideally,	have	only
one	‘when’	statement	–	that’s	the	action	under	test.

If	you	have	a	messy	scenario,	don’t	spend	a	lot	of	time	cleaning	it	up.	If	it’s
proving	to	be	difficult	to	separate	inputs	and	outputs,	that’s	a	huge	warning	sign
that	the	team	doesn’t	understand	the	story	completely.	Instead	of	wasting	time	on
cleaning	it	up,	organise	another	discussion	about	the	story	and	write	some	better
examples.

Ask	‘what	happens	instead?’

Testing	asynchronous	systems	is	never	easy,	but	proving	that	something	does	not
happen	in	an	asynchronous	system	is	often	a	tall	order	even	for	the	best	teams.
For	example,	if	a	user	account	does	not	contain	enough	money	for	a	transaction
to	be	applied,	it’s	easy	to	check	that	an	error	message	was	presented	to	the	user,
but	much	harder	to	check	that	some	background	process	did	not	capture	the
transaction.	There	is	always	a	risk	that	we’re	not	looking	in	the	right	place,	that
we’re	declaring	success	too	soon,	or	that	the	process	had	an	unexpected	side
effect.	To	add	insult	to	injury,	tests	that	need	to	prove	that	something	did	not
happen	often	deal	with	validation	constraints	and	error	cases,	which	means	that
side	effects	are	even	more	dangerous.

Waiting	for	an	event	instead	of	waiting	for	a	period	of	time	is	the	preferred	way
of	testing	asynchronous	systems,	but	when	you	need	to	check	that	something
does	not	happen,	there	is	no	event	to	wait	for.	The	only	option	is	to	wait	for
some	arbitrary	period	of	time.	Such	tests	are	brittle,	environment-dependent,	and

easily	affected	by	many	other	factors	(for	example,	a	different	test	running	on	the
same	environment	that	can	log	a	similar	transaction).	The	problem	is
compounded	by	the	fact	that	testing	that	something	does	not	happen	often
involves	invalid	data,	and	thus	there	is	no	unique	identifier	to	validate	against
data	sources,	so	the	checks	have	to	process	a	lot	of	information,	making	them
even	slower.

A	good	solution	for	such	situations	is	to	ask	‘what	happens	instead?’	and	validate
the	resulting	condition.	For	example,	instead	of	checking	that	a	transaction	does
not	exist	after	a	period	of	time,	check	that	a	failed	transaction	was	logged	in	an
audit	trail.	For	even	better	risk	coverage,	validate	that	the	transaction	was	not
processed	immediately	afterwards.

Ideally,	the	alternative	event	should	become	observable	at	the	same	time	that	the
original	event	would	normally	happen.	For	example,	the	audit	log	record	is
generated	by	the	same	back-end	code	that	processes	transactions.	This	makes	it
easy	to	be	confident	that	there	will	be	no	further	processing	for	that	particular
test	case.

Key	benefits
Describing	an	alternative	event	instead	of	the	absence	of	an	event	makes	a	test
more	reliable,	because	we	can	wait	until	an	event	happens	instead	of	just	waiting
for	a	period	of	time.	It	removes	potential	interference	from	other	tests,	because
each	test	can	work	with	a	unique	identifier.

However,	the	biggest	advantage	of	this	approach	is	actually	not	in	improving
testablity,	but	in	discovering	additional	assumptions	and	hidden	requirements.
For	example,	instead	of	just	ignoring	failed	log-in	attempts,	we	could	log	them
for	later	analysis.	Spotting	unusual	data	patterns	or	spikes	in	failed	log-ins	might
help	us	to	detect	unauthorised	access	attempts	early,	and	make	the	system	more
secure	by	introducing	additional	rules.	With	regard	to	this	particular	situation,
one	of	the	teams	we	worked	with	discussed	it	with	their	security	specialists,	and
decided	that	any	user	account	with	more	than	five	unsuccessful	log-in	attempts
in	one	hour	should	be	temporarily	blocked	and	flagged	for	manual	investigation.
This	allowed	security	experts	to	spot	patterns	and	prevent	future	hacking
attempts	easier.

How	to	make	it	work

The	best	time	to	enquire	about	alternative	events	is	during	a	discussion	about	a
user	story,	to	ensure	that	genuine	business	requirements	for	auditing	or
traceability	don’t	go	unnoticed.	Sometimes,	the	discussion	about	what	should
happen	instead	can	lead	you	to	discover	a	completely	different	set	of
requirements.	For	example,	when	a	team	at	one	of	our	clients	were	discussing
how	to	route	payment	requests,	they	couldn’t	agree	about	what	to	do	with
foreign	currency	transactions.	They	originally	envisaged	handling	only	single
currency	transaction	requests,	but	the	developers	pointed	out	that	the	external
API	they	planned	to	use	could	potentially	send	transactions	in	different
currencies.	It	was	clear	that	such	transactions	shouldn’t	be	processed	directly,	but
stakeholders	had	completely	different	ideas	about	what	to	do	instead.	Some
people	argued	that	they	should	be	rejected,	some	people	argued	that	they	should
be	converted	to	the	primary	currency	and	processed,	and	some	people	argued
that	although	the	external	API	supported	transactions	in	foreign	currencies,	their
customers	would	never	use	anything	other	than	the	primary	currency.	In
situations	such	as	this,	it’s	often	best	to	split	out	the	alternative	scenario	into	a
different	user	story.	In	this	case,	we	agreed	that	foreign	currency	transactions
should	go	to	a	manual	payment	list,	and	that	we	would	let	stakeholders	decide
what	to	do	about	them	on	a	case-by-case	basis	until	they	could	come	up	with	a
more	general	solution.

If	there	is	no	business-domain	requirement	to	add	an	audit	trail	or	an	alternative
event,	consider	using	log	files	or	some	other	technical	output	to	detect	the	end	of
asynchronous	processing.	A	good	trick	is	to	assign	some	kind	of	unique
identifier	to	the	asynchronous	request,	and	then	wait	during	testing	until	the	log
file	or	some	error	queue	contains	an	element	with	that	identifier.

Use	Given-When-Then	in	a	strict	sequence

Behaviour-driven	development	is	becoming	increasingly	popular,	and	with	it	the
Given-When-Then	format	for	examples	is	getting	more	and	more	attention.
Given-When-Then	seems	to	be	the	de-facto	standard	for	expressing	functional
checks	using	examples.	Introduced	as	part	of	JBehave	in	2003,	this	structure	was
intended	to	support	conversations	between	teams	and	business	stakeholders,	but
also	lead	those	discussions	towards	a	conclusion	that	would	be	easy	to	automate
as	a	test.

Given-When-Then	statements	are	great	because	they	are	easy	to	capture	on
whiteboards	and	flipcharts,	and	also	easy	to	transfer	to	electronic	documents,
including	plain	text	files	and	wiki	pages.	In	addition,	there	are	automation	tools
for	all	popular	application	platforms	today	that	support	tests	specified	as	Given-
When-Then.

On	the	other	hand,	Given-When-Then	is	a	very	sharp	tool	and	unless	handled
properly,	it	can	hurt	badly.	Without	understanding	the	true	purpose	of	the	format,
many	teams	create	tests	that	are	too	long,	too	difficult	to	maintain,	and	almost
impossible	to	understand.	Here	is	a	typical	example:

This	example	might	have	been	clear	to	the	person	who	first	wrote	it,	but	its
purpose	is	unclear	–	what	is	it	really	testing?	Is	the	salary	amount	a	parameter	of
the	test,	or	is	it	an	expected	outcome?	If	one	of	the	later	steps	of	this	scenario
fails,	it	will	be	very	difficult	to	understand	the	exact	cause	of	the	problem.

Spoken	language	is	ambiguous,	and	it’s	perfectly	OK	to	say	‘Given	an	employee
has	a	salary	…,	When	the	tax	deduction	is…,	then	the	employee	gets	a	payslip
and	the	payslip	shows	…’.	It’s	also	OK	to	say	‘When	an	employee	has	a	salary
…,	Given	the	tax	deduction	is	…’	or	‘Given	an	employee	…	and	the	tax
deduction	…	then	the	payslip	…’.	All	those	combinations	mean	the	same	thing,
and	they	can	easily	be	understood	within	the	wider	context.

But	there	is	only	one	right	way	to	describe	this	situation	with	Given-When-Then,
at	least	if	you	want	to	get	the	most	out	of	it	from	the	perspective	of	long-term
test	maintenance.

Given-When-Then	is	not	just	an	automation-friendly	way	of	describing
expectations,	it’s	a	structural	pattern	for	designing	clear	specifications.	It’s	been
around	for	quite	a	while	under	different	names.	When	use	cases	were	popular,	it
was	known	as	Preconditions-Trigger-Postconditions.	In	unit	testing,	it’s	known
as	Arrange-Act-Assert.

The	sequence	is	important:	‘Given’	comes	before	‘When’,	and	‘When’	comes
before	‘Then’.	Those	clauses	should	not	be	mixed.	All	parameters	should	be
specified	with	‘Given’	clauses,	the	action	under	test	should	be	specified	with	the

‘When’	clause,	and	all	expected	outcomes	should	be	listed	with	‘Then’	clauses.
Each	scenario	should	ideally	have	only	one	‘When’	clause	that	clearly	points	to
the	purpose	of	the	test.

Key	benefits
Using	Given-When-Then	in	sequence	reminds	people	very	effectively	about
several	great	ideas	for	test	design:

It	suggests	that	preconditions	and	postconditions	need	to	be	identified	and
separated	(see	the	section	Clearly	separate	inputs	and	outputs	for	more
information).
It	suggests	that	the	purpose	of	the	test	should	be	clearly	communicated,	and
that	each	scenario	should	check	one	and	only	one	thing	(see	the	section	One
test,	one	topic).
When	there	is	only	one	action	under	test,	people	are	forced	to	look	beyond
the	mechanics	of	test	execution	and	really	identify	a	clear	purpose	(see	the
section	Describe	what,	not	how).

When	used	correctly,	Given-When-Then	helps	teams	design	specifications	and
checks	that	are	easy	to	understand	and	maintain.	As	tests	are	focused	on	one
particular	action,	they	are	less	brittle	and	easier	to	diagnose	and	troubleshoot.
When	the	parameters	and	expectations	are	clearly	separated,	it’s	easier	to
evaluate	whether	we	need	to	add	more	examples,	and	discover	missing	cases.

How	to	make	it	work
A	good	trick	that	prevents	most	accidental	misuses	of	Given-When-Then	is	to
use	past	tense	for	‘Given’	clauses,	present	tense	for	‘When’	and	future	tense	for
‘Then’.	This	makes	it	clear	that	‘Given’	statements	are	preconditions	and
parameters,	and	that	‘Then’	statements	are	postconditions	and	expectations.

Make	‘Given’	and	‘Then’	passive	–	they	should	describe	values	rather	than
actions.	Make	sure	‘When’	is	active	–	it	should	describe	the	action	under	test.

One	test,	one	topic

Lack	of	focus	is	a	symptom	of	problematic	tests	that	is	relatively	easy	to	spot.
Common	examples	of	lack	of	focus	are	multiple	actions	that	are	covered	by	a
single	test	and	sequences	of	actions	that	are	executed	multiple	times	with	slightly
different	parameters.	In	the	Given-When-Then	structure	of	examples,	this
symptom	translates	to	multiple	‘When’	statements,	or	a	single	‘When’	statement
that	uses	conjunctions.

If	a	test	executes	multiple	tasks	that	together	create	a	higher-level	action,	it	is
often	a	sign	that	it	is	tightly	coupled	to	a	particular	technical	workflow.	Such
tests	are	often	written	after	development	and	rely	on	implementation	details,
which	makes	them	fragile.	Here	is	a	typical	example:

When	the	user	submits	the	payment	details	and	the	admin	approves	the	payment
and	the	payment	is	scheduled	and	the	payment	is	executed	by	the	payment
channel	and	the	payment	is	sent	to	the	counterparty	and	the	payment

confirmation	arrives	from	the	counterparty	and	the	payment	confirmation	is
loaded	by	the	payment	channel

This	example	lists	individual	steps	that	happen	in	a	particular	implementation
that	has	two	asynchronous	modules.	If	the	way	technical	components	are
coordinated	changes	in	the	future,	the	test	will	break	even	if	none	of	the	business
rules	change,	nor	the	software	implementation	of	payment	processing.	A
particularly	problematic	category	of	such	tests	are	those	where	tasks	or	actions
rely	on	user	interface	details.

A	test	that	executes	multiple	interdependent	actions	is	fragile	and	often	costs	a
lot	to	maintain.	Actions	within	a	sequence	depend	on	the	results	of	preceding
actions,	so	small	changes	in	one	such	action	can	cause	fake	alerts	and	failures	in
the	expectations	for	other	actions.	Such	tests	are	difficult	to	troubleshoot	and	fix,
because	interdependencies	make	it	difficult	to	understand	and	change
expectations	correctly.

Each	test	should	ideally	be	focused	on	one	topic.	Each	topic	should	ideally
described	by	one	test.	Watch	out	for	multiple	‘When’	clauses,	actions	with
conjunctions	and	scenario	names	that	suggest	a	lack	of	focus.	Break	them	down
into	several	independent	tests,	and	you	will	get	a	lot	more	value	out	of	them.

Key	benefits
Several	independent	tests	for	different	actions	are	much	easier	to	maintain	than
one	overall	test	that	validates	everything.	When	one	of	the	actions	changes,	it	is
easier	to	understand	the	impact	on	the	test	and	adjust	expectations,	because	the
impact	is	localised.	Similarly,	changes	to	tests	for	one	action	do	not	require
changes	to	tests	for	other	actions,	but	this	is	impossible	to	prevent	with	a	single
overarching	test.

When	tests	are	focused	on	one	particular	action,	it’s	easier	to	argue	about
completeness	and	add	more	contextual	examples	around	important	boundary
conditions	for	that	particular	action.	Tests	that	execute	multiple	actions	suffer
from	a	combinatorial	explosion	of	potential	boundary	conditions,	so	they	often
just	check	one	scenario	rather	than	exploring	important	boundaries.

Independent	tests	also	allow	faster	feedback.	When	developers	work	on	one	of
the	actions,	they	can	run	only	the	specific	tests	for	that	action	instead	of	waiting
for	the	other	actions	to	complete	as	well.

How	to	make	it	work
There	are	several	good	strategies	for	cleaning	up	tests	that	execute	multiple
actions,	depending	on	the	dependencies	between	the	actions.

If	a	test	executes	multiple	tasks	in	sequence	that	form	a	higher-level	action,	often
the	language	and	the	concepts	used	in	the	test	explain	the	mechanics	of	test
execution	rather	than	the	purpose	of	the	test,	and	in	this	case	the	entire	block	can
often	be	replaced	with	a	single	higher-level	concept.	Here	is	an	example:

If	the	individual	steps	show	important	preconditions,	and	for	example	we	want
to	test	what	happens	if	the	payments	are	not	queued,	such	conditions	should
move	to	a	‘Given’	clause	rather	than	staying	in	a	‘When’	clause.	See	the	section
Use	Given-When-Then	in	a	strict	sequence	for	more	information.

If	the	individual	steps	do	not	show	important	variations,	but	are	executed	in
sequence	just	because	of	the	technical	flow	of	implementation,	then	the	entire
block	can	be	replaced	by	a	single	higher-level	action,	such	as:

See	the	section	on	Describe	what,	not	how	for	some	ideas	on	how	to	deal	with
such	cases.

If	a	test	executes	multiple	interdependent	actions	because	they	rely	on	similar
parameters	and	reuse	outputs,	it’s	best	to	split	them	into	individual	scenarios.	A
good	technique	for	this	is	to:

1.	 Group	all	common	parameters	into	a	single	set-up	block	(in	the	Given-
When-Then	structure	this	would	normally	go	into	a	common	Background
section).

2.	 Build	a	separate	scenario	for	each	‘When’	clause,	listing	all	individual
parameters	required	for	it	directly.	Avoid	any	actions	in	the	‘Given’	clause,
instead	specify	the	preconditions	as	values

3.	 Split	the	‘Then’	clauses	of	the	original	test	and	assign	them	to	the	relevant
focused	scenario.

4.	 Evaluate	scenarios	without	a	‘Then’	clause,	because	they	do	not	actually
check	anything.	If	they	were	there	just	to	set	up	the	context	for	some	other
scenario,	delete	them.	If	they	describe	an	important	aspect	of	the	system,
add	the	relevant	expectations.

Treat	too	many	boundaries	as	a	modelling
problem

Complex	models	are	difficult	to	describe.	Even	when	the	general	cases	of	such
models	can	be	easily	understood,	they	typically	imply	a	vast	number	of
boundary	conditions	and	special	cases.

By	implication,	software	systems	built	to	automate	such	models	are	also	very
difficult	to	test.	Related	edge	cases	needing	tests	are	often	captured	using	huge
state-transition	tables,	complex	state	diagrams	or	a	combinatorial	explosion	of
input	and	output	examples.	It’s	almost	impossible	to	know	if	anyone	has	a
complete	picture	with	such	complex	models,	so	it	is	also	difficult	to	decide	how
much	testing	is	enough.	Tests	with	too	many	edge	cases	are	difficult	to
understand	and	difficult	to	update.	They	are	often	also	very	brittle,	so	they	will
be	costly	to	maintain.

There	are	several	popular	techniques	for	managing	and	designing	tests	for	such
situations,	such	as	pairwise	testing	and	path-based	coverage,	but	in	many
situations	they	are	actually	solving	the	wrong	problem.

Difficult	testing	is	a	symptom,	not	a	problem.	When	it	is	difficult	for	a	team	to
know	if	they	have	a	complete	picture	during	testing,	then	it	will	also	be	difficult
for	it	to	know	if	they	have	a	complete	picture	during	development,	or	during	a

discussion	on	requirements.	It’s	unfortunate	that	this	complexity	sometimes
clearly	shows	for	the	first	time	during	testing,	but	the	cause	of	the	problem	is
somewhere	else.

It’s	more	useful	to	think	about	this	as	a	modelling	problem,	not	a	testing
problem.	A	huge	number	of	special	cases	and	boundary	conditions	often	means
that	the	team	chose	wrong	concepts	and	abstractions	for	the	underlying	software
model,	or	that	parts	of	the	system	are	too	tightly	coupled	to	be	considered	in
isolation.	This	might	also	mean	that	the	software	system	is	not	well	aligned	with
the	processes	it’s	trying	to	automate,	or	problems	it’s	trying	to	solve.

For	example,	a	team	at	a	financial	trading	company	we	worked	with	was	re-
writing	their	accounting	and	reporting	system.	Reporting	regulations	and	tax
rules	differ	from	country	to	country,	so	their	initial	testing	ideas	resulted	in
several	whiteboards	full	of	difficult	boundary	conditions.	When	they	ran	out	of
wall	space	to	write	examples,	it	was	clear	to	everyone	that	this	was	only	the	tip
of	the	iceberg.	It	would	be	easy	to	explain	this	situation	as	a	testing	issue,	caused
by	a	complex	domain	and	a	complex	organisational	structure.	Teams	in	large
companies,	especially	financial	firms,	tend	to	think	that	their	domains	are	much
more	complex	than	other	software,	and	accept	difficult	testing	as	a	fact	of	life.
However,	that	is	often	a	self-fulfilling	prophecy.	Because	people	accept	overly-
complex	solutions,	testing	becomes	expensive	and	complex,	making	it	more
difficult	to	clean	up	the	design	and	simplify	the	system.	Looking	at	this	as	a
modelling	problem,	not	as	a	testing	problem,	the	team	discovered	several
missing	domain	concepts,	such	as	an	abstraction	of	the	‘trade	origin’.	They
broke	down	the	test	cases	into	those	that	help	them	calculate	a	trade	origin,	and
those	that	use	a	trade	origin,	regardless	of	how	it’s	calculated,	to	choose	tax	rules
and	reporting	needs.	This	led	to	a	much	better	designed	system.

In	the	past,	if	people	discovered	that	a	software	model	was	wrong	during	testing,
it	was	too	late	to	do	anything	useful.	The	people	who	designed	test	cases	rarely
had	any	say	over	software	design	models,	and	by	the	time	testing	started	there
was	typically	too	much	software	written	to	change	it	fundamentally.	However,
with	the	ongoing	trend	towards	shorter	delivery	phases	and	integrating	testing
and	development,	discovering	an	overly	complex	model	during	testing	can	be
quite	timely	and	useful.	Instead	of	accepting	the	situation	and	trying	to	fight	the
large	number	of	boundary	conditions	with	test	management	techniques,	teams
can	use	this	as	a	signal	that	they	need	to	start	remodelling	the	underlying	system.

Key	benefits
Treating	too	many	boundary	conditions	as	a	signal	that	the	model	needs
changing	helps	teams	create	better	software	architecture	and	design,	which	leads
to	systems	that	are	much	easier	to	test.	Better	decoupling	between	different
components	of	the	model	leads	to	more	focused	test	cases.	By	removing
interdependencies,	creating	better	interfaces	and	higher-level	abstractions,	we
can	avoid	a	combinatorial	explosion	of	inputs	and	outputs,	replacing	large	state-
transition	tables	and	complex	diagrams	with	several	isolated	sets	of	focused	key
examples.	This	means	that	there	are	fewer	test	cases	needed	for	the	same	risk
coverage,	so	it	is	faster	to	check	the	system	against	such	test	cases,	and	easier
and	cheaper	to	maintain	the	tests.

However,	the	key	benefit	of	better	software	models	is	not	actually	in	easier
testing	–	it’s	in	easier	evolution.	By	reducing	the	overall	complexity	of	software
models,	we	get	systems	that	are	easier	to	understand,	so	they	will	be	easier	to
develop.	They	will	also	be	cheaper	to	maintain,	because	changes	will	be	better
localised,	and	easier	to	extend	because	individual	parts	will	be	easier	to	replace.

How	to	make	it	work
Probe	and	evaluate	potential	models	by	experimenting	with	test	case	design
before	programming.	If	the	underlying	model	is	difficult	to	describe	with	a
relatively	small	number	of	key	examples,	try	alternative	models.	In	his	book
Domain	Driven	Design,	Eric	Evans	argues	that	such	situations	are	often	caused
by	the	mental	models	of	business	stakeholders	and	delivery	teams	being
misaligned,	and	that	looking	for	hidden	or	implied	domain	concepts	generally
leads	to	breakthroughs	in	design.

Don’t	immediately	take	the	first	idea	for	remodelling	that	comes	along.	Try	three
or	four	different	approaches	and	compare	them	to	see	which	one	leads	to	fewer
scenarios	and	clearer	structure	for	examples.

http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=swingwiki-20&linkId=5AHE6HTTUWM36LHV

Prefer	smaller	tables

A	specification	with	examples	often	collects	sets	of	key	examples	into	tables,	to
show	clearly	how	different	inputs	lead	to	different	outputs.	The	power	of	tables
is	that	they	reduce	a	problem	to	the	key	relationships	that	matter,	and	remove	as
much	semantic	noise	as	possible.	But	depending	on	the	number	of	rules,
exceptions	and	nuances	that	affect	the	feature	being	specified,	these	tables	of
examples	can	grow	quite	large.	This	is	a	problem,	as	it	detracts	from	the
usefulness	of	the	table	form.	We	want	tables	to	clarify	our	examples,	not	hide
them,	and	for	this	purpose	smaller	tables	tend	to	be	more	effective	than	larger
ones.

A	common	cause	of	oversized	tables	is	that	people	try	to	use	a	single,	large	table
to	illustrate	too	many	different	aspects	of	a	feature.	In	any	given	specification,
there	may	be	many	dependent	variables,	each	one	becoming	a	new	column	in	a
wider	and	wider	table.	As	the	number	of	columns	grows,	the	more	possible

combinations	of	values	need	to	be	covered,	leading	to	an	explosion	of	rows	of
examples.

Let’s	take	a	blackjack	game	application	as	an	example.	The	payout	to	a	player
depends	on	many	factors,	so	to	describe	it	we	would	need	to	specify	the	rules	for
how	a	player	wins	or	loses	and	how	much	they	get	back	on	their	bet.	To	cover
these	cases	we	might	create	a	table	that	looks	something	like	the	one	below.
Even	this	large	table	does	not	explore	all	the	interesting	combinations	of	input
values,	and	we	would	probably	want	more	examples	of	each	of	the	different
results	to	understand	them	completely,	so	a	table	like	this	could	easily	grow
much	larger.	Yet	it	is	already	too	big	to	be	expressive	and	useful	as	living
documentation.

The	best	way	to	overcome	this	combinatorial	explosion	is	to	deal	with	one	rule
or	concept	at	a	time,	and	only	include	the	subset	of	variables	and	example	values
that	are	relevant	to	it.	Our	feature	specification	would	therefore	consist	of	a	set
of	connected	concepts,	each	with	small	tables	of	examples	to	illustrate	it.

bet double insure surrender player dealer result? payout?
10 no no no 19 18 win 20
10 no no no 18 19 lose 0
10 no no no 19 19 push 10
10 no no no BJ 19 blackjack 25
20 no no no 10 bust win 40
10 no no no bust bust lose 0
10 yes no no 19 18 win 40
10 no no yes 6 18 surrender 5
10 no yes no 21 BJ lose 10
10 no yes no 21 19 win 20

The	first	six	rows	are	basic	cases,	where	the	player	takes	no	special	action.
Therefore	we	could	have	a	separate	simpler	table	for	these	examples.	We	can
also	separate	the	concept	of	result	from	that	of	payout,	dealing	with	each
separately.	That	means	we	can	remove	references	to	bets	from	our	examples
about	determining	the	result.

After	the	simple	cases,	we	can	introduce	the	special	cases	of	winning	with	a
blackjack,	and	going	bust.

player dealer result?
19 18 win
18 19 lose

19 19 push
BJ 19 blackjack
10 bust win
bust bust lose

Having	given	several	examples	of	what	hand-value	combinations	lead	to	the
different	results,	we	can	show	the	relationship	between	bets,	results	and	payouts.

bet result payout?
10 win 20
20 win 40
10 blackjack 25
10 push 10
10 lose 0

Using	the	same	strategy,	we	can	create	a	separate	table	to	illustrate	the	special
case	of	insurance	(similarly	for	doubling,	splitting,	and	so	on).	We	can	fix	the	bet
amount	to	10	and	only	use	columns	specific	to	the	insurance	scenarios.

insured player dealer payout? ins.	payout?
yes 21 BJ 0 15
no 21 BJ 0 0
yes 19 21 0 0
yes BJ BJ 10 15
yes BJ 17 25 0

Key	benefits
Smaller	tables	allow	you	to	focus	a	set	of	related	examples	on	a	single	rule	(see
also	One	test,	one	topic).	You	only	need	to	include	the	columns	and	values	that
are	relevant	to	that	rule.	Maintaining	smaller	tables	is	much	easier,	as	a	change	to
system	behaviour	is	usually	localised	to	the	few	tables	that	deal	specifically	with
that	behaviour.

Finding	errors	in	the	examples	is	much	quicker	when	the	relationship	between
the	rules	and	their	examples	is	clear,	and	this	is	easier	with	several	smaller
tables.	For	example,	the	ninth	row	of	the	first	large	table	contains	an	error	(total
payout	should	be	15,	not	10)	but	it	is	not	obvious.	That	case	is	equivalent	to	the
first	row	of	the	last	table,	where	the	mistake	would	be	more	apparent,	especially
if	we	precede	the	table	with	short	rule	descriptions,	e.g.	‘Insurance	is	a	separate
bet,	for	half	the	original	bet	value	(i.e.	5	for	a	bet	of	10).	Insurance	pays	2:1,	if
the	dealer	has	a	Blackjack.’

How	to	make	it	work
Start	by	breaking	a	table	into	groups	of	examples	that	are	related	to	a	single
concept.	You	will	improve	readability	just	by	having	several	tables	each	with	a
fewer	number	of	rows.

In	these	smaller	groups,	look	for	columns	that	have	the	same	value,	or	values
that	don’t	directly	affect	the	outputs.	Remove	these	columns.

Make	sure	each	table	has	a	brief	text	introduction	to	describe	the	concept	or	rule
that	the	examples	in	the	table	illustrate.	Link	the	related	concepts	and	tables	so
that	it	is	easy	to	navigate	between	related	tables.

Balance	three	competing	forces

Behaviour-driven	development	(BDD)	test	artifacts	and	executable
specifications	should	ideally	be	designed	to	serve	three	important	roles:

Specification	(of	what	needs	to	be	implemented	or	changed)
Acceptance	tests	(for	the	specific	cases	to	be	checked	as	part	of	acceptance
of	this	feature)
Documentation	(of	the	behaviour	of	this	feature)

To	get	the	most	value	out	of	all	three	roles,	we	need	to	find	a	balance	between
the	‘three	C’s’	of	executable	specifications:

Conciseness	(of	specification)
Completeness	(of	test	coverage)
Coherence	(of	documentation)

When	creating	your	artifacts,	remember	the	three	roles	they	must	serve	at
different	times:	now	as	a	specification,	soon	as	acceptance	tests,	and	later	as
living	documentation.	Critique	the	artifact	from	each	perspective.	How	well	does
it	serve	each	distinct	role?	Is	it	over-optimised	for	one	role	to	the	detriment	of
others?

Key	benefits
When	we	find	the	right	balance	between	each	of	these	forces	(conciseness,
completeness,	coherence),	one	artifact	serves	all	three	purposes	effectively.	To
succeed	in	this,	we	need	to	be	clear	and	precise	about	the	topic	(this	addresses
conciseness)	but	draw	attention	to	the	important	relationships	and	special	cases
as	well	as	the	norm	(this	satisfies	completeness.)	We	also	need	to	provide	a
context	for	the	examples	in	the	form	of	a	well-written	introduction	and	achieve	a
balance	between	general	rules	and	specific	examples	(this	addresses	coherence).

A	specification	is	optimal	when	it	is	as	concise	as	possible.	Such	a	concise
specification	avoids	repetition,	extraneous	details,	redundancy,	and	overlap	with
information	contained	in	other	related	specifications.	Conciseness	helps	an
implementation	team	understand	the	exact	scope	of	what	must	be	implemented
or	changed,	with	the	minimum	distraction.

A	suite	of	acceptance	tests	needs	to	be	complete	in	terms	of	its	coverage	of	the
target	feature	and	of	other	features	with	which	it	is	integrated.	The	greater	the
coverage,	the	less	the	regression	and	integration	risk	for	this	story	or	feature.
Good	acceptance	tests	ensure	that	not	just	the	‘happy	path’	is	checked,	but	all
alternative	paths	and	dead	ends	too.	This	means	that	to	avoid	those	it-fell-
through-the-cracks	types	of	defects,	we	tend	to	test	beyond	the	edges	of	the
feature	or	change	–	the	test	footprint	is	usually	bigger	than	the	change	footprint.
This	in	itself	is	not	a	bad	thing,	but	this	tendency	is	a	force	that	competes
directly	with	the	need	for	conciseness	for	the	sake	of	the	specification.	We	also
need	to	recognise	that	there	are	good	test	cases	and	not-so-good	test	cases,	and
we	should	not	get	carried	away	with	trying	to	cover	every	possible	case.
Completeness	therefore	needs	to	be	understood	as	an	influencing	force,	but	not
an	absolute	goal.

Documentation	needs	to	be	coherent,	meaning	that	each	artifact	is	logical	and
understandable	on	its	own,	as	well	as	consistent	with	others	in	its	style	and
terminology.	This	coherence	enhances	shared	understanding	and	reduces	the	cost

of	ownership	of	the	product	in	the	long	term.	It	extends	the	valuable	life	of	our
specifications	and	tests,	and	represents	a	return	on	the	investment	we	make	in
them.	Coherence	of	documentation	is	also	enhanced	when	we	closely	match	our
rule	descriptions	to	the	examples	that	illustrate	them.

How	to	make	it	work
When	teams	capture	details	written	on	a	whiteboard	or	similar	media	in	a
specification	workshop,	they	typically	have	the	key	examples	of	cases	and
scenarios	that	were	discussed	to	tease	out	the	complexity	of	the	business	rules.
The	next	step	is	to	add	enough	context	to	these	examples	so	that	they	will	make
sense	to	people	who	were	not	involved	in	the	discussions	that	created	them.	In
User	Story	Mapping	Jeff	Patton	has	described	the	artifacts	we	create	in
collaborative	workshops	as	being	like	vacation	photos,	because	they	mean	more
to	the	people	who	were	there	when	the	photos	were	taken	than	to	those	who
weren’t.	For	those	who	took	part	in	the	specification	workshop,	the	key
examples	they	wrote	down	and	still	have	are	like	snapshots	that	trigger
memories	of	all	the	other	things	that	happened	at	the	time	â€“	the	discussions,
questions	and	answers,	revisions	and	corrections	that	the	group	went	through
together	in	the	process	of	arriving	at	those	examples.	It	is	important	to	remember
that	we	are	trying	to	create	items	of	long-term	value.	We	need	to	build	up	the
picture	in	a	logical	way,	so	that	everyone	can	get	the	most	value	out	of	the
specifications.

You	will	get	the	best	results	by	thinking	ahead	to	the	longer	term	role	of	coherent
documentation,	rather	than	thinking	only	in	terms	of	specifications	or	tests.

Here	are	some	tips	for	doing	this:

Always	provide	some	introductory	text	for	each	set	of	examples
Show	simple,	illustrative	examples	before	more	complex	ones
Group	small	sets	of	related	or	complementary	examples	together
Highlight	your	key	examples	and	keep	them	prominent	in	your
specifications,	close	to	the	descriptions	of	the	business	rules	they	illustrate
If	you	also	have	a	more	comprehensive	set	of	tests	that	cover	additional
cases,	keep	these	in	separate	tables	or	scenarios,	or	consider	putting	them	in
a	separate	feature	file	or	page,	and	tag	them	accordingly.

http://www.amazon.com/gp/product/1491904909/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1491904909&linkCode=as2&tag=swingwiki-20&linkId=RHBALQJ5DBCKO25H

Write	assertions	first

Overcomplicated	inputs	and	background	sections	are	one	of	the	most	common
problems	with	example-based	specifications	and	tests.	This	is	effectively	the
extreme	opposite	of	the	problems	described	in	the	section	Avoid	mathematical
formulas.	By	trying	to	make	things	concrete	enough	and	avoid	hidden
assumptions	in	inputs,	many	teams	go	too	far	and	specify	context	information
and	aspects	of	parameters	that	are	not	particularly	relevant	for	the	purpose	of	the
test.	This	often	takes	the	shape	of	background	sections	that	are	too	long	and
include	too	many	contextual	details.

For	example,	one	of	the	teams	we	worked	with	recently	was	working	on
calculations	of	tax	deductions	for	various	payment	operations,	and	all	their	tests
started	with	setting	up	financial	instruments,	defining	tax	rules	for	different
territories,	setting	up	accounts	with	a	lot	of	personal	details	related	to	account
holders,	creating	a	history	of	transactions	to	seed	an	account	and	then	proceeding
to	the	actual	purpose	of	a	test.	In	sixty	or	seventy	lines	of	text,	only	the	bottom
five	were	actually	directly	relevant	to	the	purpose	of	a	test.	Everything	else	was
there	because	people	thought	it	made	things	more	concrete,	or	because	the
underlying	data	models	required	reference	information.	Without	thinking	clearly
about	what	they	actually	wanted	to	test,	the	people	who	wrote	such	scenarios
added	everything	they	thought	would	be	important.

This	makes	specifications	overly	complex,	and	it	becomes	very	difficult	to
understand	which	of	the	input	parameters	actually	control	the	actions	under	test.
It’s	also	difficult	to	break	up	such	documents	if	they	become	too	complex,

because	it’s	unclear	which	input	sections	need	to	be	kept	or	rephrased	for
individual	actions.

Although	it’s	intuitive	to	think	about	writing	documents	from	top	to	bottom,	with
tests	it	is	actually	better	to	start	from	the	bottom.	Write	the	outputs,	the	assertions
and	the	checks	first.	Then	try	to	explain	how	to	get	to	those	outputs.	In	the	case
of	the	given-when-then	style	of	scenarios,	this	effectively	means	to	write	the
‘then’	clauses	first.	In	case	of	tabular	specifications,	this	effectively	means	to
write	the	columns	on	the	right	first	and	fill	them	in	with	data	that	would	be	used
to	check	the	outcome	of	the	tests.

Key	benefits
Starting	from	the	outputs	makes	it	highly	unlikely	that	a	test	will	try	to	check
many	different	things	at	once,	as	those	different	aspects	will	naturally	be	split
into	different	outputs.	Writing	outputs	first	helps	to	enforce	many	other	aspects
of	good	test	design,	such	as	focusing	on	a	single	action	in	a	test	and	balancing
clarity	and	completeness.

When	tests	are	written	from	the	outputs	towards	the	inputs	and	contextual
information,	people	tend	to	leave	out	all	the	incidental	detail.	If	something	isn’t
directly	leading	to	one	of	the	outputs,	it	doesn’t	need	to	be	in	the	list	of	inputs.
Tests	that	are	written	bottom	up,	by	doing	the	outputs	first,	tend	to	be	shorter	and
more	directly	explain	the	purpose.

Finally,	if	such	tests	grow	too	big	or	become	too	complex	to	understand,	they	are
much	easier	to	split	into	several	tests	than	the	ones	written	by	thinking	about
inputs	first.	When	tests	are	written	by	listing	outputs	first,	the	rest	of	the
document	is	naturally	tied	to	output	structures.	It	is	obvious	which	parts	of	the
inputs	go	with	which	sections	of	outputs,	if	we	need	to	slice	the	outputs.

How	to	make	it	work
Try	to	use	concrete	values	instead	of	general	descriptions	for	outputs.	The	more
concrete	the	outputs,	the	more	difficult	it	is	to	hide	wrong	assumptions.

Don’t	mistake	this	idea	for	writing	documents	with	a	single	pass,	where	you
completely	define	the	bottom	part,	and	then	proceed	to	the	middle	and	the	top
parts.	That’s	just	not	going	to	work.	Although	thinking	about	outputs	first
provides	focus	for	the	rest	of	the	test,	writing	that	way	is	counter-intuitive,	so	it

is	difficult	to	discover	all	the	key	examples	in	a	single	pass.	Likewise,	outputs
and	inputs	often	have	different	classes	of	equivalence,	so	we’ll	need	to	consider
both	to	fully	explore	the	problem	space.	This	means	that	we’ll	only	discover
some	classes	of	inputs	after	we	have	defined	some	initial	inputs.

Iterate	through	outputs	and	inputs	instead	of	expecting	to	complete	them	in	a
single	attempt.	It’s	perfectly	OK	to	alternate	between	refining	outputs	and
refining	inputs.	Start	with	one	class	of	outputs,	and	that	will	lead	to	a	set	of
related	inputs.	Then	think	about	further	boundaries	and	more	examples	you’d
like	to	include,	which	will	lead	to	more	outputs.	Don’t	try	to	get	all	the	outputs
right	immediately	before	proceeding	with	the	inputs.	In	particular,	interesting
boundaries	and	edge	cases	only	start	coming	out	only	when	you	have	some
concrete	idea	about	the	inputs,	so	doing	just	a	single	pass	from	bottom	to	top
would	not	allow	you	to	benefit	from	that	kind	of	discovery.

Split	technical	and	business	checks

Many	user	stories	involve	both	technical	and	business-oriented	requirements.
For	example,	automating	credit	card	charge	notifications	might	have	an	impact
on	transaction	workflows	and	order	management	(business),	and	also	require
support	for	particular	XML	message	formats	and	network	communication
protocols	(technical).	All	these	aspects	are	important	and	need	to	be	tested,	so
they	often	get	bundled	into	the	same	test	or	specification.

Mixing	technical	and	business	aspects	in	a	single	test	gives	teams	the	worst	of
both	worlds.	To	validate	business	flows,	such	tests	are	typically	automated
around	entire	components	or	even	systems,	which	is	quite	inefficient	for
checking	technical	boundaries	and	edge	cases.	Invalid	XML	messages	and
message	retry	policies	do	not	really	need	such	a	huge	area	of	coverage,	and	they
could	be	validated	within	much	smaller	code	units.	Mixing	the	two	types	of	tests
makes	technical	testing	much	slower	and	more	complex	than	it	needs	to	be.

Technical	testing	normally	requires	the	use	of	technical	concepts,	such	as	nested
structures,	recursive	pointers	and	unique	identifiers.	Such	things	can	be	easily
described	in	programming	languages,	but	are	not	easy	to	put	into	the	kind	of
form	that	non-technical	testing	tools	require.	So	teams	have	to	make	a	trade-off
between	precision	and	readability.	This	leads	to	descriptions	that	are	not	really
precise	but	also	not	exactly	easy	to	read,	such	as	tables	within	tables	with	named
cell	references.	Long-term	maintenance	becomes	a	huge	problem	because	of	the

lack	of	shared	understanding.	When	a	small	technical	change	requires	a	review
of	the	tests,	business	domain	experts	will	be	unable	to	provide	good	feedback.

Both	the	technical	and	the	business	aspects	are	important,	and	they	both	need	to
be	tested,	but	teams	will	often	get	a	lot	more	value	out	of	two	separate	sets	of
tests	rather	than	one	mixed-role	test.

Key	benefits
Dividing	a	single	overarching	test	into	several	smaller	and	more	focused	tests
makes	it	much	easier	to	understand	and	maintain	all	the	test	documents.	Teams
can	keep	tests	for	aspects	that	require	business	domain	feedback	in	a	human
readable	form,	so	domain	experts	can	provide	good	feedback.	Meanwhile,	they
can	use	programming	language	constructs	such	as	nested	structures	to	describe
technical	concepts.

More	focused	tests	are	also	less	brittle,	because	they	are	affected	by	smaller
areas	of	risk.	For	example,	a	change	in	message	retry	policies	will	only	affect	a
single	technical	test,	instead	of	breaking	the	flow	for	all	business	scenarios.
Adding	a	business	rule	example	will	not	require	changes	to	automation	that
already	handles	workflows	for	similar	cases.

When	the	aspects	are	mixed,	automation	code	is	often	too	generic	and	requires	a
lot	of	copying	and	pasting	with	minor	differences.	By	splitting	business	and
technical	checks,	teams	get	the	opportunity	to	consolidate	automation	code.
Business	tests	often	need	to	check	several	success	and	failure	scenarios,
technical	execution	of	all	those	examples	is	the	same.	For	example,	booking	a
trade,	processing	it	through	the	approval	workflow	and	lastly	checking	the	end
status	of	the	trade.	When	business	tests	are	clearly	separated,	it’s	easy	to	remove
duplication	and	make	such	flows	easier	to	maintain	and	extend.

How	to	make	it	work
A	mix	of	business	and	technical	tests	is	often	driven	by	the	misguided	opinion
that	teams	should	use	a	single	tool	for	all	their	tests.	Driving	the	format	of	a	test
based	on	a	tool	is	wrong	–	it	should	be	exactly	the	opposite.	Tools	should	be
chosen	depending	on	what	we	want	to	achieve.	For	teams	stuck	in	organisations
that	use	a	single	tool	for	testing,	it’s	a	good	trick	to	rename	business-oriented
tests	as	something	else	(for	example,	call	them	executable	specifications).

Another	good	option	is	to	start	a	discussion	around	agile	testing	quadrants	and
several	revisions	of	that	model,	all	of	which	are	described	in	More	Agile	Testing:
Learning	Journeys	for	the	Whole	Team	by	Lisa	Crispin	and	Janet	Gregory.	Such
models	visually	separate	business	and	technical	tests	and	prompt	a	discussion	on
different	ways	of	capturing,	executing	and	maintaining	such	tests.

For	each	test,	ask	who	needs	to	resolve	a	potential	failure	in	the	future.	A	failing
test	might	signal	a	bug	(test	is	right,	implementation	is	wrong),	or	it	might	be	an
unforeseen	impact	(implementation	is	right,	test	is	no	longer	right).	If	all	the
people	who	need	to	be	make	the	decision	work	with	programming	language
tools,	the	test	goes	in	the	technical	group.	If	it	would	not	be	a	technical	but	a
business	domain	decision,	it	goes	into	the	business	group.

If	some	potential	failures	would	be	decided	by	programmers,	and	some	would
require	business	decisions,	then	a	test	should	be	split.	For	example,	a	mismatch
in	XML	field	ordering	coming	from	a	third	party	doesn’t	really	require	a
business	domain	expert	to	resolve.	Neither	do	asynchronous	replies	coming	out
of	order,	or	a	database	disconnect	during	an	operation.	On	the	other	hand,
flagging	transactions	as	risky	although	they	are	below	the	currently	specified
risk	threshold	might	be	a	bug,	or	it	might	be	a	result	of	some	other	change
somewhere	else	in	the	system,	intended	to	reduce	risk	exposure.	Resolving	this
question	needs	someone	from	the	business	side.

http://www.amazon.com/gp/product/0321967054/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321967054&linkCode=as2&tag=swingwiki-20&linkId=KB5CYIPKAR4UTZTL

Don’t	automate	manual	tests

A	common	pattern	for	teams	that	start	with	test	automation,	or	development
groups	that	start	breaking	down	silos	between	testers	and	developers,	is	to	take
existing	manual	tests	and	automate	them.	Unless	it’s	a	training	exercise	for	an
automation	tool,	this	is	almost	always	a	bad	idea.

A	manual	test,	even	when	it’s	a	detailed	script,	gives	testers	the	opportunity	to
spot	tangential	information,	such	as	unexpected	events	and	layout	problems.
Manual	tests	provide	most	value	when	they	are	not	executed	by	blindly
following	just	what’s	written	on	a	piece	of	paper,	but	by	using	the	test	more	as	a
guideline	for	investigation.	With	automated	tests,	this	is	not	possible,	so	all	that
extra	value	is	lost.

Manual	tests	work	well	when	they	provide	the	context,	even	if	they	leave	out
specifics.	For	example,	a	suggestion	that	a	very	large	file	gets	processed	might
inspire	people	to	try	out	different	sizes	depending	on	the	most	recent	software
changes	and	the	risks	they	are	investigating.	Specifying	a	file	size	of	exactly	142

megabytes	might	be	over-constraining	–	it	might	prove	too	little	in	some
situations	and	be	complete	overkill	when	investigating	something	else.	On	the
other	hand,	automated	tests	work	well	only	when	they	are	very	specific.	A
machine	needs	to	know	exactly	how	large	the	input	file	needs	to	be,	otherwise
the	test	won’t	be	deterministic	and	repeatable,	and	potential	failure	investigation
would	be	too	difficult.

Manual	tests	suffer	from	the	problem	of	capacity.	Compared	to	a	machine,	a
person	can	do	very	little	in	the	same	amount	of	time.	This	is	why	manual	tests
tend	to	optimise	human	time	–	one	test	prepares	the	context	for	another,	data	is
reused	to	save	on	set-up	time,	and	small	interdependencies	and	inconsistencies
can	be	left	for	a	human	to	resolve.	Automated	tests	don’t	suffer	from	the
capacity	problem	as	much,	so	they	can	easily	set	the	same	thing	up	thousands	of
times.	But	they	have	a	different	critical	constraint.	Since	automated	tests	are
designed	for	unattended	execution,	it’s	critically	important	that	failures	can	be
investigated	quickly.	When	people	automate	manual	tests,	they	inherit	all	the
problems	with	shared	context	and	interdependent	impacts.	Unfortunately,	small
inconsistencies	can’t	be	resolved	by	a	machine	that	easily,	so	such	tests	tend	to
be	very	brittle	and	require	a	lot	of	time	for	investigating	false	alerts.

Automating	manual	tests,	without	redesigning	them	first,	loses	the	key	benefits
of	such	tests.	It	also	creates	a	mess	in	automation	that	is	difficult	to	investigate
and	maintain.	In	a	sense,	it	gives	teams	the	worst	of	both	worlds.

When	teams	decide	to	automate	a	set	of	existing	tests	that	were	previously
designed	as	manual	tests,	the	best	way	forward	is	to	rewrite	and	redesign	the
tests	from	scratch.	Keep	the	purpose,	but	throw	away	pretty	much	everything
else.

Key	benefits
Rewriting	tests	from	scratch	allows	teams	to	design	them	properly	for
unattended	execution:	decouple	tests,	remove	shared	content,	improve
repeatability	and	reproducibility,	and	introduce	specifics	to	help	with	later
investigation.

Because	the	problem	with	difficult	set-up	no	longer	applies,	teams	can	extend
the	automated	tests	to	cover	many	more	cases,	and	increase	risk	coverage.
Redesigning	tests	allows	teams	to	improve	parameterisation,	so	that	new
examples	can	be	added	quickly.

In	addition,	manual	tests	often	execute	through	a	user	interface,	because	that’s
easiest	for	a	human	to	control.	Automation	offers	the	opportunity	to	skip
subsystems	or	components	that	aren’t	critical	for	a	particular	scenario,	automate
at	service	levels,	replace	asynchronous	waiting	with	synchronous	processing	and
make	tests	faster	in	many	other	ways.	None	of	these	benefits	can	be	achieved	if
the	test	script	stays	the	same.

How	to	make	it	work
The	first	step	when	moving	away	from	a	completely	manual	testing	process	is	to
identify	the	purpose	and	the	risks	covered	by	individual	tests.	To	save	time	in
execution,	it’s	common	for	a	single	manual	test	to	check	lots	of	different	things
or	to	address	several	risks.	For	automated	tests,	it’s	much	better	to	address	each
of	those	aspects	with	separate	tests,	or	even	entire	test	suites.	I	generally	try	to
break	a	single	process	into	individual	rules,	describe	workflows	separately	from
decision	points,	remove	generalisations	and	revisit	necessary	inputs,	outputs	and
boundaries	for	each	test	separately.

The	next	step	is	to	split	out	test	aspects	that	require	human	insight.	There	is	a	lot
of	value	in	a	human	observing	how	something	works,	investigating	along
tangential	paths	and	exploring	unknown	or	unexpected	impacts.	Automated	tests
should	check	for	deterministic,	pre-defined	outcomes,	freeing	up	people	to
explore	non-deterministic	outputs	and	identify	unexpected	outcomes.	Don’t	even
try	to	automate	those	aspects	of	tests,	because	you’ll	just	be	wasting	time	and
losing	all	the	value.

Get	developers	and	testers	to	rewrite	tests	together,	because	they	can	have	a
discussion	on	the	best	way	to	cover	particular	risks	and	what	additional	cases
need	to	be	considered.	When	teams	rewrite	business-oriented	tests,	get	things
reviewed	by	stakeholders	and	domain	experts.

IMPROVING	TESTABILITY

Wrap	synchronous	database	tests	in
transactions

Tests	involving	a	database	require	teams	to	make	careful	compromises	between
isolation,	reliability	and	speed	of	feedback.

One	option	is	for	tests	to	talk	to	a	production-like	data	source.	This	makes	them
very	reliable,	because	the	environment	in	which	they	run	is	similar	to	the	that	of
the	target	platform.	But	setting	up	production-like	databases	is	not	practical	for
anything	apart	from	the	most	trivial	reference	data	sources.	Production	databases
tend	to	be	big,	messy,	full	of	real-world	data,	and	just	copying	the	data	files	for
use	by	a	set	of	tests	is	often	several	orders	of	magnitude	longer	than	the	tests
themselves	would	take	to	run.	A	common	approach	is	to	have	a	single	data
source	for	all	the	tests,	which	speeds	up	feedback	slightly,	but	requires	teams	to
sacrifice	isolation.	One	test	can	mess	things	up	easily	for	other	tests,	and
generally	any	idea	of	parallel	test	execution	goes	out	of	the	window.

A	common	alternative	is	for	tests	to	execute	using	a	simplified,	minimised	data
set,	which	is	faster	to	set	up.	This	speeds	up	feedback	but	sacrifices	reliability.
Data-driven	systems	often	experience	problems	when	they	hit	unexpected	real-
world	information,	and	tests	running	on	an	idealised,	simple	data	set	rarely

encounter	such	problems.	And	even	with	smaller	data	sets,	starting	up	a	database
process	instance	might	take	several	minutes,	making	it	impractical	to	do	for
every	test.

The	third	solution,	common	with	teams	that	develop	most	of	their	software	using
object-oriented	platforms,	is	to	run	tests	against	a	specialised	testing	database.
Ideally,	object-oriented	data	access	libraries	should	take	care	of	database	access,
so	the	same	test	can	in	theory	be	executed	against	any	type	of	data	source.	This
leads	to	tests	with	in-memory	databases	which	require	no	disk	access	and	can	be
started	inside	the	test	runner	process.	Feedback	is	much	faster,	tests	are
completely	isolated,	but	unfortunately	this	approach	makes	tests	highly
unreliable.	For	example,	one	team	we	worked	with	executed	most	of	their	tests
using	HSQLDB,	an	in-memory	Java	database.	Their	production	system	was
running	on	Oracle.	All	tests	could	happily	pass,	only	for	the	system	to	fail	in
production	because	of	vendor-specific	SQL	syntax.	Such	tests	are	worse	than	no
automation,	because	they	are	highly	misleading.

In	cases	where	the	activity	under	test	is	synchronous,	and	involves	only	one
operating	system	process	(so	it’s	not	distributed),	there	is	a	much	simpler
solution.	Just	wrap	tests	in	database	transactions,	and	roll	back	transactions	at	the
end	of	each	test.

Key	benefits
Most	database	systems	automatically	isolate	individual	transactions,	so	tests
running	in	different	transactions	are	fully	isolated.	This	allows	teams	to	execute
tests	in	parallel,	speeding	up	feedback	significantly.

Rolling	back	transactions	after	each	test	ensures	that	subsequent	tests	don’t	see
any	unwanted	changes	in	reference	data,	which	helps	to	avoid	false	alarms.	For
example,	one	of	our	clients	had	to	allocate	trades	against	a	particular	fund,	and	to
make	tests	repeatable	each	test	would	use	a	different	fund.	They	only	had	a	few
thousand	funds	set	up	in	the	database,	so	at	some	point	every	week	the	tests
would	start	failing	because	there	were	no	more	clean	funds	available.	Wrapping
tests	in	transactions	and	rolling	the	changes	back	allowed	the	team	to	keep
running	the	tests	indefinitely.	Although	trades	would	be	allocated	during	a	test,
the	allocations	would	magically	disappear	before	the	next	test	started.

This	approach	also	significantly	simplifies	clean-up	procedures	after	testing.
Without	a	roll-back,	each	test	has	to	explicitly	remove	the	information	it	created,

which	increases	the	amount	of	automation	code,	makes	tests	more	expensive	and
more	difficult	to	maintain,	and	makes	tests	longer.	Rolling	back	database
transactions	is	often	instantaneous	and	requires	no	special	software	code	to	be
written	and	maintained.

In	addition,	this	makes	data-driven	tests	instantly	repeatable.	With	custom	clean-
up	procedures,	teams	often	spend	a	lot	of	time	ensuring	that	a	test	can	run
repeatedly.	A	classic	example	is	a	test	that	tries	to	register	a	new	user	with	a
particular	username.	Unless	the	database	is	correctly	cleaned	up,	duplicate
username	checks	might	prevent	the	same	test	from	running	repeatedly.	If	the	test
runs	inside	a	database	transaction,	when	the	transaction	rolls	back,	the	newly
created	user	will	disappear.

How	to	make	it	work
Transaction	control	should	be	done	globally,	because	one	test	outside	control	can
mess	things	up	for	thousands	of	transactional	tests.	Even	worse,	problems	like
this	are	difficult	to	troubleshoot,	because	the	offending	test	will	likely	pass
happily,	but	randomly	break	tests	that	follow	it.

The	best	way	to	set	transaction	control	is	to	do	it	globally,	in	the	testing
framework	rather	than	in	each	individual	test.	For	example,	when	working	with
FitNesse	for	a	financial	service	client,	we	implemented	a	thin	wrapper	around
the	standard	test	runner	that	would	start	a	transaction,	delegate	to	the	normal
runner,	and	just	roll	back	the	transaction	at	the	end.	This	made	all	tests	instantly
isolated	and	reversible,	without	the	need	for	individuals	to	remember	to	add	this
configuration	to	each	test.

If	your	testing	tool	does	not	allow	global	wrappers,	think	about	adding
transaction	management	code	to	test	suite	set-ups	and	tear-downs.

Set	up	before	asynchronous	data	tests,	don’t
clean	up	after

When	a	data-driven	process	involves	several	asynchronous	components,
wrapping	tests	inside	database	transactions	just	isn’t	practical.	If	the	system	is
distributed	as	well,	resetting	the	data	might	require	time	that	the	delivery	team
just	doesn’t	have.	Sometimes	the	team	can’t	clean	up	the	data	because	it’s	not
even	under	their	control.	For	all	those	reasons,	full	isolation	with	clean	external
data	sources	before	each	test	is	often	impractical	with	asynchronous
components.

To	get	round	this	problem,	teams	often	run	tests	in	partial	isolation,	and	have
each	test	cleaning	up	after	itself.	Although	this	might	sound	good	in	theory,	in
practice	it	creates	a	lot	of	problems.	Clean-up	procedures	are	mostly	written
from	the	perspective	of	tests	that	pass,	and	often	don’t	work	when	the	test	fails.
Similarly,	when	a	bug	causes	one	test	to	fail,	many	testing	tools	won’t	execute
the	rest	of	a	test,	so	clean-up	code	is	often	skipped.	Tests	also	might	be

interrupted	for	many	reasons,	including	something	external	or	users	stopping	a
long-running	test	batch	that	got	stuck.

An	invalid	starting	state	can	create	false	alarms,	causing	teams	to	waste	time
investigating	non-existent	failures.	With	large	suites,	this	problem	is	even	worse,
because	failures	can	cascade	and	spread	easily.	One	test	might	break	due	to	an
invalid	starting	state,	and	then	leave	the	external	data	in	an	inconsistent	state	for
many	other	tests.	This	makes	pinpointing	the	cause	of	the	problem	even	more
difficult.	Data-driven	state	problems	are	temporal,	environment-dependent,
difficult	to	troubleshoot	and	reproduce,	so	even	with	a	lot	of	work,	it’s
impossible	to	be	sure	that	they	have	been	completely	fixed.

It	may	sound	logical	that	each	test	should	clean	up	after	itself,	but	it’s	far	more
practical	to	clean	up	environments	in	test	set-ups,	before	each	test	executes.
Whenever	possible,	rely	on	set-up	code	to	sort	out	an	inconsistent	data	state.
Feel	free	to	include	clean-up	procedures	after	testing	but	don’t	rely	on	them
being	always	executed.

Key	benefits
Ensuring	environment	and	data	consistency	in	test	set-up	code	is	a	bit	trickier	to
get	right	than	performing	clean-ups,	because	a	test	won’t	know	what	was
executed	before	it.	So	set-ups	need	to	be	much	more	defensive	and	check	for
more	things.	But	the	effort	pays	off	quickly.

First	of	all,	tests	will	be	better	isolated.	Problems	in	one	test	won’t	cascade	to
many	other	tests.	When	a	bug	causes	a	test	failure,	you	will	only	need	to
investigate	that	single	test,	not	500	other	false	alarms,	saving	valuable	time.

In	addition,	if	there	is	no	post-test	clean-up	code,	you	can	inspect	failures	more
easily.	When	a	bug	causes	a	test	to	fail,	clean-up	code	might	remove	important
evidence,	and	that’s	exactly	when	we	need	detailed	information	on	what	went
wrong.	If	most	of	the	data	manipulation	is	in	the	set-up	code,	a	failing	test	leaves
all	the	mess	it	created	for	people	to	investigate	quickly.

Relying	more	on	preparation	than	clean-up	also	allows	teams	to	optimise	long-
running	tasks	–	for	example,	set-up	code	can	quickly	check	if	the	state	is	good
enough	for	a	particular	test	and	avoid	running	unnecessary	preparations.

How	to	make	it	work

Ideally,	each	test	should	be	able	to	set	up	the	external	environment	for	itself,	but
sometimes	this	isn’t	possible.	In	such	cases,	the	set-up	code	should	at	least	check
if	the	external	state	is	consistent	enough	for	the	test	to	execute.	If	it	is	not,	issue
an	alert	about	the	invalid	starting	position	without	allowing	the	test	to	run.	It’s
much	better	to	see	an	invalid	state	warning	than	a	false	failure.

When	working	with	external	resources,	especially	time-consuming	tasks	such	as
database	truncation,	try	to	introduce	some	kind	of	version	check	that	can	short-
circuit	the	set-up	stage	if	it	is	not	needed.	For	example,	one	team	we	worked
with	introduced	triggers	for	all	reference	data	tables,	that	automatically	updated
a	version	number	in	the	test	data	control	table.	This	allowed	tests	to	execute
truncation	only	if	the	reference	data	had	been	modified.	If	none	of	the	previous
tests	had	changed	the	reference	data,	subsequent	tests	could	just	run	without
preparing	the	database.	If	a	single	version	number	won’t	do	the	trick	for	you,
think	about	using	checksums	on	important	blocks	of	data,	or	something	similar.

Another	possibility	is	to	perform	data	set-up	for	entire	groups	of	tests	(or	test
suites),	and	ensure	that	individual	tests	in	that	group	work	with	different	objects.
This	allows	one	long-running	set-up	to	execute	once	for	the	entire	group.

Avoid	removing	evidence	of	failures	in	test	clean-ups,	and	never	depend	on
clean-ups	actually	completing	if	you	can’t	explicitly	control	them.	Use	clean-up
procedures	after	tests	just	for	optimistic	resource	de-allocation,	for	example,
freeing	up	database	connections	and	unsubscribing	from	external	queues.

Introduce	business	time

Time-based	features	tend	to	be	very	difficult	to	test	properly.	A	typical	example
is	post-processing	that	needs	to	happen	at	the	end	of	a	time-based	event,	such	as
re-enabling	buttons	on	a	form	after	a	300	millisecond	(ms)	animation.	Many
teams	write	a	test	that	pauses	for	300	ms,	then	checks	the	button	state.	This
approach	is	problematic	from	two	perspectives:	it’s	not	really	deterministic,	and
it’s	delaying	feedback.	Although	specifying	the	exact	number	of	milliseconds
sounds	deterministic,	it’s	difficult	to	guarantee	millisecond	accuracy	for
asynchronous	processes	on	most	operating	systems,	because	they	are	just	not
built	for	real-time	processing.	A	memory	clean-up	job,	disk	access	or	something
similar	might	take	over	and	delay	the	animation	just	long	enough	for	the	test	to
fail	occasionally.	A	potential	workaround	is	to	specify	a	longer	period	–	say	a
second	or	so,	but	then	we’re	not	really	testing	that	the	buttons	are	re-enabled
when	they	need	to	be.	Adding	any	kind	of	artificial	delay	to	automated	tests	is
always	bad,	because	it	prolongs	test	execution	and	delays	feedback.	Defensive
tests	that	wait	longer	than	really	needed	to,	avoid	small	timing	differences,	don’t

help	either.	Although	a	second	might	not	sound	too	much,	multiply	that	by	a	few
hundred	test	cases	and	a	few	dozen	runs	of	such	cases	every	day,	and	things	start
to	look	quite	serious.

The	problems	get	even	worse	with	longer	time	periods.	Imagine	that	you	want	to
prove	that	an	overnight	job	will	aggregate	all	credit	card	transactions	from	the
previous	day	into	a	report,	or	that	a	discount	offer	will	expire	in	thirty	days.
Nobody	will	wait	a	month	to	get	the	results	of	an	automated	test,	so	such	tests
are	typically	automated	using	magic	time	constants.	For	example,	discount	offers
are	specified	using	ONE_MONTH_AGO,	and	automation	code	replaces	that
value	with	a	concrete	date.	The	problem	with	this	approach	is	that	it	can	hide
quite	a	few	important	assumptions	about	the	meaning	of	rules.	For	example,
what	date	is	ONE_MONTH_AGO	on	30th	of	March?	Time	differences	sound
simple,	but	leap	years,	daylight	saving	and	time	zones	can	easily	turn	them	into	a
mess.

A	pretty	good	solution	for	time-based	constraints	is	to	design	the	system	to	use	a
concept	of	business	time	instead	of	relying	on	the	operating	system	clock.	For
testing	purposes,	the	business	time	can	then	be	manipulated	easily.	For
production	use,	the	business	time	can	follow	the	operating	system	clock.

Key	benefits
Decoupling	business	time	from	operating	system	time	makes	tests	much	more
reliable.	We	can	move	the	business	clock	299	milliseconds	into	the	future	and
check	that	buttons	are	disabled,	then	move	it	one	more	millisecond	and	check
that	they	are	enabled.	All	this	can	happen	instantaneously,	without	causing	any
feedback	delay	or	blocking	the	testing	system.

Introducing	business	time	allows	teams	to	be	much	more	precise	in	describing
their	tests,	which	helps	to	discover	wrong	assumptions	and	open	up	a	good
discussion	on	actual	requirements.

An	analytics	company	we	worked	with	used	magic	constants	for	time	values	in
their	tests.	When	we	started	re-writing	tests	using	business	time	and	concrete
values,	they	discovered	a	huge	misunderstanding	between	developers	and
business	stakeholders.	Their	system	generated	reports	for	pre-defined	time
periods	such	as	‘yesterday’	and	‘last	month’.	The	developers	considered
yesterday	to	be	the	previous	calendar	day	in	the	time	zone	where	the	servers

were	based.	For	business	stakeholders,	‘yesterday’	meant	the	previous	calendar
day	for	whatever	time	zone	the	user	was	in.

Business	time,	since	it	doesn’t	necessarily	follow	the	operating	system	clock,
also	makes	things	easier	to	control	in	production	if	needed.	For	example,	if	a	bug
is	discovered	in	monthly	reports,	it’s	easy	to	rerun	the	reporting	engine	for
previous	periods	and	get	data	as	on	a	particular	day.

How	to	make	it	work
A	typical	way	of	implementing	business	time	is	to	separate	out	an	application
clock	component,	and	make	all	other	components	use	it	instead	of	the	operating
system	clock.	Then	it’s	easy	to	roll	time	forwards	and	backwards.	This	approach
requires	that	the	whole	application	stack	is	under	the	control	of	the	delivery
team.

When	the	application	involves	external	components	that	can’t	be	easily
modified,	such	as	database	procedures	that	automatically	time-stamp	records,	a
potential	workaround	is	to	set	the	system	clock	on	the	test	environment.	This	is	a
good	strategy	if	two	conditions	are	met:	the	entire	application	stack	can	run	on	a
single	machine	(so	the	clock	can	easily	be	moved	for	everything	at	once)	and
third-party	components	won’t	explode	if	the	time	starts	flowing	backwards.	If
you	use	this	option,	it’s	often	good	to	put	the	application	stack	and	test	runners
on	different	machines,	so	that	the	tests	remotely	control	the	application.	This
avoids	false	test	duration	reports,	and	provides	a	source	of	real-world	time	that
the	application	clock	can	return	to	after	testing.

If	you’re	working	with	third-party	components	that	only	expect	the	time	to	flow
in	one	direction,	and	randomly	fail	if	you	start	playing	with	the	system	clock,
consider	re-architecting	the	areas	under	your	control	so	that	you	can	test	them	in
isolation.

Provide	atomic	external	resources

Resources	created	asynchronously,	or	outside	the	main	testing	process,	are	one
of	the	major	causes	of	instability	for	automated	tests.	A	good	example	of	this	is	a
trade	reconciliation	system	at	an	investment	fund	we	worked	with.	Most	of	their
tests	requested	a	daily	export	of	trades	from	different	sources	and	cross-checked
the	trades.	One	of	the	sources	would	export	a	file	and	send	it	using	FTP.	The
tests	would	first	request	the	file	export,	then	wait	for	a	file	to	appear,	and	finally
load	trades	and	compare	them	against	internal	records.	The	problem	was	that
many	of	the	tests	would	randomly	fail,	but	on	subsequent	runs	they	would	pass,
while	some	other	tests	that	had	worked	would	fail.	Their	test	execution	system
would	run	all	the	tests	five	times	and	mark	the	tests	that	passed	at	least	once	as
OK.	This	is	a	very	problematic	strategy.	The	number	five	was	chosen	because	it
seemed	to	make	most	problems	go	away,	but	sometimes	even	the	tests	that	had
five	failures	were	actually	OK	when	executed	separately.	On	the	other	hand,	this
created	huge	feedback	delays.	Tests	that	rely	on	remote	FTP	are	slow	anyway,

but	running	them	five	times	just	made	things	ridiculously	slow,	without
guaranteeing	accuracy.

We	traced	the	problem	down	to	the	trade	loader	occasionally	missing	a	few
trades	from	the	remote	file.	The	tests	were	checking	only	if	the	file	existed,	not	if
the	remote	process	had	finished	transferring	all	the	data.	Because	the	test	trades
were	relatively	small	and	few,	the	initial	file	creation	would	be	quick	enough	in
most	cases	for	this	to	work.	But	sometimes,	due	to	network	delays	or	slightly
larger	files,	a	test	would	see	the	file	before	all	the	contents	had	been	transferred.
The	test	process	would	then	start	loading	the	trades	while	the	remote	transfer
was	still	copying	the	file	over,	and	omit	the	remaining	trades.

Failures	such	as	this	one	are	tricky	to	identify	and	troubleshoot,	because	they
depend	on	small	differences	in	the	environment.	For	example,	such	problems	do
not	appear	on	a	developer	test	system	because	everything	runs	on	a	fast	local
network,	while	they	can	start	randomly	popping	up	on	a	more	integrated
production-like	environment.	This	often	leads	to	bugs	falsely	classified	as	not
reproducible,	and	the	infamous	‘it	works	on	my	machine’	effect.

Whenever	a	test	needs	to	access	external	resources,	in	particular	if	they	are
created	asynchronously	or	transferred	across	networks,	ensure	that	the	resources
are	hidden	until	they	are	fully	complete.	Make	them	atomic	–	the	appearance	of
the	resource	should	also	mean	that	it	is	ready	for	use.

Key	benefits
Atomic	external	resources	prevent	false	alarms	and	save	a	lot	of	time	by	making
test	execution	more	reliable.	After	we	had	changed	the	file	handling	for	the	trade
reconciliation	tests,	they	needed	to	run	only	once,	instead	of	five	times.	The	team
also	spent	considerably	less	time	troubleshooting	errors.

Another	major	benefit	of	this	technique	is	that	it	makes	resource	handling	easier
in	production	systems.	If	tests	can	get	incomplete	data,	it’s	highly	likely	that	the
underlying	process	in	the	system	under	test	can	experience	the	same	problem.
By	designing	atomic	resource	handling	for	tests,	it	becomes	easier	to	provide
such	resources	to	production	systems	as	well,	and	avoid	occasional	nasty	bugs
that	are	very	difficult	to	troubleshoot.

How	to	make	it	work

If	possible,	design	the	system	so	that	it	creates	a	file	of	this	type	under	a
temporary	name,	and	when	it	completes	and	closes	the	file,	renames	it	in
accordance	with	the	final	expected	output.	Writing	file	content	is	normally	a
buffered	operation,	so	files	may	appear	even	though	they	are	incomplete.
Renaming,	on	the	other	hand,	is	normally	an	atomic	operation.	For	multi-process
exports	where	file	names	are	important	and	you	can’t	just	create	a	temporary
name,	use	different	folders	for	file	creation	and	file	consumption.	Moving	files
across	folders	is	similar	to	renaming,	typically	atomic	on	today’s	operating
systems.

These	two	approaches	require	modifying	the	file	creation	process.	If	this	is	not
possible,	but	there	is	a	separate	file	transfer	process,	consider	using	a	different
mechanism	to	indicate	that	the	transfer	is	complete.	For	example,	send	a
message	to	a	queue	or	create	an	empty	marker	file	with	the	same	name	and	a
different	extension	when	the	file	transfer	is	complete.	The	loader	process	can
then	look	for	the	marker	file	instead.	Because	the	marker	file	content	is	ignored,
the	problem	of	loading	partial	data	is	resolved.

If	you	cannot	change	either	the	file	creation	or	the	transfer	process,	consider
having	the	tests	open	files	for	exclusive	writing	instead	of	reading.	Most
operating	systems	do	not	lock	files	for	reading,	but	have	an	option	to	lock	files
for	writing.	By	requesting	an	exclusive	write	lock,	the	process	that	consumes	a
file	can	be	blocked	until	the	transfer	completes.	The	downside	of	this	approach	is
that	the	file	reader	has	to	run	under	wider	system	privileges	in	testing	than	in
production,	which	might	hide	some	other	problems.

The	fourth	option	is	to	check	for	file	existence,	wait	for	a	while,	and	then	check
if	the	file	is	growing	or	not.	This	is	obviously	not	ideal,	because	network	latency
and	file	system	buffering	can	cause	a	file	to	appear	as	stable	while	the	data	is
still	coming	in,	but	it	might	be	the	right	approach	if	the	other	approaches	are	not
feasible.

Wait	for	events,	not	time

Most	modern	software	is	built	to	run	across	several	machines.	Mobile	devices
and	web	interfaces	often	depend	on	remote	data,	service-oriented	architectures
split	processes	into	multiple	components	and	cloud-	based	applications
synchronise	local	information	with	popular	storage	services.	All	these	processes
require	testing,	and	by	design	they	are	often	asynchronous.	This	means	that	tests
involving	such	components	involve	waiting	on	a	remote	resource	to	retrieve	or
upload	data	or	to	complete	some	long-running	operation.	The	most	popular	way
of	handle	this	testing	is	to	include	time-	based	waiting,	such	as	steps	that	require
a	test	to	wait	three	seconds.

Time-based	waiting	is	the	equivalent	of	going	out	on	the	street	and	waiting	for
half	an	hour	in	the	rain	upon	receiving	a	thirty-minute	delivery	estimate	for
pizza,	only	to	discover	that	the	pizza	guy	came	along	a	different	road	and
dropped	it	off	10	minutes	ago.	If	you	wait	for	a	set	period	of	time,	both	you	and
the	pizza	will	be	cold.	It’s	far	better	to	wait	in	for	the	delivery.

The	big	problem	with	time-based	waiting	is	that	it	is	highly	environment-
dependent.	In	typical	developer	environments,	where	multiple	services	run	on
the	same	machine,	the	required	wait	time	is	much	lower	than	on	a	realistic
production-like	environment.	This	causes	tests	to	pass	on	developer	machines
but	fail	during	integration	testing,	or	requires	developers	to	slow	down	their	tests
unnecessarily.

Additionally,	temporary	network	latency	or	other	processes	running	on	the	same
machines	can	slow	down	remote	operations.	This	presents	a	major	problem
when	it	comes	to	choosing	the	right	length	of	time	to	wait.	Set	it	too	low,	and
tests	will	flicker	and	report	false	alarms.	Set	it	too	high,	and	you	slow	down
feedback	significantly	even	when	the	network	is	not	busy.

Even	if	adding	a	few	seconds	to	a	single	test	doesn’t	create	a	problem,	this
practice	just	does	not	scale.	With	a	few	hundred	tests,	the	additional	feedback
delay	can	easily	extend	to	hours.	Overly	long	wait	cycles	cause	developers	to
skip	running	such	tests	frequently,	so	issues	propagate	to	integration
environments	and	get	discovered	too	late.

Coupled	with	slow	feedback	cycles	from	test	suites,	this	often	causes	huge
coordination	problems	for	organisations	with	multiple	teams.	When	one	team
breaks	the	integration	test	environment,	the	other	teams	don’t	get	fast	feedback
about	newly	introduced	problems	and	cross-team	issues	easily	accumulate.

Whenever	possible,	avoid	waiting	for	a	period	of	time,	but	instead	wait	for	an
event	to	happen.	For	example,	wait	for	a	message	to	appear	on	a	queue,	or	for	a
file	to	appear	on	a	file	system.	Tests	can	then	be	automated	to	wait	until	that
event	happens.

Key	benefits
Waiting	for	events	instead	of	time	is	critical	because	it	speeds	up	feedback.	Any
arbitrary	time	limit	will	be	either	too	short	or	too	long,	and	cause	tests	to	flicker
or	delay	feedback	unnecessarily.	When	a	test	is	waiting	on	an	event,	it	can
proceed	immediately	after	that	event	instead	of	delaying	feedback	further.	On
large	test	suites	this	trick	can	easily	save	hours	of	execution	time.	This	means
that	developers	are	more	likely	to	execute	such	tests	locally.	In	organisations
with	multiple	teams,	this	means	that	problems	created	by	one	team	are	likely	to
be	caught	before	their	code	is	integrated	with	the	work	of	other	teams,
significantly	reducing	interruptions.

Waiting	on	events	instead	of	time	also	makes	tests	less	environment-specific.
Slow	networks	and	busy	machines	are	no	longer	a	problem,	because	the	criterion
for	proceeding	takes	those	factors	into	consideration.	This	means	fewer	false
alarms,	so	the	teams	spend	less	time	investigating	fake	issues.

How	to	make	it	work
Asynchronous	operation	tools	and	libraries	often	support	completion
notifications.	These	are	a	great	alternative	to	waiting	for	time.	For	example,
background	data	retrieval	in	web	browsers	can	notify	the	application	after	the
transfer	completes.	In	most	cases,	the	system	under	test	already	uses	such
notifications	to	avoid	working	with	incomplete	information,	and	it’s	easy	to	just
expose	or	extend	such	notification	to	a	test	system.

If	the	remote	communication	processes	are	not	under	your	control	and	you	can’t
expose	the	notifications	easily,	then	consider	changing	the	remote	process	to
generate	an	additional	event.	For	example,	push	a	message	to	a	queue	when	the
database	write	ends.	The	test	can	then	listen	to	the	queue	before	proceeding.

If	the	remote	process	is	not	under	your	control,	check	if	it	generates	any	log	files
or	additional	outputs.	If	so,	it’s	often	a	good	idea	to	process	those	outputs	and
generate	an	event	based	on	them,	for	example,	send	a	list	of	all	completed
operation	identifiers	to	a	queue.

If	it’s	not	possible	to	create	a	blocking	operation,	it	might	be	possible	to
periodically	check	for	an	existence	of	a	resource.	For	example,	instead	of
waiting	for	five	seconds	for	a	web	page	to	reload,	check	if	the	page	contains	a
particular	title	or	element	every	100	milliseconds.	For	remote	data-driven
processes,	check	if	a	transaction	record	is	in	the	database.	Periodic	checking
(also	called	sampling)	works	well	when	tests	expect	something	to	happen,	but
they	aren’t	really	good	in	describing	that	something	shouldn’t	happen,	for
example,	that	user	details	fail	to	be	registered.	In	that	case,	it’s	often	better	to
describe	an	alternative	event.	See	the	section	Ask	‘what	happens	instead?’	for
more	information	on	this	technique.

Split	data	generators	from	tests

Tests	for	groups	of	operations	often	do	not	really	depend	on	attributes	of
individual	actions.	A	typical	example	is	loading	100,000	trades	to	see	if	the
system	can	take	them	in	quickly	enough.	The	details	of	individual	trades	might
be	required	to	actually	automate	the	process,	but	they	are	not	really	relevant	for
the	purpose	of	that	particular	test.	Specifying	each	of	the	trade	transactions	in
detail	would	make	the	test	impossible	to	understand,	but	naively	using	100,000
copies	of	one	transaction	might	not	be	an	adequate	check.	In	cases	like	this,	it’s
far	better	to	build	a	generator	for	the	test	data,	for	example	one	that	creates
trades	by	randomly	assigning	funds	or	accounts,	and	let	the	test	just	specify	how
many	trades	it	needs.

Systems	that	require	automatically	generated	data	for	tests	can	often	use	the
same	inputs	for	many	different	test	scenarios,	with	slight	modifications.	But	data
generators	are	often	so	tightly	integrated	into	tests	that	they	cannot	be	easily
tweaked.	Many	teams	end	up	duplicating	similar	generators	all	over	their	test
suite.	This	can	cause	a	lot	of	maintenance	pain.

If	you	have	to	run	a	lot	of	tests	driven	by	generated	data,	one	of	the	best	tricks	to
improve	feedback	and	reduce	maintenance	costs	is	to	completely	decouple	data
generators	from	individual	test	scenarios.	Write	them	as	separate	libraries,	or
even	separate	processes.

Key	benefits
Splitting	test	data	set-up	from	test	execution	instantly	provides	a	lot	more
flexibility.	Each	component	can	be	maintained	separately,	and	generators	can	be
replaced	by	better	versions	without	any	changes	to	tests.

If	a	test	uses	randomly	generated	data	and	fails,	there	is	always	a	possibility	that
the	data	was	invalid.	When	the	data	generator	is	split	from	the	test,	it’s	much
easier	to	run	it	separately	and	validate	the	data	if	needed.

When	the	underlying	infrastructure	makes	test	automation	or	maintenance
difficult,	dividing	data	generators	and	tests	makes	it	possible	to	reuse	tests.
Teams	can	plug	different	data	generators	into	a	single	automated	test,
simplifying	test	maintenance	significantly.	For	example,	a	team	can	use	the	same
test	with	European	and	American	trades	just	by	swapping	the	data	file.

Different	generators	can	also	help	teams	to	trade	off	speed	of	feedback	against
risk	coverage.	For	example,	a	team	can	use	randomly	generated	trades	on	the
internal	testing	environment,	but	use	a	slower	process	to	replay	last	month’s
trades	from	the	production	database	for	user	acceptance	testing.	This	trick	can
also	be	used	to	reduce	reliance	on	specialist	hardware.	For	example,	a	team	can
use	pseudo-random	numbers	during	development,	but	run	the	same	tests	using	a
hardware	random	number	generator	before	deployment	to	production.

By	separating	data	generators	from	tests,	teams	also	get	an	option	to	reuse
generated	data.	Several	teams	we	worked	with	reduced	the	total	execution	time
of	their	test	suites	by	an	order	of	magnitude	by	grouping	related	tests	together
and	generating	the	data	only	once,	in	the	test	suite	set-up.

How	to	make	it	work
If	possible,	save	test	data	into	files	and	use	a	simple	data	format.	Avoid	binary
information	if	you	can,	and	instead	use	human-readable	text.	Avoid	position-
based	columns	or	complex	nested	structures,	and	use	separators	such	as	spaces
or	commas	that	humans	can	understand.	Position-based	data	saves	a	bit	of

programming	time,	but	you’ll	lose	the	possibility	of	manually	validating	the
data.	If	the	generated	data	is	human-readable,	you	can	easily	give	it	to	a	domain
expert	to	sense-check	in	case	of	failure.	When	the	data	format	is	human-
readable,	people	can	also	easily	modify	and	hand-craft	inputs.	Text	files	can	also
be	placed	in	version	control	systems	easily,	if	you	need	to	have	an	audit	trail	of
changes.

If	the	generators	are	complex	or	time-consuming	to	run,	enable	tests	to	reuse
them	by	connecting	the	generator	parameters	with	the	resulting	file.	For
generators	with	only	a	few	arguments,	a	good	solution	is	to	indicate	the	contents
of	a	file	in	its	name.	For	example,	trades-100000-US.txt	for	the	generated	trades
file	that	uses	US	and	100000	as	parameters.	For	more	complex	configurations,	a
good	trick	is	to	use	a	separate	configuration	file,	and	name	the	output	file	by	just
changing	the	extension.	For	example,	the	generator	would	read	trades-166.cfg,
and	create	trades-166.txt.	This	allows	individual	tests	to	check	if	the	relevant	file
already	exists	and	avoid	running	generators	repeatedly.	It	also	allows	the	team	to
regenerate	the	data	using	the	same	arguments	if	they	fix	bugs	in	the	generators	or
use	a	completely	different	generator.

Decoupling	generators	from	test	execution	does,	however,	introduce	the	problem
of	trust.	If	you’re	planning	to	use	multiple	generators	for	the	same	tests,	or	if	you
expect	people	to	manually	modify	and	craft	input	data,	it	might	be	a	good	idea	to
run	some	basic	data	validity	checks	on	the	data	before	a	test.	Such	quick	sanity
checks	can	save	a	lot	of	time	later,	because	you	will	not	have	to	investigate	false
alarms	caused	by	invalid	data.

Minimise	UI	interactions

The	user	interface	(UI)	is,	quite	naturally,	the	first	thing	that	comes	to	the	mind
of	everyday	users	when	they	think	about	a	software	system.	That’s	why	most
acceptance	criteria	provided	by	users	talk	about	user	interface	interactions.	There
is	nothing	wrong	with	starting	a	discussion	about	testing	with	such	examples,	but
beware	of	accepting	them	as	the	be-all	and	end-of	all	testing.

UI	interactions	in	tests	often	describe	how	something	can	be	tested,	not	the
actual	purpose	of	the	test	(see	the	section	Describe	what,	not	how	for
information	on	why	that’s	problematic).	UI	automation	often	makes	tests
unnecessarily	slow,	environment-dependent	and	fragile,	severely	limiting	the
effectiveness	of	tests.

Because	a	test	executed	through	a	UI	typically	brings	the	entire	application	stack
together,	it	is	constrained	by	consistency	and	validity	rules	applicable	to	the
entire	system,	which	can	get	in	the	way	of	exhaustive	testing.	For	example,
email	systems	often	prevent	users	from	sending	too	many	messages	in	a	short

period	of	time.	Turning	on	that	constraint	might	be	great	to	test	sending	limits,
but	it	makes	it	almost	impossible	to	prepare	the	context	for	testing	how	the
system	works	when	users	have	thousands	of	messages	in	their	inbox.	When	the
entire	application	stack	comes	together,	such	constraints	cannot	be	easily
disabled.

On	the	other	hand,	the	UI	cannot	be	tested	well	just	by	deterministic	checks.	The
many	unexpected	things	that	can	happen	with	a	user	interface	mostly	require	a
human	eye	to	spot	and	a	critical	human	brain	to	analyse.	Even	if	all	features
work	as	expected,	the	UI	might	be	unusable	due	to	poor	alignment	of	visual
controls,	colour	contrast,	visual	and	spatial	organisation	of	elements	and	general
look	and	feel.	That’s	why	it’s	far	better	to	get	a	human	to	look	over	the	critical
aspects	of	a	UI,	instead	of	letting	a	machine	decide	that	it	all	works	as	expected.

Unless	a	test	is	actually	derisking	something	crucial	within	a	UI,	try	to	rephrase
UI-related	examples	so	that	they	talk	about	business	domain	concepts.	Keep	UI
actions	only	in	tests	that	deal	with	UI-specific	risks.

Key	benefits
Minimising	UI	interactions	makes	tests	faster	and	more	reliable.	The	UI	is	often
the	slowest	and	the	most	brittle	part	of	a	system,	and	small	changes	in	it	break
tests	easily.	For	example,	converting	a	button	into	a	link	will	break	all	tests	that
depend	on	the	button,	even	if	they	are	checking	something	completely	different
and	using	the	button	just	to	set	up	test	data.	By	avoiding	the	UI	layer	where	it	is
not	actually	relevant	for	the	purpose	of	the	test,	teams	can	save	a	lot	of
troubleshooting	time	and	speed	up	feedback,	while	still	keeping	the	same	level
of	risk	coverage.

By	avoiding	UI	interactions,	we	can	also	work	around	full-stack	validation	and
consistency,	specifying	and	automating	examples	that	validate	individual
features	around	their	particular	boundaries.	For	example,	we	can	pump
thousands	of	messages	into	a	database	directly	and	validate	inbox	performance
with	large	lists,	rather	than	trying	to	work	round	throttling	constraints	in	the
upper	layers	of	the	application	stack.

How	to	make	it	work
Even	when	tests	need	to	execute	through	the	UI,	minimise	the	part	of	the	test
that	actually	simulates	user	actions.	Evaluate	which	parts	of	the	tests	are	actually

dealing	with	UI-specific	risks,	and	try	to	automate	everything	else	by	avoiding
the	UI.	Set-up	and	clean-up	tasks	serve	to	make	tests	reliable	and	repeatable,	but
they	do	not	actually	deal	with	the	user	interface	risk	(or,	more	precisely,	they
should	not	–	if	a	set-up	task	is	testing	things,	it	should	be	broken	into	several
tests).	Such	auxiliary	tasks	are	good	candidates	to	pull	out	and	automate
differently.	For	example,	we	worked	with	a	client	whose	tests	all	started	by
launching	an	administrative	application,	registering	a	user,	approving	the
account,	registering	a	payment	card,	approving	the	payment	card	and
transferring	money	into	the	account,	all	simply	to	create	a	valid	clean	customer
account	for	the	rest	of	the	test.	This	took	about	ninety	seconds	for	each	test.	The
delivery	team	replaced	all	of	it	with	a	single	step	called	‘Given	a	valid	customer
account	with	100	USD’,	which	executed	directly	using	a	database.	From	a
minute	and	a	half	per	test,	they	were	creating	valid	accounts	in	in	milliseconds
without	increasing	any	the	risk.	If	anything,	they	made	the	tests	more	reliable.

If	it’s	not	possible	to	directly	manipulate	the	context	of	a	test,	it’s	often	possible
to	execute	the	appropriate	set-up	or	clean-up	commands	just	below	the	skin	of
the	application.	For	example,	instead	of	launching	a	browser	and	waiting	for
asynchronous	javascript	events,	simulate	HTTP	calls	that	the	application	would
make	to	the	back	end.	This	will	still	be	an	order	of	magnitude	faster	and	more
reliable	than	full	UI	execution,	and	removes	what	is	typically	the	weakest	link
from	the	application	stack.

If	the	application	does	not	provide	a	sensible	way	of	directly	automating	the
context	below	the	UI,	it’s	often	worth	introducing	a	test-specific	network
interface	to	load	the	application	context.

For	example,	for	testing	a	mobile	application,	different	tests	might	require
different	internal	memory	state,	internal	file	contents,	and	application	state	to
run.	Changing	the	context	correctly	from	one	test	to	another	will	probably
require	slow	and	error-prone	manual	intervention	through	the	user	interface.	If
we’re	testing	the	application	by	running	it	in	a	mobile	phone	simulator,	we	can
reload	the	entire	simulator	each	time	and	set	up	the	context	that	way,	but	this
would	probably	be	prohibitively	slow	to	run	hundreds	of	tests.	Alternatively,	we
can	set	up	a	TCP	channel	or	a	web	service	in	the	mobile	application	to	control
the	test	context	remotely.	The	test	framework	can	use	the	control	service	to
reliably	and	quickly	prepare	the	stage	for	each	test,	under	the	skin	of	the
application.	Such	remote	controls	for	testing	should,	of	course,	be	packaged	only
with	test	versions	of	the	application.

Separate	decisions,	workflows	and	technical
interactions

Any	good	test	automation	book	will	suggest	that	user	interface	interactions	need
to	be	minimised	or	completely	avoided.	However,	there	are	legitimate	cases
where	the	user	interface	is	the	only	thing	that	can	actually	execute	a	relevant	test.
A	common	example	is	where	the	architecture	dictates	that	most	of	the	business
logic	sits	in	the	user	interface	layer	(such	applications	are	often	called	‘legacy’
even	by	people	who	write	them,	but	they	are	still	being	written).	Another
common	situation	is	when	an	opaque,	third-party	component	drives	an	important
business	process,	but	has	no	sensible	automation	hooks	built	into	it.	In	such
cases,	teams	often	resort	to	record-and-replay	tools	with	horrible	unmaintainable
scripts.	They	create	tests	that	are	so	difficult	to	control	and	so	expensive	to
maintain	that	it’s	only	possible	to	afford	to	check	a	very	small	subset	of
interesting	scenarios.	Teams	in	such	situations	often	completely	give	up	on	any
kind	of	automation	after	a	while.

There	are	two	key	problems	with	such	tests.	One	is	that	they	are	slow,	as	they
often	require	a	full	application	stack	to	execute.	The	other	is	that	they	are
extremely	brittle.	Small	user	interface	changes,	such	as	moving	a	button	on	the
screen	somewhere	else,	or	changing	it	to	a	hyperlink,	break	all	the	tests	that	use
that	element.	Changes	in	the	application	workflow,	such	as	requiring	people	to
be	logged	in	to	see	some	previously	public	information,	or	introducing	a	back-
end	authorisation	requirement	for	an	action,	pretty	much	break	all	the	tests
instantly.

There	might	not	be	anything	we	can	do	to	make	such	tests	run	as	fast	as	the	ones
below	the	user	interface,	but	there	are	definitely	some	nice	tricks	that	can
significantly	reduce	the	cost	of	maintenance	of	such	tests,	enough	to	make	large
test	suites	manageable.	One	of	the	most	important	ideas	is	to	apply	a	three-layer
approach	to	automation:	divide	business-oriented	decisions,	workflows	and
technical	interactions	into	separate	layers.	Then	ensure	that	all	business	decision
tests	reuse	the	same	workflow	components,	and	ensure	that	workflow
components	share	technical	interactions	related	to	common	user	interface
elements.

We’ve	used	this	approach	with	many	clients,	from	financial	trading	companies
working	with	thick-client	administrative	applications,	to	companies	developing
consumer-facing	websites.	It	might	not	be	a	silver	bullet	for	all	possible	UI
automation	situations,	but	it	comes	pretty	close	to	that,	and	deserves	at	least	to
be	the	starting	point	for	discussions.

Key	benefits
A	major	benefit	of	the	three-layer	approach,	compared	to	record-and-replay	tests,
is	much	easier	maintenance.	Changes	are	localised.	If	a	button	suddenly
becomes	a	hyperlink,	all	that	needs	to	change	is	one	technical	activity.
Workflows	depending	on	that	button	continue	to	work.	If	a	workflow	gets	a	new
step,	or	loses	one,	the	only	thing	that	needs	to	change	is	the	workflow
component.	All	technical	activities	stay	untouched,	as	do	any	business	rule
specifications	that	use	the	workflow.	Finally,	because	workflows	are	reused	to
check	business	decisions,	it’s	easy	to	add	more	business	checks.

The	three-layer	design	pattern	is	inspired	by	similar	ideas	from	the	popular	page
object	pattern,	but	instead	of	tying	business	tests	too	tightly	to	current	web	page
structures,	it	decouples	all	common	types	of	change.	Tests	automated	using	page

objects	are	easily	broken	by	workflow	changes	that	require	modifications	to
transitions	between	pages	or	affect	the	order	of	interactions.	Because	of	this,	the
three-layer	approach	is	better	for	applications	with	non-trivial	workflows.

Applications	with	a	lot	of	messy	user	interface	logic	often	need	a	good	set	of
integration	tests	as	well	as	business	checks.	Another	big	benefit	of	the	three-
layer	approach	is	that	the	bottom	layer,	technical	interactions,	can	be	easily
reused	for	technical	integration	tests.	This	reduces	the	overall	cost	of	test
maintenance	even	further,	and	allows	the	delivery	team	to	automate	new	tests
more	easily.

How	to	make	it	work
Most	test	automation	tools	work	with	one	or	two	layers	of	information.	Tools
such	as	FitNesse,	Concordion	or	Cucumber	provide	two	layers:	the	business
specification	and	the	automation	code.	Developer-oriented	tools	such	as
Selenium	RC	and	unit-testing	tools	tend	to	offer	only	one	layer,	the	automation
code.	So	do	tester-oriented	tools.	This	misleads	many	teams	into	flattening	their
layer	hierarchy	too	soon.	Automation	layers	for	most	of	these	tools	are	written
using	standard	programming	languages,	which	allow	for	abstractions	and
layering.	For	example,	using	Concordion,	the	top-level	(human	readable
specification)	can	be	reserved	for	the	business-decision	layer,	and	the	automation
code	below	can	be	structured	to	utilise	workflow	components,	which	in	turn
utilise	technical	activity	components.

Some	tools,	such	as	Cucumber,	allow	some	basic	reuse	and	abstraction	in	the	test
specification	(top	level)	as	well.	This	theoretically	makes	it	possible	to	use	the
bottom	automation	layer	only	for	technical	interactions,	and	push	the	top	two
layers	into	the	business-readable	part	of	the	stack.	Unless	your	team	has	a	great
many	more	testers	than	developers,	it’s	best	to	avoid	doing	this.	In	effect,	people
will	end	up	programming	in	plain	text,	without	any	support	from	modern
development	tool	capabilities	such	as	automated	refactoring,	contextual	search
and	compilation	checks.

Use	production	metrics	for	expensive	tests

Many	teams	shy	away	from	testing	anything	that	is	expensive	or	difficult	to
measure.	Yet	there	are	entire	classes	of	difficult	tests	that	are	incredibly	valuable,
and	although	they	are	expensive,	the	value	far	outweighs	the	cost.	For	example,
it’s	cheap	to	test	usability	improvements	by	comparing	the	resulting	screens	with
wire-frame	requirements,	but	the	true	test	for	usability	improvements	is	whether
users	are	actually	doing	something	faster	or	not.	Actual	changes	to	user
productivity	have	traditionally	been	a	lot	more	expensive	to	measure	than
compliance	with	wire-frame	diagrams,	but	at	the	same	time	that	information	is	a
lot	more	valuable.	In	their	paper	Online	Experimentation	at	Microsoft,	Kohavi,
Crook	and	others	have	some	sobering	statistics:	only	about	one	third	of	all	ideas
implemented	in	software	actually	improve	the	metrics	they	were	designed	to
improve.	Checking	those	metrics	directly,	rather	than	just	measuring	compliance
with	requirements,	can	help	prune	out	unsuccessful	ideas,	reduce	software
maintenance	costs,	and	deliver	more	value	to	users.

Modern	software	delivery	processes	and	technologies	make	it	easy	to
significantly	shift	the	costs	of	such	measurements.	With	frequent	iterative
releases,	the	risk	introduced	by	changes	goes	down	significantly.	We	can	then

http://ai.stanford.edu/~ronnyk/ExPThinkWeek2009Public.pdf

actually	start	testing	overall	impacts	cheaply	and	easily	by	observing	the	effects
of	small	changes	on	the	production	environment.	For	example,	set	up
production-usage	metrics	to	measure	how	long	it	takes	for	users	to	complete
tasks	in	real	life,	then	compare	the	measurements	before	and	after	a	software
change	is	deployed.

Instead	of	just	accepting	that	something	is	difficult	to	test	and	ignoring	it,
investigate	whether	you	can	measure	it	in	the	production	environment.	If	so,
extend	your	testing	strategy	to	include	such	measurements.	State	expectations,	as
you	would	normally	through	examples	and	specifications,	and	make	sure	they
are	performed.	Report	on	them	as	you	would	for	other	testing	activities,	even
though	they	are	happening	after	a	feature	was	delivered	to	users.	Don’t	consider
a	story	done	until	it	has	been	verified	fully	that	way.

Key	benefits
Testing	key	usage	metrics	in	production	can	significantly	reduce	the	cost	of
measurements	that	were	traditionally	very	expensive.	For	example,	performance
testing	for	mid-sized	websites	typically	requires	installing	production-like
hardware,	dealing	with	expensive	storage	systems	and	complex	configurations,
and	then	simulating	large	groups	of	users	accessing	the	system	concurrently.
Such	simulations	always	carry	risks	that	the	simulated	user	activities	do	not
realistically	reflect	peak-time	usage,	and	that	the	hardware	constraints	don’t
match	the	real	production	environment.	For	example,	the	test	environment	might
have	a	bottleneck	in	disk	input/output	while	production	environments	tend	to
have	bottlenecks	in	CPU	processing.	With	sufficiently	frequent	small	changes,
the	performance	risks	of	individual	releases	are	minimal,	so	we	can	look	at	real
usage	trends	to	collect	performance	metrics.	We	don’t	need	a	separate	testing
environment,	and	we	won’t	risk	missing	some	critical	aspect	of	real	usage	in
simulations.

Production	metrics	are	often	collected	ad	hoc,	and	mostly	used	for
troubleshooting	problems.	They	are	rarely	comparable	across	different	versions
and	longer	periods	of	time.	However,	when	teams	actively	work	with	production
metrics	as	part	of	their	testing	strategies,	they	tend	to	be	much	more	precise
about	what	they	measure,	why	and	how	the	information	is	collected,	and	ensure
that	trends	are	comparable	over	time.	This	leads	to	an	interesting	side	effect	of
conducting	tests	in	production:	teams	get	interesting	documentation	for	future
impact	analysis.

How	to	do	it	right
Production	usage	measurements	are	most	useful	for	cross-cutting	concerns,	such
as	service	level	agreements	for	performance	or	usability	improvements.	This
might	be	quite	an	effective	approach	to	testing	quality	aspects	related	to	the
usefulness	or	success	of	a	product	(the	top	two	levels	of	Maslow-style	pyramids
as	described	in	the	section	Define	a	shared	big-picture	view	of	quality).

If	software	is	not	designed	for	collecting	metrics	upfront,	it	might	be
prohibitively	expensive	to	measure	such	things.	So,	once	you’ve	identified	the
measurements	that	might	be	useful	to	take	in	production,	discuss	with	the	team
whether	the	software	needs	to	be	changed	to	allow	easier	collection	of	them.
When	you	can	influence	the	design	of	software	upfront,	knowing	what	activities
you	want	to	measure,	it	becomes	very	cheap	to	run	the	tests.	For	web-based
tools,	online	analytic	systems	such	as	Google	Analytics	make	actual	user
activities	easy	to	report	on,	as	long	as	the	team	knows	what	to	look	for.	For	non-
web	applications,	custom	monitoring	metrics	can	be	easily	built	in	and	collected
through	log	files	or	periodic	network	access.

MANAGING	LARGE	TEST	SUITES

Make	developers	responsible	for	checking

Many	organisations	start	with	test	automation	as	an	auxiliary	activity	–	it	needs
to	be	done,	but	without	interrupting	the	development	schedule.	This	often	leads
to	test	automation	specialists	working	after	development,	or	even	entire	teams	of
people	charged	with	making	testing	faster	and	cheaper.	This	is	a	false	economic
premise,	and	can	lead	to	a	lot	of	trouble	later	on.

By	decoupling	development	and	test	automation,	teams	either	introduce	a	lot	of
duplicated	work	or	unnecessarily	delay	feedback.	Manually	running	all	the	tests
during	development	is	rarely	sustainable,	so	development	can	officially	finish
without	any	serious	testing.	If	a	developer	receives	feedback	about	potential
problems	only	after	a	different	team	automates	tests,	the	code	that	needs	to	be
fixed	might	have	been	modified	by	some	other	people	meanwhile.	This
introduces	a	further	delay,	because	developers	need	to	coordinate	more	and
research	other	potential	changes	to	fix	problems.

In	addition,	when	specialists	are	hired	to	automate	tests,	they	are	often
overwhelmed	by	work.	Ten	developers	can	produce	a	lot	more	code	than	a	single
person	can	test,	so	specialist	automation	often	introduces	a	bottleneck.	The
delivery	pipeline	slows	down	to	the	speed	of	test	automation,	or	software	gets
shipped	without	completed	testing.	The	first	scenario	is	horrible	because	the
organisation	loses	the	ability	to	ship	software	quickly.	The	second	scenario	is
horrible	because	developers	stop	caring	about	testing,	and	automated	tests	then

just	come	to	seem	like	a	waste	of	time	and	money.	Developers	do	not	design	the
system	to	be	testable,	and	it	becomes	even	more	difficult	to	automate	tests,
causing	more	delay	between	development	and	testing.	It’s	a	lose-lose	situation.

Separate	automation	specialists	rarely	have	the	insight	into	system	internals,	so
the	only	option	for	them	is	to	automate	tests	end-to-end.	Such	tests	will	be
unnecessarily	slow	and	brittle,	and	take	a	lot	of	time	to	maintain.	Slow,	difficult
tests	bolster	the	argument	for	not	disrupting	the	critical	delivery	path	with	tests.

Test	automation	specialists	often	use	tools	that	developers	are	not	familiar	with,
so	it	is	not	easy	for	them	to	ask	for	help	from	the	rest	of	the	team.	Any	potential
test	automation	problems	have	to	be	investigated	by	test	automation	experts,
which	creates	a	further	bottleneck.	It’s	a	vicious	circle	where	testing	only	gets
further	separated	from	delivery,	creating	more	problems.

The	only	economically	sustainable	way	of	writing	and	automating	hundreds	of
tests	is	to	make	developers	responsible	for	doing	it.	Avoid	using	specialist
groups	and	test	automation	experts.	Give	people	who	implement	functionality
the	responsibility	to	execute	tests,	and	ensure	they	have	the	necessary
information	to	do	it	properly.

Key	benefits
When	the	same	people	are	responsible	for	implementing	and	changing	code	and
automating	the	related	tests,	tests	are	generally	automated	a	lot	more	reliably	and
execute	much	faster.	Programmers	have	insight	into	system	internals,	they	can
use	lots	of	different	automation	hooks,	and	they	can	design	and	automate	tests
depending	on	the	real	area	of	risk,	not	just	on	an	end-to-end	basis.	This	also
means	that	developers	can	use	the	tools	they	like	and	are	familiar	with,	so	any
potential	problem	investigations	can	be	delegated	to	a	larger	group	of	people.

In	addition,	when	developers	are	responsible	for	automation,	they	will	design	the
system	to	make	it	easy	to	control	and	observe	functionality	in	the	first	place.
They	will	build	modules	that	can	be	tested	in	isolation,	and	decouple	them	so
tests	can	run	quickly.	This	brings	the	benefit	of	faster	testing,	but	a	modular
design	also	makes	it	easier	to	evolve	the	system	and	implement	future	requests
for	change.

When	developers	are	responsible	for	test	automation,	the	tests	will	deliver	fast
feedback.	The	time	between	introducing	a	problem	and	spotting	it	is

significantly	shorter,	and	the	risk	of	someone	else	modifying	the	underlying
software	meanwhile	is	pretty	much	eliminated.

These	three	factors	significantly	change	the	economics	of	test	automation.	Tests
run	faster,	cheaper,	they	are	more	reliable,	and	the	system	is	more	modular	so	it’s
easier	to	write	tests.	There	is	no	artificial	bottleneck	later	in	testing,	and	no	need
to	choose	between	higher	quality	and	faster	deployment.

How	to	make	it	work
A	common	argument	against	letting	developers	automate	tests	is	to	ensure
independent	feedback	and	avoid	tunnel	vision.	The	right	way	to	counter	this	is	to
ensure	that	the	right	people	are	involved	in	designing	the	tests.	Developers
should	be	responsible	for	automating	the	tests,	but	the	entire	team	(including
business	stakeholders	and	testers)	should	be	involved	in	deciding	what	needs	to
be	tested.

Teams	without	test	automation	experience	should	not	hire	automation	experts	to
take	on	the	work.	External	experts	should	only	be	hired	to	teach	developers	how
to	use	a	particular	tool	for	automation,	and	provide	advice	on	how	best	to	design
tests.

Teams	with	a	high	risk	of	automation	being	done	wrongly	can	further	reduce	the
risk	by	pairing	up	testers	and	developers	during	automation	work,	and	by
running	some	quick	exploratory	tests	to	investigate	the	automation	code.

Design	tests	together	with	other	teams

In	large	organisations,	the	biggest	risks	to	quality	often	come	from	cross-team
boundaries.	This	is	particularly	problematic	for	fast-moving	iterative	delivery,
where	teams	make	design	choices	and	modify	interfaces	more	frequently	than
they	can	update	documentation.	If	the	work	of	one	team	depends	on	the	work	of
another,	the	first	team’s	work	can	get	blocked	in	delivery,	waiting	for
information	or	for	an	updated	version	of	a	component.	Situations	like	this
require	dependent	teams	to	constantly	adjust	to	unexpected	changes	from
upstream	teams.	This	leads	to	a	lot	of	unnecessary	rework,	both	in	development
and	testing.

Modern	architectural	solutions	such	as	microservices	reduce	this	problem	by
requiring	other	teams	to	only	use	well-known	published	APIs.	However,	even
these	solutions	require	some	level	of	cross-team	communication.	Also,	such
solutions	aren’t	universally	applicable.	Many	legacy	systems,	especially	in	larger
organisations,	just	aren’t	built	for	that	kind	of	division	of	responsibility.	In

addition,	treating	all	other	teams	in	the	same	organisation	as	completely	third-
party	external	users	is	probably	an	overkill.

A	potential	solution,	which	we’ve	seen	work	well	in	many	contexts,	is	for	client
team	and	upstream	team	members	to	work	together	on	designing	tests	for	cross-
team	boundaries.	This	can	take	the	form	of	a	shared	set	of	tests	for	an	API,	or
just	a	common	agreement	on	key	scenarios	and	risks	to	explore	with	shared	data.
It’s	critical	to	involve	both	the	people	delivering	a	module	and	people	using	that
module	to	define	tests	together.	Ideally,	the	tests	should	be	co-owned	by	the
teams,	so	that	people	remember	to	communicate	changes.

For	example,	a	data-analytics	organisation	we	worked	with	had	several	teams
working	on	their	data	warehouse	solution.	Three	teams	worked	on	importing
source	data	from	various	third	parties.	Two	teams	dealt	with	cleaning	up	internal
records,	and	organising	the	data	in	a	way	that	made	it	easy	to	pull	out	reports.
Three	client-oriented	teams	produced	reports	for	different	lines	of	business.	The
client	report	teams	were	often	blocked	by	incomplete	or	inconsistent
information,	and	there	was	a	lot	of	rework	(and	expensive	retesting)	when
missing	information	was	discovered.	They	changed	the	workflow	so	that	the
client-oriented	teams	participated	in	defining	the	tests	for	the	work	of	data	clean-
up	teams.	Their	tests	included	sample	reports	with	key	relevant	data,	so	the
entire	pipeline	would	be	aware	of	what	the	reports	needed	to	include.

Key	benefits
The	key	advantage	of	shared	test	ownership	of	cross-team	boundaries	is	that
both	sides	have	clear	expectations	of	what’s	inside	the	shared	module.	The	client
team	does	not	need	to	understand	all	the	internals,	of	course.	Participating	in	test
writing	and	maintenance	gives	client	teams	a	solid	understanding	of	the	nature
and	limitations	of	a	critical	component	they	use.	The	upstream	team	gets	better
visibility	of	the	needs	of	client	teams.	When	tests	capture	critical	client	usage
scenarios,	upstream	teams	can	reduce	the	possibility	of	incompatible	changes.	In
general,	shared	test	writing	leads	to	far	fewer	surprises	at	both	ends.

Another	key	benefit	of	shared	test	writing	is	that	such	tests	often	become	good
examples	of	how	to	use	integration	points.	This	reduces	the	need	for	upstream
teams	to	maintain	and	provide	separate	API	documentation.

The	third	advantage	of	joint	work	is	that	irrelevant	use	cases	and	incomplete
solutions	are	discovered	early	on.	If	the	client	teams	can	participate	in	defining

tests	for	integration	points,	it’s	far	less	likely	that	critical	dependencies	are
missed	in	implementation.

How	to	make	it	work
One	of	the	biggest	questions	for	shared	test	sets,	especially	in	larger
organisations,	is	who	is	ultimately	responsible	for	fixing	a	failing	test.	Ideally,
the	person	who	introduced	the	breaking	change	should	spot	and	fix	it
immediately,	regardless	of	the	team	they	belong	to.	Unfortunately,	with	cross-
team	boundaries,	the	change	that	causes	a	test	to	break	might	not	be	detected
quickly,	or	even	by	the	person	who	made	that	change.	As	much	as	possible,	try
to	provide	to	the	upstream	team	the	ability	to	execute	all	the	shared	tests	on	their
own.	This	might	require	installing	client	components	on	their	testing	system,	or
providing	access	to	the	test	environments	of	other	teams.	Allow	them	to	get
rapid	feedback	on	whether	they’ve	broken	a	dependent	component	or	not.

Of	course,	the	situation	isn’t	always	that	simple.	If	a	single	upstream	team	has
dozens	or	hundreds	of	client	teams,	it’s	not	going	to	be	economically	viable	to
cater	for	all	dependent	components.	If	you	are	working	in	a	more	complex
environment	and	want	to	try	shared	test	ideas,	check	out	Eric	Evans’	book
Domain	Driven	Design.	In	it,	Evans	presents	several	good	strategies	and	cross-
team	patterns	for	organising	work	in	larger	companies	–	in	particular,	see	the
parts	of	the	book	that	cover	context	mapping.

http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=swingwiki-20&linkId=ON5ZHLQDJDMQHFZ6

Avoid	organising	tests	by	work	items

After	moving	to	an	iterative	delivery	model,	many	teams	end	up	organising	their
tests	along	the	same	lines	as	their	work	items.	Tests	resulting	from	a	user	story
discussion	are	grouped	and	attached	to	that	story,	while	tests	for	the	next	story
end	up	in	a	different	bucket.	Often	these	are	stored	in	the	story	wiki	page	or
recorded	as	subtasks	of	the	story	in	a	task	management	system.	This	system
works	reasonably	well	for	the	first	few	months,	and	then	falls	apart.

The	problem	with	this	approach	is	that	teams	practising	iterative	delivery	tend	to
rewrite,	extend	and	revisit	old	functionality	frequently.	As	features	are	extended,
reduced	or	changed,	tests	for	those	features	have	to	follow.	Coming	up	with	new
tests	for	slightly	changed	features	all	the	time	is	not	really	productive,	so	test
specifications	get	copied	over	from	previous	work	items	and	merged	together.
But	work	items	and	features	are	not	really	aligned	in	iterative	delivery.	One	user
story	can	require	changes	to	several	features,	and	a	single	feature	might	be

delivered	through	dozens	of	stories.	This	causes	friction	that	does	not	show	up	at
first,	but	bites	really	badly	a	few	months	in.

At	the	start	of	a	process	change,	copying	and	merging	all	the	relevant	items	is
easy	because	there	is	not	a	lot	of	material	to	analyse.	A	few	months	later,	that
work	becomes	laborious	and	error-prone.	The	more	work	items	are	completed,
the	more	difficult	it	becomes	to	discover	all	the	relevant	parts.	Similarly,
protecting	against	unforeseen	impacts	and	functional	regression	isn’t	such	a	big
deal	early	on,	but	several	months	into	a	project	it	becomes	critical	for	delivery	at
sustainable	pace.	Yet,	when	tests	are	organised	by	work	items	that	can	extend	or
cancel	the	effects	of	previous	work	items,	it	becomes	increasingly	difficult	to
know	which	tests	are	still	relevant,	and	which	need	to	be	thrown	away.	Small
iterative	changes	often	impact	only	parts	of	previous	tests,	so	even	when	some
parts	of	a	test	are	no	longer	relevant,	other	parts	may	be.

As	a	software	system	grows	iteratively,	so	does	its	set	of	associated	tests,	and	at
some	point	delivery	teams	need	to	trade	off	speed	of	feedback	against
comprehensiveness.	This	means	that	someone	will	need	to	decide	which	tests
run	after	each	change,	which	can	be	executed	overnight	and	which	only	need	to
be	done	occasionally.	These	decisions	are	particularly	important	if	teams	work
with	a	mix	of	automated	and	manual	tests.	When	tests	are	organised	along	the
lines	of	work	items	for	delivery,	it’s	impossible	for	business	stakeholders	to
decide	on	relative	risk	or	importance	of	tests.	Prioritising	tests	is	often	left	to
delivery	teams,	or	even	testers	within	those	teams.	This	really	should	be	a
business	risk	decision,	not	a	technical	one.

If	you’re	just	starting	to	reorganise	your	process	towards	a	more	iterative	model,
avoid	the	temptation	to	group	and	organise	tests	along	the	same	lines	as	your
work	breakdown.	Invest	a	bit	more	effort	in	coming	up	with	a	better
organisation,	and	you’ll	save	a	lot	of	time	in	the	future.

It’s	often	better	to	align	tests	with	business	processes,	because	iterative	changes
tend	to	introduce	a	series	of	small	cross-cutting	improvements.

Key	benefits
When	the	tests	are	organised	according	to	business	activities,	not	software	work
items,	small	business	changes	introduce	small	organisational	changes	for	tests.
This	means	that	tests	are	easier	to	maintain.	Stakeholders	often	identify	which
parts	of	user	activities	or	business	processes	need	to	change,	so	it	is	easy	to	also

identify	which	tests	need	to	be	revisited	and	discussed.	This	helps	to	kick-start
user	story	discussions,	and	avoids	inventing	the	same	tests	all	over	again.

Organising	tests	around	business	activities	also	helps	to	identify	duplicates,
which	is	especially	important	if	several	teams	are	working	on	the	same	piece	of
software.	When	the	tests	are	organised	along	individual	work	items,	it’s
impossible	for	teams	to	discover	small	inconsistencies	and	duplicated	work.

Lastly,	it’s	much	easier	to	keep	track	of	the	big	picture	and	prioritise	testing
activities	when	tests	are	structured	along	business	activities.	It’s	much	easier	to
engage	business	stakeholders	in	the	discussion	on	what	needs	to	be	bullet-proof,
where	we	need	the	fastest	feedback,	and	which	tests	can	be	done	only
occasionally.

How	to	make	it	work
A	good	structure	should	allow	you	to	quickly	discover	the	full	picture	for	a
particular	capability	or	feature,	and	be	easy	to	extend	as	new	changes	come	in.
Some	typical	ways	of	organising	tests	that	work	well	are	by	business	areas	and
user	work-flows,	by	feature	sets,	or	even	by	technical	components	(such	as	user
interface	screens).	Different	approaches	work	in	different	contexts,	so	it’s	best	to
experiment	with	several	ways	of	organising	tests	early	on.

For	consumer	software,	structuring	tests	around	key	user	activities	is	often	a
good	idea.	For	back-office	enterprise	software,	structure	tests	around	key	work-
flows	or	use	cases.	For	automated	transaction	processing,	align	tests	with
transaction	types.	It	will	take	a	bit	of	time	to	organise	the	tests	well	at	the	outset,
but	this	time	will	easily	be	saved	later	on.

It’s	often	useful	to	identify	some	initial	testing	ideas	for	work	tasks	as	a	starting
point	for	team	discussions.	That’s	how	some	early	examples,	screenshots	and
notes	and	up	in	a	task	management	tool.	This	is	perfectly	fine,	because	it	helps
with	the	discussions.	But	that	information	should	not	stay	in	the	task
management	tool	after	story	discussions,	otherwise	it	will	lead	to	tests	organised
around	work	items	instead	of	business	processes.

Once	a	user	story	discussion	is	over	and	a	team	accepts	the	story	into	delivery,
move	all	associated	examples	and	tests	out	of	the	task	management	tool,	merge
them	with	the	results	of	the	story	discussion	and	re	organise	them	in	line	with	the
testing	hierarchy.

Some	teams	duplicate	tests,	so	they	have	one	copy	of	a	test	in	the	task
management	tool,	and	one	copy	in	a	testing	tool.	A	common	argument	for
keeping	tests	in	multiple	places	is	to	be	able	to	identify	a	small	subset	of	tests	to
execute	once	a	story	is	done,	or	to	have	an	audit	trail	of	testing	changes.
However,	it’s	better	to	provide	audit	trails	with	tags	and	references	than	having
multiple	copies.	Most	test	management	tools	have	some	way	of	tagging	or
marking	individual	scenarios	–	use	tags	to	connect	user	stories	to	tests	and
identify	small	subsets	to	execute.	Multiple	sources	of	truth	quickly	diverge,	and
it’s	better	to	avoid	that.

Version	control	tests	along	with	software

There	are	plenty	of	good	test	management	and	automation	tools	today.	It’s
common	for	teams	to	use	many	such	tools	on	the	same	product	for	different
purposes.	That’s	quite	justifiable.	However,	it	also	creates	a	traceability	problem,
because	different	tools	often	store	tests	in	different	ways.	Some	use	their	own
database,	some	use	a	shared	file	system,	some	keep	tests	in	wiki	sites.	Keeping
tests	in	many	different	storage	systems	makes	it	difficult	to	track	a	relationship
between	tests	and	source	code	versions	and	branches,	especially	with	a	high
frequency	of	change.

Such	a	setup	either	introduces	instability	into	tests	or	delays	feedback
unnecessarily.	If	a	test	is	modified	before	developers	start	working	on	a	feature
change,	it	will	fail	until	the	work	is	done.	This	means	that	the	test	is	useless	for
checking	for	regression	failures	for	unrelated	changes,	and	other	teams	can’t	use
it	to	check	inter-component	problems.	If	a	test	is	not	modified	before	a	related
software	change,	then	the	delivery	team	working	on	the	change	cannot	benefit
from	test-driven	development.	Testing	activities	are	often	delayed	until	after	all
software	changes	are	finished,	introducing	a	further	feedback	delay	and
separating	testing	from	development.	Some	teams	work	around	this	by	creating

copies	of	tests	for	in-progress	tasks,	but	this	creates	unnecessary	duplication	and
only	works	if	there	is	a	single	active	branch	of	development.	With	multiple
active	versions	or	branches,	it	becomes	too	laborious	and	error-prone.

Working	on	multiple	branches	often	requires	individual	branch	configuration
parameters.	Teams	have	to	capture	special	configuration	values	or	small
execution	differences	as	notes	and	comments	in	tests.	This	makes	it	impossible
to	run	such	tests	automatically,	so	people	end	up	manually	executing	checks	that
should	really	be	delegated	to	a	machine.	Such	an	approach	often	leads	to	an
expectation	that	lots	of	tests	will	fail	temporarily	on	a	particular	branch,	which
can	mask	serious	problems	until	everything	comes	together.	It’s	also	impossible
to	test	an	older	version	if	needed,	for	example	to	confirm	that	a	hot	fix	to	the
production	version	did	not	introduce	any	other	regression	failures.

On	more	complex	products,	the	overhead	of	test	management	becomes	so	high
that	it	prevents	frequent	change.	This	is	especially	problematic	for	regulated
industries	where	it	is	important	to	prove	test	traceability.	We’ve	worked	with
several	teams	where	developers	were	technically	capable	of	working	in	one-
week	or	two-week	iterations	and	the	business	analysts	were	able	to	support	that
kind	of	a	cycle,	but	the	prohibitively	high	cost	of	test	management	meant	that	the
teams	had	to	work	in	quarterly	cycles.

Although	using	multiple	testing	tools	is	often	blamed	for	these	problems,	that’s
not	the	key	problem.	The	issue	is	caused	by	storing	tests	outside	the	main
version	control	system,	and	that	can	happen	even	with	a	single	testing	tool.	The
more	complex	the	underlying	product,	the	more	difficult	it	is	to	know	which
version	of	which	test	is	related	to	a	particular	version	of	the	source	code.	In	more
complex	organisations,	several	people	from	different	teams	might	need	to	work
on	modifying	the	same	feature,	but	tests	stored	outside	the	main	version	control
effectively	prevent	work	from	happening	in	parallel.

Rather	than	enforcing	the	use	of	a	single	test	tool,	and	preventing	people	from
choosing	the	best	tool	for	a	particular	job,	try	to	keep	all	tests	in	the	same
version	control	system	as	the	underlying	software	code.

Key	benefits
When	tests	and	source	code	are	in	the	same	version	control	system,	tests	just
follow	the	code	whenever	a	new	branch	is	created,	or	when	two	branches	are
merged	back	together.	It	becomes	trivial	to	decide	which	version	of	a	test	is

relevant	for	which	version	of	the	code,	so	teams	can	truly	benefit	from	test-first
development	approaches.

Because	it	becomes	easy	to	test	multiple	branches,	teams	can	work	at	a	much
faster	pace.	If	a	bug	needs	to	be	hot-fixed	in	the	production	version,	it’s	easy	to
roll	back	to	the	appropriate	version	of	tests	even	if	they	were	changed	for	the
current	batch	of	work.	Because	version	control	systems	automatically	flag
potential	conflicts,	it	becomes	possible	to	parallelise	work	on	the	same	area	of
code,	and	split	it	across	different	teams.	Configuration	and	environment
differences	can	be	captured	directly	in	the	tests,	which	allows	teams	to	safely
automate	branch-specific	tests	and	avoid	false	failures.

Finally,	for	organisations	where	test	traceability	is	important,	it	becomes	trivial
to	prove	who	changed	a	test,	when	and	why.	That’s	the	entire	purpose	of	version
control	systems	–	traceability	comes	free	and	out	of	the	box.

How	to	make	it	work
Most	testing	tools	can	store	or	load	tests	from	an	external	file	resource.	If	you’re
using	such	a	tool,	just	make	sure	that	those	resources	are	linked	to	your	main
version	control	system.	Avoid	binary	databases	if	possible,	because	they	are
difficult	to	merge	automatically.

If	a	tool	uses	a	binary	database,	but	supports	automatic	import	and	export	from
text	files,	it’s	often	useful	to	set	up	automated	jobs	on	a	build	server	to
synchronise	the	test	database	with	an	external	file	system.	The	exported	text
source	can	then	be	easily	kept	in	a	version	control	system.	This	at	least	makes	it
easy	to	argue	about	individual	versions,	even	if	changing	the	active	set	of	tests	in
the	binary	database	is	not	fully	automated.

If	all	else	fails,	keep	the	entire	database	as	a	file	in	the	version	control	system,
and	manage	conflicts	manually.	Even	tools	that	use	custom	databases	often
support	exporting	the	entire	contents	of	the	database	as	text	files,	allowing
people	to	merge	different	versions	manually	if	needed.

Create	a	gallery	of	examples	for	automation
patterns

When	writing	tests,	people	often	have	to	choose	between	removing	duplication
and	improving	readability.	In	general,	it’s	much	more	important	to	make	tests
easier	to	read	than	to	ensure	that	each	task	is	handled	by	only	one	piece	of	test
code.	Having	said	that,	duplication	in	test	code	is	one	of	the	most	common
causes	of	maintenance	problems	with	test	suites.

This	problem	is	particularly	common	with	larger	systems,	especially	when	they
go	through	legacy	migration	projects.	In	such	projects,	several	different	groups
of	people	often	need	to	achieve	similar	things,	but	different	groups	tend	to
approach	tasks	slightly	differently.	Test	automation	systems	built	by	such	groups
often	contain	four	or	five	different	ways	of	achieving	the	same	thing.	Over	the
period	of	a	few	months,	those	approaches	start	to	interleave,	which	leads	to	a	lot
of	technical	problems	and	confusion.

We	worked	with	a	financial	trading	fund	in	London	that	provided	a	great
example	of	such	problems.	Most	of	their	work	involved	middle-office	trade
processing,	so	the	majority	of	tests	started	with	trades	coming	into	the	system
from	an	external	source.	One	team	automated	trade	entry	using	XML	messages,
another	did	it	directly	against	Java	services.	The	third	team	read	files	with
template	parameters,	and	the	fourth	cloned	trades	in	the	database.	Each	of	these
approaches,	of	course,	had	slightly	different	names	for	certain	fields.	In	the	XML
format,	the	primary	currency	of	a	transaction	was	marked	as
PRIMARY_CURRENCY.	In	the	database	test	automation,	it	was
CURRENCY_1.	The	XML	format	was	hierarchical,	so	many	concepts	were
specified	using	a	dot	as	a	hierarchy	separator.	Counter-parties	were	specified
using	CTRPARTY.CODE.	The	team	that	used	plain	text	files	ignored
hierarchical	concepts,	and	invented	their	own	shortcuts	for	such	cases,	locating
the	counter-party	records	by	internal	identifiers.	Because	the	developers	tried	to
make	each	of	the	automation	approaches	relatively	generic,	their	code	ignored
unknown	field	names	instead	of	reporting	them	as	automation	exceptions.	This
made	it	almost	impossible	for	people	to	write	correct	specifications	without
constantly	peeking	below	the	cover	to	discover	the	right	naming	conventions.
Problems	with	wrong	field	names	were	notoriously	difficult	to	troubleshoot.	In
this	case,	four	different	automation	approaches	didn’t	actually	provide	any
particular	benefit,	they	were	just	a	product	of	uncoordinated	work.	We	replaced
all	those	ways	of	describing	trades	with	a	single	unified	approach	that	was	well
documented	and	used	a	consistent	naming	system	that	was	easy	to	guess.	All	the
various	teams	could	then	extend	the	specifications	more	easily.	When	one	person
improved	the	automation	support	for	some	new	trading	feature,	all	the	teams
could	benefit	immediately.

The	key	success	factor	for	creating	a	single	way	of	entering	trades	was	that	we
supplied	a	reference	set	of	examples	that	showed	how	to	set	up	different	aspects
of	a	trade.	These	examples	didn’t	actually	test	anything	useful,	they	just
demonstrated	how	to	use	automation	components.	This	allowed	us	to	keep	them
simple	and	focus	on	illustrating	how	to	automate	things	and	not	get	caught	up	in
the	complexity	of	the	domain.	We	called	the	examples	a	‘gallery	of	automation
patterns’.	The	gallery	of	examples	served	both	as	documentation	to	help	new
team	members	understand	how	to	write	good	checks,	but	also	as	a	database	that
anyone	could	quickly	search	to	see	if	a	feature	was	already	supported	or	not.
This	ensured	that	people	would	not	add	ten	different	ways	of	doing	the	same
thing	unnecessarily	in	the	future.

If	you’re	dealing	with	a	complex	system,	there	is	probably	a	risk	of	different
people	automating	the	same	thing	in	different	ways	just	because	it’s	difficult	to
find	the	right	information.	Consider	creating	a	gallery	of	automation	examples
for	key	aspects	of	your	tests,	and	make	the	examples	easily	accessible.

Key	benefits
A	gallery	of	good	automation	examples	makes	it	easier	for	people	to	discover
how	to	get	started	with	test	scenarios,	which	will	help	to	reduce	unjustified
duplication.	This	gallery	can	serve	as	a	central	resource	of	automation	patterns,
and	help	to	promote	a	common	domain	model	language	in	discussions.	This	will
help	to	build	up	shared	understanding,	and	make	it	easier	for	more	people	to
work	on	the	same	software.

How	to	make	it	work
It’s	often	useful	to	create	a	completely	separate	hierarchy	in	the	test	management
tool	to	hold	these	examples,	because	they	don’t	necessarily	check	anything
useful,	so	they	do	not	need	to	run	with	the	real	tests.

Make	sure	that	the	common	examples	are	easy	to	search	and	discoverable	with
only	a	few	clicks.	Unless	examples	are	readily	accessible,	people	won’t	bother
checking	if	something	is	already	implemented	before	hacking	in	their	own
changes.

Finally,	don’t	use	a	common	gallery	of	examples	as	an	excuse	to	enforce
consistency	where	it	is	not	appropriate.	The	fact	that	you	have	published
automation	patterns	doesn’t	mean	that	all	the	specifications	necessarily	need	to
use	them.	There	are	always	specific	scenarios	that	might	be	better	served	by	a
different	approach,	because	it	might	significantly	improve	readability	or
isolation.	In	particular,	avoid	using	components	that	force	you	to	obscure	the
purpose	of	a	test	in	favour	of	the	mechanics	of	test	execution.	(See	the	section
Describe	what,	not	how)	for	more	information.

Decouple	coverage	from	purpose

Because	people	mix	up	terminology	from	several	currently	popular	processes
and	trends	in	the	industry,	many	teams	confuse	the	purpose	of	a	test	with	its	area
of	coverage.	As	a	result,	people	often	write	tests	that	are	slower	than	they	need
to	be,	more	difficult	to	maintain,	and	often	report	failures	at	a	much	broader
level	than	they	need	to.

For	example,	integration	tests	are	often	equated	with	end-to-end	testing.	In	order
to	check	if	a	service	component	is	talking	to	the	database	layer	correctly,	teams
often	write	monstrous	end-to-end	tests	requiring	a	dedicated	environment,
executing	workflows	that	involve	many	other	components.	But	because	such
tests	are	very	broad	and	slow,	in	order	to	keep	execution	time	relatively	short,
teams	can	afford	to	exercise	only	a	subset	of	various	communication	scenarios
between	the	two	components	they	are	really	interested	in.	Instead,	it	would	be
much	more	effective	to	check	the	integration	of	the	two	components	by	writing

more	focused	tests.	Such	tests	would	directly	exercise	only	the	communication
scenarios	between	the	two	interesting	areas	of	the	system,	without	the	rest.

Another	classic	example	of	this	confusion	is	equating	unit	tests	with	technical
checks.	This	leads	to	business-oriented	checks	being	executed	at	a	much	broader
level	than	they	need	to	be.	For	example,	a	team	we	worked	with	insisted	on
running	transaction	tax	calculation	tests	through	their	user	interface,	although	the
entire	tax	calculation	functionality	was	localised	to	a	single	unit	of	code.	They
were	misled	by	thinking	about	unit	tests	as	developer-oriented	technical	tests,
and	tax	calculation	clearly	fell	outside	of	that.	Given	that	most	of	the	risk	for
wrong	tax	calculations	was	in	a	single	Java	function,	decoupling	coverage	(unit)
from	purpose	(business	test)	enabled	them	to	realise	that	a	business-oriented	unit
test	would	do	the	job	much	better.

A	third	common	way	of	confusing	coverage	and	purpose	is	thinking	that
acceptance	tests	need	to	be	executed	at	a	service	or	API	layer.	This	is	mostly
driven	by	a	misunderstanding	of	Mike	Cohn’s	test	automation	pyramid.	In	2009,
Cohn	wrote	an	article	titled	The	Forgotten	Layer	of	the	Test	Automation
Pyramid,	pointing	out	the	distinction	between	user	interface	tests,	service-level
and	unit	tests.	Search	for	‘test	automation	pyramid’	on	Google	Images,	and
you’ll	find	plenty	of	examples	where	the	middle	tier	is	no	longer	about	API-level
tests,	but	about	acceptance	tests	(the	top	and	bottom	are	still	GUI	and	unit).
Some	variants	introduce	additional	levels,	such	as	workflow	tests,	further
confusing	the	whole	picture.

To	add	insult	to	injury,	many	teams	try	to	clearly	separate	unit	tests	from	what
they	call	‘functional	tests’	that	need	different	tools.	This	makes	teams	avoid	unit-
testing	tools	for	functional	testing,	instead	introducing	horrible	monstrosities	that
run	slowly,	require	record-and-replay	test	design	and	are	generally	automated
with	bespoke	scripting	languages	that	are	quite	primitive	compared	to	any
modern	programming	tool.

To	avoid	this	pitfall,	make	the	effort	to	consider	an	area	of	coverage	separately
from	the	purpose	of	a	test.	Then	you’re	free	to	combine	them.	For	example,	you
can	have	business-oriented	unit	tests,	or	technical	end-to-end	checks.

Key	benefits
Thinking	about	coverage	and	purpose	as	two	separate	dimensions	helps	teams
reduce	duplication	between	different	groups	of	tests,	and	leads	to	more	focused,

http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

faster	automation.	In	addition	to	speeding	up	feedback,	such	focused	tests	are
less	brittle,	so	they	will	cause	fewer	false	alarms.	By	speeding	up	individual	test
execution,	teams	can	then	afford	to	execute	more	tests	and	run	them	more
frequently.

By	thinking	about	technical	tests	separately	from	whether	they	are	unit-level,
component	level	or	end-to-end	tests,	teams	can	also	make	better	decisions	on
how	and	where	to	automate	such	tests.	This	often	leads	to	technical	tests	being
written	with	tools	that	developers	are	already	familiar	with,	and	helps	teams
maintain	automated	tests	more	easily.

How	to	make	it	work
Decide	on	purpose	first,	and	let	the	purpose	drive	the	choice	of	the	format	in
which	you	capture	the	test.	Business-oriented	tests	should	be	written	in	a
language	and	format	that	allows	teams	to	discuss	potential	problems	with
business	domain	experts.	Technical	checks	can	be	written	with	a	technical	tool.

Once	you’ve	decided	on	the	format	and	the	purpose,	think	about	the	minimal
area	of	coverage	that	would	serve	the	purpose	for	that	particular	test.	This	will
mostly	be	driven	by	the	design	of	the	underlying	system.	Don’t	force	a	test	to
execute	through	the	user	interface	just	because	it’s	business	oriented.	If	the	entire
risk	for	tax	calculation	is	in	a	single	unit	of	code,	by	all	means	write	a	unit	test
for	it.	If	the	risk	is	mostly	in	communication	between	two	components,	write	a
small,	focused	integration	test	involving	those	two	areas	only.

It’s	perfectly	fine	to	use	tools	commonly	known	as	acceptance	testing
frameworks	for	writing	business-oriented	unit	tests.	They	will	run	faster	and	be
more	focused.

Likewise,	it’s	perfectly	fine	to	use	tools	commonly	known	as	unit	testing
frameworks	for	more	than	just	unit	tests,	as	long	as	such	groups	of	tests	are
clearly	separated	so	they	can	be	managed	and	executed	individually.	If	the
programmers	on	the	team	already	know	how	to	use	JUnit,	for	example,	it’s	best
to	write	technical	integration	tests	with	this	tool,	and	just	execute	them	with	a
separate	task.	In	this	case,	the	team	can	leverage	their	existing	knowledge	of	a
tool	for	a	slightly	different	purpose.

Beware	though	of	mixing	up	tests	with	different	areas	of	coverage,	because	it
becomes	impossible	to	run	individual	groups	in	isolation.	For	example,	split	out

tests	into	separate	libraries	so	you	can	run	true	unit	tests	in	isolation.

Avoid	having	strict	coverage	targets

Many	teams	have	strict	test	coverage	targets,	but	they	rarely	benefit	from	them.
Quite	the	contrary,	coverage	targets	seem	to	be	the	worst	of	all	the	blindfolds
that	teams	put	on	to	unknowingly	mislead	and	confuse	themselves	as	they	do
their	testing.	Testing	is	never	finished,	it’s	only	stopped	at	some	point.	Coverage
targets	offer	a	convenient	stopping	point,	which	is	seemingly	objective	and	easy
to	measure.	Unfortunately,	they	aren’t	particularly	good	for	that	purpose.

Test	coverage	is	a	negative	metric	â€“-	it	measures	how	bad	something	is,	not
how	good	it	is.	Such	metrics	are	great	for	diagnostic	purposes,	troubleshooting	a
particular	problem	or	signalling	about	potential	trouble	ahead.	Essentially,	a	very
low	test	coverage	figure	is	a	useful	piece	of	information,	because	it	tells	us	that
testing	was	not	performed	on	part	of	the	product.	A	very	high	test	coverage
figure	isn’t	a	particularly	useful	piece	of	information,	because	it	doesn’t	say
anything	about	the	type	of	testing	that	was	performed,	or	its	outcome.	So	using
this	metric	in	isolation	is	not	really	productive.	In	fact,	it’s	often	worse	than	not
having	a	target	at	all.

Using	a	negative	metric	as	a	target	often	leads	to	people	gaming	the	system.	For
example,	a	team	we	worked	with	was	required	to	meet	coverage	targets

mandated	by	a	new	chief	information	officer	initiative.	Some	parts	of	their
software	were	thoroughly	tested	with	unit	tests,	but	a	major	piece	of
infrastructure	code	was	environment-dependent	and	had	no	associated	unit	tests.
The	risk,	after	all,	wasn’t	in	a	particular	unit	of	code	misbehaving,	but	in	the
underlying	infrastructure	changing	due	to	outside	influences.	As	the	team	had	to
meet	the	coverage	target	globally,	they	first	started	writing	tests	that	executed
end-to-end	integration	checks.	But	they	soon	decided	that	such	tests	were	too
tedious	to	maintain,	too	difficult	to	write,	and	too	slow	to	execute.	The	tests	were
quickly	rewritten	to	simulate	the	real	environment,	use	in-memory	databases	and
avoid	any	external	dependencies	that	would	slow	down	feedback.	The	team	now
met	the	coverage	targets,	and	got	a	lot	of	false	confidence	from	the	tests
executing	quickly.	Unfortunately,	the	tests	did	not	really	catch	any	of	the	big
risks	–	third	party	libraries	changing	without	anyone	noticing,	backwards-
incompatible	messaging	formats	being	introduced	by	other	teams	and	outside
influences	on	database	structures.	This	is	not	an	isolated	example.	It’s	almost
impossible	to	meet	arbitrary	global	coverage	targets	without	writing	fake	tests
that	do	not	check	anything,	but	just	improve	coverage	figures.	This	is
particularly	problematic	for	the	areas	where	the	risk	is	mostly	with	third-party
components	outside	the	control	of	the	team.	In	many	cases	the	people	who	write
such	tests	know	the	metrics	aren’t	reliable,	but	other	people	don’t	and	think	that
something	is	actually	being	achieved.

This	problem	is	compounded	by	the	fact	that	there	is	no	single	dimension	of
coverage	that’s	always	useful.	There	are	plenty	of	ways	of	measuring	the
coverage	of	a	software	system,	such	as	lines	of	source	code,	user	interface
elements,	paths	through	a	workflow,	error	conditions	and	so	on.	Naively
measuring	only	one	dimension	can	provide	a	lot	of	unjustified	confidence.	For
example,	proving	that	99%	of	the	code	has	been	well	tested	might	sound	good,
but	what	if	one	of	the	key	user	flows	is	completely	in	the	remaining	1%?

Avoid	having	strict	global	targets	for	coverage	if	possible.	Instead,	use	coverage
as	an	internal	diagnostic	metric	–	a	signal	of	where	you	might	need	to	improve
testing	activities.

Key	benefits
When	coverage	metrics	are	used	only	for	internal	diagnostics,	and	not	as	a
generic	target,	teams	need	to	find	more	meaningful	metrics	to	explain	when

they’ve	done	enough	testing.	This	makes	people	engage	better	with	stakeholders
to	define	acceptable	risk	levels	and	different	measurements	of	quality.

Without	a	misleading	target	that’s	easy	to	measure,	teams	are	less	likely	to	be
blinded	by	the	false	confidence	provided	by	coverage	metrics,	or	sucked	into
tunnel	vision,	focusing	too	much	on	a	single	dimension	of	coverage.

How	to	make	it	work
Above	all,	don’t	use	coverage	metrics	in	isolation	as	a	signal	that	something	is
good,	complete	or	thoroughly	tested.	Try	to	avoid	publishing	coverage	metrics
outside	the	team,	as	they	are	likely	to	be	misused	for	setting	targets	or	cross-team
comparisons	that	don’t	make	any	sense.	If	you	absolutely	have	to	declare	a
coverage	target	publicly,	at	least	reduce	the	risk	of	tunnel	vision	setting	in	by
using	several	dimensions	of	coverage.	For	example,	set	targets	for	code
coverage,	path	coverage	and	user	activity	coverage.	For	some	useful	inspiration
about	this,	see	Lee	Copeland’s	book	A	Practitioner’s	Guide	to	Software	Test
Design.	In	it,	he	discusses	the	following	potential	levels	of	coverage:

1.	 statements	(lines	of	code)
2.	 decisions	(conditional	execution	branches)
3.	 conditions	(causes	of	selecting	branches)
4.	 combinations	of	conditions	and	decisions
5.	 combinations	of	multiple	conditions
6.	 executing	loops	multiple	times
7.	 paths	through	the	system

Coverage	targets	only	work	in	combination	with	other	insights.	In	the	cases
where	we’ve	seen	them	actually	work	well,	they	were	always	combined	with
human	intelligence.	In	particular,	coverage	metrics	tend	to	work	well	for	clearly
scoped	exploratory	testing	sessions.	In	such	cases,	though,	coverage	is	almost
always	measured	against	cross-cutting	concerns,	such	as	key	risks,	user	activities
or	capabilities,	not	against	lines	of	code	or	software	features.

http://www.amazon.com/gp/product/B001GS7030/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B001GS7030&linkCode=as2&tag=swingwiki-20&linkId=QLHZEE7RPU4PEYFO

Measure	your	tests’	half-life

The	vast	majority	of	teams	we	meet	these	days	have	embraced	test	automation,
often	using	tools	that	allow	the	easy	extension	and	addition	of	tests.	This	can
result	in	the	rapid	creation	of	large	numbers	of	tests.	Each	and	every	one	of	those
tests	requires	maintenance	to	ensure	they	are	still	valuable,	up-to-date	and	keep
passing.	Over	time	this	can	become	a	significant	ownership	investment,	yet	few
teams	formally	check	the	cost	of	maintenance,	or	whether	it	is	money	well	spent.

Start	measuring	the	half-life	of	your	tests,	that	is,	their	stability.	Practically	this
means	measuring	the	amount	of	change	within	your	tests	and	their	associated
underlying	features.

Use	this	data	as	an	input	to	trigger	analysis	into	why	they	are	changing	that
much	and	whether	a	course	of	action	is	needed	to	address	them.	For	example,	if
the	data	points	to	brittle,	intermittently	failing,	and	poorly	written	tests	then
maybe	some	investment	is	needed	to	refactor	or	rewrite	the	tests	to	make	them

more	reliable.	Alternatively,	it	might	indicate	that	a	part	of	the	system	is	more
prone	to	bugs,	requiring	increased	testing,	both	automated	and	exploratory.

Key	benefits
Having	a	measure	of	the	stability	of	tests	gives	teams	some	really	useful
information	with	which	to	inspect	and	adapt	their	testing	strategy.	This
information	can	guide	decisions	on	where	to	invest	more	or	less	time	in	testing.

Instability	gives	an	indication	about	areas	of	the	system	that	might	be	riskier	and
require	further,	more	concentrated,	testing.	If	an	area	of	the	system	is	critical	to
the	business	yet	is	covered	by	tests	that	are	frequently	changing	(and	quite
possibly	people	are	not	aware),	then	knowledge	of	this	could	indicate	a	need	to
bolster	coverage.	Failing	automated	tests,	that	are	immediately	fixed	without	any
deeper	analysis,	may	mean	that	areas	of	weakness	in	the	system	are	not
identified	quickly	enough	(or	even	at	all).	It’s	much	better	to	identify	these
weaknesses	by	analysing	tests	than	in	production.

Tests	that	need	to	be	frequently	updated	because	they	intermittently	fail	point	to
a	potential	problem	with	test	design,	or	maybe	even	fragility	in	the	underlying
system.	Maybe	the	test	automation	should	be	implemented	in	a	different	way,	for
example,	using	blocking	for	a	specific	event	to	happen	rather	than	waiting	for	a
period	of	time.

How	to	make	it	work
Establish	a	reliable	way	of	measuring	the	rate	of	change	of	tests.	Typically	we’ve
seen	this	done	by	measuring	the	number	of	check-ins	for	each	test.	This	requires
storing	tests	in	a	version	control	system.	When	you	measure	the	number	of
changes	and	the	interval	between	changes,	you	start	to	notice	those	tests	that
need	the	most	maintenance.	Also,	why	not	measure	how	many	bugs	get	found	by
each	test	or	feature.	One	idea	is	to	create	a	heat	map	showing	the	amount	of
change	in	tests	and/or	failing	tests	grouped	by	business	feature.	That	is	a	nice
way	to	highlight	areas	to	investigate	further.

Our	expectation	is	that	tests	tend	to	have	a	shorter	half-life	early	on,	changing
quite	regularly	as	the	parts	of	the	system	they	are	covering	also	evolve.	But	after
these	features	become	a	stable	part	of	the	product,	the	related	tests	should	not
change	as	much,	neither	should	we	expect	to	continue	finding	many	genuine	test
failures	(and	therefore	defects)	in	these	areas.

Analysing	the	reasons	for	instability	in	tests	gives	useful	feedback.	Typically
weâ€™ve	found	the	feedback	points	to	one	of	three	main	underlying	reasons:

A	volatile	or	evolving	part	of	the	system,	often	involving	continued	new
feature	requests,	meaning	new	development	and	probably	a	fair	amount	of
refactoring	too.
A	weaker	part	of	the	solution	where	more	bugs	are	detected,	possibly	a	part
central	to	the	design	that	is	regularly	changed	or	impacted	by	the	addition
of	new	features.
The	tests	are	fragile	and	need	to	be	refactored

Analyse	the	areas	of	greatest	change	and	consider	what	is	causing	the	instability,
then	decide	on	a	course	of	action.	You	might	decide	to	raise	technical
improvement	work	items	to	change	the	test	suite	or	the	system	under	test.	Some
teams	adopt	a	strategy	to	improve	a	weaker	part	of	the	test	suite	when	they	are
making	changes	in	that	area	and	do	this	continuously	based	on	the	half-life
analysis.

In	some	cases,	this	information	has	led	to	a	wholesale	change	in	the	way	that	test
automation	is	implemented.	An	example	weâ€™ve	seen	repeatedly	is	where	a
team	stops	using	a	user	interface	automation	framework,	because	of	the	fragility
and	high	cost	of	maintaining	the	tests	when	this	part	of	the	system	is	frequently
changed.

Instead	of	quarantining	flickering	tests,	performing	this	analysis	may	point	to	a
pattern	of	weakness	or	failure	across	tests	that	can	be	resolved	by	a	change	in	the
common	automation	code	they	share.

Optimise	for	reading,	not	writing

Due	to	a	combination	of	focus	on	productivity	and	creative	salesmanship,	the
speed	of	writing	tests	seems	to	play	an	undeservedly	important	role	today.
Focusing	too	much	on	how	quickly	tests	are	written	leads	to	an	instant	sense	of
achievement	but	a	horrible	waste	of	time	later	on.

For	example,	we	worked	with	a	team	at	an	insurance	company	that	hired	a	third-
party	consultancy	to	write	tests	for	a	critical	piece	of	their	calculation	engine.
The	management	thought	that	the	developers	were	too	expensive	to	write	the
tests,	and	the	testers	were	too	busy.	They	chose	a	company	that	promised	to
write	a	lot	of	tests	quickly,	and	it	was	encouraged	to	speed	things	up	because	it
was	paid	by	time.	Six	months	later,	the	insurance	company	was	worse	off	than	if
it	had	no	tests.	Out	of	a	thousand	or	so	tests	that	the	consultants	had	delivered,
more	than	half	were	failing.	Developers	completely	ignored	the	tests,	because
they	were	unreliable.	The	testers	tried	to	fix	them,	but	ultimately	they	couldn’t
keep	pace	with	development,	so	the	whole	effort	had	just	been	a	waste	of	time.

This	isn’t	a	problem	just	with	third-party	consultants	ripping	people	off.	The
most	popular	commercial	test	automation	tools	today	tend	to	be	sold	on	how
quickly	they	help	people	knock	up	tests.	There	is	a	lot	of	emphasis	on	easy	test
creation,	reusing	parts	of	tests	and	generic	support	for	testing	almost	anything.
This	is	great	for	sales,	but	unfortunately	exactly	the	wrong	thing	for	long-term
test	maintenance.

In	order	to	make	tests	easy	to	write	for	any	platform,	such	tools	tend	to	require
generic	interfaces	and	generic	controls.	They	make	people	describe	tests	in	the
language	of	the	user	interface	instead	of	the	language	of	the	underlying	business
domain.	This	trade-off	brings	great	ease	of	creation	when	someone	has	a	clear
idea	of	what	they	want	a	test	to	do,	but	it	does	not	communicate	the	purpose,	and
does	not	transfer	the	knowledge	with	the	test.	Other	people	won’t	be	able	to
understand	the	test	easily.	When	the	test	catches	a	problem	in	the	future,	it	won’t
be	easy	to	discover	what	failed.	When	such	tests	need	to	change,	it	is	very
difficult	to	pinpoint	the	places	that	need	to	be	rewritten.	Ironically,	such	tests	are
typically	tied	to	the	user	interface,	which	is	often	the	part	that	changes	the	most.
The	false	sense	of	productivity	generated	when	700	tests	get	quickly	written
disappears	when	people	need	to	maintain	those	tests.	Small	changes	in	user
interface	can	break	large	numbers	of	tests,	and	because	they	are	difficult	to
analyse,	often	the	only	option	is	to	rewrite	everything	from	scratch.	Tools	that
help	to	write	tests	quickly	keep	people	very	busy,	but	not	really	productive.

There	are	just	two	moments	when	an	automated	test	provides	useful	information:
the	first	time	it	passes	and	when	it	subsequently	fails.	Before	a	test	passes	for	the
first	time,	the	functionality	required	by	it	is	not	yet	there.	The	first	green	bar	on	a
test	should	reliably	tell	us	that	the	feature	is	now	there,	and	that	it	does	what	we
want	it	to	do.	Subsequent	test	passes	don’t	really	require	attention	or	action	–
when	a	test	is	passing	nobody	needs	to	do	anything.	The	next	time	someone
actually	makes	a	decision	based	on	the	test	is	when	it	fails.	At	that	point,	it	is
telling	us	that	we	broke	something,	or	that	there	is	an	unplanned	impact	on	a
related	piece	of	software.	In	both	these	situations,	tests	optimised	for	writing
totally	fail	to	be	of	use.

If	a	test	is	not	easy	to	understand,	it’s	difficult	to	argue	about	completeness,	so
we	won’t	be	able	to	know	for	sure	that	our	work	is	done	when	it	passes	for	the
first	time.	Similarly,	if	a	test	is	difficult	to	understand,	and	doesn’t	clearly
communicate	its	purpose,	pinpointing	problems	is	very	difficult	when	it	fails.

It’s	far	better	to	optimise	tests	for	reading	than	for	writing.	Spending	half	an	hour
more	writing	a	test	will	save	days	of	investigation	later	on.	Avoid	using	tools	that
allow	people	to	knock	up	dozens	of	tests	quickly,	because	such	tests	won’t	be
easy	to	maintain	or	understand.

Key	benefits
Tests	that	are	easy	to	understand	will	be	easier	to	update	and	maintain.	It’s	much
easier	to	know	whether	the	work	is	done	or	not	when	they	pass,	and	it’s	much
faster	to	diagnose	and	discover	problems	when	they	fail.

However,	improved	readability	of	tests	brings	benefits	far	beyond	just	catching
problems.	Tests	are	often	the	most	accurate	documentation	about	a	system.	New
people	joining	teams	can	quickly	get	up	to	speed	by	reading	the	tests.	People	can
use	tests	for	discussions	about	potential	changes	and	improvements	with
stakeholders.

How	to	make	it	work
Tailor	the	format,	the	language	and	the	concepts	used	in	a	test	to	the	primary
reading	audience.	When	a	test	is	for	a	business	rule	or	a	business	process,	write
it	so	that	people	who	performing	that	process	can	understand	it.	Write	technical
tests	so	that	developers	can	find	their	way	around	them	quickly.	Use	the
language	of	the	user	interface	only	when	describing	tests	that	need	to	be	read	by
user	interface	designers.	Then	choose	tools	that	allow	you	to	automate	tests
written	in	those	ways.

In	business-oriented	tests,	if	you	need	to	compromise	either	ease	of	maintenance
or	readability,	keep	readability.	Duplication	of	parts	of	tests	is	a	typical	example.
Programmers	are	trained	professionally	to	fight	against	duplication,	so	they
extract	similar	parts	into	common	components	so	that	they	can	change	them	in	a
single	place.	In	business-oriented	tests,	having	each	test	spell	out	the	relevant
inputs	and	outputs	makes	them	easier	to	understand	in	isolation.	In	particular,
avoid	reusing	technical	automation	components	just	because	they	do	something
similar	to	what	you	need.	It’s	far	better	to	describe	each	test	separately	so	it	can
be	easily	understood.

Name	tests	for	search	engine	optimisation

Test	names	(and	scenario	names)	rarely	get	the	attention	they	deserve.	Test
names	are	mostly	generic,	such	as	‘payroll	acceptance	test’	or	‘negative	path
scenario’.	It	seems	as	if	most	tests	have	names	purely	because	file	systems
require	files	to	be	named,	or	because	a	wiki	needs	a	unique	URL	for	each	page.

Generic	test	names	make	it	incredibly	difficult	to	identify	existing	tests	that
correspond	to	proposed	feature	changes.	This	significantly	increases	the
maintenance	costs	of	larger	systems.	For	example,	if	we’re	working	on	adding
multi-currency	support	to	payments,	and	the	payments	module	has	a	hundred
generically	named	tests,	it’s	unlikely	that	anyone	will	spend	time	trying	to
understand	which	of	the	existing	tests	should	be	modified	to	capture	the	new
features.	It’s	much	more	likely	that	people	will	just	add	another	test.	This	leads
to	a	lot	of	duplication,	which	is	difficult	to	identify	and	manage,	increasing	the
cost	of	future	test	maintenance.	Adding	new	tests	for	every	change	is	a	vicious
circle,	because	it	becomes	even	more	difficult	to	understand	what	existing	tests
cover,	so	the	problem	just	gets	bigger	over	time.

Generic	names	are	a	wasted	opportunity	to	provide	a	navigation	guide	through	a
large	test	suite.	Because	there	is	no	easy	way	to	discover	relevant	tests	for	a
feature,	testers	and	developers	have	to	read	the	contents	of	individual	scenarios
to	understand	potential	changes.	This	process	is	time-consuming	and	error-
prone.

Likewise,	when	a	test	fails,	the	name	of	the	scenario	or	the	feature	is	the	first
piece	of	information	teams	get	from	the	test	runner.	Generic	names	can	be
misleading,	and	require	developers	to	find	and	understand	the	contents	of	a	test
in	order	to	determine	whether	the	failure	is	an	unforeseen	impact,	an	expected
change	or	indicates	a	bug.

Good	test	names	are	specific,	and	they	pinpoint	the	purpose	of	the	test	or	the
scenario.	Think	of	test	names	as	keywords	for	quick	discovery.	Imagine	that	the
test	was	an	online	document	and	that	you	were	looking	for	it	using	a	search
engine.	Capture	the	keywords	you	would	use	to	search	for	it,	and	turn	them	into
the	title.	Apply	all	the	search	engine	optimisation	tricks	you	know	to	create	a
good	name.	Avoid	generic	words	and	broad	statements.	Remove	all	words	that
do	not	relate	to	its	purpose.

For	example,	in	‘simple	acceptance	test	for	payroll’,	the	first	four	words	are
completely	generic,	and	could	apply	to	pretty	much	anything.	‘Payroll’	is	the
only	word	that	matters,	but	since	payroll	is	probably	handled	by	a	software
module	that	has	hundreds	of	associated	tests,	the	test	name	does	not	tell	us
anything.	More	specific	names	such	as	‘payroll	net	salary	calculation’,	or
‘payroll	tax	deductions’	would	achieve	much	more.

Key	benefits
Good	names	are	crucial	for	managing	larger	sets	of	tests	or	scenarios,	because
they	allow	teams	to	quickly	identify	all	tests	or	scenarios	related	to	a	particular
feature.	Business	analysts	can	discover	all	relevant	tests	and	use	them	as	a
starting	point	for	impact	analysis.	Testers	can	identify	interesting	boundaries	and
edge	cases	when	designing	checks	for	similar	features.	Developers	can	identify
subsets	of	tests	to	execute	in	order	to	check	quickly	that	new	code	does	not
introduce	any	regression	failures.

If	a	failing	test	has	a	name	that	explains	its	specific	purpose,	developers	might	be
able	to	understand	what	went	wrong	even	without	looking	at	its	contents.	This
can	significantly	speed	up	troubleshooting	and	fixing	complex	systems	with
large	numbers	of	tests.

Specific	names	help	us	to	spot	whether	a	test	is	trying	to	do	too	much	and	avoid
bloat.	They	help	us	to	spot	if	a	test	scenario	should	be	extended,	or	if	a
completely	different	scenario	needs	to	be	added	for	some	new	functionality.	This
helps	to	avoid	duplication	and	uncontrollable	growth	of	test	suites	over	time.

How	to	make	it	work
A	good	heuristic	for	naming	tests	is	to	imagine	a	hierarchical	navigation	through
the	test	suite,	then	collect	all	the	names	of	the	modules	that	would	lead	to	a
particular	test.	Add	to	that	name	whatever	makes	a	particular	test	specific	or
different	from	the	other	tests	in	the	same	group.	For	example,	tests	describing	net
salary	calculations	in	payroll	could	be	named	‘Payroll	–	calculations	–	net	salary
–	full-time	employees’	and	‘Payroll	–	calculations	–	net	salary	–	part-time
employees’.	Most	test	management	tools	allow	you	to	group	tests	and	suites	into
hierarchies,	so	this	kind	of	naming	can	become	the	foundation	for	a	good
hierarchical	structure.

Avoid	using	conjunctions	(and,	or,	not)	in	test	names.	Conjunctions	are	a	sign	the
test	is	trying	to	do	too	much,	or	lacks	focus.	At	the	XP	Day	2009	conference	in
London,	Mark	Striebeck	spoke	about	an	analysis	of	tests	at	Google	where	they
evaluated	whether	a	test	was	good	or	not	based	on	what	happened	when	it	failed.
If	the	code	was	changed	or	added	to	after	a	failure	to	resolve	the	problem,	the
test	was	marked	as	good.	If	people	changed	the	test	to	make	it	pass,	it	was
marked	as	bad.	Conjunctions	in	test	names	were	one	of	the	clear	patterns	that
emerged	in	the	second	category.	A	conjunction	suggests	that	a	single	test	is
trying	to	check	several	things,	which	makes	it	more	brittle	and	difficult	to
maintain.	See	the	section	One	test,	one	topic	for	some	information	on	how	to
restructure	such	tests.

http://gojko.net/2009/12/07/improving-testing-practices-at-google/

Explain	the	purpose	of	a	test	in	the	introduction

Lack	of	context	is	one	of	the	root	causes	of	major	maintenance	problems	with
large	test	suites.	A	machine	can	execute	a	test	without	knowing	why	it	needs	to
do	it,	and	push	around	bits	of	data	provided	by	the	test	specification,	but	the
absence	of	a	good	context	makes	it	impossible	for	humans	to	change	test	data	in
the	future.	This	problem	is	not	really	visible	when	someone	writes	a	test,
because	they	have	enough	context	in	their	heads	to	evaluate	and	understand	the
bits	and	pieces	passed	in	and	out	by	the	test.	However,	a	few	months	later,	that
understanding	will	be	gone.

Because	contextual	information	is	not	really	needed	at	the	time	when	a	test	is
written,	tests	rarely	have	any	good	introductory	information.	Even	when	the
automation	tool	requires	some	header	text,	people	often	do	not	give	this	enough
thought.	They	often	specify	the	context	too	broadly,	talking	about	entire
subsystems	or	components.	Contextual	descriptions	are	often	forced	into	a
standardised	template,	frequently	in	the	form	of	a	user	story,	but	this	is	too	broad

and	often	incomplete	or	misleading.	One	of	the	teams	we	worked	with	recently
had	all	their	Cucumber	specifications	written	so	that	they	started	‘As	an	admin,
because	I	want	to	manage	the	system,	I	want	…	feature’.	The	first	two	parts	of
that	sentence	are	generic	and	appeared	in	all	the	tests,	making	them	utterly
irrelevant	for	understanding	any	particular	test.	The	third	part	just	named	the
technical	feature	that	the	test	was	related	to,	which	could	be	inferred	from	the
file	name	as	well.	Something	was	written	as	a	context	in	each	file,	but	it	was	a
complete	waste	of	time.	Even	worse,	it	was	a	wasted	opportunity	to	make	the
tests	understandable	in	the	future.

Another	common	misuse	of	context	in	tests	is	to	explain	the	mechanics	of	test
execution.	In	the	case	of	automated	tests,	this	is	pretty	much	a	waste	of	time.	The
correct	definition	of	how	a	test	is	executed	is	in	the	automation	layer,	and	any
textual	descriptions	are	likely	to	get	out	of	date	as	the	system	evolves.

As	a	result	of	all	this,	an	explanation	of	the	purpose	of	a	test	is	rarely	available	to
anyone	who	was	not	present	at	the	time	the	test	was	written.	The	more	time
passes,	the	bigger	the	ensuing	problems.

Instead	of	jumping	over	the	context	too	quickly,	try	explaining	why	you’ve
chosen	a	particular	set	of	examples,	and	why	this	particular	test	is	actually
important.	Answer	the	question	‘why?’	in	the	context,	and	let	the	rest	of	the	test
deal	with	‘what’	and	‘how’.

Key	benefits
Good	context	is	crucial	to	avoid	information	bottlenecks	in	the	future.	Without
context,	only	the	person	who	actually	wrote	a	test	will	know	what	needs	to
change	in	response	to	system	changes,	and	that	person	might	not	even	be	around
over	longer	time	periods.	Contextual	information	explaining	why	something	was
written	in	the	first	place	enables	anyone	to	evaluate	at	a	later	date	whether	a	test
is	still	needed,	to	identify	the	right	people	to	speak	to	if	some	values	need	to
change,	and	to	spot	potential	functional	gaps	and	inconsistencies	as	they	extend
the	system.	Unless	all	your	colleagues	have	perfect	memory,	all	this	information
is	helpful	even	to	the	person	who	wrote	a	particular	test.

Contextual	information	explaining	the	purpose	of	a	test	and	why	certain
examples	were	chosen	enables	teams	to	discuss	the	tests	more	effectively	with
external	stakeholders.	Such	people	rarely	participate	in	writing	tests,	and	without

a	purpose-oriented	context	they	will	not	be	able	to	provide	good	feedback	on
completeness.

How	to	make	it	work
A	quick	way	of	discovering	what	needs	to	be	explained	in	the	context	is	to	show
a	test	to	someone	new,	and	try	to	explain	it.	That	person	shouldn’t	be	someone
completely	outside	the	domain	–	don’t	show	it	to	a	random	passer-by	on	your
street,	because	that’s	not	the	target	audience	for	your	test.	A	good	test	subject	is
someone	who	works	for	the	same	company	as	you	but	not	in	your	team.	That
person	should	have	a	reasonable	amount	of	domain	expertise	and	broadly	know
what	you’re	talking	about,	but	they	would	not	have	participated	in	the	process	of
designing	the	test.	This	is	a	relevant	simulation	for	a	new	colleague,	or	someone
else	from	your	team	reading	the	test	six	months	in	the	future.	Pay	attention	to
how	you’re	explaining	the	test,	and	consider	that	pretty	much	anything	you	say
should	go	into	the	context.	This	ensures	that	the	document	can	be	understood
without	you.	Otherwise,	you	will	have	to	repeat	the	same	process	over	and	over
again	with	different	people	in	the	future.

An	alternative	approach	is	to	show	the	test	to	someone	and	keep	quiet,	letting	the
reader	ask	questions.	The	answers	to	their	questions	are	a	good	starting	point	for
the	context.

Avoid	repeating	the	data	or	the	information	already	provided	by	the	body	of	the
test.	Instead,	explain	why	you’ve	chosen	those	particular	examples,	or	that
particular	way	of	specifying	the	test.

Also	avoid	one-sentence	templates.	Those	are	too	generic	to	be	useful.	In
particular,	avoid	trying	to	force	descriptions	into	the	format	of	a	user	story.	This
almost	never	works	well,	because	tests	shouldn’t	really	be	structured	around
work	task	hierarchies	(see	the	section	Avoid	organising	tests	by	work	items	for
more	information).

Split	just-in-case	tests	from	key	examples

At	a	gaming	company	we	worked	with	a	few	years	ago,	there	were	several	types
of	customer	accounts.	One	was	a	legacy	account	migrated	from	an	old	call	centre
system,	another	was	for	people	who	directly	registered	through	the	new	website,
and	a	third	was	for	people	who	were	referred	by	a	third	party.	When	discussing
requirements,	business	people	generally	spoke	about	only	one	customer	type,	as
they	viewed	all	categories	as	the	same.	However,	because	the	information	for
different	customer	types	was	stored	in	different	database	tables,	with	similar	but
slightly	different	structures,	testers	often	discovered	problems	when	trying	things
out	using	legacy	accounts.

When	the	technical	model	is	misaligned	with	the	business	model,	the	key
business	examples	probably	won’t	cover	all	the	risks	properly.	The	technical
model	can	have	its	own	edge	cases	and	boundary	conditions	that	do	not	exist	in
the	business	model.	This	is	clearly	a	modelling	problem	rather	than	a	testing
problem,	but	sometimes	there	is	very	little	we	can	do	about	it.	With	legacy

systems,	the	underlying	model	might	be	too	difficult	or	too	expensive	to	change
as	new	requirements	come	in.	Although	ten	key	examples	might	capture	the
developers’	shared	understanding	of	a	new	requirement,	testers	might	be
justifiably	concerned	about	many	more	edge	cases.

When	the	model	cannot	be	changed	easily,	teams	often	struggle	to	manage	all
the	test	ideas.	If	key	examples	and	additional	technical	tests	are	bundled
together,	there	is	a	risk	that	documents	will	become	too	difficult	to	understand
and	maintain	easily.	It	also	slows	down	critical	feedback	on	features,	because
additional	examples	are	checked	each	time	the	key	examples	need	to	be
validated.	However,	if	the	two	groups	of	examples	are	separated,	it	becomes
difficult	to	identify	all	the	examples	that	need	to	be	checked	for	a	software
change,	and	people	often	duplicate	work	unnecessarily.

A	good	way	to	handle	this	situation	is	to	create	a	separate	document	for
additional	examples	and	cross-link	the	two	test	specifications,	but	use	the	same
automation.	Testers	can	then	reuse	automation	hooks	and	fixtures	developed	for
key	examples	to	add	loads	more	tests	quickly,	and	if	they	find	any	really
significant	differences	those	cases	can	become	key	examples	for	the	future.

Key	benefits
Having	separate	specification	documents	that	reuse	the	same	automation	allows
teams	to	do	assisted	exploratory	testing	and	quickly	try	out	lots	of	different
additional	scenarios,	even	keeping	them	in	a	regression	test	suite	if	needed.	At
the	same	time,	because	the	key	examples	are	in	a	separate	document,	teams	can
use	them	for	shared	understanding	and	stakeholder	feedback.

The	specification	with	the	key	examples	can	be	used	to	get	critical	feedback
quickly,	for	example	developers	can	ensure	that	the	key	examples	pass	before
submitting	the	change	to	the	version	control	system,	and	additional	examples	can
be	checked	later	using	a	continuous	integration	server.

Splitting	the	examples	allows	teams	to	create	a	pipeline	of	continuous	build	jobs,
so	that	they	can	get	feedback	on	failures	quickly	even	if	there	are	hundreds	of
technical	examples.	A	common	set-up	is	to	execute	only	the	key	examples	using
a	primary	continuous	build	job,	and	then	run	the	secondary	examples	only	if	the
primary	job	succeeds.	With	more	complex	models,	the	additional	examples	can
also	be	split	into	several	different	build	jobs	to	optimise	feedback.	For	example,

examples	from	the	areas	that	do	not	change	frequently	could	be	executed
overnight	instead	of	after	every	source	code	change.

Separate	documents	also	make	test	maintenance	cheaper.	If	the	model	changes,
and	as	a	consequence	tests	break,	it’s	generally	sensible	just	to	fix	the	key
examples	and	throw	away	the	additional	ones.	Keeping	the	extra	examples
wouldn’t	make	a	lot	of	sense	because	the	model	has	changed,	so	there	is
probably	a	completely	different	set	of	risks	that	need	to	be	covered.

How	to	make	it	work
With	web-based	systems	such	as	FitNesse,	we	generally	create	an	entirely
separate	hierarchy	for	additional	examples.	Cross-links	to	the	extra	examples	are
typically	in	the	footers	of	the	key	web	pages,	with	a	sentence	such	as	‘For	a
more	complete	technical	set	of	checks,	see…’.	This	keeps	the	key	documents
short	and	easy	to	read.	Separate	hierarchies	ensure	that	people	can’t
unintentionally	start	browsing	technical	cases	when	they	are	trying	to	understand
how	the	system	works.

With	file-based	systems	such	as	Cucumber,	cross-linking	is	a	lot	more	difficult.
We	tend	to	keep	both	groups	of	examples	in	the	same	file,	but	the	key	examples
are	on	the	top,	and	there	is	a	clear	separation	between	them	and	the	additional
scenarios.	People	can	just	stop	reading	when	they	get	to	the	technical	part.	It’s
also	useful	to	use	tags	to	mark	additional	scenarios	and	examples.	People	can
quickly	execute	only	the	scenarios	without	the	tag	for	quick	feedback,	and
continuous	build	tools	can	execute	additional	scenarios	as	secondary	jobs.

Let	the	chaos	monkey	out	periodically

Technical	code	coverage	is	relatively	easy	to	measure,	but	it	doesn’t	actually	say
much	about	the	effectiveness	of	a	test	system.	Risk	coverage	theoretically	gives
a	much	better	measurement	of	effectiveness,	but	it	is	also	a	lot	more	difficult	to
measure.	The	more	complex	the	underlying	interactions	and	components,	the
more	difficult	it	becomes	to	argue	about	key	risk	coverage,	because	many
moving	parts	could	interfere	with	test	results	or	distort	them.	In	addition,	risk
coverage	is	often	measured	against	a	checklist	of	key	risks	or	some	other	way	of
theoretically	predicting	where	the	problems	can	come	from,	which	may	or	may
not	match	the	real	situation.

A	good	set	of	tests	should	warn	about	unexpected	impacts	and	prevent	functional
regression	problems.	The	best	way	to	check	if	it	will	serve	that	purpose	is	to
actually	cause	problems	and	see	if	the	tests	catch	them.	Netflix	is	famous	for
their	approach	to	testing	network	resilience.	They	run	a	service	in	production
(aptly	called	Chaos	Monkey)	that	randomly	switches	off	virtual	machines	and

http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html

causes	other	types	of	common	network	failures,	just	to	ensure	that	the	system
can	survive	similar	issues	if	they	arise	in	real	use.	Using	the	same	approach,	we
can	make	the	test	system	cover	business	risks	more	thoroughly,	and	reduce	the
possibility	that	unexpected	bugs	or	impacts	are	introduced	into	software	without
anyone	noticing.	Look	at	critical	parts	of	the	software,	break	them	and	run	the
tests.	If	the	alarm	bells	sound,	that	part	of	the	process	is	well	covered	with	tests.
If	nothing	happens,	it’s	time	to	write	some	more	tests.

There	are	many	automated	tools	that	cause	changes	to	software	and	measure	test
results	–	they	are	often	bundled	under	the	category	of	mutation	testing	tools.	But
don’t	take	this	idea	as	just	advice	to	apply	a	mutation	testing	tool.	Such	utilities
introduce	technical	changes	based	on	technical	code	analysis,	so	the	impact	is
mostly	technical.	The	effort	involved	in	producing	and	testing	mutations	is	often
directly	correlated	with	technical	complexity.	A	low-risk	complex	component
might	get	a	lot	more	attention	than	a	highly	critical	but	very	simple	module.
Instead	of	using	the	technical	landscape	as	the	primary	dimension	of	change	for
mutations,	try	creating	your	own	mutations	manually	by	driving	them	from	a
risk	model.

Key	benefits
Letting	the	chaos	monkey	out	periodically	allows	teams	to	cause	artificial	crises
in	a	safe	environment,	so	they	can	improve	their	processes	without	having	to	put
out	fires	at	the	same	time.

For	example,	working	with	an	ecommerce	system	a	few	years	ago,	we	let	the
chaos	monkey	out	on	the	shipping	calculator	and	discovered	that	it	was	quite
easy	to	break	it	without	causing	any	alarms.	The	shipping	calculator	didn’t	often
change,	but	it	was	enhanced	once	or	twice	a	year,	and	this	was	always	a	fiddly
process.	The	team	had	some	tests	around	it,	but	everyone	was	surprised	how	few
problems	they	caught.	This	allowed	us	to	do	a	blameless	post-mortem,	in	which
we	decided	how	to	test	the	calculator	component	differently.	It	also	helped	to
make	it	clear	that	the	organisation	needed	to	invest	a	lot	more	effort	in	spreading
domain	knowledge	throughout	the	team,	so	that	more	people	could	get	involved
in	testing	shipping	rules	and	resolving	production	issues	if	they	happened.

Manually	deciding	on	mutations	allows	people	to	apply	critical	thinking	and
deep	domain	knowledge	to	achieve	the	most	risk	coverage	with	fewest
mutations,	focusing	on	business	risk	and	not	just	technical	changes.	Trying	out

difficult	and	risky	mutations	provides	more	confidence	in	bug	prevention
capabilities,	and	it	also	helps	teams	to	discover	important	missing	test	scenarios.
These	discoveries	can	then	inform	exploratory	testing	sessions	to	probe	further
in	the	same	area.

How	to	make	it	work
Think	of	chaos	monkey	sessions	just	as	a	type	of	exploratory	testing	activity	that
requires	the	involvement	of	a	slightly	larger,	more	cross-functional,	group.	For
the	best	results,	schedule	such	sessions	periodically,	time-box	them	and	agree	on
a	list	of	key	risks	to	explore.

Teams	that	use	an	attribute-component-capability	matrix	to	plan	testing	can
repurpose	the	routes	through	their	ACC	matrix	for	chaos	monkey	sessions.	This
has	the	added	benefit	of	immediately	identifying	the	set	of	tests	that	should
ideally	catch	the	problem,	so	you	can	speed	up	feedback.

The	chaos	monkey	approach	can	improve	both	automated	checks	and	manual
exploratory	testing	processes.	When	used	to	improve	automated	checks,	it’s
easier	to	focus	on	one	problem	at	a	time	and	rerun	all	relevant	tests.	This	can	be
done	with	different	pairs	of	developers	and	testers	quickly	iterating	through
different	potential	problems.	When	used	to	improve	exploratory	testing,	it’s
often	better	to	introduce	several	problems,	deploy	a	test	version	of	the	system,
and	then	let	multiple	groups	explore	in	parallel	and	look	for	the	same	issues.
When	the	whole	team	debriefs	after	the	exploratory	testing	sessions,	compare
who	caught	what	and	discuss	the	differences	in	approaches.	This	will	help	you
improve	your	exploratory	testing	practices	across	the	entire	group.

THE	END

This	book	is	part	of	a	series	of	books	on	improving	various	aspects	of	iterative
delivery.	If	you	like	it,	check	out	the	other	books	from	the	series	at
50quickideas.com.

http://www.50quickideas.com/l/ts_3

Authors

Gojko	Adzic	is	a	strategic	software	delivery	consultant	who	works	with
ambitious	teams	to	improve	the	quality	of	their	software	products	and	processes.
Gojko	won	the	2012	Jolt	Award	for	the	best	book,	was	voted	by	peers	as	the
most	influential	agile	testing	professional	in	2011,	and	his	blog	won	the	UK
Agile	Award	for	the	best	online	publication	in	2010.	To	get	in	touch,	write	to
gojko@neuri.com	or	visit	gojko.net

David	Evans	is	a	consultant,	coach	and	trainer	specialising	in	the	field	of	Agile
Quality.	David	helps	organisations	with	strategic	process	improvement	and
coaches	teams	on	effective	agile	practice.	He	is	regularly	in	demand	as	a
conference	speaker	and	has	had	several	articles	published	in	international
journals.	Contact	David	at	david.evans@neuri.com	or	follow	him	on	Twitter
@DavidEvans66

Tom	Roden	is	a	delivery	coach,	consultant	and	quality	enthusiast,	helping	teams
and	people	make	the	improvements	needed	to	thrive	and	adapt	to	the	ever
changing	demands	of	their	environment.	Tom	specialises	in	agile	coaching,
testing	and	transformation.	Contact	Tom	at	tom.roden@neuri.com	or	follow	him
on	Twitter	@tommroden.

http://gojko.net
https://twitter.com/davidevans66
https://twitter.com/TommRoden

Bibliography	and	resources

Fifty	Quick	Ideas	To	Improve	Your	User	Stories	by	Gojko	Adzic	and	David
Evans,	ISBN	978-0993088100,	Neuri	Consulting	2014
Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software	by
Eric	Evans,	ISBN	978-0321125217,	Addison-Wesley	Professional	2003
How	Google	Tests	Software	by	James	A.	Whittaker,	Jason	Arbon	and	Jeff
Carollo,	ISBN	978-0321803023,	Addison-Wesley	Professional	2012
More	Agile	Testing:	Learning	Journeys	for	the	Whole	Team	by	Lisa	Crispin
and	Janet	Gregory,	ISBN	978-0321967053,	978-0321967053
Lessons	Learned	in	Software	Testing:	A	Context-Driven	Approach	by	by
Cem	Kaner,	James	Bach	and	Bret	Pettichord,	ISBN	978-0471081128,
Wiley	2001
Explore	It!:	Reduce	Risk	and	Increase	Confidence	with	Exploratory	Testing
by	Elisabeth	Hendrickson,	ISBN	978-1937785024,	Pragmatic	Bookshelf
2013
A	Practitioner’s	Guide	to	Software	Test	Design	by	Lee	Copeland,	ISBN
978-1580537919,	Artech	House	2004
The	Checklist	Manifesto:	How	to	Get	Things	Right	by	Atul	Gawande,
ISBN	978-0312430009,	Picador	2011
Simple	Testing	Can	Prevent	Most	Critical	Failures:	An	Analysis	of
Production	Failures	in	Distributed	Data-Intensive	Systems	by	Ding	Yuan,
Yu	Luo,	Xin	Zhuang,	Guilherme	Renna	Rodrigues,	Xu	Zhao,	Yongle
Zhang,	Pranay	U.	Jain,	and	Michael	Stumm,	University	of	Toronto,	from
11th	USENIX	Symposium	on	Operating	Systems	Design	and
Implementation,	ISBN	978-1-931971-16-4,	USENIX	Association	2014
User	Story	Mapping:	Discover	the	Whole	Story,	Build	the	Right	Product	by
Jeff	Patton,	ISBN	978-1491904909,	O’Reilly	Media	2014

Useful	web	sites
Access	these	links	quickly	at	http://www.50quickideas.com

Fifty	Quick	Ideas	discussion	group
QUPER	web	site
Chaos	Monkey	Released	Into	The	Wild,	by	Ariel	Tseitlin	2012

http://www.amazon.com/gp/product/B00OGT2U7M/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00OGT2U7M&linkCode=as2&tag=swingwiki-20&linkId=3M3ZO55CDBNSCOKZ
http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=swingwiki-20&linkId=ON5ZHLQDJDMQHFZ6
http://www.amazon.com/gp/product/0321803027/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321803027&linkCode=as2&tag=swingwiki-20&linkId=WYCWLUXYCS4C7EZG
http://www.amazon.com/gp/product/0321967054/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321967054&linkCode=as2&tag=swingwiki-20&linkId=KB5CYIPKAR4UTZTL
http://www.amazon.com/gp/product/0471081124/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0471081124&linkCode=as2&tag=swingwiki-20&linkId=Z4GI2C2ZP6EMJWOC
http://www.amazon.com/gp/product/1937785025/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1937785025&linkCode=as2&tag=swingwiki-20&linkId=4TTMKJLSHPVU4GZC
http://www.amazon.com/gp/product/B001GS7030/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B001GS7030&linkCode=as2&tag=swingwiki-20&linkId=QLHZEE7RPU4PEYFO
http://www.amazon.com/gp/product/B0030V0PEW/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B0030V0PEW&linkCode=as2&tag=swingwiki-20&linkId=I4HFS4ZKGOZBGBSY
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
http://www.amazon.com/gp/product/1491904909/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1491904909&linkCode=as2&tag=swingwiki-20&linkId=RHBALQJ5DBCKO25H
http://www.50quickideas.com
https://groups.google.com/forum/#!forum/50quickideas
http://quper.org
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html

Improving	Testing	Practices	at	Google,	a	conference	report	on	Mark
Striebeck’s	presentation	at	XPDay	2009	by	Gojko	Adzic
The	Forgotten	Layer	of	the	Test	Automation	Pyramid	by	Mike	Cohn,	2009

http://gojko.net/2009/12/07/improving-testing-practices-at-google
http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

Legal	Stuff

Published	by:

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	these	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.	The	author	has	taken
care	in	the	preparation	of	this	book,	but	makes	no	expressed	or	implied	warranty
of	any	kind	and	assumes	no	responsibility	for	errors	or	omissions.	No	liability	is
assumed	for	incidental	or	consequential	damages	in	connection	with	or	arising
out	of	the	use	of	the	information	or	programs	contained	herein.	All	rights
reserved.	This	publication	is	protected	by	copyright,	and	permission	must	be
obtained	from	the	publisher	prior	to	any	prohibited	reproduction,	storage	in	a
retrieval	system,	or	transmission	in	any	form	or	by	any	means,	electronic,
mechanical,	photocopying,	recording,	or	likewise.

	Table of Contents
	Introduction
	Generating test ideas
	Define a shared big-picture view of quality
	Explore capabilities, not features
	Start with always/never
	Tap into your emotions
	Test benefit as well as implementation
	Quantify even if you cannot measure
	Organise test ideas using an ACC matrix
	Use risk checklists for cross-cutting concerns
	Document trust boundaries
	Monitor trends in logs and consoles
	Mob your test sessions
	Don’t let the pen be the bottleneck
	Snoop on the competition
	Designing good checks
	Focus on key examples
	Contrast examples with counter-examples
	Describe what, not how
	Avoid mathematical formulas
	Flip equivalence classes between inputs and outputs
	Clearly separate inputs and outputs
	Ask ‘what happens instead?’
	Use Given-When-Then in a strict sequence
	One test, one topic
	Treat too many boundaries as a modelling problem
	Prefer smaller tables
	Balance three competing forces
	Write assertions first
	Split technical and business checks
	Don’t automate manual tests
	Improving testability
	Wrap synchronous database tests in transactions
	Set up before asynchronous data tests, don’t clean up after
	Introduce business time
	Provide atomic external resources
	Wait for events, not time
	Split data generators from tests
	Minimise UI interactions
	Separate decisions, workflows and technical interactions
	Use production metrics for expensive tests
	Managing large test suites
	Make developers responsible for checking
	Design tests together with other teams
	Avoid organising tests by work items
	Version control tests along with software
	Create a gallery of examples for automation patterns
	Decouple coverage from purpose
	Avoid having strict coverage targets
	Measure your tests’ half-life
	Optimise for reading, not writing
	Name tests for search engine optimisation
	Explain the purpose of a test in the introduction
	Split just-in-case tests from key examples
	Let the chaos monkey out periodically
	The End
	Authors
	Bibliography and resources
	Legal Stuff

