

Free	Webinars,	Videos,	and	Live	Training
Mr.	Jones	plans	to	have	free	step-by-step	demonstration	webinars,	videos,	and	live
trainings	walking	people	through	concepts	of	Selenium	and	QTP/UFT	from	A	-	Z.	The
material	will	teach/train	individuals	the	fundamentals	of	the	programming	language,
fundamentals	of	Selenium	and	QTP/UFT,	and	important	concepts	of	Selenium	and
QTP/UFT.	All	of	the	webinars,	videos,	and	live	training	will	be	directed	toward	beginners
as	well	as	mid-level	automation	engineers.

	

Sign	Up	to	Receive

	

1.	 3	Tips	To	Master	Selenium	Within	30	Days
http://tinyurl.com/3-Tips-For-Selenium
	

2.	 3	Tips	To	Master	QTP/UFT	Within	30	Days
http://tinyurl.com/3-Tips-For-QTP-UFT
	

3.	 Free	Webinars,	Videos,	and	Live	Trainings	
http://tinyurl.com/Free-QTP-UFT-Selenium

http://tinyurl.com/3-Tips-For-Selenium
http://tinyurl.com/3-Tips-For-QTP-UFT
http://tinyurl.com/Free-QTP-UFT-Selenium

Rex	Jones’	Contact	Information
Email	Address:	Rex.Jones@Test4Success.org	
LinkedIn:	https://www.linkedin.com/in/rexjones34
Books:	http://tinyurl.com/Rex-Allen-Jones-Books
Twitter:	@RexJonesII
Skype:	rex.jones34

mailto:Rex.Jones@Test4Success.org
https://www.linkedin.com/in/rexjones34
http://tinyurl.com/Rex-Allen-Jones-Books

Table	of	Contents
FREE	WEBINARS,	VIDEOS,	AND	LIVE	TRAINING

REX	JONES’	CONTACT	INFORMATION

TABLE	OF	CONTENTS

PREFACE

ABOUT	THE	AUTHOR

ABOUT	THE	EDITOR

COPYRIGHT,	LEGAL	NOTICE,	AND	DISCLAIMER

ACKNOWLEDGEMENTS

CHAPTER	1		INTRODUCTION	TO	JAVA

OVERVIEW

VARIABLES	AND	DATA	TYPES

OPERATORS

CONTROL	STRUCTURES

OBJECT-ORIENTED	PROGRAMMING	(OOP)

CHAPTER	2		VARIABLES	AND	DATA	TYPES

VARIABLE	NAMES

VARIABLE	DECLARATION

VARIABLE	INITIALIZATION

VARIABLE	TYPE,	SCOPE,	AND	LIFETIME

PRIMITIVE	DATA	TYPES

CONSTANTS

CHAPTER	3		OPERATORS

ARITHMETIC	OPERATORS

BITWISE	OPERATORS

LOGICAL	OPERATORS

RELATIONAL	OPERATORS

ASSIGNMENT	OPERATOR

TERNARY	OPERATOR

OPERATOR	PRECEDENCE

DATA	TYPE	CASTING

EXPRESSIONS

CHAPTER	4		CONTROL	STRUCTURES

IF	BRANCH

SWITCH	BRANCH

FOR	LOOP

WHILE	LOOP

DO	WHILE	LOOP

BREAK	TO	EXIT

CONTINUE	TO	NEXT	STATEMENT

CONCLUSION

RESOURCES

BOOKS	BY	REX	JONES	II

SIGN	UP	TO	RECEIVE

Preface
I	am	enthused	to	write	an	instructional	book	on	Java	because	I	have	talked	with	many
testers	who	can	relate	to	the	frustration	caused	by	the	lack	of	information	to	learn	Java	for
automation	testing.	Java	is	one	of	the	programming	languages	for	Selenium.	A	common
challenge	with	new	automation	testers	is	learning	how	to	program.	Therefore,	this	book	is
designed	to	help	an	absolute	beginner	learn	Java.	The	purpose	of	this	book	is	to	fill	a	need
of	automation	testers	who	are	forced	to	hurry	past	the	programming	component	of
automation,	leading	to	a	struggle	with	working	in	Selenium.

	

Target	Audience

The	target	audience	is	beginners	with	little	to	no	knowledge	of	Java.	Beginners	are	people
new	to	Selenium	and	Java,	and	have	a	desire	to	establish	a	deep	foundation	of	Java
principles.

	

Why	learn	Java?

Java	is	a	powerful	programming	language	that	is	frequently	and	commonly	implemented
in	the	Information	Technology	(IT)	industry.	Java	programmers	are	in	high	demand	in	the
IT	field	and	being	able	to	code	automation	scripts	in	Java	will	make	you	a	commodity	to
any	quality	assurance	testing	team.	There	are	many	Java	forums	(message	boards)	online
that	support	Java	programmers	in	need	of	a	solution	for	a	problem.	Learning	Java	and
Selenium	is	a	great	combination	that	will	make	any	quality	assurance	tester	effective	on	an
automation	project.

About	the	Author

Rex	Allen	Jones	II	is	a	QA/Software	Tester	with	a	passion	for	sharing	knowledge	about
testing	software.	He	has	been	watching	webinars,	attending	seminars,	and	testing
applications	since	February	2005.	Mr.	Jones	graduated	from	DeVry	University	in	June
1999	with	a	Bachelor’s	of	Science	degree	in	Computer	Information	Systems	(CIS).

	

Currently,	Rex	is	a	Consultant	and	former	Board	of	Director	for	User	Group:	Dallas	/	Fort
Worth	Mercury	User	Group	(DFWMUG)	and	member	of	User	Group:		Dallas	/	Fort	Worth
Quality	Assurance	Association	(DFWQAA).	In	addition	to	his	User	Group	memberships,
he	is	a	Certified	Software	Tester	Engineer	(CSTE)	and	has	a	Test	Management	Approach
(TMap)	certification.

	

Mr.	Jones’	advice	for	people	interested	in	Functional	Automation	Testing	is	to	learn	the
programming	language.	This	advice	led	him	to	write	two	books	“(Part	1	&	Part	2)	You
Must	Learn	VBScript	for	QTP/UFT”	geared	towards	VBScript	which	is	the	programming
language	for	Unified	Functional	Testing	(UFT)	formerly	known	as	Quick	Test
Professional	(QTP).	In	addition,	one	book	“Part	1	–	Java	4	Selenium	WebDriver”	and	an
upcoming	book	“Part	2	–	Java	4	Selenium	WebDriver”	geared	toward	Java	which	is	one	of
the	programming	languages	for	Selenium.

About	the	Editor

When	Samantha	Mann	is	not	improving	the	contents	of	a	document	through	constructive
editing	marks	and	remarks,	she	is	enjoying	life	as	a	professional	in	Dallas,	Texas.
Samantha	is	a	User	Experience	guru	in	the	realms	of	research	and	design,	and	works	as	an
Information	Technology	consultant.	Outside	of	work	her	hobbies	include	the	typical	nerd-
type	fun	of	freelance	editing,	reading,	writing,	and	binge	watching	Netflix	with	her	pitbull.

	

Connect	with	Samantha:

Samantha.danae.mann@gmail.com

https://www.linkedin.com/pub/samantha-mann/84/9b7/100

Copyright,	Legal	Notice,	and	Disclaimer
This	publication	is	protected	under	the	US	Copyright	Act	of	1976.	All	rights	are	reserved
including	resale	rights	which	applies	to	international,	federal,	state,	and	local	laws.	The
purchaser	is	not	allowed	to	share	or	sell	this	book	to	anyone.

	

Please	note	that	much	of	this	publication	is	based	on	personal	experience	and	anecdotal
evidence.	The	author	has	made	every	reasonable	attempt	to	produce	accurate	content	in
this	book.	He	assumes	no	responsibility	for	unknown	errors	or	omissions.	Therefore,	the
purchaser	should	use	this	information	as	he/she	sees	fit.

	

Any	trademarks,	service	marks,	product	names	or	named	features	are	assumed	to	be	the
property	of	their	respective	owners	and	used	only	for	reference.

	

Copyright	©	2016	Test	4	Success,	LLC.	All	rights	reserved	worldwide.

	

ASIN:	B01CO4E000

Acknowledgements
I	would	like	to	express	my	gratitude	to	my	wife	Tiffany,	children	Olivia	Rexe’	and	Rex	III,
editor	Samantha	Mann,	family,	friends,	and	the	many	people	who	provided
encouragement.	Writing	this	book	took	time	and	your	support	helped	pushed	this	book
forward.

	

Thank	You,

Rex	Allen	Jones	II	

Chapter	1	
Introduction	to	Java

Overview
Java	is	a	powerful	programming	language	developed	by	Sun	Microsystems.	It	is	a	widely
used	object-oriented	language	that	revolutionized	the	web.	In	addition	to	revolutionizing
the	web,	Java	is	used	in	many	devices,	such	as	cell	phones.	The	Java	Development	Kit
(JDK)	and	one	of	the	Integrated	Development	Environments	(IDE),	such	as	Eclipse,	must
be	downloaded	and	installed	in	order	to	use	Java.		

	

The	following	links	are	valid	for	downloading	Java	Development	Kit	(JDK)	and	Eclipse
IDE	at	the	time	of	writing	this	book:

	

Download	Java	Development	Kit	(JDK)
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Download	Eclipse	IDE
https://eclipse.org/downloads/

	

Once	the	JDK	and	Eclipse	IDE	have	been	downloaded	and	installed,	statements	can	be
written	and	compiled.	Statements	are	referred	to	as	code—a	line	or	lines	of	information
written	in	a	particular	syntax. 	The	key	to	all	programming	languages	is	the	syntax.	Syntax
is	a	set	of	rules	that	specifies	a	structured	combination	of	words	and	symbols.	If	not
structured	correctly,	an	error	occurs	to	prevent	the	statements	from	compiling.

	

Compiling	statements	is	performed	via	a	compiler.	A	compiled	language	refers	to	a	special
program	that	retrieves	the	statements	developed	by	a	programmer	and	then	translates	the
statements	into	an	understandable	machine	language.	A	computer	processor	is	then	able	to
use	the	machine	language	once	the	statements	are	translated. 	It	is	important	to	know	that
comments	are	statements	but	ignored	and	never	causes	an	error.	Comments	are	notes	that
help	programmers	understand	the	program	and/or	other	statements.	The	following	are	two
types	of	comments:

	

1.	 Single	line	–	comment	one	line	at	a	time
2.	 Multi-line	–	comment	multiple	lines					

	

Usually,	multi-line	comments	are	located	at	the	top	of	a	program	with	information
describing	the	entire	program.	Single	line	comments	are	used	to	explain	statements	within
the	program.	The	purpose	of	both	types	of	comments	is	to	self-document	content	written
in	the	program.	Comments	provide	answers	to	two	questions:

	

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://eclipse.org/downloads/

1.	 What	is	the	purpose	of	the	program,	statements,	etc.?
2.	 Why	did	the	programmer	write	the	program,	statements,	etc.?	

	

The	following	is	an	example	of	a	single	and	multi-line	comment:

	
/*	

		Programmer:	Rex	Jones	II

		Description:	Show	both	types	of	comments

		Purpose:

		Date:	

*/													

public	class	Main

{

public	static	void	main(String[]	args)

{

//	This	is	a	single	line	comment	example

System.out.println(“Hello	World!!!”);

}

}

	

Figure	1.1	–	Single	and	Multi-Line	Examples
	

Program	Output:
Hello	World!!!

	

Line	one	begins	the	multi-line	comment	with	a	forward	slash	(/)	and	an	asterisk	(*)	while
line	six	ends	the	multi-line	comment	with	an	asterisk	and	forward	slash	(*/).	Line	12

begins	the	single	line	comment	with	two	forward	slashes	(//)	and	does	not	include	symbols
to	end	the	comment.

	

This	chapter	provides	general	concepts	regarding	Java	and	will	explain	the	following:

							Variables	and	Data	Types

							Operators

							Control	Structures

							Object-Oriented	Programming	(OOP)

	

Note:	Details	of	the	concepts	are	covered	in	subsequent	chapters.

Variables	and	Data	Types
A	variable	is	a	memory	location	with	a	name	that	contains	a	value	(see	Variables	and	Data
Types	in	Chapter	2).	In	order	to	use	the	variable,	it	must	be	declared	and	initialized.
Declaring	a	variable	is	stating	clearly	that	a	variable	exists	by	providing	a	data	type	and
variable	name.	Data	type	refers	to	the	type	of	data	that	can	be	stored	in	a	variable	while
variable	name	identifies	the	variable.	In	Java,	there	are	two	kinds	of	data	types:	primitive
and	reference.	Primitive	data	type	supports	eight	basic	data	types	and	reference	data	type
is	based	on	a	class.	Initializing	a	variable	is	when	the	variable	is	assigned	a	value	that	can
change	during	program	execution.	The	following	is	a	variable	declaration	and
initialization	example:

	
public	class	Declare_Initialize_Variable

{

public	static	void	main(String[]	args)

{

														int	sum;

													

														sum	=	3	+	4;

													

														System.out.println(“What	is	the	sum	of	3	+	4?	“	+	sum);

}

}

	

Figure	1.2	–	Variable	Declaration	and	Initialization
	

Program	Output:
What	is	the	sum	of	3	+	4?	7

	

Line	five	declares	the	variable	with	a	data	type	“int”	and	variable	name	“sum”	while	line
seven	initializes	“3	+	4”	to	the	variable	“sum”.	In	Java,	all	variables	possess	a	data	type,
variable	name,	and	value.

Operators
Operators	are	symbols	such	as	plus	(+)	and	minus	(-)	that	perform	mathematical
operations	(see	Operators	in	Chapter	3).	The	operators	are	executed	on	operands	which	is
anything	that	can	be	changed.	A	variable	is	a	common	operand	which	changes	during
execution.	In	Java,	there	are	four	types	of	operators:

	

1.	 Arithmetic	–	implement	mathematical	operations	on	numerical	values
2.	 Bitwise	–	work	on	operands	utilizing	bits
3.	 Logical	–	returns	a	boolean	value	(true	or	false)	based	on	one	or	more	expressions
4.	 Relational	–	returns	a	boolean	value	(true	or	false)	after	comparing	operands

	

The	following	is	an	Arithmetic	Operator	example:

	
public	class	Subtraction_Operator

{

public	static	void	main(String[]	args)

{

														//	Subtraction	Operator

													

														int	x,	y,	answer;

													

														x	=	100;

														y	=	80;

													

														answer	=	x	-	y;

														System.out.println(“What	is	100	-	80?	“	+	answer);																											

}

}

	

Figure	1.3	–	Subtraction	Arithmetic	Operator
	

Program	Output:
What	is	100	-	80?	20

	

Line	seven	declares	the	variables	“x,	y,	answer”	with	an	int	data	type.	However,	lines	nine
and	10	assign	the	values	(x	=	100	and	y	=	80)	to	two	of	the	variables.	The	–	Subtraction
operator	is	implemented	at	line	12	and	subtracts	the	right	operand	“y”	from	the	left
operand	“x”	then	assigns	the	value	“20”	to	variable	“answer”.	

Control	Structures
Control	structures	provide	ways	to	regulate	the	flow	of	a	program	(see	Control	Structures
in	Chapter	4).	The	flow	is	directed	by	branches	and	loops.	Branches	allow	certain
statements	to	be	skipped	after	evaluating	a	condition	or	variable.	Loops	permit	specific
statements	to	be	repeated	according	to	a	boolean	expression.	The	following	is	a	list	of	two
branches	and	three	loops:

	

Branches
1.	 If	Branch	–	executes	a	statement	when	a	condition	is	true
2.	 Switch	Branch	–	evaluates	a	variable	then	execute	a	statement	according	to	the

variable’s	value

	

Loops
1.	 For	Loop	–	executes	a	block	of	code	a	certain	number	of	iterations
2.	 While	Loop	–	repeats	a	statement	while	a	boolean	expression	is	true
3.	 Do	While	Loop	–	execute	a	statement	at	least	one	iteration	and	continue	while	the

boolean	expression	is	true

	

The	following	is	an	if	branch	example:

	
public	class	If_Branch

{

public	static	void	main(String[]	args)

{

														//	If	Branch

														boolean	study;

													

														study	=	true;

													

														if	(study	==	true)

														{

																												System.out.println(“You	can	learn	Java	/	Selenium	within	30	days”);

														}

														else

														{

																												System.out.println(“May	take	a	little	longer	than	30	days	but	remain	patient”);

														}

}

}

	

Figure	1.4	–	If	Branch	Example
	

Program	Output:
You	can	learn	Java	/	Selenium	within	30	days

	

Line	eight	assigns	variable	“study”	the	value	of	true.	As	a	result,	the	condition	“if	(study
==	true)”	evaluates	to	true.	Therefore,	the	program	executes	line	12	and	skip	the
remaining	lines	(line	14	–	17).	On	the	other	hand,	the	program	would	have	executed	lines
14	–	17	and	skipped	lines	11	–	13	if	the	condition	was	false.

Object-Oriented	Programming	(OOP)
Java	is	an	object-oriented	programming	(OOP)	language	that	is	structured	around	objects.
An	object	is	anything	that	can	be	seen	or	perceived.	All	objects	have	two	characteristics:
state	and	behavior.	State	identifies	the	object	and	behavior	represent	the	actions	of	the
object.	For	example,	a	customer	can	be	identified	by	their	name	(state)	while	talking
(behavior)	is	the	action	of	the	customer.

	

Both	characteristics	“state	and	behavior”	are	defined	by	a	class.	A	class	is	a	template	for
objects	and	forms	the	foundation	for	object-oriented	programming.	Data	and	statements
that	operate	on	the	data	are	specified	by	classes.	In	addition,	access	to	the	data	by	way	of
classes	are	carried	out	through	methods.	A	method	manipulates	data	and	provide
interaction	with	classes	from	other	components	of	the	program.	The	following	is	an
example	illustrating	a	class,	object,	and	method:

	
class	Customer

{

String	name;

int	age;

public	static	void	main(String[]	args)

{

														Customer	firstCustomer=	new	Customer	();

														firstCustomer.name	=	“Joe	Doe”;

													

														System.out.println(“The	customer’s	name	is	“	+	firstCustomer.name);

}

}													

	

Figure	1.5	–Class,	Object,	and	Method	Example
	

Program	Output:
The	customer’s	name	is	Joe	Doe

	

Line	one	displays	the	keyword	“class”	and	class	name	“Customer”
Line	six	is	a	method	labeled	main
Line	eight	declares	firstCustomer	as	the	variable	for	class	type	“Customer”.
Keyword	“new”	allocates	memory	and	creates	a	new	Customer	object

	

Chapter	1	outlined	general	concepts	regarding	variables,	data	types,	operators,	control
structures,	and	object-oriented	programming.	The	details	of	variables,	data	types,
operators,	and	control	structures	are	presented	in	this	book.	Also,	the	links	to	download
Java	Development	Kit	(JDK)	and	Eclipse	IDE	were	provided.	The	next	book	“Part	2	–
Java	4	Selenium	WebDriver”	thoroughly	explains	object-oriented	programming,	which
includes	classes,	objects,	and	methods.	Chapter	2	will	define	the	four	types	of	variables
local,	parameter,	instance,	and	class	as	well	as	primitive	data	types:	boolean,	byte,	char,
double,	float,	int,	long,	and	short.

Chapter	2	
Variables	and	Data	Types

A	variable	is	a	named	container	or	memory	location	that	holds	a	value.	The	value	of	the
container	or	memory	location	can	change	during	execution	of	the	program.	Each	variable
has	the	ability	to	contain	any	kind	of	information,	such	as	text	or	numbers.	As	a	result,
automation	engineers	are	empowered	to	create	flexible	programs.	Variables	are	utilized	to
represent	changeable	data,	rather	than	hard-coding	data	(entering	unchangeable	data
directly	into	a	program).

	

All	variables	possess	a	name,	data	type,	and	value.	A	variable	name	is	used	to	uniquely
identify	the	variable.	Data	type	refers	to	the	type	of	variable,	such	as	int,	double,	or
boolean	that	can	be	stored	in	a	variable.	Therefore,	data	type	determines	a	variable’s	value.
In	Java,	there	are	two	kinds	of	data	types:	primitive	and	reference.	Primitive	data	type
supports	eight	basic	data	types	(explained	in	this	chapter)	and	reference	data	type	is	based
on	a	class	(explained	in	Part	2	–	Java	4	Selenium	WebDriver).

	

Chapter	two	covers	the	following	regarding	variables	and	data	types:

							Variable	Names

							Variable	Declaration

							Variable	Initialization

							Variable	Type,	Scope,	and	Lifetime

							Primitive	Data	Types

							Constants

Variable	Names
The	name	of	a	variable	is	significant	when	identifying	the	variable	in	memory.		Hence,
variables	are	referred	to	as	identifiers.	In	addition	to	variables,	an	identifier	represents
methods	along	with	other	user-defined	items.	All	variable	names	can	range	anywhere	from
one	character	to	an	unlimited	number	of	characters.	The	following	is	a	variable	name
example:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														int	custOrder;

													

														custOrder	=	123;

													

														System.out.println(“The	customer’s	order	number	is	“	+	custOrder);

}													

}

	

Figure	2.1	–	Variable	Name	Example
	

Program	Output:
The	customer’s	order	number	is	123

	

Variable	Naming	Rules
Java	has	rules	to	naming	variables.	One	of	the	rules	is	to	ensure	each	variable	has	a	unique
name.	Unique	names	prevent	errors	from	occurring,	such	as	“Duplicate	local	variable”—
meaning	the	same	variable	name	has	been	entered	more	than	one	time.	The	following	is	a
list	of	more	rules	for	naming	a	variable:

	

Can	contain	case	sensitive	letters,	numbers,	dollar	sign	“$,”	and	underscore	“_”
Can	begin	with	a	letter,	dollar	sign	“$,”	or	underscore	“_”
Cannot	begin	with	a	number
Cannot	contain	a	space	or	special	character	except	dollar	sign	“$,”	and	underscore
“_”
Cannot	contain	a	reserve	keyword

	

The	following	is	a	list	of	50	Java	reserve	keywords:

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

Figure	2.2	-	Reserve	Keywords
	

Variable	Naming	Conventions
Convention	is	a	general	agreement	or	practice	when	establishing	a	standard.	Suitable	for
naming	variables,	a	convention	is	important	while	working	with	a	team	of	automation
engineers.	All	identifier	names	(e.g.,	variable,	method,	etc.)	are	critical	for	reading,
understanding,	and	maintaining	code.	The	following	is	a	list	of	suggested	conventions	for
naming	a	variable:

	

Construct	descriptive	names	that	describe	the	variable’s	purpose
Compose	names	utilizing	mixed	case	letters,	unless	the	name	is	one	word

If	one	word,	then	use	all	lowercase	letters
If	multiple	words,	then	begin	the	first	word	with	a	lowercase	letter	and	each
consecutive	word	with	an	uppercase	letter	(e.g.,	custFirstName)

Create	a	name	that	begins	with	a	letter	and	not	a	dollar	sign	“$”	or	underscore	“_”
Choose	loop	control	variables	that	begin	with	a	single	lowercase	letter	(e.g.,	i,	x,	y)

Variable	Declaration
Declaring	a	variable	is	stating	clearly	that	a	variable	exists.	All	variables	are	associated
with	a	data	type	in	the	event	of	declaring	a	variable.	Data	types	guarantee	the	correct	data
is	assigned	to	a	variable.	In	addition,	the	size	of	a	variable	is	determined	by	a	data	type.
Variables	must	be	declared	before	they	are	utilized	in	any	program.	The	following	is	the
syntax	for	declaring	a	variable:

	

Syntax
variableType	variableName;

	

Syntax	Details

Argument Description

variableType Data	type	of	variable	being	declared

variableName Name	of	variable	being	declared

; Semi-colon	completes	the	declaration	statement

Figure	2.3	–	Variable	Declaration	Syntax	Details

	

The	following	is	a	variable	declaration	example:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														int	x;

														int	y;

													

														x	=	5;

														y	=	7;

													

														System.out.println(“The	values	of	x	and	y	are	“	+	x	+	”	and	“	+	y);

}													

}

	

Figure	2.4	–	Variable	Declaration
	

Program	Output:
The	values	of	x	and	y	are:	5	and	7

	

Lines	five	and	six	declare	variables	x	and	y	with	an	int	data	type.	Notice	how	each
declaration	ends	with	a	semi-colon.	The	semi-colon	completes	the	declaration	statement.

	

Note:	Multiple	variables	can	be	declared	on	the	same	line	if	the	variable	has	the	same	data
type.	The	following	is	a	declaration	example	of	multiple	variables	separated	by	a	comma:

	

int	x,	y;

Variable	Initialization
In	general,	variables	are	given	an	initial	value	before	the	variables	are	used.	The
Assignment	Operator	separates	two	sides	of	an	equation.	There	is	a	left	and	right	side	of
every	equation.	The	left	side	displays	a	variable	name	while	the	right	side	displays	a	value.
Variables	can	be	initialized	the	following	ways:

	

1.	 Initialize	by	Value
2.	 Initialize	by	Dynamics

Initialize	by	Value
Initializing	a	variable	by	values	requires	a	value	to	be	set	for	the	variable.	The	following
are	two	ways	to	initialize	a	variable	by	value:

	

1.	 At	declaration
2.	 After	declaration

At	declaration
At	declaration	is	when	the	data	type,	variable	name,	and	value	are	placed	on	the	same	line.
In	other	words,	the	variable	is	declared	and	initialized	simultaneously.	Multiple	variables
can	be	initialized	at	declaration	by	using	a	comma	separated	list.	The	following	is	an
example	of	“at	declaration”	initialize	by	value:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

	

														int	num1	=	100,	num2	=	200,	total;

													

														total	=	num1	+	num2;

														System.out.println(“The	total	of	num1	and	num2	is	“	+	total);														

}													

}

	

Figure	2.5	–	Variable	Initialization	At	Declaration
	

Program	Output:
The	total	of	num1	and	num2	is	300

	

Line	five	declares	three	variables	“num1,	num2,	and	total”	with	an	int	data	type.	Two	of
the	variables	“num1	and	num2”	are	initialized	with	a	value	that	represents	variable
initialization	at	declaration.	Therefore,	the	variables	are	initialized	when	they	are	declared.

	

After	declaration
After	declaration	is	when	the	data	type,	variable	name,	and	value	are	placed	on	two
separate	lines.	The	data	type	and	variable	name	are	declared	on	the	same	line	while	the
variable	name	is	assigned	a	value	on	a	subsequent	line.	The	following	is	an	example	of
“after	declaration”	initialize	by	value:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														int	num1,	num2,	total;

													

														num1	=	100;

														num2	=	200;													

													

														total	=	num1	+	num2;

														System.out.println(“The	total	of	num1	and	num2	is	“	+	total);

}													

}

	

Figure	2.6	–	Variable	Initialization	After	Declaration
	

Program	Output:
The	total	of	num1	and	num2	is	300

	

Line	five	declares	three	variables	“num1,	num2,	and	total”	with	an	int	data	type.	Two	of
the	variables	“num1	and	num2”	are	initialized	with	a	value	on	lines	seven	and	eight	that
represents	variable	initialization	after	declaration.	Therefore,	the	variables	are	declared	on
line	five	and	initialized	after	they	are	declared	on	lines	seven	and	eight.

	

Initialize	by	Dynamics
Initializing	a	variable	by	dynamics	does	not	assign	a	specific	value	to	a	variable.	Instead,
values	subject	to	change	are	assigned	to	the	variables.	Occasionally,	values	that	change	are
values	from	an	Application	Under	Test	(AUT)	or	other	variables.	The	following	is	a
variable	initialization	by	dynamics	example:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														int	num1,	num2;

													

														num1	=	100;

														num2	=	200;																											

													

														int	total	=	num1	+	num2;

													

														System.out.println(“The	total	of	num1	and	num2	is	“	+	total);

}													

}

	

Figure	2.7	–	Initialize	by	Dynamics
	

Program	Output:
The	total	of	num1	and	num2	is	300

	

Line	10	declares	and	initializes	variable	“total”	with	an	int	data	type.	The	variable	is	not

initialized	with	a	specific	value.	However,	the	variable	is	initialized	with	information
“num1	and	num2”	that	can	possibly	change	during	execution.	For	example,	an	automation
engineer	can	enter	statements	to	increase	the	value	of	both	variables	“num1	and	num2”
during	execution.	If	variables	num1	and	num2	change,	then	the	variable	“total”	will
dynamically	change.

	

Note:	Line	10	requires	a	data	type	int	when	initializing	a	variable	by	dynamics.

Variable	Type,	Scope,	and	Lifetime
Java	allows	a	variable	to	be	declared	anywhere	in	a	program.	For	that	reason,	a	variable
can	be	defined	within	a	class,	within	a	method,	or	within	a	method	as	a	parameter.	A
variable’s	scope	is	related	to	where	the	variable	is	declared	inside	the	program.	Lifetime	is
how	long	the	variable	exists	in	the	program.	The	following	are	four	types	of	variables	that
have	their	own	scope	and	lifetime:

	

1.	 Local	Variables
2.	 Parameter	Variables
3.	 Instance	Variables
4.	 Class	Variables

Local	Variables
Local	variables	are	declared	inside	a	method.	Individual	methods	can	have	the	same
variable	name	as	another	method	within	a	program.	Local	variables	are	only	visible	inside
its	individual	method.	Therefore,	each	variable	is	unique	to	a	specific	method.	Before
using	a	local	variable,	it	must	be	declared	and	initialized	a	value	without	needing	a	special
keyword.	Hence,	there	are	no	default	values	for	local	variables.	Local	variables	are	created
when	the	method	is	constructed	and	destroyed	when	the	method	is	terminated.	The
following	is	a	local	variable	example:

	
public	class	VariableExample

{																											

public	void	AutomationEngineers	()

{

														int	yearsEmployed;

													

														yearsEmployed	=	5;

													

														System.out.println(“Joe	Doe	‘Automation’	has	been	at	the	organization	“	+	yearsEmployed	+	”	years”);

}

public	void	Developers	()

{

														int	yearsEmployed;

													

														yearsEmployed	=	3;

													

														System.out.println(“Jane	Doe	‘Dev’	has	been	at	the	organization	“	+	yearsEmployed	+	”	years”);

}

public	static	void	main(String[]	args)

{

														VariableExample	years	=	new	VariableExample	();

														years.AutomationEngineers();

														years.Developers();

}

}

	

Figure	2.8	–	Local	Variable
	

Program	Output:
Joe	Doe	‘Automation’	has	been	at	the	organization	5	years

Jane	Doe	‘Dev’	has	been	at	the	organization	3	years

	

Lines	five	and	thirteen	display	a	variable	“yearsEmployed”	that	is	local	to	methods
“AutomationEngineers	and	Developers.”	An	error	will	not	occur	because	each	variable	is
unique	to	its	method.	However,	the	same	variable	name	cannot	be	declared	multiple	times
within	the	same	method.	The	scope	and	lifetime	of	a	local	variable	is	limited	to	the
block/curly	braces	in	which	it	is	declared.

	

Parameter	Variables
Parameter	variables	are	declared	and	passed	into	methods.	After	a	parameter	variable	is
declared,	it	is	implemented	like	a	local	variable.	Therefore,	a	local	variable	and	parameter
variable	cannot	have	the	same	name.	Keywords	are	not	required	for	a	parameter	variable.
However,	the	data	type	and	variable	name	must	be	surrounded	by	a	parenthesis	after	the
method	name.	The	following	is	a	parameter	variable	example:

	
public	class	VariableExample

{																											

public	void	setMtgAmount	(double	mtgAmount)

{

														System.out.println(“The	mortgage	payment	amount	is	“	+	mtgAmount);

}

													

public	static	void	main(String[]	args)

{

														VariableExample	payment	=	new	VariableExample	();

														payment.setMtgAmount(99000);

}

}

	

Figure	2.9	–
Parameter	Variables
	

Program	Output:
The	mortgage	payment	amount	is	99000.0

	

Lines	three	and	eight	pass	parameter	variables	“double	mtgAmount	and	String[]	args”	into
methods	“setMtgAmount	and	main.”	The	value	“99000”	is	passed	from	the	method	call
“payment.setMtgAmount”	line	11	into	the	method	“setMtgAmount”	line	three	that	is
called.	The	scope	of	a	parameter	variable	is	a	method’s	header	inside	the	parenthesis	while

the	lifetime	is	a	method’s	body	within	the	curly	brackets.

	

Instance	Variables
Instance	variables	are	declared	inside	a	class,	outside	of	a	method,	and	accessed	using
keyword	new.	The	values	of	an	instance	variable	are	unique	to	each	object.	This	type	of
variable	can	be	used	before	or	after	it	is	initialized	with	visibility	to	all	methods	in	a	class.
Default	values	for	a	number	is	zero,	for	boolean	the	default	is	false,	and	an	object
reference	default	is	null.	Instance	variables	are	created	when	an	object	is	formed	and
terminated	when	the	object	is	destroyed.	The	following	is	an	instance	variable	example:

	
public	class	VariableExample

{																											

int	yearsExist	=	34;

													

public	static	void	main(String[]	args)

{

														VariableExample	years	=	new	VariableExample	();

														System.out.println(“This	organization	has	existed	for	“	+	years.yearsExist	+	”	years”);																											

}

}

	

Figure	2.10	–	Instance	Variable
	

Program	Output:
This	organization	has	existed	for	34	years

	

Line	three	declares	the	instance	variable	“yearsExist”	within	the	class	“VariableExample,”
but	outside	of	the	method	“main”.	The	instance	variable	is	accessed	in	line	eight
“years.yearsExist”	after	creating	keyword	new	via	line	seven.

	

Note:	An	instance	variable	can	be	accessed	via	ObjectReference.	Line	eight	prints	the
variable’s	value	by	using	the	ObjectReference.InstanceVariable	“years.yearsExist”.

	

Class	Variables
Class	Variables	(known	as	Static	Variables)	are	declared	in	a	class,	but	not	in	a	method.
This	type	of	variable	is	declared	using	keyword	static.	The	keyword	static	announces	to
the	compiler	that	only	one	copy	of	a	particular	variable	exists,	but	is	shared	by	all
instances	of	an	object.	Default	values	for	a	number	is	zero,	the	default	for	boolean	is	false,
and	an	object	reference	default	is	null.	Usually,	Class	Variables	are	declared	as	Constants.
Class	Variables	are	created	when	the	program	begins	and	destroyed	when	the	program
ends.	The	following	is	a	class	variable	example:

	
public	class	VariableExample

{																											

static	int	numDays	=	30;

public	static	void	main(String[]	args)

{

														VariableExample	days	=	new	VariableExample	();

														System.out.println(“Java	can	be	mastered	in		“	+	VariableExample.numDays	+	”	days”);

														System.out.println(“Selenium	can	be	mastered	in	“	+	days.numDays	+	”	days”);

														System.out.println(“Do	you	think	you	can	master	Java/Selenium	in	“	+	numDays	+	”	days”);													
													

}													

}

	

Figure	2.11	–	Class	Variable
	

Program	Output:
Java	can	be	mastered	in		30	days

Selenium	can	be	mastered	in	30	days

	

Line	three	declares	the	Class	Variable	“numDays”	within	the	class	“VariableExample,”	but
outside	of	the	method	“main.”	The	scope	of	a	class	variable	is	inside	the	block/curly
braces	of	class	and	outside	the	block/curly	braces	of	all	methods.	Therefore,	the	lifetime	of
the	variable	continues	throughout	execution	of	the	program.

	

Note:	A	class	variable	can	be	accessed	via	ClassName,	ObjectReference,	or
ClassVariableName.	If	accessed	by	way	of	Object	Reference	then	keyword	“new”	must	be
created.	Lines	eight,	nine,	and	ten	access	the	class	variable	by	using	the
ClassName.ClassVariable	“VariableExample.numDays”,	ObjectReference.ClassVariable
“days.numDays”,	and	ClassVariableName	“numDays”.

Primitive	Data	Types
The	primitive	data	types	give	an	account	for	the	type	of	data	that	is	stored	in	a	variable.
Each	data	type	has	a	precise	range	and	behavior.	Consequently,	a	data	type	of	int	can	store
numerical	data,	but	a	type	mismatch	error	will	occur	if	boolean	attempts	to	store	numerical
data.	In	addition,	certain	operations	are	permitted	on	values	depending	on	the	data	type.
As	an	example,	a	math	calculation	cannot	be	performed	on	a	boolean	data	type	because	a
boolean	cannot	contain	numbers.	The	following	is	a	list	of	all	eight	primitive	data	types:

Type Width	in	Bits
(Bytes)

Description/Range

boolean 	 True	or	False	values

byte 8-bit	(1-byte) -128	to	127

char 16-bit Standard	character	set	that	can	be	a	letter,
control	character,	number,	punctuation,	or
symbol	representing	all	languages	in	the
world

double 64-bit	(8-byte) -1.7976931348623157E+308	to
1.7976931348623157E+308

float 32-bit	(4-byte) -3.4028235E+38	to	3.4028235E+38

int 32-bit	(4-byte) −2,147,483,648	to	2,147,483,647

long 64-bit	(8-byte) -9,223,372,036,854,775,808	to
9,223,372,036,854,755,807

short 16-bit	(2-byte) -32,768	to	32,767

Figure	2.12	–	Eight	Primitive	Data	Types

	

The	following	divides	the	primitive	data	types	into	4	categories:

	

1.	 Integer	Type
2.	 Floating	Point	Type
3.	 Character	Type
4.	 Boolean	Type

	

Integer	Type
The	integer	type	supports	numerical	values	without	a	fractional	component.	A	major
difference	within	the	integer	type	is	the	range	of	values.	The	following	show	each	data
type	for	integer	type:

	

byte	
short
int
long

	

Data	type	int	is	used	the	most	because	it	is	used	for	controlling	loops	and	indexing	arrays.
The	following	is	an	int	data	type	example:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														//Calculate	2	integer	values

														int	i,	j;

														int	total;

													

														i	=	10;

														j	=	20;

														total	=	i	+	j;

													

														System.out.println	(“Total	of	i	+	j	is	“	+	total);

}													

}

	

Figure	2.13	–	Data	Type	int
	

Program	Output: 	
Total	of	i	+	j	is	30

	

Lines	six	and	seven	declare	an	int	data	type	for	names	“i,”	“j,”	and	“total.”	Lines	nine,	ten,
and	eleven	initialize	the	variables.

	

Floating	Point	Type
The	floating	point	type	supports	numerical	values	with	a	fractional	component.	Data	types
float	and	double	make	up	the	floating	point	type	category.	Due	to	Java’s	standard	Math
class,	the	double	data	type	is	used	the	most	when	a	numerical	value	includes	a	fraction.
The	following	is	a	double	data	type	example:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														double	d;

														double	calc;

													

														d	=	200;

														calc	=	Math.sqrt	(d);

																											

														System.out.println	(“Square	root	of	200	is	“	+	calc);													

}													

}

	

Figure	2.14	–
Data	Type	double
	

Program	Output: 	
Square	root	of	200	is	14.142135623730951

	

Lines	five	and	six	declare	a	double	data	type	for	names	“d”	and	“calc.”	Line	eight	assigns

200	to	variable	“d”,	while	line	nine	assigns	a	square	root	method	to	variable	“calc.”	The
“sqrt	()”	method	is	a	method	within	the	standard	Math	class	which	returns	a	double	data
type.

	

Character	Type
The	character	type	supports	a	Unicode	system	that	displays	all	characters	for	every	human
language.	In	order	to	represent	all	characters,	the	char	data	type	holds	a	16-bit	type	that
has	a	range	of	0	to	65,535.	The	range	helps	Unicode	assign	every	letter,	number,	and
symbol	an	exclusive	numerical	value.	The	following	is	a	char	data	type	example:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														char	cha1,	cha2;

													

														cha1	=	‘C’;

														cha2	=	67;

													

														System.out.println(“Value	assigned	to	cha1	is	“	+	cha1);

														System.out.println(“67	is	the	Unicode	for	“	+	cha2);													

}													

}

	

Figure	2.15	–
Data	Type	char
	

Program	Output:
Value	assigned	to	cha1	is	C

67	is	the	Unicode	for	C

	

Line	five	declares	a	char	data	type	for	names	“cha1”	and	“cha2.”	Lines	seven	assigns	the
letter	‘C’,	utilizing	single	quotes	while	line	eight	assigns	a	value	of	67.	Constants	such	as
line	seven	declared	with	a	char	data	type	always	use	a	single	quote	(‘)	for	a	letter.	Value	67
is	the	American	Standard	Code	for	Information	Interchange	(ASCII)	for	the	letter	‘C’.

	

Note:	According	to	webopedia,	“ASCII	is	a	code	for	representing	English	characters	as
numbers,	with	each	letter	assigned	a	number	from	0	to	127”.

	

http://www.webopedia.com/TERM/A/ASCII.html

Boolean	Type
The	boolean	type	supports	a	program	when	the	program	involves	logic.	Thus,	the	boolean
data	type	returns	a	value	after	evaluating	a	logical/conditional	statement.	Conditional
statements	require	an	answer	(true	or	false)	regarding	a	specific	statement.	A	conditional
statement	consists	of	variables	and/or	expressions.	The	following	is	a	boolean	data	type
example:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														boolean	result;

													

														result	=	false;

													

														System.out.println(“Boolean	variable	‘result’	was	initialized	to	“	+	result);

														System.out.println(“Is	this	a	true	or	false	statement	‘100	greater	than	99’?	“	+	(100>99));														

}													

}

	

Figure	2.16	–
Data	Type	boolean
	

Program	Output:
Boolean	variable	‘result’	was	initialized	to	false

Is	this	a	true	or	false	statement	‘100	greater	than	99’?	true

	

Line	five	declares	a	boolean	data	type	for	variable	“result.”	Line	seven	initializes	false	to
the	variable.	Line	nine	prints	the	default	value	of	false,	but	line	ten	return	a	true	value	after
evaluating	condition	“100>99.”	True	is	returned	because	100	is	greater	than	99.

Constants
Constants	(also	known	as	Literals)	are	unchangeable	values	assigned	to	a	variable	name	of
a	particular	data	type.	The	way	each	Constant	is	defined	depends	upon	its	data	type.
Defining	a	Constant	is	a	defense	mechanism	to	protect	information	so	that	the	value
remains	fixed.	For	instance,	the	total	hours	in	a	day	is	24,	therefore,	a	Constant	is	declared
so	that	the	value	of	24	does	not	change.	The	following	are	four	types	of	constants:

	

1.	 String	Constants
2.	 Character	Constants
3.	 Boolean	Constants
4.	 Numeric	Constants

	

Constant	Naming	Conventions
A	standard	naming	convention	for	Constants	facilitate	the	process	of	locating	the
Constants.	The	following	are	Constant	naming	conventions:

	

Construct	descriptive	names	that	describe	the	Constant’s	purpose
Create	a	name	that	includes	all	capital	letters	(e.g.,	CUSTOMER)
Compose	a	name	utilizing	all	capital	letters	with	an	underscore	if	the	name	consists
of	multiple	words	(e.g.,	ORDER_NUM)

	

Declare	and	Initialize	Constants
Constants	are	declared	and	initialized	similar	to	variables.	The	distinguishing
characteristic	of	declaring	a	Constant	is	the	keyword	modifier	final.	A	declaration
statement	utilizing	final	informs	Java	that	the	initialization	value	will	not	be	changed.	The
following	example	shows	a	constant	declaration	and	initialization	statement:

	
public	class	VariableExample

{																											

public	static	void	main(String[]	args)

{

														final	int	DAYS_IN_WEEK	=	7;

														final	int	DAILY_MAX_HOURS	=	24;

														int	totalHours;

													

														totalHours	=	DAYS_IN_WEEK	*	DAILY_MAX_HOURS;																											

													

														System.out.println(“The	total	of	hours	in	a	week	is	“	+	totalHours);													

}													

}

	

Figure	2.17	–	Declare	and	Initialize	Constants
	

Program	Output:
The	total	of	hours	in	a	week	is	168
	

Lines	six	and	seven	declare	and	initialize	Constants	using	keyword	modifier	final.
Constant	name	DAYS_IN_WEEK	assigned	“7”,	while	DAILY_MAX_HOURS	assigned
“24”.	The	assigned	Constant	values	will	not	change	in	the	program.	An	error	states	“The
final	local	variable	NAME_OF_CONSTANT	cannot	be	assigned”	if	there	is	an	attempt	to
change	a	Constant.

	

Default	Constant	Data	Types
Data	types	int	and	double	are	default	Constant	types	in	their	respective	category.	However,
the	default	type	can	be	modified	by	appending	a	letter	of	the	target	type.	An	int	data	type
changes	to	a	long	data	type	by	attaching	the	letter	“l”	or	“L.”	For	example,	a	value	of	34
indicates	an	int	data	type	by	default	but	34l	or	34L	indicates	a	long	data	type.	The	same	is
true	with	a	double	data	type.	A	value	of	12.34	specifies	a	double	data	type	by	default,	but
12.34f	or	12.34F	specifies	a	float	data	type.

	

Note:	This	section	points	out	the	default	constant	data	types.	However,	a	constant	can	be
declared	as	any	primitive	data	type.

	

Escape	Characters
Escape	characters	(known	as	backslash	character	constants)	represent	a	group	of
characters	and	non-graphical	characters.	According	to	Beginning	Java®	Programming
(2015),	“escape	characters	are	used	for	displaying	text	in	specific	ways,	either	for	inserting
tabs	or	enters	where	desired,	or	by	displaying	a	character	that’s	normally	reserved	for	code
syntax”	(page	29).

	

Characters	such	as	single	quotes	(‘’)	have	a	distinct	meaning	and	cannot	be	used	directly.	
Therefore,	a	backslash	character	(\)	must	precede	the	character	so	that	the	compiler
interprets	a	given	statement	correctly.	The	following	is	a	list	of	escape	characters:

Escape
Character

Description Unicode

\b Inserts	a	backspace	in	the	text \u0008

\f Inserts	a	form	feed	in	the	text \u000C

\n Inserts	a	new	line	feed	in	the	text \u000A

\r Inserts	a	carriage	return	in	the	text \u000D

\t Inserts	a	horizontal	tab	in	the	text \u0009

\’ Inserts	a	single	quote	(apostrophe)	in	the
text

\u0027

\” Inserts	a	double	quote	in	the	text \u0022

\ Inserts	a	backslash	in	the	text \u005C

Figure	2.18	–	Escape	Characters
	

String	Constants
String	Constants	are	enclosed	in	double	quotes	(“”)	representing	a	sequence	of	characters.
Regular	characters	(e.g.,	numbers,	letters,	etc.),	as	well	as	escape	characters,	can	be
processed	in	a	String	Constant.	The	following	is	a	Sting	Constant	example:

	
public	class	MiscExamples

{													

public	static	void	main(String[]	args)

{

														System.out.print(“The	following	displays	numbers	1	-	10	on	two	lines:	\n”);

														System.out.println(“1\t2\t3\t4\t5”);

														System.out.println(“6\t7\t8\t9\t10”);																																									

}

}

	

Figure	2.19	–	String	Constant	Example	
	

Program	Output:
The	following	displays	numbers	1	-	10	on	two	lines:

1														2														3														4														5

6														7														8														9														10

	

Lines	five,	six,	and	seven	display	String	Constants	within	the	double	quotes.	Notice	how
line	five	has	a	print	()	statement	rather	println	()	statement	like	lines	six	and	seven.	The
escape	character	(\n)	inserts	a	new	line	feed	so	println	()	is	not	needed.	In	addition,	escape
character	(\t)	is	used	in	lines	six	and	seven	to	insert	a	tab	between	numbers	1	through	10.

	

Character	Constants
Character	Constants	are	always	initialized	in	single	quotes	(‘’)	and	hold	only	one
character.	Figure	2.15	is	char	example	initializing	the	letter	‘C’	to	a	variable	named	cha1
in	line	seven.	The	single	quotes	apply	to	letters	and	not	numbers	assigned	to	Character
Constants.

	

Boolean	Constants
Boolean	Constants	initializes	True	and	False	values.	Figure	2.16	is	a	boolean	example
initializing	a	True	value	to	a	variable	named	“result”	in	line	seven.

	

Numeric	Constants
Numeric	Constants	contain	integer	type	or	floating	point	type	values.	These	values	allow
underscores	(_)	to	be	used	like	a	punctuation	mark.	Usually,	a	comma,	hyphen	(-),	etc.
divides	a	numerical	value	containing	several	digits.	For	instance,	one	hundred	million	is
written	as	100,000,000.	The	commas	improve	readability	of	hundred	million	similar	to	an
underscore	improving	a	Numeric	Constant.	The	following	is	a	Numeric	Constant	example
displaying	multiple	underscores	for	a	similar	value:

	
public	class	MiscExamples

{													

public	static	void	main(String[]	args)

{

														final	long	FIRST_AMOUNT,	SECOND_AMOUNT,	TOTAL_AMOUNT;

													

														FIRST_AMOUNT	=	111_111_111;

														SECOND_AMOUNT	=	222222222;

													

														TOTAL_AMOUNT	=	FIRST_AMOUNT	+	SECOND_AMOUNT;

													

														System.out.println(“The	first	amount	is	“	+	FIRST_AMOUNT);

														System.out.println(“The	second	amount	is	“	+	SECOND_AMOUNT);

														System.out.println(“The	total	of	both	amounts	is	“	+	TOTAL_AMOUNT);																											

}

}

	

Figure	2.20	–
Numeric	Constant	Example
	

Program	Output:

The	first	amount	is	111111111

The	second	amount	is	222222222

The	total	of	both	amounts	is	333333333

	

Lines	seven	and	eight	display	a	long	data	type	containing	nine	digits	in	their	value.
However,	line	seven	displays	two	underscores	to	make	the	value	111_111_111	more
readable	than	line	eight	displaying	value	222222222.	To	the	same	extent,	an	underscore
can	be	used	for	credit	card	numbers,	social	security	numbers,	etc.	and	can	only	be	placed
between	digits.

	

Chapter	2	described	how	to	declare	and	initialize	variables.	In	addition,	the	four	types	of
variables	(local,	parameter,	instance,	and	class)	and	primitive	data	types	were	discussed.
Chapter	3	will	explore	the	four	types	of	Java	operators:	Arithmetic,	Bitwise,	Logical,	and
Relational.

Chapter	3	
Operators

Operators	are	symbols	that	perform	mathematical	or	logical	manipulations	on	one	or	more
operands.	An	operand	is	anything	that	can	be	changed	or	manipulated.	The	most	common
type	of	operand	is	a	variable.	In	Java,	there	are	four	types	of	operators:	Arithmetic,
Bitwise,	Logical,	and	Relational.	Arithmetic,	Logical,	and	Relational	operators	are	the
most	used	operators.	The	following	example	demonstrates	a	Multiplication	(*)	Operator
and	operands	(three	and	four):

	
public	class	Operators

{																											

																public	static	void	main(String[]	args)

																{

int	answer;

													

answer	=	3	*	4;													

System.out.println(“What	is	3	times	4?	“	+	answer);

}

}

	

Figure	3.1	–	Operator	and	Operands
	

Program	Output:
What	is	3	times	4?	12

	

This	chapter	provides	the	following	information	regarding	operators:

							Arithmetic	Operators

							Bitwise	Operators

							Logical	Operators

							Relational	Operators

							Assignment	Operator

							Ternary	Operator

							Operator	Precedence

							Data	Type	Casting

							Expressions

Arithmetic	Operators
Arithmetic	operators	implement	mathematical	operations	on	numerical	values.	Therefore,
the	arithmetic	operators	can	be	applied	to	any	data	type	involving	numbers.	The	following
is	a	list	of	arithmetic	operators:

	

1.	 +		(Addition)	operator
2.	 -		(Subtraction)	operator
3.	 *		(Multiplication)	operator
4.	 /		(Division)	operator
5.	 %		(Modulus)	operator
6.	 ++		(Increment)	operator
7.	 —		(Decrement)	operator

Operator Description

+	 Adds	a	value	on	both	sides	of	the	(+)	operator
Used	for	joining	strings	which	is	known	as	string	concatenation

-	 Subtracts	right	operand	from	left	operand

* Multiplies	values	on	both	sides	of	the	(*)	operand

/	 Divides	left	operand	by	right	operand

%	 Divides	left	operand	by	right	operand	then	returns	the	remainder

++ Increases	the	operand’s	value	by	one

—	 Decreases	the	operand’s	value	by	one

Figure	3.2	–	Arithmetic	Operators

	

Note:	The	Division	Operator	(/)	truncates	the	remainder	while	the	Modulus	Operator	(%)
returns	the	remainder.	For	instance,	10/3	only	returns	three	and	truncates	the	remainder,
which	is	one.	On	the	other	hand,	10%3	only	returns	the	remainder	of	one.

	

Increment	Arithmetic	Operator
The	Increment	Operator	adds	one	to	an	operand.	This	operator	has	a	prefix	and	postfix
form.	The	below	syntaxes	show	both	increment	operator	forms	which	is	the	same	as	the
following	expression:

	

i	=	i	+	1;

	

Prefix	Form	Syntax
++i;

	

Postfix	Form	Syntax
i++;

	

Decrement	Arithmetic	Operator
The	Decrement	Operator	subtracts	one	from	an	operand.	This	operator	has	a	prefix	and
postfix	form.	The	below	syntaxes	show	both	decrement	operator	forms	which	is	the	same
as	the	following	expression:

	

i	=	i	-	1;

	

Prefix	Form	Syntax
—i;

	

Postfix	Form	Syntax
i—;

	

The	following	are	examples	of	each	arithmetic	operator:

	
public	class	Operators

{																											

public	static	void	main(String[]	args)

{

														int	result,	x	=	10,	y	=	3;

													

														result	=	x	+	y;		//	Addition

														System.out.println(“What	is	10	plus	3?	“	+	result);

													

														result	=	x	-	y;		//	Subtraction

														System.out.println(“What	is	10	minus	3?	“	+	result);

													

														result	=	x	*	y;		//	Multiplication

														System.out.println(“What	is	10	times	3?	“	+	result);

													

														result	=	x	/	y;		//	Division

														System.out.println(“What	is	10	divided	3?	“	+	result);

													

														result	=	x	%	y;		//		Modulus

														System.out.println(“What	is	the	remainder	of	10	divided	3?	“	+	result);

													

														result	=	++x;		//	Prefix	Increment	

														System.out.println(“What	is	the	prefix	increment	value	of	10?	“	+	result);

													

														result	=	x++;		//	Postfix	Increment	

														System.out.println(“What	is	the	postfix	increment	value	of	10?	“	+	result);

													

														result	=	—y;		//	Prefix	Decrement	

														System.out.println(“What	is	the	prefix	decrement	value	of	3?	“	+	result);

													

														result	=	y—;		//	Postfix	Decrement	

														System.out.println(“What	is	the	postfix	decrement	value	of	3?	“	+	result);

}													

}

	

Figure	3.3	–	Arithmetic	Operator	Examples
	

Program	Output:
What	is	10	plus	3?	13

What	is	10	minus	3?	7

What	is	10	times	3?	30

What	is	10	divided	3?	3

What	is	the	remainder	of	10	divided	3?	1

What	is	the	prefix	increment	value	of	10?	11

What	is	the	postfix	increment	value	of	10?	11

What	is	the	prefix	decrement	value	of	3?	2

What	is	the	postfix	decrement	value	of	3?	2

	

In	this	example,	line	five	declares	and	initializes	the	variables.	Variable	“x”	is	assigned	10
while	“y”	is	assigned	three.	An	+		(Addition)	operator	adds	both	variables	in	line	seven.
Variable	“result”	is	assigned	the	sum	of	variables	“x”	and	“y”	which	results	in	13.	A
similar	process	is	performed	for	all	examples	in	Figure	3.3	using	a	different	Arithmetic
Operator	according	to	Figure	3.2.

Bitwise	Operators
The	Bitwise	Operator	work	on	operands	utilizing	bits.	Therefore	this	operator	have	a
foundation	that	functions	on	a	bit-by-bit	basis.	Values	are	made	available	after	the	bits	are
set,	shifted,	and	tested.	Primarily,	the	Bitwise	Operators	are	used	on	data	types	byte,	char,
int,	long,	and	short.	The	following	is	a	list	of	bitwise	operators	and	examples:

	

1.	 &		(Bitwise	AND)	operator
2.	 |		(Bitwise	OR)	operator
3.	 ^		(Bitwise	exclusive	OR	(XOR))	operator
4.	 >>		(Signed	shift	right)	operator
5.	 >>>		(Unsigned	shift	right)	operator
6.	 <<		(Signed	shift	left)	operator
7.	 ~		(One’s	Compliment)	operator

Operator Description Example

& Places	1	bit	in	the	result	if	a	bit	exists	in	both
operands.	Can	be	used	on	a	boolean	data	type

x	&	y;

| Places	1	bit	in	the	result	if	a	bit	exists	in	one	of
both	operands.	Can	be	used	on	a	boolean	data	type

x	|	y;

^ Places	1	bit	in	the	result	if	a	bit	exists	in	one	of	the
operands	(not	both)

x	^	y:

>> Shifts	the	left	operand’s	value	to	the	right	by	the
number	of	bits	specified	by	the	right	operand

x	>>	2

>>> Shifts	the	left	operand’s	value	to	the	right	by	the
number	of	bits	specified	by	the	right	operand
while	shifted	value	are	filled	with	zeros	(0)

x	>>>	2

<< Shifts	the	left	operand’s	value	to	the	left	by	the
number	of	bits	specified	by	the	right	operand

x	<<	2

~ Changes	every	bit	to	the	opposite	bit.	For
example,	every	1	bit	changes	to	0	and	every	0	bit
changes	to	1

~2

Figure	3.4	–	Bitwise	Operators
	

Logical	Operators
Logical	Operators	(known	as	Conditional	Operators)	return	a	boolean	value	based	on	one
or	more	expressions.	Therefore,	the	Logical	Operator’s	data	type	must	be	boolean.	The
following	is	a	list	of	logical	operators:

	

&&		(Logical	AND)	operator
||	(Logical	OR)	operator
^		(Logical	exclusive	OR	(XOR))	operator
!		(Logical	NOT)	operator

Operator Description

&& Returns	true	if	both	operands	are	true
Returns	false	if	one	operand	or	both	operands	are	false

|| Returns	true	if	one	operand	or	both	operands	are	true
Returns	false	if	both	operands	are	false

^ Returns	true	if	only	one	operand	is	true
Returns	false	if	both	operands	are	false	and	if	both	operands
are	true

! Returns	the	opposite	value	of	the	operand
Returns	true	if	the	operand	is	false	and	return	false	if	the
operand	is	true

Figure	3.5	–	Logical	Operators

	

Note:	The	Bitwise	Operators	and	Logical	Operators	perform	some	of	the	same	functions.
The	following	are	examples	of	each	logical	operator	and	two	bitwise	operators:

	
public	class	Operators

{																											

public	static	void	main	(String[]	args)

{

														boolean	x	=	100	>	99,	y	=	99	>	100;

													

														//	Logical	AND	‘&&’	operator

														System.out.println(“What	is	the	result	of	100	>	99	&&	99	>	100?	“	+	(x	&&	y));

													

														//	Bitwise	AND	‘&’	operator

														System.out.println(“What	is	the	result	of	100	>	99	&	99	>	100?	“	+	(x	&	y));

													

														//	Logical	OR	‘||’	operator

														System.out.println(“What	is	the	result	of	100	>	99	||	99	>	100?	“	+	(x	||	y));

													

														//	Bitwise	OR	‘|’	operator

														System.out.println(“What	is	the	result	of	100	>	99	|	99	>	100?	“	+	(x	|	y));

													

														//	Logical	XOR	‘^’	operator

														System.out.println(“What	is	the	result	of	100	>	99	^	99	>	100?	“	+	(x	^	y));

													

														//	Logical	NOT	‘!’	operator

														System.out.println(“What	is	the	result	of	Not	100	>	99?	“	+	(!x));

													

														//	Logical	NOT	‘!’	operator	(parenthesis	is	optional	surrounding	this	operator	and	operand)

														System.out.println(“What	is	the	result	of	Not	99	>	100?	“	+	!y);

}

}

	

Figure	3.6	–	Logical	and	Bitwise	Operator	Examples
	

Program	Output:
What	is	the	result	of	100	>	99	&&	99	>	100?	false

What	is	the	result	of	100	>	99	&	99	>	100?	false

What	is	the	result	of	100	>	99	||	99	>	100?	true

What	is	the	result	of	100	>	99	|	99	>	100?	true

What	is	the	result	of	100	>	99	^	99	>	100?	true

What	is	the	result	of	Not	100	>	99?	false

What	is	the	result	of	Not	99	>	100?	True

	

In	this	example,	line	five	declares	and	initializes	the	variables.	Both	variables	“x	and	y”
are	assigned	boolean	expressions.	Variable	“x”	is	assigned	a	true	expression	(100	>	99)
while	“y”	is	assigned	a	false	expression	(99	>	100).	A	&&		(Logical	AND)	operator	in	line
eight	and	&		(Bitwise	AND)	operator	in	line	11	compares	the	operands	“x	and	y”	then
returns	a	“false”	value.	False	is	returned	because	one	operand	“x”	is	true	while	the	other
operand	“y”	is	false.	A	similar	process	is	performed	for	all	examples	in	Figure	3.6	using
different	Bitwise	and	Logical	Operators	according	to	Figure	3.4	and	Figure	3.5.

	

Short-Circuit	Behavior	Operators
Short-circuit	behavior	operators	are	||	(Logical	OR)	and	&&		(Logical	AND)	operators.
Notice	from	Figure	3.6,	||	(Logical	OR)	and	&&		(Logical	AND)	operators	return	the	same
result	as	|		(Bitwise	OR)	and	&		(Bitwise	AND)	operators.	However,	the	distinguishing
characteristic	relies	on	evaluating	the	operands.

	

If	the	first	operand	returns	false	then	the	&&		(Logical	AND)	Operator	will	not	evaluate
the	second	operator.	Yet,	the	&		(Bitwise	AND)	Operator	always	evaluate	both	operands.
Likewise,	the	||	(Logical	OR)	Operator	will	not	evaluate	the	second	operand	if	the	first
operand	returns	true.	Contrary	to	the	||	(Logical	OR)	Operator,	the	|		(Bitwise	OR)
Operator	will	always	evaluate	both	operands.			

	

Note:	The	short-circuit	behavior	operators	do	not	evaluate	the	second	operator	because	it
knows	the	result	regardless	of	the	second	operand.

Relational	Operators
Relational	Operators	return	a	boolean	value	after	comparing	operands.	Normally,	all	of	the
Relational	Operators	are	applied	to	operands	that	are	numbers.	If	the	relationship	between
two	operands	is	Yes,	then	True	is	returned.	For	example,	if	34	is	equal	to	34,	then	True	is
returned.	The	following	is	a	list	of	Relational	Operators:

	

1.	 ==		(Equal	To)	operator
2.	 !=		(Not	Equal	To)	operator
3.	 >		(Greater	Than)	operator
4.	 >=		(Greater	Than	or	Equal	To)	operator
5.	 <		(Less	Than)	operator	
6.	 <=		(Less	Than	or	Equal	To)	operator

Operator Description

== Verifies	if	both	operands	are	equal.

!= Verifies	if	both	operands	are	not	equal.

> Verifies	if	the	left	operand	is	greater	than	the	right	operand

>= Verifies	if	the	left	operand	is	greater	than	or	equal	to	the	right
operand

< Verifies	if	the	left	operand	is	less	than	the	right	operand

<= Verifies	if	the	left	operand	is	less	than	or	equal	to	the	right
operand

Figure	3.7	–	Relational	Operators

	

The	following	are	examples	of	each	relational	operator:

	
public	class	Operators

{																											

public	static	void	main	(String[]	args)

{

														int	x	=	25,	y	=	50;

													

														//	=	=	Equal	To	operator

														System.out.println(“Is	25	equal	to	50?	“	+	(x	==	y));

													

														//	!	=	Not	Equal	To	operator

														System.out.println(“Is	25	not	equal	to	50?	“	+	(x	!=	y));

													

														//	>	Greater	Than	operator

														System.out.println(“Is	25	greater	than	50?	“	+	(x	>	y));

													

														//	>	=	Greater	Than	or	Equal	To	operator

														System.out.println(“Is	25	greater	than	or	equal	to	50?	“	+	(x	>=	y));

																																									

														//	<		Less	Than	operator

														System.out.println(“Is	25	less	than	50?	“	+	(x	<	y));

													

														//	<	=		Less	Than	or	Equal	To	operator

														System.out.println(“Is	25	less	than	or	equal	to	50?	“	+	(x	<=	y));																											

}

}

	

Figure	3.8	–
Relational	Operator	Examples
	

Program	Output:
Is	25	equal	to	50?	false

Is	25	not	equal	to	50?	true

Is	25	greater	than	50?	false

Is	25	greater	than	or	equal	to	50?	false

Is	25	less	than	50?	true

Is	25	less	than	or	equal	to	50?	True

	

In	this	example,	line	five	declares	and	initializes	the	variables.	Variable	“x”	is	assigned	25
while	“y”	is	assigned	50.	An	==		(Equal	To)	operator	determines	if	both	variables	(x	==	y)
equals	each	other	on	line	eight.	The	values	25	and	50	are	not	equal	so	false	is	returned.	A
similar	process	is	performed	for	all	examples	in	Figure	3.8	using	a	different	Relational
Operator	according	to	Figure	3.7.

Assignment	Operator
An	Assignment	Operator	(=)	is	positioned	between	a	variable	and	value.	The	purpose	is	to
assign	values	to	variables.	Therefore,	the	value	on	the	right	side	is	transferred	into	the
variable	name	which	is	on	the	left	side.	The	following	is	an	assignment	operator	syntax:

	

Syntax
variableName	=	expression;

	

Syntax	Details

Argument Description

variableName Name	of	variable	that	was	declared

Expression Value	that	is	assigned	to	the	variable	name

; Semi-colon	completes	the	initialization	statement

Figure	3.9	–	Assignment	Operator	Syntax	Details

	

Note:	The	Assignment	Operator	can	generate	a	chain	of	assignments.	An	assignment	chain
is	a	good	way	to	initialize	multiple	variables	the	same	value.	In	addition,	a	value	is
overwritten	if	the	variable	has	an	existing	value.	The	following	is	an	Assignment	Operator
example:

	
public	class	Operators

{																											

public	static	void	main	(String[]	args)

{

														int	i,	j,	k;

													

														i	=	j	=	k	=	34;

														System.out.println(“The	value	of	i	is:	“	+	i);

														System.out.println(“The	value	of	j	is:	“	+	j);

														System.out.println(“The	value	of	k	is:	“	+	k);

													

														j	=	38;

														System.out.println(“The	value	of	j	has	been	overwritten	to:	“	+	j);

}

}

	

Figure	3.10	–
Assignment	Operator	Example
	

Program	Output:
The	value	of	i	is:	34

The	value	of	j	is:	34

The	value	of	k	is:	34

The	value	of	j	has	been	overwritten	to:	38

	

Line	five	declares	each	variable	“i,	j,	k”	with	an	int	data	type.	Line	seven	utilizes	a	chain
assignment	then	initialize	each	variable	the	same	value	34	with	one	statement.	Line	12
overwrite	variable	“j”	by	assigning	a	value	of	38.

	

Compound	Assignments
Compound	Assignments	(known	as	Shorthand	Assignments)	join	Arithmetic	and	Bitwise
Operators	with	the	Assignment	Operator.	The	following	operators	are	excluded	from	the
joining	feature:	increment,	decrement,	and	one’s	compliment.	This	process	shortens	the
assignment	statement.	For	example,	the	following	two	statements	produce	the	same
output:

	

y	=	y	+	3;

y	=+	3;

	

Both	statements	assign	to	variable	“y”	the	value	of	“y”	plus	three.	The	following	is	a	list
of	compound	assignments:		

	

1.	 +=		(Add	and	Assignment)	operator
2.	 -=		(Subtract	and	Assignment)	operator
3.	 *=		(Multiply	and	Assignment)	operator
4.	 /=		(Divide	and	Assignment)	operator	
5.	 %=		(Modulus	and	Assignment)	operator
6.	 &=		(Bitwise	And	and	Assignment)	operator
7.	 |=		(Bitwise	OR	and	Assignment)	operator
8.	 ^=		(Bitwise	exclusive	OR	(XOR)	and	Assignment)	operator		
9.	 <<=		(Left	shift	and	Assignment)	operator

10.		>>=		(Right	shift	and	Assignment)	operator
11.		>>>=		(Unsigned	right	shift	and	Assignment)	operator

Compound
Assignment

Description

+= Assigns	the	addition	outcome

-= Assigns	the	subtraction	outcome

*= Assigns	the	multiplication	outcome

/= Assigns	the	division	outcome

%= Assigns	the	division	remainder	outcome

&= Assigns	the	bitwise	AND	outcome

|= Assigns	the	bitwise	OR	outcome

^= Assigns	the	bitwise	exclusive	OR	(XOR)	outcome

<<= Assigns	the	signed	left	bit	shift	outcome

>>= Assigns	the	signed	right	bit	shift	outcome

>>>= Assigns	the	unsigned	right	bit	shift	outcome

Figure	3.11	–	Compound	Assignments
	

Ternary	Operator
According	to	dictionary.com,	ternary	means,	“consisting	of	or	involving	three.”	Therefore,
the	Ternary	Operator	(?)	requires	three	operands.	This	operator	is	used	to	evaluate	boolean
expressions	and	determine	which	value	is	assigned	to	the	variable.	The	following	is	the
ternary	operator	syntax:

	

Syntax
variableType	variableName	=	expression1	?	expression2	:	expression3;

	

Syntax	Details

Argument Description

variableType Data	type	of	variable

variableName Name	of	variable	that	will	receive	a	value

expression1 Boolean	expression

expression2 Value	if	the	boolean	expression	is	true

: Colon	separates	the	values	of	expression2	and
expression3

expression3 Value	if	the	boolean	expression	is	false

; Semi-colon	completes	the	ternary	operator	statement

Figure	3.12	–	Ternary	Operator	Syntax	Details

	

The	following	is	a	ternary	operator	example:

	
public	class	Operators

{																											

public	static	void	main	(String[]	args)

{

														int	x,	y;

													

														x	=	5;

														System.out.println(“What	is	the	value	of	x?	“	+	x);

http://dictionary.reference.com/browse/ternary?s=t

													

														y	=	(x	==	5)	?	7	:	1;

														System.out.println(“x	equals	5	so	the	boolean	expression	is	true:	Value	is	“	+	y);

													

														y	=	(x	==	3)	?	7	:	1;

														System.out.println(“x	does	not	equal	3	so	the	boolean	expression	is	false:	Value	is	“	+	y);

}

}

	

Figure	3.13	–
Ternary	Operator	Example
	

Program	Output:
What	is	the	value	of	x?	5

x	equals	5	so	the	boolean	expression	is	true:	Value	is	7

x	does	not	equal	3	so	the	boolean	expression	is	false:	Value	is	1

	

Line	10	displays	expression1	as	(x	==	5)	while	line	13	displays	expression1	as	(x	==	3).
Both	lines	display	expression2	as	7	and	expression3	as	1.	If	the	boolean	expressions	are
True	then	variable	“y”	is	assigned	7,	otherwise	“y”	is	assigned	1.
	

Operator	Precedence
The	operator	precedence	is	ranking	Java’s	operators	from	high	to	low.	Rankings	become
important	when	a	given	expression	has	multiple	operators.	An	expression	is	evaluated
from	left	to	right	and	the	operator	with	a	higher	precedence	receives	the	first	evaluation.
To	change	the	precedence	order,	a	parenthesis	should	be	implemented	to	point	out	which
expression	is	evaluated	first.	The	following	example	shows	two	expressions	which
exclude	and	include	a	parenthesis:

	
public	class	Operators

{																											

public	static	void	main	(String[]	args)

{

														int	total;

													

														total	=	2	+	3	*	4;

														System.out.println(“What	is	the	total	without	a	parenthesis?	“	+	total);

													

														total	=	(2	+	3)	*	4;

														System.out.println(“What	is	the	total	with	a	parenthesis?	“	+	total);

}

}

	

Figure	3.14	–
Operator	Precedence	Example
	

Program	Output:
What	is	the	total	without	a	parenthesis?	14

What	is	the	total	with	a	parenthesis?	20

	

Typically,	a	Multiplication	(*)	Operator	is	evaluated	before	an	Addition	(+)	Operator.	The

variable	“total”	is	assigned	the	same	values	in	line	seven	and	line	10.	However,	the
statement	in	line	7	do	not	contain	parenthesis	while	line	10	contain	parenthesis.	In	line	7,
the	Multiplication	(*)	Operator	is	evaluated	first	for	values	3	*	4	then	value	2	is	added	via
Addition	(+)	Operator.	Therefore,	the	value	14	(3	*	4	=	12	and	12	+	2	=	14)	is	assigned	to
variable	“total”	in	line	7.	In	line	10,	the	parenthesis	ranks	higher	than	the	Multiplication
(*)	Operator.	As	a	result,	values	2	+	3	is	evaluated	first	within	the	parenthesis	then	the
Multiplication	(*)	Operator	is	evaluated.	Hence,	the	value	20	(2	+	3	=	5	and	5	*	4	=	20)	is
assigned	to	variable	“total”	in	line	10.	According	to	The	Java	TM	Tutorials,	the	following	is
an	operator	precedence	list:

Operator Precedence

Postfix expr++	expr—

Unary ++expr	—expr	+expr	-expr	~	!

multiplicative *	/	%

additive +	-

shift <<	>>	>>>

relational <	>	<=	>=	instanceof

equality ==	!=

bitwise	AND &

bitwise	exclusive	OR ^

bitwise	inclusive	OR |

logical	AND &&

logical	OR ||

ternary ?	:

assignment =	+=	-=	*=	/=	%=	&=	^=	|=	<<=	>>=	>>>=

Figure	3.15	–	Operator	Precedence
	

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Data	Type	Casting
Data	type	casting	is	when	the	value	of	a	data	type	is	converted	into	a	different	data	type.
For	instance,	the	value	of	one	numeric	data	type	“float”	can	be	converted	to	another
numeric	data	type	“double.”	However,	the	value	of	a	boolean	data	type	can	never	be
converted	to	a	numeric	type.	There	are	two	types	of	casts/conversions:

	

1.	 Implicit	Casting
2.	 Explicit	Casting

	

Note:	The	primitive	data	type	hierarchy	from	high	to	low	is	double,	float,	long,	int,	short,
then	byte.

	

Implicit	Casting
Implicit	casting	is	when	a	conversion	takes	place	without	an	instruction	to	the	compiler	to
convert	one	data	type	into	another	data	type.	This	type	of	casting	only	happens	for	a
widening	conversion.	Widening	conversions	occur	automatically	when	the	value	of	a
specific	data	type	is	converted	to	a	higher	data	type.	Therefore,	based	on	the	primitive	data
type	hierarchy,	an	int	can	be	converted	to	a	float,	but	an	error	arises	when	trying	to	convert
a	float	to	an	int.	The	following	is	an	implicit	casting	example:

	
public	class	Operators

{																											

public	static	void	main	(String[]	args)

{

														int	i;

														float	f;

													

														i	=	78;

														System.out.println(“The	value	of	int	‘i’	is:	“	+	i);

													

														f	=	i;

														System.out.println(“The	value	of	float	‘f’	is:	“	+	f);

}

}

	

Figure	3.16	-	Assignment	Type	Conversion	Example
	

Program	Output:
The	value	of	int	‘i’	is:	78

The	value	of	float	‘f’	is:	78.0

	

Line	five	declares	variable	“i”	with	an	int	data	type	while	line	six	declares	variable	“f”	as	a
float	data	type.	Initially,	line	eight	assigns	a	value	of	78	to	variable	“i”.	However,	a
conversion	happens	on	line	11	which	converts	the	data	type	from	int	to	float.	The	value
“78.0”	remains	the	same	but	displays	differently	as	a	float	data	type.	Notice	the	value	did
not	lose	data	when	converting	from	78	to	78.0.	The	following	two	principles	are	necessary
for	an	implicit	casting:

	

1.	 Both	data	types	must	be	compatible
2.	 Destination	data	type	(left	side)	must	have	a	higher	range	than	the	source	data	type

(right	side)

	

The	following	is	a	list	of	widening	conversions	according	to	the	primitive	data	type
hierarchy:

	

byte	converts	to	short,	int,	long,	float,	or	double
short	converts	int,	long,	float,	or	double
char	converts	to	int,	long,	float,	or	double
int	converts	to	long,	float,	or	double
long	converts	float	or	double
float	converts	to	double

	

Explicit	Casting
Explicit	casting	is	when	a	conversion	takes	place	with	an	instruction	to	the	compiler	to
convert	one	data	type	into	another	data	type.	This	type	of	casting	can	happen	for	a
widening	and	narrowing	conversion.	Narrowing	conversion	occurs	when	the	value	of	a
specific	data	type	is	converted	to	a	lower	data	type.	Consequently,	an	error	will	not	be
generated	when	converting	a	float	to	an	int.	The	following	is	an	explicit	casting	syntax:

	

Syntax
(targetDataType)	expression;

	

Syntax	Details

Argument Description

targetDataType Desired	data	type	to	convert	the	expression

expression Value	that	will	be	converted

; Semi-colon	completes	the	explicit	casting	statement

Figure	3.17	–	Explicit	Casting	Syntax	Details

	

The	following	is	an	explicit	casting	example:

	
public	class	Operators

{																											

public	static	void	main	(String[]	args)

{

														int	i	=	8;

														double	d	=	(double)	i;

													

														System.out.println(“What	is	the	value	of	int	‘i’?	“	+	i);

														System.out.println(“What	is	the	value	of	double	‘d’?	“	+	d);

													

														float	f	=	12.34f;																											

														short	s	=	(short)	f;

																																									

														System.out.println(“What	is	the	value	of	float	‘f’?	“	+	f);

														System.out.println(“What	is	the	value	of	short	‘s’?	“	+	s);																											

}

}

	

Figure	3.18	–	Explicit	Casting	Example
	

Program	Output:
What	is	the	value	of	int	‘i’?	8

What	is	the	value	of	double	‘d’?	8.0

What	is	the	value	of	float	‘f’?	12.34

What	is	the	value	of	short	‘s’?	12

	

Line	five	assigns	“8”	to	data	type	int,	which	is	named	“i.”	An	explicit	widening
conversion	ensues	at	line	six	when	variable	“i”—an	int	data	type—converts	to	a	double
data	type.	Line	11	assigns	12.34	(a	default	data	type	of	double),	but	converts	it	to	a	float
data	type	12.34f.	Variable	“f”	holds	a	12.34	value,	then	converts	to	a	short	data	type	in	line
12.	Notice	that	the	value	loses	data	on	line	15,	when	the	narrowing	conversion	takes	place
and	converts	a	float	value	“12.34”	to	a	short	value	of	“12.”	The	following	is	a	list	of
narrowing	conversions	according	to	the	primitive	data	type	hierarchy:

	

byte	converts	to	char
short	converts	to	byte	or	char
char	converts	byte	or	short
int	converts	to	byte,	short,	or	char
long	converts	to	byte,	short,	char,	or	int
float	converts	to	byte,	short,	char,	int,	or	long
double	converts	byte,	short,	char,	int,	long,	or	float

Expressions
Operators,	variables,	constants,	and	methods	(calls	and	returns)	are	components	of	an
expression.	A	component	joined	with	an	operator	forms	an	expression.	It	is	possible	to
create	a	compound	expression	by	combining	multiple	expressions.	However,	the	data
types	must	be	compatible	to	construct	a	valid	compound	expression.	For	example,	an	int
data	type	can	be	mixed	with	a	long	data	type	because	both	are	numeric.

	

Through	the	use	of	type	promotion	rules,	the	mixture	of	data	types	is	converted	to	the
same	data	type.	Values	that	are	returned	from	an	expression	depend	on	the	data	type.	Data
types	char,	byte,	and	short	are	advanced	to	int.	An	expression	is	promoted	to	long	if	one	of
the	operands	is	a	long	data	type.	The	same	goes	for	float	data	types,	if	one	of	the	operands
is	a	float	then	the	whole	expression	is	a	float.	Likewise,	an	expression	is	promoted	to	a
double	data	type	if	one	of	the	operands	is	a	double.	The	following	is	an	expression
example	with	mix	data	types	byte	and	float:

	
public	class	Operators

{																											

public	static	void	main	(String[]	args)

{

														byte	b	=	7;

														float	f	=	34.56f;

													

														float	total	=	(b	*	f);

														System.out.println(“The	total	of	byte	‘b’	times	float	‘f’	(7	*	34.56)	is:	“	+	total);

}

}

	

Figure	3.19	–	Expression	Example
	

Program	Output:
The	total	of	byte	‘b’	times	float	‘f’	(7	*	34.56)	is:	241.92001

	

Line	five	declares	and	assigns	a	byte	data	type	while	line	seven	declares	and	assigns	a
float	data	type.	On	line	eight,	the	*		(Multiplication)	operator	multiplies	both	data	types
(byte	and	float)	even	though	the	types	are	mixed.	However,	the	expression	is	promoted	as
a	float	since	one	of	the	operands	is	a	float.

	

Chapter	3	gave	an	account	for	the	four	types	of	Java	operators:	Arithmetic,	Bitwise,
Logical,	and	Relational.	The	Assignment	Operator	and	Ternary	Operator	were	examined
along	with	rankings	of	each	operator.	Chapter	4	will	explain	the	two	types	of	control
structures:	branches	and	loops.	There	are	two	types	of	branches:	the	if	branch	and	the
switch	branch.	There	are	three	types	of	loops:	for	loop,	while	loop,	and	do	while	loop.

Chapter	4	
Control	Structures

Control	structures	are	the	process	of	using	logic	to	force	the	program	to	skip	statements
while	looping	other	statements.	Forcing	the	program	to	skip	statements	is	known	as
branching	and	looping	specific	statements	is	carried	out	via	loops.	

	

The	two	types	of	branches	are	if	branch	and	switch	branch.	The	three	types	of	loops	are
for	loop,	while	loop,	and	do	while	loop.	In	addition	to	the	branches	and	loops	are	jump
statements.	Jump	statements	allow	execution	to	bypass	unnecessary	components	of	the
program.	The	jump	statements	utilize	keywords	break	and	continue.	Both	keywords	can
be	included	within	all	branches	and	loops.

	

Chapter	four	will	cover	the	following	regarding	control	structures:

							If	Branch

							Switch	Branch

							For	Loop

							While	Loop

							Do	While	Loop

							Break	To	Exit

							Continue	To	Next	Statement

If	Branch
The	if	branch	executes	a	statement	when	a	condition	is	true.	In	other	words,	a	specific
statement	is	executed	if	a	condition	is	met.	An	if	branch	is	a	greatly	utilized	and
indispensable	control	structure.	The	following	is	the	syntax	for	the	if	branch:

	

Syntax	
if	(condition)	
{
			statement(s);
}

	

Syntax	Details

Argument Description

if Keyword	that	starts	the	if	branch

condition Boolean	expression	which	results	in	a	true	or	false	result

{ An	opening	curly	bracket

statement(s) Statement	that	will	be	executed	if	the	condition	is	true

; Semi-colon	completes	the	true	statement

} A	closing	curly	bracket

Figure	4.1	–	If	Branch	Syntax	Details

	

The	following	example	displays	a	message	if	the	customer	brings	three	extra	customers	to
a	sporting	event:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	extraCustomers	=	4;

													

														if	(extraCustomers	>=	3)

														{

																												System.out.println(“Customer	receives	a	discount”);																																									

														}													

}													

}

	

Figure	4.2	–	If	Branch
	

Program	Output:
Customer	receives	a	discount

	

Line	five	assigns	“4”	to	the	variable	“extraCustomers”.	Line	seven	displays	keyword	“if”
followed	by	a	parenthesis.	Inside	the	parenthesis	is	a	condition	(extraCustomers	>=	3)	that
returns	true.	True	is	returned	because	four	is	greater	than	three.	The	statement	at	line	nine
(inside	the	curly	brackets)	is	executed	after	the	true	evaluation.

	

Note:	The	program	would	not	execute	the	statement	if	the	condition	returned	false.
However,	there	are	two	variations	of	the	if	branch	that	can	be	executed	when	a	condition
is	false:

	

1.	 If	Else
2.	 If	Else-If

	

If	Else	Branch
An	optional	else	keyword	extends	the	if	branch	just	in	case	the	condition	returns	false.
Therefore,	the	statements	following	keyword	“if”	and	the	condition	is	executed	when	a
condition	is	true.	Otherwise,	the	statement	following	keyword	else,	is	executed	when	a
condition	is	false.	The	following	is	the	syntax	for	the	if-else	branch:

	

Syntax	
if	(condition)	
{
			statement(s);
}
else
{
			statement(s);
}

	

The	following	example	displays	a	message	when	the	customer	does	not	bring	three	extra
customers	to	a	sporting	event:

	
public	class	ControlStructures

{

																public	static	void	main	(String[]	args)

{

														int	extraCustomers	=	2;

													

														if	(extraCustomers	>=	3)

														{

																												System.out.println(“Customer	receives	a	discount”);

														}																																									

														else

														{

																												System.out.println(“Customer	does	not	receive	a	discount”);

														}																																																																					

}

}

	

Figure	4.3	–	If	Else	Branch
	

Program	Output:
Customer	does	not	receive	a	discount

	

Line	five	assigns	“2”	to	the	variable	“extraCustomers”.	Line	seven	displays	keyword	“if”
followed	by	a	parenthesis.	Inside	the	parenthesis	is	a	condition	(extraCustomers	>=	3)	that
returns	false.	False	is	returned	because	two	is	not	greater	than	or	equal	to	three.	Therefore,
the	program	bypasses	the	statement	at	line	nine	and	executes	the	statement	at	line	13.

	

Note:	Curly	brackets	are	optional	if	there	is	a	single	statement	following	keywords	“if”
and	“else”.	However,	the	curly	brackets	are	required	if	multiple	statements	exist.	It	is
recommended	to	always	use	curly	brackets	to	improve	readability.	The	following	is	an
example	that	does	not	use	curly	brackets:

	
public	class	ControlStructures

{

																public	static	void	main	(String[]	args)

{

int	extraCustomers	=	2;

													

														if	(extraCustomers	>=	3)

																												System.out.println(“Customer	receives	a	discount”);																											

																												System.out.println(“Congratulations”);

														else

																												System.out.println(“Customer	does	not	receive	a	discount”);																																																							
													

}

}

	

Figure	4.4	–	No	Curly	Brackets
	

Line	eight	and	nine	are	multiple	statements	for	the	if	branch	and	require	the	curly
brackets.	Notice	the	red	X	at	line	10.	The	red	X	indicates	an	error	for	the	previous
statements.	However,	an	error	does	not	exist	for	line	11	because	it	is	a	single	statement	and
does	not	require	the	curly	brackets.

	

If	Else-if	Branch
The	first	if	keyword	can	optionally	be	followed	by	one	or	more	if	keywords.	However,
each	subsequent	if	keyword	must	be	preceded	by	a	required	else	keyword.	The	else-if
branch	is	only	executed	when	the	first	if	branch	is	false.	All	else-if	branches	are	followed
by	a	condition	and	one	or	more	statements.	The	following	is	the	syntax	for	the	else	if
branch:

	

Syntax	
if	(condition)	
{
			statement(s);
}
else	if	(condition)
{
			statement(s);
}	
else	if	(condition)
{
			statement(s);
}	
else	
{
			statement(s);
}

	

The	following	example	displays	a	message	when	the	customer	brings	less	than	three	extra
customers	to	a	sporting	event:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	extraCustomers	=	2;

													

														if	(extraCustomers	>=	3)

														{

																												System.out.println(“Customer	receives	a	discount”);

														}																																									

														else	if	(extraCustomers	<=	3)

														{

																												System.out.println(“No	Discount:	Customer	count	less	than	or	equal	to	3”);

														}

														else

														{

																												System.out.println(“Error:	Not	a	valid	customer	count”);

														}																																																																					

}

}

	

Figure	4.5	–	Else	If	Branch
	

Program	Output:
No	Discount:	Customer	count	less	than	or	equal	to	3

	

Line	five	assigns	“2”	to	the	variable	“extraCustomers”.	Line	11	display	keywords	“else”
and	“if”	followed	by	a	parenthesis.	Inside	the	parenthesis	is	a	condition	(extraCustomers
<=	3)	that	returns	true.	True	is	returned	because	two	is	less	than	or	equal	to	three.	The
second	condition	(line	11)	is	only	executed	after	the	first	condition	(line	seven)	is	false.

	

Note:	Several	else-if	branches	can	be	added	to	the	if	branch:

	

Nested	If	Branch
The	nested	if	branch	consists	of	an	if	or	else-if	branch	inside	an	if,	else,	or	else-if	branch.
A	particular	outer	if	branch	serves	as	a	nest	for	the	inner	branch.	The	following	is	a	nested
if	branch	example:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	extraCustomers	=	15;

																																									

														if	(extraCustomers	>=	3)

														{

																												System.out.println(“Customer	receives	a	discount”);

																											

																												if	(extraCustomers	>=	10)

																												{

																																										System.out.println(“25%	off	the	price”);

																												}

																												else

																												{

																																										System.out.println(“10%	off	the	price”);

																												}

														}																																									

														else

														{

																												System.out.println(“Customer	does	not	receive	a	discount”);

														}																																																																					

}

}

	

Figure	4.6	–	Nested	If	Branch
	

Program	Output:
Customer	receives	a	discount

25%	off	the	price

	

The	nested	if	branch	starts	at	line	11	and	ends	at	line	18.	A	condition	(extraCustomers	>=
10)	determines	if	the	customer	receives	10	or	25	percent	off.	In	this	case,	the	variable
“extraCustomers”	is	assigned	15	at	line	five.	Therefore,	the	condition	at	line	11	evaluates
to	true	and	executes	the	first	statement	“25%	off	the	price.”	The	second	statement	would
execute	if	the	variable	“extraCustomers”	is	less	than	10.

Switch	Branch
The	switch	branch	evaluates	a	single	variable	then	executes	a	statement	according	to	the
variable’s	value.	Primitive	data	types	byte,	short,	char,	and	int	can	be	evaluated	along	with
String.	The	switch	and	if	branches	are	similar	in	functionality.	There	are	situations	where
either	branch	is	suitable.	However,	the	switch	branch	is	most	efficient	when	dealing	with	a
specific	number	of	values,	such	as	days	of	the	week.	Otherwise,	it	is	best	to	implement	an
if	branch	when	handling	an	infinite	number	of	values.	The	following	is	the	syntax	for	the
switch	branch:

	

Syntax
switch	(variableName)
{
case	constant1:
			statement(s);
			break;
case	constant2:
			statement(s);
			break;
case	constant3:
			statement(s);
			break;
.
.
.			
default:
			statement;
}

	

Syntax	Details

Argument Description

switch Checks	the	variable’s	value

variableName Name	of	the	variable

{ An	opening	curly	bracket

case	constant1,	2,	3	… Contains	a	possible	match	for	the	variable’s	value

statement(s) Statement	to	be	executed	if	the	variable’s	value
match	a	given	case

; Semi-colon	completes	a	statement

break An	optional	keyword	that	exits	out	of	the	switch
branch

; Semi-colon	completes	the	break

default An	optional	keyword	that	will	execute	if	the
variable’s	value	does	not	match	a	case

statement Default	statement	to	be	executed	if	the	variable’s
value	does	not	match	a	case

} A	closing	curly	bracket

Figure	4.7	–	Switch	Branch	Syntax	Details

	

The	following	is	a	switch	branch	example:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	day	=	6;

													

														switch	(day)

														{

														case	1:

																												System.out.println(“Sunday	is	the	1st	day	of	the	week”);

																												break;

														case	2:

																												System.out.println(“Monday	is	the	2nd	day	of	the	week”);

																												break;

														case	3:

																												System.out.println(“Tuesday	is	the	3rd	day	of	the	week”);

																												break;

														case	4:

																												System.out.println(“Wednesday	is	the	4th	day	of	the	week”);

																												break;

														case	5:

																												System.out.println(“Thursday	is	the	5th	day	of	the	week”);

																												break;

														case	6:

																												System.out.println(“Friday	is	the	6th	day	of	the	week”);

																												break;

														case	7:

																												System.out.println(“Saturday	is	the	7th	day	of	the	week”);

																												break;

														default:

																												System.out.println(“Not	valid:	There	are	only	7	days	in	a	week”);

														}

}

}

	

Figure	4.8	–
Switch	Branch	Example
	

Program	Output:
Friday	is	the	6th	day	of	the	week

	

Line	five	assigns	the	variable	“day”	the	value	of	“6.”	Then	the	keyword	“switch”	starts	the
branch	at	line	seven	by	checking	the	variable’s	value.	Keyword	“case”	at	line	24	matches

the	variable’s	value	“6”,	then	executes	the	statement	at	line	25.	The	keyword	“break”	at
line	26	is	necessary	to	prevent	case	7	(line	27)	and	default	(line	30)	from	executing.

	

Note:	All	statements	following	a	match	will	execute	due	to	switch	branches	executing
sequentially	utilizing	a	top-down	approach.	Therefore,	the	keyword	“break”	must	be	used
to	jump	out	of	the	switch	branch	after	a	match	is	found.

	

Nested	Switch	Branch
The	nested	switch	branch	consists	of	a	switch	branch	inside	another	switch	branch.	In
addition,	an	if	branch	can	be	nested	inside	of	a	switch	branch.	The	outer	switch	branch
serves	as	a	nest	for	the	inner	branch.	Values	are	unique	to	their	respective	outer	and	inner
branch.	For	instance,	a	constant	can	contain	the	same	value	in	multiple	switch	branches.
The	following	is	a	switch	branch	example:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	day	=	2,	numHours	=	4;

													

														switch	(day)

														{

														case	1:

																												System.out.println(“Sunday	is	the	1st	day	of	the	week”);

																												break;

														case	2:

																												System.out.println(“Monday	is	the	2nd	day	of	the	week”);

																												switch	(numHours)

																												{

																												case	4:

																																										System.out.println(“Plan	to	work	4	hours	(half	a	day)	due	to	an	appointment”);

																																										break;

																												case	8:

																																										System.out.println(“Plan	to	work	8	hours	today”);

																																										break;

																												default:

																																										System.out.println(“Not	sure	how	many	hours	I	will	work	today”);

																																										break;													

																												}																																									

																												break;

														case	3:

																												System.out.println(“Tuesday	is	the	3rd	day	of	the	week”);

																												break;

														case	4:

																												System.out.println(“Wednesday	is	the	4th	day	of	the	week”);

																												break;

														case	5:

																												System.out.println(“Thursday	is	the	5th	day	of	the	week”);

																												break;

														case	6:

																												System.out.println(“Friday	is	the	6th	day	of	the	week”);

																												break;

														case	7:

																												System.out.println(“Saturday	is	the	7th	day	of	the	week”);

																												break;

														default:

																												System.out.println(“Not	valid:	There	are	only	7	days	in	a	week”);

														}

}

}

	

Figure	4.9	–
Nested	Switch	Branch
	

Program	Output:
Monday	is	the	2nd	day	of	the	week

Plan	to	work	4	hours	(half	a	day)	due	to	an	appointment

	

Line	five	assigns	the	variable	“numHours”	the	value	of	“4.”	Then	the	keyword	“switch”
starts	the	nested	switch	branch	at	line	14	by	checking	the	variable’s	value.	The	nested
switch	branch	encompasses	two	cases	and	one	default.	One	of	the	cases	at	line	16	hold	the
same	constant,	“4”,	as	an	outer	case	at	line	30.

For	Loop
The	for	loop	executes	a	block	of	code	for	a	certain	number	of	iterations.	In	other	words,	a
statement	is	executed	as	long	as	a	condition	is	met.	One	of	the	for	loop	benefits	is	to	allow
statements	to	be	executed	without	writing	code	repeatedly.	The	following	is	the	for	loop
syntax:

	

Syntax
for	(initialization;	condition;	iteration)
{
			statement(s)
}			

	

Syntax	Details

Argument Description

for Keyword	that	starts	the	for	loop

initialization Assignment	that	sets	the	loop	control	initial	value

; Semi-colon	completes	the	initialization

condition A	boolean	expression	that	determines	if	the	loop	will	or	will
not	repeat

; Semi-colon	completes	the	condition

iteration Indicates	how	the	loop	control	variable	will	change	after
each	variation

{ An	opening	curly	bracket

statement(s) Statement(s)	that	will	execute	after	the	condition	is	met

; Semi-colon	completes	the	statement

} A	closing	curly	bracket

Figure	4.10	–	For	Loop	Syntax	Details

	

The	initialization	component	declares	a	data	type	and	assigns	an	initial	value	via	loop
control	variable.	Usually,	the	loop	control	variable	is	a	single	character	variable	name

(e.g.,	i)	that	controls	the	entire	loop.	The	condition	is	a	boolean	expression	that	specifies	a
maximum	value	for	the	loop	control	variable.	All	for	loops	continue	executing	while	the
condition	is	true.	Execution	begins	on	the	statement	immediately	following	the	for	loop
when	the	condition	becomes	false.	Most	automation	engineers	use	an	increment	(++)	or
decrement	(—)	operator	as	the	iteration	expression.	The	increment	operator	increases	the
loop	control	variable	by	one,	while	the	decrement	operator	decreases	the	value	by	one.	An
executable	statement	is	placed	between	the	optional	curly	brackets.	Although,	the	curly
brackets	are	optional,	it	is	recommended	to	use	the	brackets	to	improve	readability.	The
following	is	a	for	loop	example:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														for	(int	i	=	0;	i	<	5;	i++)

														{

																												System.out.println(“The	loop	control	variable	value	is	“	+	i);																																									

														}																																									

}

}

	

Figure	4.11	–
For	Loop	Example
	

Program	Output:
The	loop	control	variable	value	is	0

The	loop	control	variable	value	is	1

The	loop	control	variable	value	is	2

The	loop	control	variable	value	is	3

The	loop	control	variable	value	is	4

	

Line	five	starts	the	for	loop	with	keyword	“for”	followed	by	arguments	initialization,
condition,	and	iteration.	Initialization	(int	i	=	0;)	assigns	zero	as	the	starting	value.

Condition	(i	<	5)	sets	five	as	the	stopping	point	for	the	loop	control	variable.	Increment
(i++)	increases	the	loop	control	variable	by	one.	The	statement	prints	the	loop	control
variable	via	line	seven.

	

It	is	important	to	use	harmonious	values	in	the	for	loop.	The	values	can	lead	to	an	infinite
loop	if	they	are	not	created	in	agreement.	An	infinite	loop	is	a	loop	that	never	stops.	For
example,	the	following	for	loop	will	repeat	indefinitely	because	of	the	initial	value,
maximum	value,	and	iteration	expression:

	

for	(int	i	=	3;	i	>	1;	i++)	

	

The	initial	value	“3”	starts	at	a	greater	value	than	the	maximum	value	of	“1,”	while	the
iterator	“++”	increases	after	each	loop.	To	correct	this	infinite	loop,	the	initialization	value
“3”	must	decrease	to	less	than	the	conditional	value	“1”;	the	conditional	value	“1”	must
increase	to	more	than	the	initialization	“3”;	or	the	iterator	must	change	from	increasing
“++”	to	decreasing	“—”	after	each	loop.

	

Note:	Routinely,	a	condition	using	a	greater	than	operator	(>)	implements	a	decrement
operator	(—),	while	a	condition	using	a	less	than	operator	(<)	implements	an	increment
operator	(++).			

	

Nested	For	Loop
The	nested	for	loop	consist	of	a	for	loop	inside	another	for	loop.	An	outer	for	loop	serves
as	a	nest	for	the	inner	loop.	Statements	within	the	inner	loop	can	utilize	the	loop	control
variables	from	the	outer	loop.	As	a	result,	it	is	best	to	use	different	loop	control	variables
for	each	loop.	The	following	is	a	nested	for	loop	example:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														for	(int	x	=	0;	x	<	3;	x++)

														{

																												System.out.println(“Outer	Loop	value	is	“	+	x);

																												for	(int	y	=	0;	y	<	3;	y++)

																												{

																																										System.out.println(“			Inner	Loop	value	is	“	+	y);

																												}

														}																																									

}

}

	

Figure	4.12	–	Nested	For	Loop
	

Program	Output:
Outer	Loop	value	is	0

Inner	Loop	value	is	0

Inner	Loop	value	is	1

Inner	Loop	value	is	2

Outer	Loop	value	is	1

Inner	Loop	value	is	0

Inner	Loop	value	is	1

Inner	Loop	value	is	2

Outer	Loop	value	is	2

Inner	Loop	value	is	0

Inner	Loop	value	is	1

Inner	Loop	value	is	2

	

Line	eight	starts	the	nested	for	loop	with	keyword	“for”	followed	by	arguments
initialization,	condition,	and	iteration.	Initialization	(int	y	=	0;)	assigns	zero	as	the	starting
value.	Condition	(y	<	3)	sets	three	as	the	stopping	point	for	the	loop	control	variable.
Increment	(y++)	increases	the	loop	control	variable	by	one.	The	statement	prints	the	loop
control	variable	via	line	10.

While	Loop
The	while	loop	repeats	a	statement	while	a	condition	is	true.	Conditions	are	boolean
expressions	that	is	checked	prior	to	executing	the	statement.	In	addition,	the	variable	name
is	initialized	before	the	loop	and	evaluated	as	part	of	the	condition.	When	executing	the
statement,	the	while	loop	continues	until	the	condition	becomes	false.	The	following	is	the
syntax	of	a	while	loop.

	

Syntax
while	(condition)
{
			statement(s);
}

	

Syntax	Details

Argument Description

while Keyword	that	starts	the	loop

condition A	boolean	expression	that	determines	if	the	loop	will	or
will	not	repeat

{ An	opening	curly	bracket

statement(s) Statement(s)	that	will	execute	after	the	condition	is	met

; Semi-colon	that	completes	the	statement

} A	closing	curly	bracket

Figure	4.13	–	While	Loop	Syntax	Details

	

The	following	is	a	while	loop	example:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	i	=	0;

													

														while	(i	<	5)

														{

																												System.out.println(“The	variables	value	is	“	+	i);

																												i++;

														}																																																																					

}

}

	

Figure	4.14	–	While	Loop	Example
	

Program	Output:
The	variables	value	is	0

The	variables	value	is	1

The	variables	value	is	2

The	variables	value	is	3

The	variables	value	is	4

	

Line	five	initializes	the	variable	“i”	to	zero	“0”.	The	variable	will	be	evaluated	at	line
seven	as	part	of	the	condition	(i	<	5)	after	keyword	“while”.	A	value	for	the	variable	“i”	is
repeatedly	printed	via	line	nine	while	the	condition	is	true.	Notice	the	increment	operator
at	line	10.	It	is	important	to	know	that	the	while	loop	never	stops	if	the	increment	operator
is	not	added.	Therefore,	the	loop	would	continue	indefinitely,	generating	an	infinite	loop.
In	addition,	the	while	loop	becomes	indefinite	if	the	initialization	and	conditional	variable
values	are	not	set	in	agreement.

Do	While	Loop
The	do	while	loop	evaluates	a	condition	at	the	bottom	of	the	loop.	Therefore,	the	loop	will
execute	the	statement	within	the	loop	then	evaluate	the	condition.	As	a	result,	the	do	while
loop	always	executes	a	statement	for	at	least	one	iteration	and	continues	as	long	as	the
condition	is	true.	The	following	is	the	syntax	for	a	do	while	loop:

	

Syntax
do
{
			statement(s);
}	
while	(condition);

	

Syntax	Details

Argument Description

do Keyword	that	starts	the	loop

{ An	opening	curly	bracket

statement(s) Statement(s)	that	will	execute	at	least	once

; Semi-colon	that	completes	the	statement

} A	closing	curly	bracket

while Keyword	that	determines	if	the	loop’s	condition	will
repeat

condition A	boolean	expression	that	determines	if	the	loop	will	or
will	not	repeat

; Semi-colon	that	completes	the	condition

Figure	4.15	–	Do	While	Loop	Syntax	Details

	

The	following	is	a	do	while	loop	example:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	i	=	0;

														do

														{

																												System.out.println(“The	variables	value	is	“	+	i);

																												i++;

														}

														while	(i	>	5);													

}

}

	

Figure	4.16	–
Do	While	Loop	Example
	

Program	Output:
The	variables	value	is	0

The	variables	value	is	1

The	variables	value	is	2

The	variables	value	is	3

The	variables	value	is	4

	

Line	five	initializes	the	variable	“i”	to	zero	“0”.	The	keyword	“do”	starts	the	do	while	loop
followed	by	two	statements	surrounded	by	curly	brackets.	A	value	for	the	variable	“i”	is
repeatedly	printed	via	line	nine	while	the	condition	(i	<	5)	is	true.	Coincidentally,	the
condition	is	evaluated	after	the	statement	at	line	12.	Like	the	while	loop,	an	infinite	loop
would	have	occurred	if	the	increment	operator	(++)	was	not	added	at	line	10.	Also,	the
initialization	and	conditional	values	can	create	an	infinite	loop	if	not	set	correctly.	In	this
example,	the	statements	were	repeated	multiple	iterations	because	the	condition	started
with	a	true	result.	The	following	shows	what	happens	when	the	condition	starts	with	a
false	result:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	i	=	0;

													

														do

														{

																												System.out.println(“The	variables	value	is	“	+	i);

																												i++;

														}

														while	(i	>	5);																																																																																																	

}

}

	

Figure	4.17	–	Do	While	Loop	Example	(Start	With	False	Condition)
	

Program	Output:
The	variables	value	is	0

	

Line	five	initializes	the	variable	“i”	to	zero	“0”.	Therefore,	the	condition	(i	>	5)	at	line	12
is	false	due	to	zero	being	less	than	five.	The	do	while	loop	executed	the	statement	because
statements	are	executed	first,	then	the	condition	is	evaluated.

	

Note:	The	loops	(for,	while,	and	do	while)	are	similar	in	functionality.	A	rule	of	thumb	to
use	when	deciding	which	loop	to	implement	is:

	

Implement	a	for	loop	when	executing	a	specific	number	of	iterations
Implement	a	while	loop	when	the	loop	will	repeat	an	uncertain	number	of	iterations
Implement	a	do	while	loop	when	a	loop	needs	to	be	executed	at	least	one	iteration

Break	To	Exit
The	“break”	keyword	is	optional	and	used	to	force	an	exit	from	a	branch	or	loop.	If	a
break	occurs	within	a	nested	branch	or	loop	then	the	innermost	branch	or	loop
discontinues.	However,	execution	resumes	at	the	statement	immediately	following	the
current	branch	or	loop.	The	following	is	a	break	keyword	example	using	statements	from
Figure	4.8	(Switch	Branch).

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														int	day	=	6;

													

														switch	(day)

														{

														case	1:

																												System.out.println(“Sunday	is	the	1st	day	of	the	week”);

																												break;

														case	2:

																												System.out.println(“Monday	is	the	2nd	day	of	the	week”);

																												break;

														case	3:

																												System.out.println(“Tuesday	is	the	3rd	day	of	the	week”);

																												break;

														case	4:

																												System.out.println(“Wednesday	is	the	4th	day	of	the	week”);

																												break;

														case	5:

																												System.out.println(“Thursday	is	the	5th	day	of	the	week”);

																												break;

														case	6:

																												System.out.println(“Friday	is	the	6th	day	of	the	week”);

																												break;

														case	7:

																												System.out.println(“Saturday	is	the	7th	day	of	the	week”);

																												break;

														default:

																												System.out.println(“Not	valid:	There	are	only	7	days	in	a	week”);

														}

}

}

	

Figure	4.18	–
Break	Keyword	Example
	

In	this	example,	the	“break”	keyword	is	used	to	exit	a	case	if	a	match	is	located.	A	match
happens	for	case	six	at	line	24.	The	break	keyword	prevents	case	seven	(line	27)	and	the
default	(line	30)	from	executing.

	

Note:	More	than	one	break	keyword	can	appear	in	a	branch	or	loop.	There	is	a	break
keyword	after	every	case.

Continue	To	Next	Statement
The	“continue”	keyword	forces	the	current	loop	iteration	to	stop	and	immediately	execute
the	next	loop	iteration.	As	a	result,	the	condition	and	statement	between	both	intervals	are
skipped.	The	following	is	an	example	using	the	“continue”	keyword	to	skip	all	odd
numbers:

	
public	class	ControlStructures

{

public	static	void	main	(String[]	args)

{

														for	(int	x	=	2;	x	<=	10;	x++)

														{

																												if	(x	%	2	!=	0)	continue;

																												System.out.println(“Even	numbers	“	+	x);

														}																																									

}

}

	

Figure	4.19	–
Continue	Keyword
	

Program	Output:
Even	numbers	2

Even	numbers	4

Even	numbers	6

Even	numbers	8

Even	numbers	10

	

Line	seven	implements	the	“continue”	keyword	to	bypass	all	odd	numbers.	Therefore,	the
condition	and	statements	are	skipped	when	the	loop	control	variable	“i”	equals	one,	three,

five,	seven,	and	nine.

Conclusion
The	purpose	of	“Part	1	–	Java	4	Selenium	WebDriver”	was	to	provide	a	good	foundational
knowledge	of	Java.	An	understanding	of	Java	facilitates	the	process	of	testing	an
Application	Under	Testing	(AUT)	via	Selenium.	The	key	to	verifying	data	within	an	AUT,
is	knowing	how	to	access	and	manipulate	data.	Data	is	represented	by	variables,	which
can	be	text	or	numbers.	All	variables	must	have	a	data	type	to	indicate	the	range	and
behavior.	The	data	type	is	significant	when	dealing	with	operators	because	certain
functions	are	performed	according	to	the	data	type.	In	addition,	some	of	the	operators	are
contributors	to	forming	control	structures.	The	following	items	are	take–away	topics	from
the	book:					

	

Variables:	A	location	that	holds	data

	

Data	Types:	Refer	to	a	variable’s	type

	

Operators:	A	symbol	that	performs	mathematical	or	logical	operations

	

Control	Structures:	Refers	to	the	process	of	using	logic	to	force	the	program	to	skip	or
loop	statements

	

The	second	Java	book	is	titled	“Part	2	–	Java	4	Selenium	WebDriver.”	It	examines
Classes,	Objects,	Methods,	Inheritance,	Packages,	Interfaces,	Exception	Handling,	and
how	to	use	Input/Output.	The	release	date	for	“Part	2	–	Java	4	Selenium	WebDriver”	is
April	2016.

Resources
1.					Beginning	Java®	Programming
The	Object-Oriented	Approach
Bart	Baesens,	Aimée	Backiel,	Seppe	vanden	Broucke
	

2.					Java	A	Beginner’s	Guide	Sixth	Edition
Create,	Compile,	and	Run	Java	Programs	Today
Herbert	Schildt
	

3.					Webopedia
http://www.webopedia.com/TERM/A/ASCII.html
	
4.					Dictionary.Reference.com
http://dictionary.reference.com/browse/ternary?s=t
	

5.					ORACLE	Java	Documentation
The	Java	TM	Tutorials
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

http://www.webopedia.com/TERM/A/ASCII.html
http://dictionary.reference.com/browse/ternary?s=t
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Books	by	Rex	Jones	II
1.	 Free	Book	(Part	1)	Absolute	Beginner

You	Must	Learn	VBScript	for	QTP/UFT
Don’t	Ignore	The	Language	For	Functional	Automation	Testing
	

2.	 (Part	2)	You	Must	Learn	VBScript	for	QTP/UFT
Don’t	Ignore	The	Language	For	Functional	Automation	Testing
	

3.	 Free	Book	(Part	1)	Absolute	Beginner
Java	4	Selenium	WebDriver
Come	Learn	How	To	Program	For	Automation	Testing

	

Coming	Soon

4.	 (Part	2)	Java	4	Selenium	WebDriver
Come	Learn	How	To	Program	For	Automation	Testing
	

5.	 Test	Design	Techniques
An	Important	Skill	Set	for	QA/Software	Testers

					 		

						 						
				

Note:	The	free	books	are	available	via	eBook	Edition.

Sign	Up	To	Receive
1.	 3	Tips	To	Master	Selenium	Within	30	Days

http://tinyurl.com/3-Tips-For-Selenium
	

2.	 3	Tips	To	Master	QTP/UFT	Within	30	Days
http://tinyurl.com/3-Tips-For-QTP-UFT
	

3.	 Free	Webinars,	Videos,	and	Live	Trainings	
http://tinyurl.com/Free-QTP-UFT-Selenium
	

http://tinyurl.com/3-Tips-For-Selenium
http://tinyurl.com/3-Tips-For-QTP-UFT
http://tinyurl.com/Free-QTP-UFT-Selenium

	Free Webinars, Videos, and Live Training
	Rex Jones’ Contact Information
	Table of Contents
	Preface
	About the Author
	About the Editor
	Copyright, Legal Notice, and Disclaimer
	Acknowledgements
	Chapter 1 Introduction to Java
	Overview
	Variables and Data Types
	Operators
	Control Structures
	Object-Oriented Programming (OOP)
	Chapter 2 Variables and Data Types
	Variable Names
	Variable Declaration
	Variable Initialization
	Variable Type, Scope, and Lifetime
	Primitive Data Types
	Constants
	Chapter 3 Operators
	Arithmetic Operators
	Bitwise Operators
	Logical Operators
	Relational Operators
	Assignment Operator
	Ternary Operator
	Operator Precedence
	Data Type Casting
	Expressions
	Chapter 4 Control Structures
	If Branch
	Switch Branch
	For Loop
	While Loop
	Do While Loop
	Break To Exit
	Continue To Next Statement
	Conclusion
	Resources
	Books by Rex Jones II
	Sign Up To Receive

