
Android Application Testing
Guide

Build intensively tested and bug free Android
applications

Diego Torres Milano

 BIRMINGHAM - MUMBAI

Android Application Testing Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 1170611

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-50-0

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

About the Author

Diego Torres Milano has been involved with the Android platform since its
inception, at the end of 2007, when he started exploring and researching the platform
possibilities, mainly in the areas of User Interfaces, Unit and Acceptance Tests, and
Test Driven Development.

This is reflected by a number of articles mainly published in his personal blog
(http://dtmilano.blogspot.com) and his participation as a lecturer in some
conferences and courses like Mobile Dev Camp 2008 in Amsterdam (Netherlands)
and Japan Linux Symposium 2009 (Tokyo), Droidcon London 2009, Skillsmatter
2009 (London, UK), and he has also authored Android training courses delivered to
various companies in Europe.

Previously, he was the founder and developer of several Open Source projects,
mainly CULT Universal Linux Thin Project (cult-thinclient.sf.net) and the
very successful PXES Universal Linux Thin Client project (that was later acquired
by 2X Software, www.2x.com). PXES is a Linux-based Operating System specialized
for thin clients used by hundreds of thousands of thin clients all over the world. This
project has a popularity peak of 35M hits and 400K downloads from SourceForge
in 2005. This project had a dual impact: big companies in Europe decided to use it
because of improved security and efficiency; organizations, institutions, and schools
in some developing countries in South America, Africa, and Asia decided to use
it because of the minimal hardware requirements to have a huge social impact
providing computers, sometimes recycled ones, to everyone.

Among the other Open Source projects that he has founded we can mention
Autoglade, Gnome-tla, JGlade, and he has been contributing to various Linux
distributions such as RedHat, Fedora, and Ubuntu.

He also has been giving presentations in Linux World, LinuxTag, GUADEC ES,
University of Buenos Aires, and so on.

He has been developing software, participating in Open Source projects, and
advising companies worldwide for more than 15 years.

He can be contacted at dtmilano@gmail.com.

Firstly, I would like to thank my family: Laura, Augusto and Octavio
for their patience and consideration. The time I borrowed to achieve
this goal was mostly theirs.

Secondly I would like to thank my personal friend and IN3
Integracion Informatica co-founder, Caludio Palonsky, with whom
we started this amazing adventure more than 15 years ago when we
pioneered the provision of Linux services and support to enterprises
in South America. He certainly taught me to be a bit more consultant
and a bit less hacker (but I'm a very bad student :-)). And special
thanks to Ricston's Peter Delia with whom we started providing
Android training services throughout Europe as early as mid 2008
when Android was just a beautiful dream of having a mainstream
Open Source operating system in the mobile arena. This is now a
reality dictated by the market.

And lastly I would like to thank all the reviewers and the Packt
Publishing team who gave me their opinion, suggestions, and
corrections on early manuscripts; without them the book would
never have had the quality it endowed.

About the Reviewers

Paul Bourdeaux is the Senior Software Engineer and Application Development
Team Lead at Sundog, a marketing and technology company based in the Midwest.
He has a strong background in traditional software engineering, has authored
several white papers relating to mobile marketing and software engineering, and has
presented at both national and regional software engineering conferences. Paul is the
mobile marketing expert at Sundog, and his passion lies in mobile and cloud based
software engineering.

Noah Eltzroth teaches dynamic web development at the Sullivan College of
Technology and Design in Louisville, Kentucky. He enjoys working on a variety of
different software projects including business-oriented portals, data processing, and
Android applications. In his free time, Noah enjoys programming in both Java and
PHP.

Tomas Malmsten has been working with software development for over a
decade. During this time he has had the opportunity to work with a vast variety of
technologies in various different business settings. His main focus has been the Java
ecosystem where he has worked with everything from large enterprise systems to
Android application development.

Tomas is a passionate software craftsman who strives for excellence in all aspects of
programming. From customer service and interaction to well crafted maintainable
programs.

You can get in touch with Tomas through any of the following means:

• Blog: http://www.tomasmalmsten.com
• Twitter: http://twitter.com/tomasmalmsten
• E-mail: public@tomasmalmsten.com
• LinkedIn: http://se.linkedin.com/in/tomasmalmsten

Gábor Paller received his MSc. and PhD. degrees from the Technical University
of Budapest in 1992 and 1996, respectively. Dr. Paller joined Nokia in 1998 and held
positions in Nokia R&D and Nokia Research Center. His interests included wireless
protocol development, mobile device management, mobile Java and middleware.
He was also involved in standardization and joint research program activities.
After having left Nokia, he worked at OnRelay Ltd. on fixed-mobile convergence
technologies, and then in 2010 he joined Ericsson where he works on IMS. Gabor
Paller runs the popular My Life with Android blog and reviewed a number of
Android books.

Abhinav Tyagi is a Computer Science graduate from Pune. He also holds a post
graduate diploma in Advanced Computing from CDAC, Pune. He developed several
Android applications while working as a Software Engineer at Antarix Networks,
Mumbai.

He is currently working on telecom protocols as a Research & Development Engineer
at Nokia Siemens Networks.

I would like to thank Joel Goveya and Tarun Singh for giving me this
wonderful opportunity.

Table of Contents
Preface 1
Chapter 1: Getting Started with Testing 7

Brief history 7
Software bugs 8

How bugs severely affect your projects 9
Why, what, how, and when to test 9

What to test 11
Activity lifecycle events 12
Database and filesystem operations 12
Physical characteristics of the device 12

Types of tests 13
Unit tests 13

The test fixture 15
The setUp() method 15
The tearDown() method 15
Test preconditions 16
The actual tests 16

Integration tests 20
Functional or acceptance tests 20

Test case scenario 22
Performance tests 22
System tests 23

Android testing framework 23
Instrumentation 23
Test targets 25

Summary 26
Chapter 2: Testing on Android 27

JUnit 28
Creating the Android main project 28
Creating the Android test project 29

Table of Contents

[ii]

Package explorer 31
Creating a test case 32

Special methods 36
Test annotations 36

Running the tests 37
Running all tests from Eclipse 37
Running a single test case from Eclipse 38
Running from the emulator 39
Running tests from the command line 41

Running all tests 42
Running tests from a specific test case 42
Running a specific test by name 42
Running specific tests by category 43
Running performance tests 44
Dry run 44

Debugging tests 45
Other command-line options 47
Summary 47

Chapter 3: Building Blocks on the Android SDK 49
The demonstration application 50
Assertions in depth 50

Custom messages 52
Static imports 52

View assertions 53
Even more assertions 55
The TouchUtils class 57
Mock Objects 58

MockContext overview 59
The IsolatedContext class 59
Alternate route to file and database operations 60
The MockContentResolver class 60

The TestCase base class 61
The no-argument constructor 61
The given name constructor 62
The setName() method 62

The AndroidTestCase base class 62
The assertActivityRequiresPermission() method 63

Description 64
Example 64

The assertReadingContentUriRequiresPermission method 64
Description 64
Example 65

Table of Contents

[iii]

The assertWritingContentUriRequiresPermission() method 65
Description 65
Example 66

Instrumentation 66
The ActivityMonitor inner class 66

Example 67
The InstrumentationTestCase class 68

The launchActivity and launchActivityWithIntent method 69
The sendKeys and sendRepeatedKeys methods 69
The runTestOnUiThread helper method 71

The ActivityTestCase class 72
The scrubClass method 73

The ActivityInstrumentationTestCase2 class 74
The constructor 75
The setUp method 75
The tearDown method 76
The testPreconditions method 76

The ProviderTestCase2<T> class 76
The constructor 77
Example 78

The ServiceTestCase<T> 78
The constructor 79

The TestSuiteBuilder.FailedToCreateTests class 80
Using external libraries in test projects 80
Summary 84

Chapter 4: Test Driven Development 85
Getting started with TDD 85

Writing a test case 86
Running all tests 87
Refactoring the code 87
What is the advantage? 88
Understanding the requirements 88

Creating a sample project—the Temperature Converter 88
The list of requirements 89
User interface concept design 89

Creating the projects 90
Creating the TemperatureConverterActivityTests project 92

Creating the fixture 96
Test preconditions 97
Creating the user interface 97
Testing the existence of the user interface components 98

Table of Contents

[iv]

Getting the IDs defined 98
Translating requirements to tests 99

Empty fields 100
View properties 100

Screen layout 104
Adding functionality 104

Temperature conversion 104
The EditNumber class 105
TemperatureConverter unit tests 110
The EditNumber tests 114
The TemperatureChangeWatcher class 119
More TemperatureConverter tests 123
The InputFilter tests 125

Viewing our final application 126
Summary 128

Chapter 5: Android Testing Environment 129
Creating Android Virtual Devices 129
Running AVDs from the command line 132

Headless emulator 133
Disabling the keyguard 134
Cleaning up 135
Terminating the emulator 136

Additional emulator configurations 136
Simulating network conditions 137
Additional qemu options 140

Running monkey 142
Client-server monkey 143

Test scripting with monkeyrunner 144
Getting test screenshots 145
Record and playback 147

Summary 148
Chapter 6: Behavior Driven Development 149

Brief history 149
Given, when, then 150
FitNesse 151

Running FitNesse from the command line 151
Creating a TemperatureConverterTests subwiki 152

Adding child pages to the subwiki 153
Adding the acceptance test fixture 155
Adding the supporting test classes 156

Table of Contents

[v]

GivWenZen 158
Creating the test scenario 159

Summary 165
Chapter 7: Testing Recipes 167

Android Unit tests 167
Testing activities and applications 170

Applications and preferences 170
The RenamingMockContext class 170
The TemperatureConverterApplicationTests class 171

Testing activities 175
Testing files, databases, and ContentProviders 181

The BrowserProvider tests 185
Testing exceptions 191
Testing local and remote services 192
Extensive use of mock objects 196

Importing libraries 198
The testTextChanged test 198
Introducing Hamcrest 202

Hamcrest matchers 203
The hasToString matcher 204

Testing Views in isolation 205
Testing parsers 209

Android assets 209
The parser activity 210
The parser test 211

Testing for memory leaks 212
Summary 215

Chapter 8: Continuous Integration 217
Building Android applications manually using Ant 218
Git—the fast version control system 224

Creating a local git repository 224
Continuous Integration with Hudson 225

Installing and configuring Hudson 226
Creating the jobs 227
Obtaining Android test results 231

Summary 240
Chapter 9: Performance Testing and Profiling 243

Ye Olde Logge method 244
Performance tests in Android SDK 246

Launching the performance test 246
Creating the LaunchPerformanceBase instrumentation 246

Table of Contents

[vi]

Creating the TemperatureConverterActivityLaunchPerformance class 248
Running the tests 249

Using the Traceview and dmtracedump platform tools 251
Microbenchmarks 255

Caliper microbenchmarks 256
Creating the TemperatureConverterBenchmark project 257
Running caliper 258

Summary 261
Chapter 10: Alternative Testing Tactics 263

Building Android from source 264
Code coverage 264

EMMA features 265
System requirements 266
Downloading the Android source code 266

Installing repo 267
Creating the working copy 267
The Building Steps 268

TemperatureConverter code coverage 270
Generating code coverage analysis report 274
Covering the restoring the instance state 279
Covering the exceptions 281
Bypassing access restrictions 282
Covering the options menu 283

The undocumented Ant coverage target 284
Introducing Robotium 285

Downloading Robotium 286
Configuring the project 286
Creating the test cases 286

The testFahrenheitToCelsiusConversion() test 286
The testOnCreateOptionsMenu() revisited 289

Testing on host's JVM 291
Creating the TemperatureConverterJVMTest project 291
Comparing the performance gain 296
Adding Android to the picture 297

Introducing Robolectric 299
Installing Robolectric 299
Creating a new Java project 299
Writing some tests 299

Summary 303
Index 305

Preface
It doesn't matter how much time you invest in Android design, or even how careful
you are when programming, mistakes are inevitable and bugs will appear. This
book will help you minimize the impact of these errors in your Android project and
increase your development productivity. It will show you the problems that are
easily avoided, to help get you quickly to the testing stage.

Android Application Testing Guide is the first and only book providing a practical
introduction to the most commonly-available techniques, frameworks, and tools
to improve the development of your Android applications. Clear, step-by-step
instructions show how to write tests for your applications and assure quality control
using various methodologies.

The author's experience in applying application testing techniques to real-world
projects enables him to share insights on creating professional Android applications.

The book starts by introducing Test Driven Development, which is an agile component
of the software development process and a technique where you will tackle bugs early
on. From the most basic unit tests applied to a sample project to more sophisticated
performance tests, this book provides a detailed description of the most widely used
techniques in the Android testing world in a recipe-based approach.

The author has extensive experience of working on various development projects
throughout his professional career. All this research and knowledge has helped
create a book that will serve as a useful resource to any developer navigating the
world of Android testing.

What this book covers
Chapter 1, Getting Started with Testing introduces the different types of testing and
their applicability to software development projects in general and to Android in
particular.

Preface

[2]

Chapter 2, Testing on Android covers testing on the Android platform, Unit testing and
JUnit, creating an Android Test project, and running tests.

Chapter 3, Building Blocks on the Android SDK starts digging a bit deeper to recognize
the building blocks available to create the tests. It covers Assertions, TouchUtils,
intended to test User Interfaces, Mock objects, Instrumentation, and TestCase class
hierarchies featuring UML diagrams.

Chapter 4, Test Driven Development introduces the Test Driven Development
discipline. It starts with a general revision and later on moves to the concepts and
techniques closely related to the Android platform. This is a code intensive chapter.

Chapter 5, Android Testing Environment provides different conditions to run the tests.
It starts with the creation of the Android Virtual Devices (AVD) to provide different
conditions and configurations for the application under test and runs the tests using
the available options. Finally, it introduces monkey as a way to generate simulated
events used for testing.

Chapter 6, Behavior Driven Development introduces Behavior Driven Development and
some concepts such as like the use of a common vocabulary to express the tests and
the inclusion of business participants in the software development project.

Chapter 7, Testing Recipes provides practical examples of different common situations
you will encounter applying the disciplines and techniques described before. The
examples are presented in a Cookbook style so you can adapt and use them for your
projects. The recipes cover Android Unit tests, Activities, Applications, Databases
and ContentProviders, Local and Remote Services, UIs, Exceptions, Parsers, and
Memory leaks.

Chapter 8, Continuous Integration introduces this agile technique for software
engineering that aims to improve the software quality and to reduce the time taken
to integrate changes by continuously applying integration and testing frequently.

Chapter 9, Performance Testing introduces a series of concepts related to benchmarking
and profiles from traditional logging statement methods to Creating Android
performance tests and using profiling tools. This chapter also presents Caliper to
create microbenchmarks.

Chapter 10, Alternative Testing Tactics covers building Android from source, code
coverage using EMMA, Robotium, testing on hosts, and Robolectric.

Preface

[3]

What you need for this book
First of all, you need practical Android development experience as we are not
covering the basics. It is assumed that you already have some Android application
or at least you are familiar with the topics described extensively in the Android
Dev Guide (http://developer.android.com/guide/index.html). Also it is very
helpful having followed some of the Sample Code projects (http://developer.
android.com/resources/browser.html?tag=sample), probably starting with API
Demos and then moving to other more involved topics. This way you will get the
most of this book.

To be able to follow the examples in the different chapters you need a common set
of software and tools installed and several other components that are described in
every chapter in particular including their respective download locations.

All the examples are based on:

• Ubuntu 10.04.2 LTS (lucid) 64 bit, fully updated
• Java SE version "1.6.0_24" (build 1.6.0_24-b07)
• Android SDK tools, revision 11
• Android SDK Platform-tools, revision 4
• SDK Platform Android 2.3.1, API 9, revision 2
• Android Compatibility package, revision 2
• Eclipse IDE for Java Developers, Version: Helios Service Release 1 (3.6.1)
• Android Development Toolkit, Version: 10.0.1.v201103111512-110841
• Dalvik Debug Monitor Service, Version: 10.0.1.v201103111512-110841
• Apache Ant version 1.8.0 compiled on April 9 2010
• Git version 1.7.0.4
• Subversion version 1.6.6 (r40053) compiled Mar 23 2011, 13:08:34

The UML diagrams presented in the book were created using BOUML release 4.21.

Screenshots were taken and edited using Shutter 0.86.3.

Manuscripts were edited using OpenOffice.org 3.2.1.

Who this book is for
If you are an Android developer looking to test your applications or optimize your
application development process, then this book is for you. No previous experience
in application testing is required.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Testing
This chapter introduces the different types of testing and their applicability to
software development projects in general and to Android in particular.

We will avoid introductions to Android and the Open Handset Alliance
(http://www.openhandsetalliance.com) as they are covered in many books
already and I am inclined to believe that if you are reading a book covering this more
advanced topic you will have started with Android development before.

However, we will be reviewing the main concepts behind testing and the techniques,
frameworks, and tools available to deploy your testing strategy on Android.

Brief history
Initially, when Android was introduced by the end of 2007, there was very little
support for testing on the platform, and for some of us very accustomed to using
testing as a component intimately coupled with the development process, it was time
to start developing some frameworks and tools to permit this approach.

By that time Android had some rudimentary support for unit testing using JUnit
(http://www.JUnit.org), but it was not fully supported and even less documented.

In the process of writing my own library and tools, I discovered Phil Smith's Positron
(originally at http://code.google.com/p/android-positron and now renamed
and moved to http://code.google.com/p/autoandroid), an Open Source library
and a very suitable alternative to support testing on Android, so I decided to extend
his excellent work and bring some new and missing pieces to the table.

Getting Started with Testing

[8]

Some aspects of test automation were not included and I started a complementary
project to fill that gap, it was consequently named Electron. And although positron
is the anti-particle of the electron, and they annihilate if they collide, take for granted
that that was not the idea, but more the conservation of energy and the generation of
some visible light and waves.

Later on, Electron entered the first Android Development Challenge (ADC1)
in early 2008 and though it obtained a rather good score in some categories,
frameworks had no place in that competition. Should you be interested in the origin
of testing on Android, please find some articles and videos that were published in
my personal blog (http://dtmilano.blogspot.com/search/label/electron).

By that time Unit Tests could be run on Eclipse. However, testing was not done on
the real target but on a JVM on the local development computer.

Google also provided application instrumentation code through the
Instrumentation class. When running an application with instrumentation
turned on, this class is instantiated for you before any of the application code,
allowing you to monitor all of the interaction the system has with the application.
An Instrumentation implementation is described to the system through an
AndroidManifest.xml file.

During those early stages in the Android development evolution, I started writing
some articles in my blog filling the gaps on testing. This book is the evolution and
completion of that work in an orderly and understandable manner
to paradoxically let you be bitten by the Android testing bug.

Software bugs
It doesn't matter how hard you try and how much time you invest in design and
even how careful you are when programming, mistakes are inevitable and bugs
will appear.

Bugs and software development are intimately related. However, the term bugs to
describe flaws, mistakes, or errors has been used in hardware engineering many
decades before even computers were invented. Notwithstanding the story about the
term 'bug' coined by Mark II operators at Harvard University, Thomas Edison wrote
this in 1878 in a letter to Puskás Tivadar showing the early adoption of the term:

"It has been just so in all of my inventions. The first step is an intuition, and
comes with a burst, then difficulties arise—this thing gives out and [it is] then
that 'Bugs'—as such little faults and difficulties are called—show themselves
and months of intense watching, study and labor are requisite before commercial
success or failure is certainly reached."

Chapter 1

[9]

How bugs severely affect your projects
Bugs affect many aspects of your software development project and it is clearly
understood that the sooner in the process you find and squash them, the better.
It doesn't matter if you are developing a simple application to publish on the
Android Market, re-branding the Android experience for an operator, or creating
a customized version of Android for a device manufacturer, bugs will delay your
shipment and will cost you money.

From all of the software development methodologies and techniques, Test Driven
Development, an agile component of the software development process, is likely the
one that forces you to face your bugs earlier in the development process and thus it
is also likely that you will solve more problems up front.

Furthermore, the increase in productivity can be clearly appreciated in a project
where a software development team uses this technique versus one that is, in the
best of cases, writing tests at the end of the development cycle. If you have been
involved in software development for the mobile industry, you will have reasons to
believe that with all the rush this stage never occurs. It's funny because, usually, this
rush is to solve problems that could have been avoided.

In a study conducted by the National Institute of Standards and Technology (USA)
in 2002, it was reported that software bugs cost the economy $59.5 billion annually.
More than a third of this cost could be avoided if better software testing was
performed.

But please, don't misunderstand this message. There are no silver bullets in
software development and what will lead you to an increase in productivity and
manageability of your project is discipline in applying these methodologies and
techniques to stay in control.

Why, what, how, and when to test
You should understand that early bug detection saves a huge amount of project
resources and reduces software maintenance costs. This is the best known reason to
write software tests for your development project. Increased productivity will soon
be evident.

Additionally, writing the tests will give you a deeper understanding of the
requirements and the problem to be solved. You will not be able to write tests
for a piece of software you don't understand.

Getting Started with Testing

[10]

This is also the reason behind the approach of writing tests to clearly understand
legacy or third party code and having the ability to confidently change or update it.

The more the code covered by your tests, the higher would be your expectations
of discovering the hidden bugs.

If during this coverage analysis you find that some areas of your code are not
exercised, additional tests should be added to cover this code as well.

This technique requires a special instrumented Android build to collect probe data
and must be disabled for any release code because the impact on performance could
severely affect application behavior.

To fill this gap, enter EMMA (http://emma.sourceforge.net/), an open-source
toolkit for measuring and reporting Java code coverage, that can offline instrument
classes for coverage. It supports various coverage types:

•	 class
•	 method
•	 line
•	 basic block

Coverage reports can also be obtained in different output formats. EMMA is
supported to some degree by the Android framework and it is possible to build an
EMMA instrumented version of Android.

We will be analyzing the use of EMMA on Android to guide us to full test coverage
of our code in Chapter 10, Alternative Testing Tactics.

This screenshot shows how an EMMA code coverage report is displayed in the
Eclipse editor, showing green lines where the code has been tested, provided the
corresponding plugin is installed.

Chapter 1

[11]

Unfortunately, the plugin doesn't support Android tests yet, so right now you can
only use it for your JUnit tests. An Android coverage analysis report is only available
through HTML.

Tests should be automated, and you should run some or all of them every time you
introduce a change or addition to your code, in order to ensure that all the previous
conditions are still met and that the new code still satisfies the tests as expected.

This leads us to the introduction of Continuous Integration, which will be discussed
in detail in Chapter 8, Continuous Integration. This relies on the automation of tests
and building processes.

If you don't use automated testing, it is practically impossible to adopt Continuous
Integration as part of the development process and it is very difficult to ensure that
changes do not break existing code.

What to test
Strictly speaking you should test every statement in your code but this also depends
on different criteria and can be reduced to test the path of execution or just some
methods. Usually there is no need to test something that can't be broken, for example
it usually makes no sense to test getters and setters as you probably won't be
testing the Java compiler on your own code and the compiler would have already
performed its own tests.

Getting Started with Testing

[12]

In addition to the functional areas you should test, there are some specific areas of
Android applications that you should consider. We will be looking at these in the
following sections.

Activity lifecycle events
You should test that your activities handle lifecycle events correctly.

If your activity should save its state during onPause() or onDestroy() events and
later restore it in onCreate(Bundle savedInstanceState), you should be able to
reproduce and test these conditions and verify that the state was correctly saved and
restored.

Configuration-changed events should also be tested as some of these events cause
the current Activity to be recreated, and you should test for correct handling of the
event and that the newly created Activity preserves the previous state. Configuration
changes are triggered even by rotation events, so you should test your application's
ability to handle these situations.

Database and filesystem operations
Database and filesystem operations should be tested to ensure that they are handled
correctly. These operations should be tested in isolation at the lower system level, at
a higher level through ContentProviders, and from the application itself.

To test these components in isolation, Android provides some mock objects in the
android.test.mock package.

Physical characteristics of the device
Well before delivering your application you should be sure that all of the different
devices it can be run on are supported or at the least you should detect the situation
and take appropriate measures.

Among other characteristics of the devices, you may find that you should test:

•	 Network capabilities
•	 Screen densities
•	 Screen resolutions
•	 Screen sizes
•	 Availability of sensors

Chapter 1

[13]

•	 Keyboard and other input devices
•	 GPS
•	 External storage

In this respect Android Virtual Devices play an important role because it is
practically impossible to have access to all possible devices with all of the possible
combinations of features but you can configure AVD for almost every situation.
However, as was mentioned before, save your final testing for actual devices where
real users will run the application to understand its behavior.

Types of tests
Testing can be implemented at any time in the development process, depending on
the method employed. However, we will be promoting testing at an early stage of
the development effort, even before the full set of requirements have been defined
and the coding process has been started.

There are several types of test available depending on the object being tested.
Regardless of its type, a test should verify a condition and return the result of this
evaluation as a single Boolean value indicating success or failure.

Unit tests
Unit tests are software tests written by programmers for programmers in a
programming language and they should isolate the component under test and be
able to test it in a repeatable way. That's why unit tests and mock objects are usually
placed together. You use mock objects to isolate the unit from its dependencies, to
monitor interactions, and also to be able to repeat the test any number of times. For
example, if your test deletes some data from a database you probably don't want the
data to be actually deleted and not found the next time the test is run.

JUnit is the de-facto standard for unit tests on Android. It's a simple open source
framework for automating unit testing, originally written by Erich Gamma and
Kent Beck.

Android (up to Android 2.3 Gingerbread) uses JUnit 3. This version doesn't use
annotations and uses introspection to detect the tests.

A typical JUnit test would look something like this (the actual tests are highlighted):

/**
 * Android Application Testing Guide
 */
package com.example.aatg.test;

Chapter 1

[15]

The following sections explain in detail the components that build up our test case.

The test fixture
A test fixture is the well known state defined as a baseline to run the tests and is
shared by all the test cases, and thus plays a fundamental role in the design of the
tests.

Generally it is implemented as a set of member variables and, following Android
conventions, they will have names starting with m, for example mActivity.
However, it can also contain external data, as specific entries in a database or files
present in the filesystem.

The setUp() method
This method is called to initialize the fixture.

Overriding it you have the opportunity to create objects and initialize fields that
will be used by tests. It's worth noting that this setup occurs before every test.

The tearDown() method
This method is called to finalize the fixture.

Overriding it you can release resources used by the initialization or tests. Again,
this method is invoked after every test.

For example, you can release a database or a network connection here.

JUnit is designed in such a way that the entire tree of test instances is built in one
pass, and then the tests are executed in a second pass. Therefore, the test runner
holds strong references to all Test instances for the duration of the test execution.
This means that for very large and very long test runs with many Test instances,
none of the tests may be garbage collected until the end of the entire test run. This is
particularly important in Android and when testing on limited devices as some tests
may fail not because of an intrinsic problem but because of the amount of memory
needed to run the application plus its tests exceeding the device limits.

Therefore, if you allocate external or limited resources in a test, such as Services or
ContentProviders, you are responsible for freeing those resources. Explicitly setting
an object to null in the tearDown() method, for example, allows it to be garbage
collected before the end of the entire test run.

Getting Started with Testing

[16]

Test preconditions
Usually there is no way to test for preconditions as the tests are discovered
using introspection and their order could vary. So it's customary to create a
testPreconditions() method to test for preconditions. Though there is no
assurance that this test will be called in any specific order, it is good practice to keep
this and the preconditions together for organizational purposes.

The actual tests
All public void methods whose names start with test will be considered as a
test. JUnit 3, as opposed to JUnit 4, doesn't use annotations to discover the tests
but introspection to find their names. There are some annotations available on the
Android test framework such as @SmallTest, @MediumTest, and @LargeTest, but
they don't turn a simple method into a test. Instead they organize them in different
categories. Ultimately you will have the ability to run tests for a single category using
the test runner.

As a rule of thumb, name your tests in a descriptive way using nouns and the
condition being tested.

For example: testValues(), testConversionError(),
testConversionToString() are all valid test names.

Test for exceptions and wrong values instead of just testing for positive cases.

During the execution of the test some conditions, side effects, or method returns
should be compared against the expectations. To ease these operations, JUnit
provides a full set of assert* methods to compare the expected results from the test
to the actual results after running with them throwing exceptions if conditions are
not met. Then the test runner handles these exceptions and presents the results.

These methods, which are overloaded to support different arguments, include:

•	 assertEquals()

•	 assertFalse()

•	 assertNotNull()

•	 assertNotSame()

•	 assertNull()

•	 assertSame()

•	 assertTrue()

•	 fail()

Chapter 1

[17]

In addition to these JUnit assert methods, Android extends Assert in two specialized
classes providing additional tests:

•	 MoreAsserts

•	 ViewAsserts

Mock objects
Mock objects are mimic objects used instead of calling the real domain objects to
enable testing units in isolation.

Generally, this is done to ensure that correct methods are called but they can also be
of help, as mentioned, to isolate your tests from the surrounding universe and enable
you to run them independently and repeatably.

The Android testing framework supports several mock objects that you will find
very useful when writing your tests but you will need to provide some dependencies
to be able to compile the tests.

Several classes are provided by the Android testing framework in the android.
test.mock package:

•	 MockApplication

•	 MockContentProvider

•	 MockContentResolver

•	 MockContext

•	 MockCursor

•	 MockDialogInterface

•	 MockPackageManager

•	 MockResources

Almost any component of the platform that could interact with your Activity can be
created by instantiating one of these classes.

However, they are not real implementations but stubs where every method
generates an UnsupportedOperationException and that you can extend to
create real mock objects.

Getting Started with Testing

[18]

UI tests
Finally, special consideration should be taken if your tests involve UI components.
As you may have already known, only the main thread is allowed to alter the UI
in Android. Thus a special annotation @UIThreadTest is used to indicate that a
particular test should be run on that thread and would have the ability to alter the
UI. On the other hand, if you only want to run parts of your test on the UI thread,
you may use the Activity.runOnUiThread(Runnable r) method providing the
corresponding Runnable containing testing instructions.

A helper class TouchUtils is also provided to aid in the UI test creation allowing
the generation of events to send to the Views, such as:

•	 click
•	 drag
•	 long click
•	 scroll
•	 tap
•	 touch

By these means you can actually remote control you application from the tests.

Eclipse and other IDE support
JUnit is fully supported by Eclipse and the Android ADT plugin lets you create
Android testing projects. Furthermore, you can run the tests and analyze the results
without leaving the IDE.

This also provides a more subtle advantage; being able to run the tests from Eclipse
allows you to debug the tests that are not behaving correctly.

In the screenshot, we can see how Eclipse runs 18 tests taking 20.008 seconds, where
0 Errors and 0 Failures were detected. The name of each test and its duration is
also displayed. If there was a failure, the Failure Trace would show the related
information.

Chapter 1

[19]

Other IDEs like ItelliJ and Netbeans have plugins integrating Android development
to some degree but they are not officially supported.

Even if you are not developing in an IDE, you can find support to run the tests with
ant (check http://ant.apache.org if you are not familiar with this tool). This setup
is done by the android command using the subcommand create test-project as
described by this help text:

$ android --help create test-project

Usage:

 android [global options] create test-project [action options]

Global options:

 -v --verbose Verbose mode: errors, warnings and informational messages
are printed.

 -h --help Help on a specific command.

 -s --silent Silent mode: only errors are printed out.

Getting Started with Testing

[20]

Action "create test-project":

 Creates a new Android project for a test package.

Options:

 -p --path The new project's directory [required]

 -m --main Path to directory of the app under test, relative to the
test project directory [required]

 -n --name Project name

As indicated by the help you should provide at least the path to the project (--path)
and the path to the main project or the project under test (--main).

Integration tests
Integration tests are designed to test the way individual components work jointly.
Modules that have been unit tested independently are now combined together to
test the integration.

Usually Android Activities require some integration with the system infrastructure
to be able to run. They need the Activity lifecycle provided by the ActivityManager,
and access to resources, filesystem, and databases.

The same criteria apply to other Android components like Services or
ContentProviders that need to interact with other parts of the system to achieve
their function.

In all these cases there are specialized tests provided by the Android testing
framework that facilitate the creation of tests for these components.

Functional or acceptance tests
In agile software development, functional or acceptance tests are usually created by
business and Quality Assurance (QA) people and expressed in a business domain
language. These are high level tests to test the completeness and correctness of a
user requirement or feature. They are created ideally through collaboration between
business customers, business analysts, QA, testers, and developers. However the
business customers (product owners) are the primary owners of these tests.

Some frameworks and tools can help in this field, most notably FitNesse (http://
www.fitnesse.org), which can be easily integrated, up to a point, into the Android
development process and will let you create acceptance tests and check their results.

Getting Started with Testing

[22]

To apply these principles, business people are usually involved in writing test
case scenarios in a high level language and use some tool, such as jbehave
(http://jbehave.org). In the following example, these scenarios are translated
into code that expresses the same test scenario in a programming language.

Test case scenario
As an illustration of this technique here is an oversimplified example.

This scenario is:

Given I'm using the Temperature Converter.
When I enter 100 into Celsius field.
Then I obtain 212 in Fahrenheit field.

It would be translated into something similar to:

@Given("I am using the Temperature Converter")
public void createTemperatureConverter() {
 // do nothing
}

@When("I enter $celsius into Celsius field")
public void setCelsius(int celsius) {
 mCelsius= celsius;
}

@Then("I obtain $fahrenheit in Fahrenheit field")
public void testCelsiusToFahrenheit(int fahrenheit) {
 assertEquals(fahrenheit,
 TemperatureConverter.celsiusToFahrenheit
 (mCelsius));
}

Performance tests
Performance tests measure performance characteristics of the components in a
repeatable way. If performance improvements are required by some part of the
application, the best approach is to measure performance before and after some
change is introduced.

As is widely known, premature optimization does more harm than good, so it is
better to clearly understand the impact of your changes on the overall performance.

Chapter 1

[23]

The introduction of the Dalvik JIT compiler in Android 2.2 changed some
optimization patterns that were widely used in Android development. Nowadays,
every recommendation about performance improvements on the Android
developer's site is backed up by performance tests.

System tests
The system is tested as a whole and the interaction between the components,
software and hardware, is exercised. Normally, system tests include additional
classes of tests like:

•	 GUI tests
•	 Smoke tests
•	 Performance tests
•	 Installation tests

Android testing framework
Android provides a very advanced testing framework extending the industry
standard JUnit with specific features suitable for implementing all of the testing
strategies and types we mentioned before. In some cases, additional tools are needed
but the integration of these tools is in most cases simple and straightforward.

The key features of the Android testing environment include:

•	 Android extensions to the JUnit framework that provide access to Android
system objects.

•	 An instrumentation framework that lets tests control and examine the
application.

•	 Mock versions of commonly used Android system objects.
•	 Tools for running single tests or test suites, with or without instrumentation.
•	 Support for managing tests and test projects in the ADT Plugin for Eclipse

and at the command line.

Instrumentation
The instrumentation framework is the foundation of the testing framework.
Instrumentation controls the application under test and permits the injection of mock
components required by the application to run. For example, you can create mock
Contexts before the application starts and let the application use them.

Getting Started with Testing

[24]

All interaction of the application with the surrounding environment can be
controlled using this approach. You can also isolate your application in a restricted
environment to be able to predict the results, forcing the values returned by
some methods or mocking persistent and unchanged data for ContentProvider,
databases, or even the filesystem content.

A standard Android project has its tests in a correlated project that usually
has the same project name but ends with Test. Inside this Test project, the
AndroidManifest.xml declares the Instrumentation.

As an illustrative example, assume your project has a manifest like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.aatg.sample"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".SampleActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="7" />
</manifest>

In this case, the correlated Test project will have the following
AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.aatg.sample.test"
 android:versionCode="1" android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <uses-library android:name="android.test.runner" />
 </application>
 <uses-sdk android:minSdkVersion="7" />
 <instrumentation
 android:targetPackage="com.example.aatg.sample"

Chapter 1

[25]

 android:name="android.test.InstrumentationTestRunner"
 android:label="Sample Tests" />
 <uses-permission android:name="
 android.permission.INJECT_EVENTS" />
</manifest>

Here the Instrumentation package is the same package as the main application with
the .test suffix added.

Then the Instrumentation is declared specifying the target package and
the test runner, in this case the default custom runner android.test.
InstrumentationTestRunner.

Also notice that both, the application under test and the tests are Android
applications with their corresponding APKs installed. Internally, they will be
sharing the same process and thus have access to the same set of features.

When you run a test application, the Activity Manager (http://developer.
android.com/intl/de/reference/android/app/ActivityManager.html) uses the
instrumentation framework to start and control the test runner, which in turn uses
instrumentation to shut down any running instances of the main application, starts the
test application, and then starts the main application in the same process. This allows
various aspects of the test application to work directly with the main application.

Test targets
During the evolution of your development project your tests would be targeted to
different devices. From the simplicity, flexibility, and speed of testing on an emulator
to the unavoidable final testing on the specific devices you intend your application to
be run on, you should be able to run on all of them.

There are also some intermediate cases like running your tests on a local JVM virtual
machine on the development computer or on a Dalvik virtual machine or Activity,
depending on the case.

Every case has its pros and cons, but the good news is that you have all of these
alternatives available to run your tests.

The emulator is probably the most powerful target as you can modify almost
every parameter from its configuration to simulate different conditions for your
tests. Ultimately, your application should be able to handle all of these situations,
so it is much better to discover the problems upfront than when the application has
been delivered.

Getting Started with Testing

[26]

The real devices are a requirement for performance tests, as it is somewhat difficult
to extrapolate performance measurements from a simulated device. You will
discover the real user experience only when using the real device. Rendering,
scrolling, flinging, and other cases should be tested before delivering the application.

Summary
We have reviewed the main concepts behind testing in general and Android in
particular. Having acquired this knowledge will let us start our journey and start
exploiting the benefits of testing in our software development projects.

So far, we have visited the following subjects:

•	 We reviewed the early stages of testing on Android and mentioned some
of the frameworks that created the current alternatives.

•	 We briefly analyzed the reasons behind testing and the whys, whats, hows,
and whens of it. Furthermore, from now on we will concentrate on exploring
the hows, as we can assume that you are convinced by the arguments
presented.

•	 We enumerated the different and most common types of tests you would
need in your projects, described some of the tools we can count on our
testing toolbox, and provided an introductory example of a JUnit unit test to
better understand what we are discussing.

We also analyzed these techniques from the Android perspective and mentioned the
use of Instrumentation to run our Android tests.

Now we will start analyzing the mentioned techniques, frameworks, and tools in
detail, along with examples of their usage.

Testing on Android
Now that we have introduced the reasons and the basic concepts behind testing, it's
time to put them into practice.

In this second chapter, we are covering:

•	 Testing on Android
•	 Unit testing and JUnit
•	 Creating an Android Test project
•	 Running tests

We will be creating a simple Android main project and its companion test project.
The main project will be almost empty and will just highlight testing components.

From my personal experience, I suggest that this chapter is useful for new
developers with no Android Testing experience. If you have some experience with
Android Projects and have been using testing techniques for them, you might read
this chapter as a revision or reaffirmation of the concepts.

Though not mandatory, best practices dictate that tests should live in a separate
correlated project. This feature is now supported by the Android ADP plugin, but
this has not always been the case. Some time ago I published an article (http://
dtmilano.blogspot.com/2008/11/android-testing-on-android-platf.html)
describing a method for manually maintaining two correlated projects—a main
project and a test project.

The advantages of this decision may not be immediately evident, but among them
we can count:

•	 Testing code is easily stripped out from a production build as it is not
included in the main project and thus not in the APK

Testing on Android

[28]

•	 Ease the way of running the tests in the emulator through the
Instrumentation option in Dev Tools

•	 With large projects, deploying the main package and the tests takes
less time if they are separated

•	 Encourages code reusability in similar projects

JUnit
We had an overview of JUnit in the previous chapter, so no introduction is needed
here. It is worth mentioning that the JUnit testing framework is the default option
for Android testing projects and it is supported by Eclipse, the Android ADT plugin,
and by Ant as well, in case you are not developing with an IDE.

So you are free to choose the best alternative for every case.

Most of the following examples will be based on Eclipse because is the most common
option. So, let's open Eclipse and start with no preamble.

Creating the Android main project
We will create a new Android project. This is done from Eclipse menu File | New |
Project... | Android | Android Project.

In this particular case, we are using the following values for the required
component names:

Project name: MyFirstProject
Build Target: Android 2.3.1
Application name: My First Project
Package name: com.example.aatg.myfirstproject
Create Activity: MyFirstProjectActivity
Min SDK Version: 9

Chapter 2

[29]

This is what your project creation dialog will look like after entering these values:

Creating the Android test project
Press the Next button and the Android Test Project creation dialog will be displayed.
Note that some values have been already picked according to the corresponding
values selected in the main project.

Chapter 2

[31]

Package explorer
After having created both projects, our Package explorer should look like the
next image. We can note the existence of the two correlated projects, each with an
independent set of components and project properties.

Now that we have the basic infrastructure set up, it's time for us to start adding
some tests.

There's nothing to test right now, but as we are setting up the fundamentals of Test
Driven Development discipline we are adding a dummy test just to get acquainted
with the technique.

The src folder on MyFirstProjectTest project is the perfect place to add the tests.
It is not mandatory but a good practice. The package should be the same as the
corresponding package of the component being tested.

Chapter 2

[33]

The basic infrastructure for our tests is in place; what is left is adding a dummy test
to verify that everything is working as expected.

Testing on Android

[34]

Eclipse also provides a way of creating stubs for the test methods. After pressing
Next > the following dialog is presented where you can choose the methods under
tests you want to generate the stubs for:

These stub methods may be useful in some cases but you have to consider that
testing should be behavior driven rather than method driven.

We now have a test case template, so the next step is to start completing it to
suit our needs. To do it, open the recently created case class and add the test
testSomething(). As a best practice, add the tests at the end of the class.

We should have something like this:

/**
 *
 */

Testing on Android

[36]

Special methods
The following table describes the special methods found in our test case class:

Method Description
setUp Sets up the fixture. For example, opens a network connection or

creates global objects that may be needed by the tests. This method
is called before a test is executed.
In this case we are only invoking the super method.
See Chapter 1, Getting Started with Testing for details.

tearDown Tears down the fixture. For example, close a network connection.
This method is called after a test is executed.
In this case we are only invoking the super method.
See Chapter 1, Getting Started with Testing for details.

testSomething A simple test. In order to be discovered by JUnit 3 using reflection,
test methods should start with the word test.

The rest of the method name should clearly identify the feature
under test.

Test annotations
Looking carefully at the test definition you may find that we decorated the test using
@MediumTest annotation. This is a way to organize or categorize our tests and run
them separately.

There are other annotations that can be used by the tests, such as:

Annotation Description
@SmallTest Marks a test that should run as part of the small tests.
@MediumTest Marks a test that should run as part of the medium tests.
@LargeTest Marks a test that should run as part of the large tests.
@Smoke Marks a test that should run as part of the smoke tests. The

android.test.suitebuilder.SmokeTestSuiteBuilder will
run all tests with this annotation.

@FlakyTest Use this annotation on InstrumentationTestCase class' test
methods. When this is present, the test method is re-executed if the
test fails. The total number of executions is specified by the tolerance
and defaults to 1. This is useful for tests that may fail due to an
external condition that could vary with time.

For example, to specify a tolerance of 4, you would annotate your test
with: @FlakyTest(tolerance=4).

Chapter 2

[37]

Annotation Description
@UIThreadTest Use this annotation on InstrumentationTestCase class' test

methods. When this is present, the test method is executed on the
application's main thread (or UI thread).

Because instrumentation methods may not be used when this
annotation is present there are other techniques if, for example, you
need to modify the UI and get access to the instrumentation within
the same test.

In those cases you can resort to the Activity.runOnUIThread
method allowing to create any Runnable and run it in the UI thread
from within your test.

mActivity.runOnUIThread(new Runnable() {
 public void run() {
 // do somethings
 }
});

@Suppress Use this annotation on test classes or test methods that should not be
included in a test suite.

This annotation can be used at the class level, where none of the
methods in that class are included in the test suite, or at the method
level to exclude just a single method or set of methods.

Now that we have the tests in place, it's time to run them, and that's what we are
going to do next.

Running the tests
There are several ways of running our tests, and we will analyze them here.

Additionally, as was mentioned in the previous section about annotations, tests can
be grouped or categorized and run together, depending on the situation.

Running all tests from Eclipse
This is perhaps the simplest method if you have adopted Eclipse as your
development environment. This will run all the tests in the package.

Select the test project and then Run As | Android Junit Test.

If a suitable device or emulator is not found, one will be started automatically.

Testing on Android

[38]

Then the tests are run and the results presented inside the Eclipse DDMS
perspective, which you may need to change to manually.

A more detailed view of the results and the messages produced during their
execution can also be obtained in the LogCat view within the Eclipse DDMS
perspective:

Running a single test case from Eclipse
There is an option to run a single test case from Eclipse, should you need to.

Select the test project and then Run As | Run Configurations.

Then create a new configuration and under Test, use the following values:

Run a single test: checked
Project: MyFirstProjectTest
Test class: com.example.aatg.myfirstproject.test.MyFirstProjectTests

When you run as usual, only this test will be executed. In our case, we have only one
test, so the result will be similar to the screenshot presented earlier.

Testing on Android

[40]

We are interested in Instrumentation now, which is the way to run our tests. This
application lists all of the packages installed that define the instrumentation tag
in their AndroidManifest.xml. By default, packages are listed using the default
instrumentation which normally is android.test.InstrumentationTestRunner
which is a problem to identify if you have more than one package list. To solve this
problem you can set an optional label in the manifest, under the Instrumentation tab,
as shown here:

Once this is done and the Instrumentation list is re-displayed, our package will be
listed under this new label and we can run the tests by selecting it:

Testing on Android

[42]

To invoke the am command we will be using the adb shell command or, if you
already have a shell running on an emulator or device, you can issue the am
command directly at the shell command prompt.

Running all tests
This command line will run all tests with the exception of performance tests:

diego@bruce:\~$ adb shell am instrument -w com.example.aatg.
myfirstproject.test/android.test.InstrumentationTestRunner

com.example.aatg.myfirstproject.test.MyFirstProjectTests:

Failure in testSomething:

junit.framework.AssertionFailedError: Not implemented yet

 at com.example.aatg.myfirstproject.test.MyFirstProjectTests.testSomethi
ng(MyFirstProjectTests.java:22)

 at java.lang.reflect.Method.invokeNative(Native Method)

 at android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:169)

 at android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:154)

 at android.test.InstrumentationTestRunner.onStart(InstrumentationTestRu
nner.java:430)

 at android.app.Instrumentation$InstrumentationThread.
run(Instrumentation.java:1447)

Test results for InstrumentationTestRunner=.F

Time: 0.2

FAILURES!!!

Tests run: 1, Failures: 1, Errors: 0

Running tests from a specific test case
To run all the tests in a specific test case, you may use:

diego@bruce:\~$ adb shell am instrument -w -e class com.example.aatg.
myfirstproject.test.MyFirstProjectTests com.example.aatg.myfirstproject.
test/android.test.InstrumentationTestRunner

Running a specific test by name
Additionally we have the alternative of specifying which test we want to run in the
command line:

Chapter 2

[43]

diego@bruce:\~$ adb shell am instrument -w -e class com.example.aatg.
myfirstproject.test.MyFirstProjectTests\#testSomething com.example.aatg.
myfirstproject.test/android.test.InstrumentationTestRunner

This test cannot be run in this way unless we have a no-argument constructor in our
test case — that is the reason we added it before.

Running specific tests by category
As we mentioned before, tests can be grouped into different categories using
annotations (Test Annotations) and you can run all tests in this category.

The following options can be added to the command line:

-e unit true Run all unit tests. These are tests that are not
derived from InstrumentationTestCase (and
are not performance tests).

-e func true Run all functional tests. These are tests that are
derived from InstrumentationTestCase.

-e perf true Include performance tests.
-e size {small | medium | large} Run small, medium, or large tests depending on

the annotations added to the tests.
-e annotation <annotation-name> Run tests annotated with this annotation. This

option is mutually exclusive with the size option.

In our example, we annotated the test method testSomething() with @SmallTest.
So this test is considered to be in that category and thus run, eventually with other
tests belonging to that same category, when we specify small as the test size.

This command line will run all the tests annotated with @SmallTest:

diego@bruce:\~$ adb shell am instrument -w -e size small com.example.
aatg.myfirstproject.test/android.test.InstrumentationTestRunner

Creating a custom annotation
In case you decide to sort the tests by a different criterion than their size, a custom
annotation can be created and then specified in the command line.

As an example, let's say we want to arrange them according to their importance,
so we create an annotation @VeryImportantTest.

Testing on Android

[44]

package com.example.aatg.myfirstproject.test;

/**
 * Annotation for very important tests.
 *
 * @author diego
 *
 */
public @interface VeryImportantTest {

}

Following this, we can create another test and annotate it with @VeryImportantTest.

 @VeryImportantTest
 public void testOtherStuff() {
 fail("Not implemented yet");
 }

So, as we mentioned before, we can include this annotation in the am instrument
command line to run only the annotated tests:

diego@bruce:\~$ adb shell am instrument -w -e annotation VeryImportantTest \
com.example.aatg.myfirstproject.test/android.test.
InstrumentationTestRunner

Running performance tests
We will be reviewing performance test details in Chapter 9, Performance Testing but
here we will introduce the available options to the am instrument command.

To include performance tests on your test run you should add this command line
option

-e perf true Include performance tests.

Dry run
Sometimes you may need to know only what tests will be run instead of actually
running them.

This is the option you need to add to your command line:

-e log true Display the tests to be run instead of running them.

This is useful if you are writing scripts or perhaps building other tools.

Chapter 2

[45]

Debugging tests
Your tests might have bugs too; you should assume that. In that case usual
debugging techniques apply, for example adding messages through LogCat.

If a more sophisticated debugging technique is needed you should attach the
debugger to the test runner. In order to do so, there are two main alternatives.

The first is easy — not leaving the convenience of Eclipse and not having to
remember hard-to-memorize command-line options. In the latest version of the
Android ADT plugin, the option Debug As| Android JUnit Test was added. Thus
you can set a breakpoint in your tests and use it.

To toggle a breakpoint you can select the desired line in the editor and then use the
menu option Run | Toggle Line Breakpoint. Alternatively you can slightly alter
the code of your tests to wait for the debugger connection. But don't worry, this
change is extremely simple. Add the following snippet to the constructor or any
other test you want to debug. The place where you add it is not really relevant as the
debugger would stop at breakpoints anyway. In this case, we decided to add Debug.
waitForDebugger() to the constructor as follows:

public class MyFirstProjectTests extends TestCase {

 private static final boolean DEBUG = true;

 public MyFirstProjectTests(String name) {
 super(name);

 if (DEBUG) {
 Debug.waitForDebugger();
 }

 }
 …

Testing on Android

[46]

When you run the tests as usual, using Run As | Android JUnit Test, you will
probably be asked to change the perspective.

Once it is done, you will be in a standard debugging perspective and session.

Additionally if you can't or don't want to alter your tests' code, you can set
breakpoints in it and pass the following option to am instrument.

-e debug true Attach to debugger.

Once your tests have been started, the test runner will wait for your debugger to
attach.

Execute this command line to debug the tests:

$ adb shell am instrument -w -e debug true com.example.aatg.
myfirstproject.test/android.test.InstrumentationTestRunner

You will see this line while waiting at the first breakpoint reached:

com.example.aatg.myfirstproject.test.MyFirstProjectTests:

This will continue and exit normally once the debug was attached and your
debugging session will be completed.

Chapter 2

[47]

Other command-line options
The am instrument command accepts other <name, value> pairs beside the
previously mentioned ones:

Name Value
package Fully qualified package name of one or several packages in the test

application.
Multiple values are separated by commas (,).

class A fully qualified test case class to be executed by the test runner.
Optionally this could include the test method name separated from the class
name by a hash (#).

coverage True
Runs the EMMA code coverage and writes output to a file that can also be
specified.
We will dig into details about supporting EMMA code coverage for our tests
in Chapter 10, Alternative Testing Tactics.

Summary
We have reviewed the main techniques and tools behind testing in Android.

The following is what we have covered in this chapter:

•	 Created our first Android test project as a companion for a sample Android
project.

•	 Followed the best practice of always creating our companion test project
even if initially you may think it's not needed.

•	 Created a simple test class to test the Activity in the project. We haven't
added any useful test cases yet but adding those simple ones was intended
to validate all of our infrastructure.

•	 We also ran this simple test from Eclipse and from the command line to
understand the alternatives we have. In this process, we mentioned the
Activity Manager and its command line incarnation am.

•	 Analyzed the most used command lines and explained their options.
•	 Created a custom annotation to sort our tests and demonstrated its usage.
•	 Running the tests and interpreting the results let us know how well our

application is behaving.

In the next chapter we will start analyzing the mentioned techniques, frameworks,
and tools in much greater detail and provide examples of their usage.

Building Blocks on the
Android SDK

We now know how to create test projects and run the tests. It is now time to start
digging a bit deeper to find the building blocks available to create the tests.

Thus, in this third chapter, we will be covering:

•	 Common assertions
•	 View assertions
•	 Other assertion types
•	 TouchUtils, intended to test User Interfaces
•	 Mock objects
•	 Instrumentation
•	 TestCase class hierarchies
•	 Using external libraries

We will be analyzing these components and showing examples of their use when
applicable. The examples in this chapter are intentionally split from the original
Android project containing them to let you concentrate and focus only on the subject
being presented, although the complete examples can be downloaded as explained
later. Right now, we are interested in the trees and not the forest.

Along with the examples presented, we will be identifying common, reusable
patterns that will help you in the creation of tests for your own projects.

Building Blocks on the Android SDK

[50]

The demonstration application
We have created a very simple application to demonstrate the use of some of
the tests in this chapter. The source for this application can be downloaded from
http://www.packtpub.com/support.

The next screenshot shows this application running:

Assertions in depth
Assertions are methods that should check for a condition that could be evaluated and
throw an exception if the condition is not met, thus aborting the execution of the test.

Chapter 3

[51]

The JUnit API includes the class Assert, which is the base class all of the test case
classes. It holds several assertion methods useful for writing tests. These inherited
methods test for a variety of conditions and are overloaded to support different
parameter types. They can be grouped together in different sets, depending on the
condition checked; for example:

•	 assertEquals

•	 assertFalse

•	 assertNotNull

•	 assertNotSame

•	 assertNull

•	 assertSame

•	 assertTrue

•	 fail

The condition tested is pretty obvious and easily identifiable by the method
name. Perhaps the ones that deserve some attention are assertEquals() and
assertSame(). The former when used on objects asserts that both objects passed as
parameters are equal, calling the objects' equals() method. The latter asserts that
both objects refer to the same object. If in some case equals() is not implemented by
the class, then assertEquals() and assertSame() will do the same thing.

When one of these assertions fails inside a test an AssertionFailedException
is thrown.

Occasionally, during the development process you may need to create a test that
you are not implementing at that precise time. However, you want to flag that the
creation of the test was postponed. We did this in Chapter 1, Getting Started with
Testing when we added just the test method stubs. In those cases you may use the
fail method which always fails and use a custom message indicating the condition:

 public void testNotImplementedYet() {
 fail("Not implemented yet");
 }

There is another common use for fail() that is worth mentioning. If we need to test
if a method throws an exception we can surround the code with a try-catch block
and force a fail if the exception was not thrown. For example:

public void testShouldThrowException() {
 try {
 MyFirstProjectActivity.methodThatShouldThrowException();
 fail("Exception was not thrown");
 } catch (Exception ex) {

Building Blocks on the Android SDK

[52]

 // do nothing
 }
 }

Custom messages
Speaking about custom messages, it is worth knowing that all assert methods
provide an overloaded version including a custom String message. Should the
assertion fail this custom message will be printed by the test runner instead of a
default message. This custom message is extremely useful for easily identifying the
failure once you are looking at the test report, so it is highly recommended as a best
practice to use this version.

This is an example of a trivial test using this recommendation:

 public void testMax() {
 final int a = 1;
 final int b = 2;
 final int expected = b;
 final int actual = Math.max(a, b);
 assertEquals("Expection " + expected + " but was " + actual,
 expected, actual);
 }

In the example we can see another practice that would help you organize and
understand your tests easily. This is the use of explicit names for variables holding
the expected and actual values.

Static imports
Though basic assertion methods are inherited from the Assert base class, some
other assertions need specific imports. To improve readability of your tests there is
a pattern of importing the assert methods statically from the corresponding classes.
Using this pattern instead of having:

public void testAlignment() {
 final int margin = 0;
 ...
 android.test.ViewAsserts.assertRightAligned(
 mMessage, mCapitalize, margin);
}

Chapter 3

[53]

We can simplify it by adding the static import:

import static android.test.ViewAsserts.assertRightAligned;

public void testAlignment() {
 final int margin = 0;
 assertRightAligned(mMessage, mCapitalize, margin);
}

Eclipse doesn't usually handle these static imports automatically, so if you want
content assist (Ctrl+SPACE) to add static imports for you when you type the
beginning of one of these asserts, you should add the classes to the Favorites list in
Eclipse. To do this, navigate to Window | Preferences | Java | Editor | Content
Assist | Favorites | New Type. Type in: android.test.ViewAsserts and then add
another type: android.test.MoreAsserts.

View assertions
The assertions introduced earlier handle a variety of types as parameters but they are
only intended to test simple conditions or simple objects.

For example, we have assertEquals(short expected, short actual) to test
short values, assertEquals(int expected, int actual) to test integer values,
assertEquals(Object expected, Object actual) to test any Object instance, and
so on.

Usually while testing user interfaces in Android, you will face the necessity of
more sophisticated methods, mainly related with Views. In this respect, Android
provides a class with plenty of assertions in android.test.ViewAsserts (see
http://developer.android.com/reference/android/test/ViewAsserts.html
for details) that test the relationships between Views and their absolute and relative
positions on the screen.

Building Blocks on the Android SDK

[54]

These methods are also overloaded to provide different conditions. Among the
assertions, we can find:

•	 assertBaselineAligned: Asserts that two views are aligned on their
baseline, that is their baselines are on the same y location.

•	 assertBottomAligned: Asserts that two views are bottom aligned, that is
their bottom edges are on the same y location.

•	 assertGroupContains: Asserts that the specified group contains a specific
child once and only once.

•	 assertGroupIntegrity: Asserts the specified group's integrity. The children
count should be >= 0 and each child should be non-null.

•	 assertGroupNotContains: Asserts that the specified group does not contain
a specific child.

•	 assertHasScreenCoordinates: Asserts that a view has a particular x and y
position on the visible screen.

•	 assertHorizontalCenterAligned: Asserts that the test view is horizontally
center aligned with respect to the reference view.

•	 assertLeftAligned: Asserts that two views are left aligned, that is their left
edges are on the same x location. An optional margin can also be provided.

•	 assertOffScreenAbove: Asserts that the specified view is above the visible
screen.

•	 assertOffScreenBelow: Asserts that the specified view is below the visible
screen.

•	 assertOnScreen: Asserts that a view is on the screen.
•	 assertRightAligned: Asserts that two views are right-aligned, that is

their right edges are on the same x location. An optional margin can also be
specified.

•	 assertTopAligned: Asserts that two views are top-aligned, that is their top
edges are on the same y location. An optional margin can also be specified.

•	 assertVerticalCenterAligned: Asserts that the test view is vertically
center aligned with respect to the reference view.

The following example shows how you can use ViewAsserts to test the user
interface layout:

 public void testUserInterfaceLayout() {
 final int margin = 0;
 final View origin = mActivity.getWindow().getDecorView();
 assertOnScreen(origin, mMessage);

Chapter 3

[55]

 assertOnScreen(origin, mCapitalize);
 assertRightAligned(mMessage, mCapitalize, margin);
 }

The assertOnScreen method uses an origin to start looking for the requested
Views. In this case we are using the top-level window decor View. If for some reason
you don't need to go that high in the hierarchy or if this approach is not suitable
for your test, you may use another root View in the hierarchy; for example View.
getRootView() which in our concrete example would be mMessage.getRootView().

Even more assertions
If the assertions reviewed previously do not seem to be enough for your tests' needs,
there is yet another class included in the Android framework that covers other cases.
This class is MoreAsserts (http://developer.android.com/reference/android/
test/MoreAsserts.html).

These methods are also overloaded, to support different conditions. Among these
assertions we can find:

•	 assertAssignableFrom: Asserts that an object is assignable to a class.
•	 assertContainsRegex: Asserts that an expected Regex matches any

substring of the specified String. It fails with the specified message if it does
not.

•	 assertContainsInAnyOrder: Asserts that the specified Iterable contains
precisely the elements expected, but in any order.

•	 assertContainsInOrder: Asserts that the specified Iterable contains
precisely the elements expected, in the same order.

•	 assertEmpty: Asserts that an Iterable is empty.
•	 assertEquals for some Collections not covered in JUnit asserts.
•	 assertMatchesRegex: Asserts that the specified Regex exactly matches the

String and fails with the provided message if it does not.
•	 assertNotContainsRegex: Asserts that the specified Regex does not match

any substring of the specified String, and fails with the provided message if it
does.

•	 assertNotEmpty: Asserts that some Collections not covered in JUnit
asserts are not empty.

•	 assertNotMatchesRegex: Asserts that the specified Regex does not exactly
match the specified String, and fails with the provided message if it does.

Building Blocks on the Android SDK

[56]

•	 checkEqualsAndHashCodeMethods: Utility for testing equals() and
hashCode() results at once. Tests that equals() applied to both objects
matches the specified result.

This test below checks for an error during the invocation of the capitalization method
called via a click on the UI button.

 @UiThreadTest
 public void testNoErrorInCapitalization() {
 final String msg = "this is a sample";
 mMessage.setText(msg);
 mCapitalize.performClick();
 final String actual = mMessage.getText().toString();
 final String notExpectedRegexp = "(?i:ERROR)";
 assertNotContainsRegex("Capitalization found error:",
 notExpectedRegexp, actual);
 }

Note that because this is a test that modifies the user interface, we must annotate
it with @UiThreadTest, otherwise it won't be able to alter the UI from a different
thread and we will receive the following exception:

03-02 23:06:05.826: INFO/TestRunner(610): ----- begin exception -----

03-02 23:06:05.862: INFO/TestRunner(610): android.view.ViewRoot$CalledFromW
rongThreadException: Only the original thread that created a view hierarchy can
touch its views.

03-02 23:06:05.862: INFO/TestRunner(610): at android.view.ViewRoot.
checkThread(ViewRoot.java:2932)

[...]

03-02 23:06:05.862: INFO/TestRunner(610): at android.app.Instrumentation$Instr
umentationThread.run(Instrumentation.java:1447)

03-02 23:06:05.892: INFO/TestRunner(610): ----- end exception -----

If you are not familiar with regular expressions, invest some time and visit http://
developer.android.com/reference/java/util/regex/package-summary.html,
it will be worth it!

In this particular case, we are looking for the word "ERROR" contained in the result
with a case insensitive match (setting the flag 'i' for this purpose). That is, if for some
reason capitalization didn't work in our application and it contains an error message
we will detect this condition with the assertion.

Chapter 3

[57]

The TouchUtils class
Sometimes, when testing UIs, it is helpful to simulate different kinds of touch
events. These touch events can be generated in many different ways but
probably android.test.TouchUtils is the simplest to use. This class provides
reusable methods for generating touch events in test cases that are derived from
InstrumentationTestCase.

Featured methods allow simulated interaction with the UI under test. TouchUtils
provides the infrastructure to inject the events using the correct UI or main thread,
so no special handling is needed and you don't need to annotate the test using
@UIThreadTest.

The mentioned methods support:

•	 Clicking on a View and releasing it
•	 Tapping on a View, that is touching it and quickly releasing
•	 Long clicking on a View
•	 Dragging the screen
•	 Dragging Views

The following test represents a typical usage of TouchUtils:

 public void testListScrolling() {
 mListView.scrollTo(0, 0);
 TouchUtils.dragQuarterScreenUp(this, mActivity);
 TouchUtils.dragQuarterScreenUp(this, mActivity);
 TouchUtils.dragQuarterScreenUp(this, mActivity);
 TouchUtils.dragQuarterScreenUp(this, mActivity);
 TouchUtils.tapView(this, mListView);

 final int expectedItemPosition = 6;
 final int actualItemPosition =
 mListView.getFirstVisiblePosition();
 assertEquals("Wrong position",
 expectedItemPosition, actualItemPosition);

 final String expected = "Anguilla";
 final String actual = mListView.getAdapter().
 getItem(expectedItemPosition).toString();
 assertEquals("Wrong content", actual, expected);
 }

Building Blocks on the Android SDK

[58]

This test does the following:

1. Repositions the list at the beginning to start from a known condition.
2. Scroll the list several times.
3. Check the first visible position to see that the list was correctly scrolled.
4. Check the content of the element to verify that it is correct.

Even the most complex UIs can be tested in this way and it will help you detect a
variety of conditions that could potentially affect the user experience.

Mock Objects
We visited the Mock Objects provided by the Android testing framework in Chapter
1, Getting Started with Testing and evaluated the concerns regarding not using real
objects in order to isolate our tests from the surrounding environment.

The next chapter deals with Test Driven Development, and if we were Test Driven
Development purists we may argue about the use of mock objects and be more
inclined to use real ones. Martin Fowler calls these two styles the Classical and Mockist
Test Driven Development dichotomy in his great article Mocks Aren't Stubs. It can be
read online at http://www.martinfowler.com/articles/mocksArentStubs.html.

Independent of that discussion, we are introducing here the available Mock Objects
as one of the available building blocks because sometimes introducing mock objects
in our tests is recommended, desirable, useful, or even unavoidable.

Android SDK provides some classes in the subpackage android.test.mock to help
us in this quest:

•	 MockApplication: A mock implementation of the Application class. All
methods are non-functional and throw UnsupportedOperationException.

•	 MockContentProvider: A mock implementation of ContentProvider. All
methods are non-functional and throw UnsupportedOperationException.

•	 MockContentResolver: A mock implementation of the ContentResolver
class that isolates the test code from the real content system. All methods are
non-functional and throw UnsupportedOperationException.

•	 MockContext: A mock Context class. This can be used to inject
other dependencies. All methods are non-functional and throw
UnsupportedOperationException.

•	 MockCursor: A mock Cursor class that isolates the test code from real
Cursor implementation. All methods are non-functional and throw
UnsupportedOperationException.

Chapter 3

[59]

•	 MockDialogInterface: A mock implementation of
DialogInterface class. All methods are non-functional and throw
UnsupportedOperationException.

•	 MockPackageManager: A mock implementation of PackageManager class. All
methods are non-functional and throw UnsupportedOperationException.

•	 MockResources: A mock Resources class. All methods are non-functional
and throw UnsupportedOperationException.

As we mentioned, all of these classes have non-functional methods that throw
UnsupportedOperationException if used. So, if you need to use some of these
methods or if you detect that your test is failing with this Exception, you should
extend one of these base classes and provide the required functionality.

MockContext overview
The MockContext class implements all methods in a non-functional way and throws
UnsupportedOperationException. So, if you forgot to implement one of the needed
methods for the test case you are handling, this exception will be thrown and you
can instantly detect the situation.

This mock can be used to inject other dependencies, mocks, or monitors into the
classes under test. A finer level of control can be obtained by extending this class.

Extend this class to provide your desired behavior, overriding the corresponding
methods.

As we will cover next, the Android SDK provides some pre-built mock Contexts
that are useful in some cases.

The IsolatedContext class
In your tests you may find the need to isolate the Activity under test to prevent
interaction with other components. This can be a complete isolation, but sometimes
this isolation avoids interacting with other components and for your Activity to
behave correctly some connection with the system is still required.

For those cases, the Android SDK provides android.test.IsolatedContext, a
mock Context that prevents interaction with most of the underlying system but also
satisfies the needs of interacting with other packages or components like Services
or ContentProviders.

Building Blocks on the Android SDK

[60]

Alternate route to file and database
operations
In some cases, all we need is to be able to provide an alternate route to the file and
database operations. For example, if we are testing the application on a real device,
perhaps we don't want to affect existing files during our tests.

Such cases can take advantage of another class that is not part of the android.test.
mock subpackage but of android.test instead: RenamingDelegatingContext.

This class lets us alter operations on files and databases by having a prefix that is
specified in the constructor. All other operations are delegated to the delegating
Context that you must specify in the constructor too.

Suppose our Activity under test uses some files we want to control in some
way, maybe introducing specialized content or a fixture to drive our tests
and we don't want to or we can't use the real files. In this case we create a
RenamingDelegatingContext specifying a prefix; we add this prefix to the
replacement file names and our unchanged Activity will use them instead.

For example, if our Activity tries to access a file named birthdays.txt, and we
provide RenamingDelegatingContext specifying the prefix "test", then this same
Activity will access the file testbirthdays.txt instead, when it is being tested.

The MockContentResolver class
The MockContentResolver class implements all methods in a non-functional way
and throws the exception UnsupportedOperationException if you attempt to use
them. The reason for this class is to isolate tests from the real content.

Let's say your application uses a ContentProvider maybe from more than
one Activity. You can create unit-tests for this ContentProvider using
ProviderTestCase2, which we will be looking at shortly, and in some cases
implementing a RenamingDelegatingContext as previously described.

But when we try to produce functional or integration tests of our Activities against
the ContentProvider, it's not so evident what test case to use. The most obvious
choice is ActivityInstrumentationTestCase2 if your functional tests mainly
simulate user experience because you may need sendKeys() or similar methods,
which are readily available in these tests.

Chapter 3

[61]

The first problem you may encounter then is that it's not clear where to inject
a MockContentResolver in your test to be able to use a test database instance
or database fixture with your ContentProvider. There's no way to inject a
MockContext either.

This problem will be solved in Chapter 7, Testing Recipes where further details are
provided.

The TestCase base class
This is the base class of all other test cases in the JUnit framework. It implements the
basic methods that we were analyzing in previous examples.

TestCase also implements the junit.framework.Test interface.

This is the UML class diagram of TestCase and the Test interface.

Test cases should either extend TestCase directly or one of its descendants.

There are other methods beside the ones explained before.

The no-argument constructor
All test cases require a default constructor because sometimes, depending on the test
runner used, this is the only constructor that is invoked. It is also used for serialization.

According to the documentation, this method is not intended to be used by mere
mortals without calling setName(String name).

Building Blocks on the Android SDK

[62]

A common pattern is to use a default constant test case name in this constructor and
invoke the Given name constructor afterwards.

public class MyTestCase extends TestCase {
 public MyTestCase() {
 this("MyTestCase Default Name");
 }

 public MyTestCase(String name) {
 super(name);
 }
}

The given name constructor
This constructor takes a name as an argument to give to the test case. It will appear
in test reports and will be helpful when you try to identify failed tests.

The setName() method
There are some classes extending TestCase that don't provide a given name
constructor. In such cases the only alternative is to call setName(String name).

The AndroidTestCase base class
This class can be used as a base class for general purpose Android test cases.

This is the UML class diagram of AndroidTestCase and the closest related classes.

Chapter 3

[63]

Use this class when you need access to an Activity Context like Resources, databases,
or files in the filesystem. Context is stored as a field in this class conveniently named
mContext and can be used inside the tests if needed. The getContext() method can
be used too.

Tests based on this class can start more than one Activity using
Context.startActivity().

There are various test cases in Android SDK that extend this base class:

•	 ApplicationTestCase<T extends Application>
•	 ProviderTestCase2<T extends ContentProvider>
•	 ServiceTestCase<T extends Service>

The assertActivityRequiresPermission()
method
The signature for this method is as follows:

public void assertActivityRequiresPermission (String packageName,
 String className, String permission)

Chapter 3

[65]

It takes two parameters:

•	 uri: The URI that requires a permission to query
•	 permission: A String containing the permission to query

If a SecurityException is generated containing the specified permission, this
assertion is validated.

Example
This test tries to read contacts and verifies that the correct SecurityException
is generated:

 public void testReadingContacts() {
 final Uri URI = ContactsContract.AUTHORITY_URI;
 final String PERMISSION =
 android.Manifest.permission.READ_CONTACTS;
 assertReadingContentUriRequiresPermission(URI, PERMISSION);
 }

The assertWritingContentUriRequiresPermission()
method
The signature for this method is as follows:

public void assertWritingContentUriRequiresPermission(
 Uri uri, String permission)

Description
This assertion method checks that inserting into a specific URI requires the
permission provided as a parameter.

It takes 2 parameters:

•	 uri: The URI that requires a permission to query
•	 permission: A String containing the permission to query

If a SecurityException containing the specified permission is generated, this
assertion is validated.

Building Blocks on the Android SDK

[66]

Example
This test tries to write to Contacts and verifies that the correct SecurityException
is generated:

 public void testWritingContacts() {
 final Uri URI = ContactsContract.AUTHORITY_URI;
 final String PERMISSION =
 android.Manifest.permission.WRITE_CONTACTS;
 assertWritingContentUriRequiresPermission(URI, PERMISSION);
 }

Instrumentation
Instrumentation is instantiated by the system before any of the application code is run,
allowing it to monitor all of the interaction between the system and the application.

As with many other Android application components, Instrumentation
implementations are described in the AndroidManifest.xml under the tag
<instrumentation>. For example, if you open our tests' AndroidManifest.xml and
look inside you will find:

<instrumentation
 android:targetPackage="com.example.aatg.myfirstproject"
 android:name="android.test.InstrumentationTestRunner"
 android:label="MyFirstProject Tests"/>

This is the Instrumentation declaration.

The targetPackage attribute defines the name of the package under test, name
the name of the test runner, and label the text that will be displayed when this
instrumentation is listed.

Please note as mentioned earlier, this declaration belongs to the test project and not
to the main project.

The ActivityMonitor inner class
As mentioned earlier, the Instrumentation class is used to monitor the interaction
between the system and the application or Activities under test. The inner class
Instrumentation.ActivityMonitor allows monitoring of a single Activity within
an application.

Chapter 3

[67]

Example
Let's pretend that we have a TextField in our Activity that holds a URL and has
its auto link property set:

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/home"
 android:layout_gravity="center" android:gravity="center"
 android:autoLink="web" android:id="@+id/link" />

If we want to verify that when clicked the hyperlink is correctly followed and a
Brower is invoked, we can create a test like:

 public void testFollowLink() {
 final Instrumentation inst = getInstrumentation();
 IntentFilter intentFilter = new IntentFilter(
 Intent.ACTION_VIEW);
 intentFilter.addDataScheme("http");
 intentFilter.addCategory(Intent.CATEGORY_BROWSABLE);
 ActivityMonitor monitor = inst.addMonitor(
 intentFilter, null, false);
 assertEquals(0, monitor.getHits());
 TouchUtils.clickView(this, mLink);
 monitor.waitForActivityWithTimeout(5000);
 assertEquals(1, monitor.getHits());
 inst.removeMonitor(monitor);
 }

Here, we:

1. Get the instrumentation.
2. Add a monitor based on an IntentFilter.
3. Wait for the activity.
4. Verify that the monitor hits were incremented.
5. Remove the monitor.

Using monitors we can test even the most complex interactions with the system and
other Activities. This is a very powerful tool for creating integration tests.

Building Blocks on the Android SDK

[68]

The InstrumentationTestCase class
The InstrumentationTestCase class is the direct or indirect base class for various
test cases that have access to Instrumentation. This is the list of the most important
direct and indirect subclasses:

•	 ActivityTestCase

•	 ProviderTestCase2<T extends ContentProvider>
•	 SingleLaunchActivityTestCase<T extends Activity>
•	 SyncBaseInstrumentation

•	 ActivityInstrumentationTestCase2<T extends Activity>
•	 ActivityUnitTestCase<T extends Activity>

This is the UML class diagram of InstrumentationTestCase and the closest
related classes:

InstrumentationTestCase is in the android.test package, not shown
in the image, and extends junit.framework.TestCase which extends
junit.framework.Assert.

Building Blocks on the Android SDK

[70]

 KeyEvent.KEYCODE_E,
 KeyEvent.KEYCODE_E,
 KeyEvent.KEYCODE_E,
 KeyEvent.KEYCODE_Y,
 KeyEvent.KEYCODE_ALT_LEFT,
 KeyEvent.KEYCODE_1,
 KeyEvent.KEYCODE_DPAD_DOWN,
 KeyEvent.KEYCODE_ENTER);

 final String expected = "HEEEY!";
 final String actual = mMessage.getText().toString();

 assertEquals(expected, actual);
 }

Here, we are sending H, E, and Y letter keys, the exclamation mark, and then the
Enter key using their integer representations to the Activity under test.

Alternatively, we can create a String concatenating the keys we desire to send
discarding the KEYCODE prefix and separating them with spaces that are
ultimately ignored:

 public void testSendKeyString() {
 try {
 runTestOnUiThread(new Runnable() {

 public void run() {
 mMessage.requestFocus();
 }
 });
 } catch (Throwable e) {
 fail("Couldn't set focus");
 }

 sendKeys("H 3*E Y ALT_LEFT 1 DPAD_DOWN ENTER");

 final String expected = "HEEEY!";
 final String actual = mMessage.getText().toString();

 assertEquals(expected, actual);
 }

Here, we did exactly the same as the previous test but using a String. Note that
every key in the String can be prefixed by a repeating factor followed by '*' and the
key to be repeated. We used 3*E in our previous example which is the same as "E E
E", three times the letter E.

If sending repeated keys is what we need in our tests, there is also another
alternative that is specifically intended for these cases:

Chapter 3

[71]

 public void testSendRepeatedKeys() {
 try {
 runTestOnUiThread(new Runnable() {

 public void run() {
 mMessage.requestFocus();
 }
 });
 } catch (Throwable e) {
 fail("Couldn't set focus");
 }

 sendRepeatedKeys(1, KeyEvent.KEYCODE_H,
 3, KeyEvent.KEYCODE_E,
 1, KeyEvent.KEYCODE_Y,
 1, KeyEvent.KEYCODE_ALT_LEFT,
 1, KeyEvent.KEYCODE_1,
 1, KeyEvent.KEYCODE_DPAD_DOWN,
 1, KeyEvent.KEYCODE_ENTER);

 final String expected = "HEEEY!";
 final String actual = mMessage.getText().toString();

 assertEquals(expected, actual);
 }

This is the same test implemented in a different manner. Each key is preceded by the
repetition number.

The runTestOnUiThread helper method
The runTestOnUiThread method is a helper method for running portions of a test on
the UI thread.

Alternatively, as we have discussed before, to run a test on the UI thread we can
annotate it with @UiThreadTest.

But sometimes, we need to run only parts of the test on the UI thread because other
parts of it are not suitable to run on that thread, or are using helper methods that
provide the infrastructure to use that thread, like TouchUtils methods.

The most common pattern is changing the focus before sending keys, so the keys are
correctly sent to the objective View:

 public void testCapitalizationSendingKeys() {

 final String keysSequence = "T E S T SPACE M E";

 runTestOnUiThread(new Runnable() {

Building Blocks on the Android SDK

[72]

 public void run() {
 mMessage.requestFocus();
 }
 });

 mInstrumentation.waitForIdleSync();

 sendKeys(keysSequence);
 TouchUtils.clickView(this, mCapitalize);
 final String expected = "test me".toUpperCase();
 final String actual = mMessage.getText().toString();
 assertEquals(expected, actual);
 }

We request the focus for the mMessage EditText before waiting for the application
to be idle, using Instrumentation.waitForIdleSync(), and then sending the key
sequence to it. Afterwards, using TouchUtils.clickView(), we click the Button to
finally check the content of the field after the conversion.

The ActivityTestCase class
This is mainly a class holding common code for other test cases that access
Instrumentation.

You may use this class if you are implementing specific behavior for test cases and
existing alternatives don't fit your requirements.

If this is not the case, you may find the following options more suitable for your
requirements:

•	 ActivityInstrumentationTestCase2<T extends Activity>
•	 ActivityUnitTestCase<T extends Activity>

This is the UML class diagram of ActivityTestCase and the closest related classes:

Building Blocks on the Android SDK

[74]

The ActivityInstrumentationTestCase2
class
This class will probably be the one you use the most in writing Android test cases. It
provides functional testing of a single Activity.

This class has access to Instrumentation and will create the Activity under
test using the system infrastructure by calling InstrumentationTestCase.
launchActivity().

This is the UML class diagram showing ActivityInstrumentationTestCase2 and
the closest related classes:

 The class android.test.ActivityInstrumentationTestCase2 extends android.
test.ActivityTestCase. This diagram also shows ActivityUnitTestCase,
which also extends ActivityTestCase. Class template parameter T represents the
Activity's class.

The Activity can then be manipulated and monitored after creation.

If you need to provide a custom Intent to start your Activity, before invoking
getActivity() you may inject an Intent with setActivityIntent(Intent intent).

Chapter 3

[75]

This functional test would be very useful for testing interaction through the user
interface as events can be injected to simulate user behavior.

The constructor
There is only one public, non deprecated constructor for this class. This is:

ActivityInstrumentationTestCase2(Class<T> activityClass)

It should be invoked with an instance of the Activity class for the same Activity
used as a class template parameter.

The setUp method
As we have seen before in Chapter 1, Getting Started with Testing the setUp method is
the best place to initialize the test case fields and other fixture components requiring
initialization.

This is an example showing some of the patterns that you may find repeatedly in your
test cases:

 protected void setUp() throws Exception {
 super.setUp();
 // this must be called before getActivity()
 // disabling touch mode allows for sending key events
 setActivityInitialTouchMode(false);
 mActivity = getActivity();
 mInstrumentation = getInstrumentation();
 mLink = (TextView) mActivity.findViewById(
 com.example.aatg.myfirstproject.R.id.link);
 mMessage = (EditText) mActivity.findViewById(
 com.example.aatg.myfirstproject.R.id.message);
 mCapitalize = (Button) mActivity.findViewById(com.example.
 aatg.myfirstproject.R.id.capitalize);
 }

We performed the following actions:

1. Invoke the super method. This is a JUnit pattern that should be followed here
to ensure correct operation.

2. Disable touch mode. This should be done before the Activity is created
by invoking getActivity() to have some effect. It sets the initial touch
mode of the Activity under test to disabled. Touch mode is a fundamental
Android UI concept and is discussed in http://developer.android.com/
resources/articles/touch-mode.html.

Building Blocks on the Android SDK

[76]

3. Start the Activity using getActivity().
4. Get the instrumentation. We have access to the Instrumentation because

ActivityInstrumentationTestCase2 extends InstrumentationTestCase.
5. Find the Views and set fields. In these operations, note that the R class used is

from the target package, not from the tests.

The tearDown method
Usually this method cleans up what was initialized in setUp.

In this example, we are only invoking the super method:

 protected void tearDown() throws Exception {
 super.tearDown();
 }

The testPreconditions method
This method is used to check for some initial conditions to run our tests correctly.

Despite its name, it is not guaranteed that this test is run before other tests. However,
it is a good practice to collect all of the precondition tests under this custom name.

This is an example of a testPrecondition test:

 public void testPreconditions() {
 assertNotNull(mActivity);
 assertNotNull(mInstrumentation);
 assertNotNull(mLink);
 assertNotNull(mMessage);
 assertNotNull(mCapitalize);
 }

We check only for not null values, but in this case asserting this we can also be sure
that the Views were found using the specific IDs and that their types were correct,
otherwise they are assigned in setUp.

The ProviderTestCase2<T> class
This is a test case designed to test the ContentProvider classes.

This is the UML class diagram of ProviderTestCase2 and the closest related classes:

Chapter 3

[77]

The class android.test.ProviderTestCase2 also extends AndroidTestCase. Class
template parameter T represents the ContentProvider under test. Implementation
of this test uses an IsolatedContext and a MockContentResolver, mock objects
that we described earlier in this chapter.

The constructor
There is only one public, non deprecated constructor for this class. This is:

ProviderTestCase2(Class<T> providerClass, String providerAuthority)

It should be invoked with an instance of the ContentProvider class for the same
ContentProvider used as a class template parameter.

The second parameter is the authority for the provider, usually defined as
AUTHORITY constant in the ContentProvider class.

Building Blocks on the Android SDK

[78]

Example
This is a typical example of a ContentProvider test:

 public void testQuery() {
 Uri uri = Uri.withAppendedPath(
 MyProvider.CONTENT_URI, "dummy");
 final Cursor c = mProvider.query(uri, null, null, null, null);
 final int expected = 2;
 final int actual = c.getCount();
 assertEquals(expected, actual);
 }

In this test we are expecting the query to return a Cursor containing 2 rows. This is
just an example—use the number of rows that applies for your particular case, and
asserting this condition.

Usually in the setUp method we obtain a reference to the provider, mProvider in
this example, using getProvider().

What is interesting to note is that because these tests are using
MockContentResolver and IsolatedContext, the content of the real database is not
affected and we can also run tests like this one:

 public void testDelete() {
 Uri uri = Uri.withAppendedPath(
 MyProvider.CONTENT_URI, "dummy");
 final int actual = mProvider.delete(
 uri, "_id = ?", new String[] { "1" });
 final int expected = 1;
 assertEquals(expected, actual);
 }

This test deletes some content of the database, but the database is restored to its
initial content so as not to affect other tests.

The ServiceTestCase<T>
This is a test case specially created to test Services.

This class, ServiceTestCase<T>, extends AndroidTestCase as is shown in this
UML class diagram:

Chapter 3

[79]

Methods to exercise the service lifecycle like setupService, startService,
bindService, and shutDownService are also included in this class.

The constructor
There is only one public, non deprecated constructor for this class. This is:

ServiceTestCase(Class<T> serviceClass)

It should be invoked with an instance of the Service class for the same Service
used as a class template parameter.

Building Blocks on the Android SDK

[80]

The TestSuiteBuilder.FailedToCreateTests
class
The class TestSuiteBuilder.FailedToCreateTests is a special TestCase used to
indicate a failure during the build() step.

That is, if during the test suite creation an error is detected, you will be receiving an
exception like this one indicating the failure to construct the test suite:

01-02 06:31:26.656: INFO/TestRunner(4569): java.lang.RuntimeException:
Exception during suite construction

01-02 06:31:26.656: INFO/TestRunner(4569): at android.test.
suitebuilder.TestSuiteBuilder$FailedToCreateTests.testSuiteConstructionFa
iled(TestSuiteBuilder.java:239)

01-02 06:31:26.656: INFO/TestRunner(4569): at java.lang.reflect.
Method.invokeNative(Native Method)

[...]

01-02 06:31:26.656: INFO/TestRunner(4569): at android.test.
InstrumentationTestRunner.onStart(InstrumentationTestRunner.java:520)

01-02 06:31:26.656: INFO/TestRunner(4569): at android.app.Instrumenta
tion$InstrumentationThread.run(Instrumentation.java:1447)

Using external libraries in test projects
Your main Android project may require external libraries. Let's pretend that in one
Activity we are creating objects from a class that is part of an external library. For
the sake of our example, let's say the library is called libdummy-0.0.1-SNAPSHOT.
jar and the mentioned class is Dummy. A dummy class that doesn't do anything
is used here only to not divert your attention from the main objective which is
including any library you may need, not just a particular one.

So our Activity would look like this:

package com.example.aatg.myfirstproject;

import com.example.libdummy.Dummy;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

public class MyFirstProjectActivity extends Activity {

Chapter 3

[81]

 private EditText mMessage;
 private Button mCapitalize;
 private Dummy mDummy;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mMessage = (EditText) findViewById(R.id.message);
 mCapitalize = (Button) findViewById(R.id.capitalize);

 mCapitalize.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {
 mMessage.setText(mMessage.getText().toString().
 toUpperCase());
 }
 });

 mDummy = new Dummy();
 }

 public static void methodThatShouldThrowException()
 throws Exception {
 throw new Exception("This is an exception");
 }

 public Dummy getDummy() {
 return mDummy;
 }
}

This library should be added to the project's Java Build Path as usual as a JAR or
external JAR depending on where the file is located.

Now, let's create a simple test. From our previous experience, we know that if we
need to test an Activity we should use ActivityInstrumentationTestCase2, and
this is precisely what we will do. Our simple test will be:

 public void testDummy() {
 assertNotNull(mActivity.getDummy());
 }

Building Blocks on the Android SDK

[82]

Unfortunately, this test won't compile. The problem is that we are referencing a
missing class. Our test project doesn't know anything about Dummy class or the
libdummy library and hence we receive this error:

The method getDummy() from the type DummyActivity refers to the missing
type Dummy.

Lets add the libdummy library to the test project's properties using the Add External
JARs... button:

However, doing this will lead us to another error. If you run the tests, these are the
errors you'll receive:

08-10 00:26:11.820: ERROR/AndroidRuntime(510): FATAL EXCEPTION: main

08-10 00:26:11.820: ERROR/AndroidRuntime(510): java.lang.IllegalAccessError:
Class ref in pre-verified class resolved to unexpected implementation

...[lines removed for brevity]

08-10 00:26:11.820: ERROR/AndroidRuntime(510): at com.android.internal.os.Zy
goteInit$MethodAndArgsCaller.run(ZygoteInit.java:868)

Chapter 3

[83]

08-10 00:26:11.820: ERROR/AndroidRuntime(510): at com.android.internal.
os.ZygoteInit.main(ZygoteInit.java:626)

08-10 00:26:11.820: ERROR/AndroidRuntime(510): at dalvik.system.NativeStart.
main(Native Method)

The reason for this problem is that adding the library to both projects results in
the same classes being inserted into both APKs. The tester project, however, loads
classes from the tested project. The classes in the library will be loaded from the
tester project but the classes in the tested project will refer to the copies in the tested
project's APK. Hence the reference error.

The way to solve this problem is to export the libdummy entry to dependent projects
and remove the JAR from the test project Java Build Path.

The following screenshot shows how to do this in the main project's properties:

Note that libdummy-0.0.1-SNAPSHOT.jar is now checked in Order and Export.

Building Blocks on the Android SDK

[84]

Summary
We investigated the most relevant building blocks and reusable patterns for creating
our tests. Along this journey we:

•	 Used several types of assertions from the most common ones found usually
in JUnit tests to the most specialized assertions found in the Android SDK to
exercise application UIs

•	 Explained mock objects and their use in Android tests
•	 Exemplified the use of the different tests available in the Android SDK from

unit to functional tests
•	 Illustrated the relationships between the most common classes using UML

class diagrams to clearly understand them
•	 Dug into Instrumentation and different monitors available for Activities

Now that we have all the building blocks it is time to start creating more and more
tests to acquire the experience needed to master the technique.

The next chapter introduces Test Driven Development using a sample project to
expose all of its advantages.

Test Driven Development
This chapter introduces the Test Driven Development discipline. We will start with a
general revision and later on move to the concepts and techniques closely related to
the Android platform.

This is a code intensive chapter, so be prepared to type as you read, which would be
the best way to seize the examples provided.

In this chapter, we:

•	 Introduce and explain Test Driven Development
•	 Analyze its advantages
•	 Introduce a potential real life example
•	 Understand requirements by writing the tests
•	 Evolve through the project by applying TDD
•	 Get the application that fully complies with the requirements

Getting started with TDD
Briefly, Test Driven Development is the strategy of writing tests along the
development process. These test cases are written in advance of the code that is
supposed to satisfy them.

A single test is added, then the code needed to satisfy the compilation of this test and
finally the full set of test cases is run to verify their results.

This contrasts with other approaches to the development process where the tests are
written at the end when all the coding has been done.

Chapter 4

[87]

Running all tests
Once the test is written the obvious following step is to run it, altogether with other
tests we have written so far. Here, the importance of an IDE with built-in support
of the testing environment is perhaps more evident than in other situations and this
could cut the development time by a good fraction. It is expected that firstly, our test
fails as we still haven't written any code!

To be able to complete our test, we usually write additional code and take design
decisions. The additional code written is the minimum possible to get our test to
compile. Consider here that not compiling is failing.

When we get the test to compile and run, if the test fails then we try to write the
minimum amount of code necessary to make the test succeed. This may sound
awkward at this point but the following code example in this chapter will help you
understand the process.

Optionally, instead of running all tests again you can just run the newly added test
first to save some time as sometimes running the tests on the emulator could be
rather slow. Then run the whole test suite to verify that everything is still working
properly. We don't want to add a new feature by breaking an existing one.

Refactoring the code
When the test succeeds, we refactor the code added to keep it tidy, clean, and minimal.

We run all the tests again, to verify that our refactoring has not broken anything and
if the tests are again satisfied, and no more refactoring is needed we finish our task.

Running the tests after refactoring is an incredible safety net which has been put in
place by this methodology. If we made a mistake refactoring an algorithm, extracting
variables, introducing parameters, changing signatures or whatever your refactoring
is composed of, this testing infrastructure will detect the problem. Furthermore, if
some refactoring or optimization could not be valid for every possible case we can
verify it for every case used by the application and expressed as a test case.

Test Driven Development

[88]

What is the advantage?
Personally, the main advantage I've seen so far is that you focus your destination
quickly and is much difficult to divert implementing options in your software that
will never be used. This implementation of unneeded features is a wasting of your
precious development time and effort. And as you may already know, judiciously
administering these resources may be the difference between successfully reaching
the end of the project or not. Probably, Test Driven Development could not be
indiscriminately applied to any project. I think that, as well as any other technique,
you should use your judgment and expertise to recognize where it can be applied
and where not. But keep this in mind: there are no silver bullets.

The other advantage is that you always have a safety net for your changes. Every time
you change a piece of code, you can be absolutely sure that other parts of the system
are not affected as long as there are tests verifying that the conditions haven't changed.

Understanding the requirements
To be able to write a test about any subject, we should first understand the Subject
under test.

We also mentioned that one of the advantages is that you focus your destination
quickly instead of revolving around the requirements.

Translating requirements into tests and cross referencing them is perhaps the
best way to understand the requirements, and be sure that there is always an
implementation and verification for all of them. Also, when the requirements change
(something that is very frequent in software development projects), we can change
the tests verifying these requirements and then change the implementation to be sure
that everything was correctly understood and mapped to code.

Creating a sample project—the
Temperature Converter
Our examples will revolve around an extremely simple Android sample project. It
doesn't try to show all the fancy Android features but focuses on testing and gradually
building the application from the test, applying the concepts learned before.

Let's pretend that we have received a list of requirements to develop an Android
temperature converter application. Though oversimplified, we will be following the
steps you normally would to develop such an application. However, in this case we
will introduce the Test Driven Development techniques in the process.

Chapter 4

[89]

The list of requirements
Most usual than not, the list of requirements is very vague and there is a high
number of details not fully covered.

As an example, let's pretend that we receive this list from the project owner:

•	 The application converts temperatures from Celsius to Fahrenheit
and vice-versa

•	 The user interface presents two fields to enter the temperatures, one for
Celsius other for Fahrenheit

•	 When one temperature is entered in one field the other one is automatically
updated with the conversion

•	 If there are errors, they should be displayed to the user, possibly using the
same fields

•	 Some space in the user interface should be reserved for the on screen
keyboard to ease the application operation when several conversions are
entered

•	 Entry fields should start empty
•	 Values entered are decimal values with two digits after the point
•	 Digits are right aligned
•	 Last entered values should be retained even after the application is paused

User interface concept design
Let's assume that we receive this conceptual user interface design from the User
Interface Design team:

Test Driven Development

[90]

Creating the projects
Our first step is to create the project. As we mentioned earlier, we are creating
a main and a test project. The following screenshot shows the creation of the
TemperatureConverter project (all values are typical Android project values):

When you are ready to continue you should press the Next > button in order to
create the related test project.

Chapter 4

[91]

The creation of the test project is displayed in this screenshot. All values will be
selected for you based on your previous entries:

Chapter 4

[93]

Here, you need to enter the following:

Field Description
New JUnit 3 test JUnit 3 is the version supported by Android. Always use this

option.
Source folder: The default source folder for the tests. The default value should be

fine.
Package: The default package for the tests. This is usually the default

package name for your main project followed by the subpackage
test.

Name: The name of the class for this test. The best practice here is to use
the same class name of the class under test followed by the word
Tests, in plural because most probably we will be hosting several
tests in it.

Test Driven Development

[94]

Field Description
Superclass: We should select our superclass depending on what and how we

are going to test. In Chapter 3, Building Blocks on the Android SDK,
we reviewed the available alternatives. Use it as a reference when
you try to decide what superclass to use.

In this particular case and because we are testing a single
Activity and using the system infrastructure we use
ActivityInstrumentationTestCase2. Also note that as
ActivityInstrumentationTestCase2 is a generic class, we
need the template parameter as well. This is the Activity under
test which in our case is TemperatureConverterActivity.

We can ignore the warning indicating that the superclass does not
exist for now; we will be fixing the imports soon.

Method stubs: Select the method stubs you want created. If at this point you are
not sure what you would need, then select them all, as default
stubs will be invoking their super counterparts.

Do you want to add
comments ?

Generates Javadoc comments for the stub test method.

Usually, unless you have changed the default template in Code
Templates, the generated comments will be:

 /**

 * Test method for {@link method()}.

 */
Class under test: This is the class we are testing—

TemperatureConverterActivity in this case. This is the
most useful in other situations where the class under test has
been implemented already and we would be able to select the list
of methods we would like to test. Remember that in our case we
haven't implemented the class yet so we will be presented with the
only method that is in the Android ADT plugin template, which is
onCreate.

This situation, where the class under test has not been implemented yet and only
the method created by the Android ADT is available, is better understood pressing
Next >. Here, the list of methods available to test is presented, and in our case we
don't have any methods implemented yet other than onCreate and the inherited
methods from Activity.

Chapter 4

[95]

This dialog has the following components:

Field Description
Available methods: This is the list of all the methods we may want to test.

When methods are overloaded, test names are generated
accordingly to cope with the situation and parameter names
are mangled into the test name.

Create final method stubs Convenience set to add the final modifier to stub methods.

The final modifier prevents these methods from being
overridden by a subclass.

Create tasks for generated
test methods

Creates a TODO comment in the test case.

Test Driven Development

[96]

Either way, we may select onCreate(Bundle) to generate the testOnCreateBundle
method for us, but we are leaving the selection list empty for now to avoid extra
complexity of this simple demonstration application.

We now notice that our automatically generated class has some errors we need to fix
before running. Otherwise the errors will prevent the test from running.

•	 First we should add the missing imports, using the shortcut Shift+Ctrl+O.
•	 Second, the problem we need to fix has been described before in Chapter

3, Building Blocks on the Android SDK under the section The no-argument
constructor. As this pattern dictates, we need to implement it:
 public TemperatureConverterActivityTests() {
 this("TemperatureConverterActivityTests");
 }

 public TemperatureConverterActivityTests(String name) {
 super(TemperatureConverterActivity.class);
 setName(name);
 }

•	 We added the no argument constructor
TemperatureConverterActivityTests(). From this constructor, we invoke
the constructor that takes a name as a parameter.

•	 Finally, in this given name constructor, we invoke the super constructor and
set the name.

To verify that everything has been set up in place, you may run the tests by using
Run as | Android JUnit Test. There are no tests to run yet but at least we can verify
that the infrastructure supporting our tests is already in place.

Creating the fixture
We can start creating our test fixture by populating the setUp method with the
elements we need in our tests. Almost unavoidable, in this case, is the use of the
Activity under test, so let's prepare for the situation and add it to the fixture:

 protected void setUp() throws Exception {
 super.setUp();
 mActivity = getActivity();
 }

Let's create the mActivity field as well as the one proposed by Eclipse.

Chapter 4

[97]

The ActivityInstrumentationTestCase2.getActivity() method has a side
effect. If the Activity under test is not running, it is started. This may change the
intention of a test if we use getActivity() as a simple accessor several times in a
test and for some reason the Activity finishes or crashes before test completion. We
will be inadvertently restarting the Activity, that is why in our tests we discourage
the use of getActivity() in favor of having it in the fixture.

Test preconditions
We mentioned this before and this can be identified as another pattern. It's very useful
to test all the preconditions and be sure that our fixture has been created correctly.

 public final void testPreconditions() {
 assertNotNull(mActivity);
 }

That is, let's check that our fixture is composed by "not null" values.

We can run the tests to verify that everything is correct and green as shown
in this screenshot:

Creating the user interface
Back to our Test Driven Development track, we need from our concise list of
requirements that there be two entries for Celsius and Fahrenheit temperatures
respectively. So let's add them to our test fixture.

They don't exist yet, and we haven't even started designing the user interface layout,
but we know that there should be two entries like these for sure.

This is the code you should add to the setUp() method:

mCelsius = (EditText)
 mActivity.findViewById(com.example.aatg.tc.R.id.celsius);
mFahrenheit = (EditText)
 mActivity.findViewById(com.example.aatg.tc.R.id.fahrenheit);

Test Driven Development

[98]

There are some important things to notice:

•	 We define the fields for our fixture using EditText that we should import
•	 We use previously created mActivity to find the Views by ID
•	 We use the R class for the main project, not the one in the test project

Testing the existence of the user interface
components
Once we have added them to the setUp() method, as indicated in the previous
section, we can check their existence in a specific test:

 public final void testHasInputFields() {
 assertNotNull(mCelsius);
 assertNotNull(mFahrenheit);
 }

We are not able to run the tests yet because we must fix some compilation problems
first. We should fix the missing IDs in the R class.

Having created our test fixture that references elements and IDs in the user interface
that we don't have yet, it's mandated by the Test Driven Development paradigm that
we add the needed code to satisfy our tests. The first thing we should do is get it to
compile at least, so if we have some tests testing unimplemented features they will fail.

Getting the IDs defined
Our first stop would be to have the IDs for the user interface elements defined in the
R class so the errors generated by referencing undefined constants com.example.
aatg.tc.R.id.celsius and com.example.aatg.tc.R.id.fahrenheit go away.

You, as an experienced Android developer, know how to do it. I'll give you a
refresher anyway. Open the main.xml layout in the layout editor and add the
required user interface components to get something that resembles the design
previously introduced in the section User Interface concept design.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

Chapter 4

[99]

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/message" />
 <TextView
 android:id="@+id/celsius_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/celsius" />
 <EditText
 android:id="@+id/celsius"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="EditText" />
 <TextView
 android:id="@+id/fahrenheit_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/fahrenheit" />
 <EditText
 android:id="@+id/fahrenheit"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="EditText" />
</LinearLayout>

Doing so we get our tests to compile. Running them we get the following results:

•	 testPreconditions succeeded
•	 testHasInputFields succeeded
•	 Everything is green now

This clearly means that we are on track with applying TDD.

You may also have noticed that we added some decorative and non functional items
to our user interface that we are not testing, mainly to keep our example as simple as
possible. In a real case scenario you may want to add tests for these elements too.

Translating requirements to tests
Tests have a double feature. They verify the correctness of our code but sometimes,
and more prominently in TDD, they help us understand the design and digest
what we are implementing. To be able to create the tests, we need to understand
the problem we are dealing with and if we don't, we should at least have a rough
understanding of the problem to allow us to handle it.

Test Driven Development

[100]

Many times, the requirements behind the user interface are not clearly expressed and
you should be able to understand them from the schematic UI design. If we pretend
that this is the case, then we can grasp it by writing our tests first.

Empty fields
From one of our requirements, we get: Entry fields should start empty.

To express this in a test we can write:

 public final void testFieldsShouldStartEmpty() {
 assertEquals("", mCelsius.getText().toString());
 assertEquals("", mFahrenheit.getText().toString());
 }

Here, we simply compare the initial contents of the fields against the empty string.

Not very surprisingly, we find that the test fails on execution. We forgot to clear
the initial contents of the fields and they are not empty. Even though we haven't
added any value to the android:text property of these fields, the ADT plugin
layout editor adds some default values. Thus removing the default values from
android:text="@~+id/EditText01" and android:text="@+id/EditText02" will
force starting with empty temperature fields. These values may have been added by
the ADT plugin itself or maybe by you when entering properties.

On running the test again, we find that it passes. We successfully converted one
requirement to a test and validated it by obtaining the test results.

View properties
Identically, we can verify other properties of the Views composing our layout.
Among other things we can verify:

•	 Fields appear on the screen as expected
•	 Font sizes
•	 Margins
•	 Screen alignment

Let's start verifying that the fields are on the screen:

 public final void testFieldsOnScreen() {
 final Window window = mActivity.getWindow();
 final View origin = window.getDecorView();
 assertOnScreen(origin, mCelsius);
 assertOnScreen(origin, mFahrenheit);
 }

Test Driven Development

[102]

 }

 public final void testFahrenheitInputFieldCoverEntireScreen() {
 final int expected = LayoutParams.MATCH_PARENT;
 final LayoutParams lp = mFahrenheit.getLayoutParams();
 assertEquals("mFahrenheit layout width is not
 MATCH_PARENT", expected, lp.width);
 }

We used a custom message to easily identify the problem in case the test fails.

By running this test, we obtain the following message indicating that the test failed:

junit.framework.AssertionFailedError: mCelsius layout width is not MATCH_
PARENT expected:<-1> but was:<-2>

This leads us to the layout definition. We must change layout_width to be match_
parent for Celsius and Fahrenheit fields:

<EditText android:layout_height="wrap_content"
 android:id="@+id/celsius" android:layout_width="match_parent"
/>

Same for Fahrenheit—after the change is done, we repeat the cycle and by running
the test again, we can verify that it is now successful.

Our method is starting to appear. We create the test to verify a condition described in
the requirements. If it's not met, we change the cause of the problem and running the
tests again we verify that the latest change solves the problem, and what is perhaps
more important is that the change doesn't break the exiting code.

Next, let's verify that font sizes are as defined in our requirements:

 public final void testFontSizes() {
 final float expected = 24.0f;
 assertEquals(expected, mCelsiusLabel.getTextSize());
 assertEquals(expected, mFahrenheitLabel.getTextSize());
 }

Retrieving the font size used by the field is enough in this case.

The default font size is not 24px, so we need to add this to our layout. It's a good
practice to add the corresponding dimension to a resource file and then use it where
it's needed in the layout. So, let's add label_text_size to res/values/dimens.
xml with a value of 24px. Then reference it in the Text size property of both labels,
celsius_label and fahrenheit_label.

Now the test is passed.

Chapter 4

[103]

Finally, let's verify that margins are interpreted as described in the user interface design:

 public final void testMargins() {
 LinearLayout.LayoutParams lp;
 final int expected = 6;
 lp = (LinearLayout.LayoutParams) mCelsius.getLayoutParams();
 assertEquals(expected, lp.leftMargin);
 assertEquals(expected, lp.rightMargin);
 lp = (LinearLayout.LayoutParams) mFahrenheit.getLayoutParams();
 assertEquals(expected, lp.leftMargin);
 assertEquals(expected, lp.rightMargin);
 }

This is a similar case as before. We need to add this to our layout. Let's add the
margin dimension to the resource file and then use it where it's needed in the layout.
Set the margin dimension in res/values/dimens.xml to a value of 6px. Then
reference it in the Margin property of both fields, celsius and fahrenheit, and in
the Left margin of the labels.

One more thing that is left is the verification of the justification of the entered values.
We will validate input shortly to allow only the permitted values but for now let's
just pay attention to the justification. The intention is to have values that are smaller
than the whole field justified to the right and vertically centered:

 public final void testJustification() {
 final int expected = Gravity.RIGHT|Gravity.CENTER_VERTICAL;
 int actual = mCelsius.getGravity();
 assertEquals(String.format("Expected 0x%02x but was 0x%02x",
 expected, actual), expected, actual);
 actual = mFahrenheit.getGravity();
 assertEquals(String.format("Expected 0x%02x but was 0x%02x",
 expected, actual), expected, actual);
 }

Here we verify the gravity values as usual. However, we are using a custom message
to help us identify the values that could be wrong. As Gravity class defines several
constants whose values are better identified if expressed in hexadecimal, we are
converting the values to this base in the message.

If this test is failing due to the default gravity used for the fields, then what is only
left is to change it. Go to the layout definition and alter these gravity values so that
the test succeeds.

This is precisely what we need to add:

android:gravity="right|center_vertical"

Test Driven Development

[104]

Screen layout
We now want to verify that the requirement specifying that enough screen space
should be reserved to display the keyboard is actually fulfilled.

We can write a test like this:

 public final void testVirtualKeyboardSpaceReserved() {
 final int expected = 280;
 final int actual = mFahrenheit.getBottom();
 assertTrue(actual <= expected);
 }

This verifies that the actual position of the last field in the screen, which is
mFahrenheit, is not lower than a suggested value.

We can run the tests again verifying that everything is green again.

Adding functionality
The user interface is in place. Now we start adding some basic functionality.

This functionality will include the code to handle the actual temperature conversion.

Temperature conversion
From the list of requirements we can obtain this statement: When one temperature is
entered in one field the other one is automatically updated with the conversion.

Following our plan we must implement this as a test to verify that the correct
functionality is there. Our test would look something like this:

 @UiThreadTest
 public final void testFahrenheitToCelsiusConversion() {
 mCelsius.clear();
 mFahrenheit.clear();

 final double f = 32.5;
 mFahrenheit.requestFocus();
 mFahrenheit.setNumber(f);
 mCelsius.requestFocus();
 final double expectedC =
 TemperatureConverter.fahrenheitToCelsius(f);
 final double actualC = mCelsius.getNumber();
 final double delta = Math.abs(expectedC - actualC);
 final String msg = "" + f + "F -> " + expectedC + "C

Chapter 4

[105]

 but was " + actualC + "C (delta " + delta + ")";

 assertTrue(msg, delta < 0.005);
 }

Firstly, as we already know, to interact with the UI changing its values we should
run the test on the UI thread and thus is annotated with @UiThreadTest.

Secondly, we are using a specialized class to replace EditText providing some
convenience methods like clear() or setNumber(). This would improve our
application design.

Next, we invoke a converter, named TemperatureConverter, a utility class
providing the different methods to convert between different temperature units and
using different types for the temperature values.

Finally, as we will be truncating the results to provide them in a suitable format
presented in the user interface we should compare against a delta to assert the value
of the conversion.

Creating the test as it is will force us to follow the planned path. Our first objective is
to add the needed code to get the test to compile and then to satisfy the test's needs.

The EditNumber class
In our main project, not in the tests one, we should create the class EditNumber
extending EditText as we need to extend its functionality.

We use Eclipse's help to create this class using File | New | Class or its shortcut in
the Toolbars.

Test Driven Development

[106]

This screenshot shows the window that appears after using this shortcut:

The following table describes the most important fields and their meaning in the
previous screen:

Field Description
Source folder: The source folder for the newly-created class. In this case the default

location is fine.
Package: The package where the new class is created. In this case the default

package com.example.aatg.tc is fine too.
Name: The name of the class. In this case we use EditNumber.
Modifiers: Modifiers for the class. In this particular case we are creating a public

class.

Chapter 4

[107]

Field Description
Superclass: The superclass for the newly-created type. We are creating a custom

View and extending the behavior of EditText, so this is precisely the
class we select for the supertype.

Remember to use Browse... to find the correct package.
Which method
stubs would you
like to create?

These are the method stubs we want Eclipse to create for us. Selecting
Constructors from superclass and Inherited abstract methods would
be of great help.

As we are creating a custom View we should provide the constructors
that are used in different situations, for example when the custom View
is used inside an XML layout.

Do you want to
add comments?

Some comments are added automatically when this option is selected.
You can configure Eclipse to personalize these comments.

Once the class is created we need to change the type of the fields first in our test:

public class TemperatureConverterActivityTests extends
ActivityInstrumentationTestCase2<TemperatureConverterActivity> {

 private TemperatureConverterActivity mActivity;
 private EditNumber mCelsius;
 private EditNumber mFahrenheit;
 private TextView mCelsiusLabel;
 private TextView mFahrenheitLabel;
…

Then change any cast that is present in the tests. Eclipse will help you do that.

If everything goes well, there are still two problems we need to fix before being able
to compile the test:

•	 We still don't have the methods clear() and setNumber() in EditNumber
•	 We don't have the TemperatureConverter utility class

To create the methods we are using Eclipse's helpful actions. Let's choose Create
method clear() in type EditNumber.

Same for setNumber() and getNumber().

Finally, we must create the TemperatureConverter class.

Chapter 4

[109]

09-06 13:22:36.927: INFO/TestRunner(348): at junit.framework.TestCase.
runBare(TestCase.java:125)

That is because we updated all of our Java files to include our newly-created
EditNumber class but forgot to change the XMLs, and this could only be detected at
runtime.

Let's proceed to update our UI definition:

 <com.example.aatg.tc.EditNumber
 android:layout_height="wrap_content"
 android:id="@+id/celsius"
 android:layout_width="match_parent"
 android:layout_margin="@dimen/margin"
 android:gravity="right|center_vertical"

 android:saveEnabled="true" />

That is, we replace the original EditText by com.example.aatg.tc.EditNumber
which is a View extending the original EditText.

Now we run the tests again and we discover that all tests pass.

But wait a minute, we haven't implemented any conversion or any handling of
values in the new EditNumber class and all tests passed with no problem. Yes, they
passed because we don't have enough restrictions in our system and the ones in
place simply cancel themselves.

Before going further, let's analyze what just happened. Our test invoked the
mFahrenheit.setNumber(f) method to set the temperature entered in the
Fahrenheit field, but setNumber() is not implemented and it is an empty method as
generated by Eclipse and does nothing at all. So the field remains empty.

Next, the value for expectedC—the expected temperature in Celsius is calculated
invoking TemperatureConverter.fahrenheitToCelsius(f), but this is also an
empty method as generated by Eclipse. In this case, because Eclipse knows about the
return type it returns a constant 0. So expectedC becomes 0.

Then the actual value for the conversion is obtained from the UI. In this case
invoking getNumber() from EditNumber. But once again this method was
automatically generated by Eclipse and to satisfy the restriction imposed by its
signature, it must return a value that Eclipse fills with 0.

The delta value is again 0, as calculated by Math.abs(expectedC – actualC).

And finally our assertion assertTrue(msg, delta < 0.005) is true because delta=0
satisfies the condition, and the test passes.

Test Driven Development

[110]

So, is our methodology flawed as it cannot detect a simple situation like this?

No, not at all. The problem here is that we don't have enough restrictions and they
are satisfied by the default values used by Eclipse to complete auto-generated
methods. One alternative could be to throw exceptions at all of the auto-generated
methods, something like RuntimeException("not yet implemented") to detect its
use when not implemented. But we will be adding enough restrictions in our system
to easily trap this condition.

TemperatureConverter unit tests
It seems, from our previous experience, that the default conversion implemented by
Eclipse always returns 0, so we need something more robust. Otherwise this will be
only returning a valid result when the parameter takes the value of 32F.

The TemperatureConverter is a utility class not related with the Android
infrastructure, so a standard unit test will be enough to test it.

We create our tests using Eclipse's File | New | JUnit Test Case, filling in some
appropriate values, and selecting the method to generate a test as shown in the
next screenshot.

Firstly, we create the unit test by extending junit.framework.TestCase and
selecting com.example.aatg.tc.TemperatureConverter as the class under test:

Chapter 4

[111]

Then by pressing the Next > button we can obtain the list of methods we may want
to test:

We have implemented only one method in TemperatureConverter, so it's the only
one appearing in the list. Other classes implementing more methods will display all
the options here.

It's good to note that even if the test method is auto-generated by Eclipse it won't
pass. It will fail with the message Not yet implemented to remind us that something
is missing.

Let's start by changing this:

 /**
 * Test method for {@link com.example.aatg.tc.
 TemperatureConverter#fahrenheitToCelsius(double)}.
 */
 public final void testFahrenheitToCelsius() {
 for (double c: conversionTableDouble.keySet()) {

Test Driven Development

[112]

 final double f = conversionTableDouble.get(c);
 final double ca = TemperatureConverter.fahrenheitToCelsius(f);
 final double delta = Math.abs(ca - c);
 final String msg = "" + f + "F -> " + c + "C but is "
 + ca + " (delta " + delta + ")";
 assertTrue(msg, delta < 0.0001);
 }
 }

Creating a conversion table with values for different temperature conversion we
know from other sources would be a good way to drive this test.

 private static final HashMap<Double, Double>
 conversionTableDouble = new HashMap<Double, Double>();

 static {
 // initialize (c, f) pairs
 conversionTableDouble.put(0.0, 32.0);
 conversionTableDouble.put(100.0, 212.0);
 conversionTableDouble.put(-1.0, 30.20);
 conversionTableDouble.put(-100.0, -148.0);
 conversionTableDouble.put(32.0, 89.60);
 conversionTableDouble.put(-40.0, -40.0);
 conversionTableDouble.put(-273.0, -459.40);
 }

We may just run this test to verify that it fails, giving us this trace:

junit.framework.AssertionFailedError: -40.0F -> -40.0C but is 0.0 (delta 40.0)

at com.example.aatg.tc.test.TemperatureConverterTests.testFahrenheitToCelsius(T
emperatureConverterTests.java:62)

at java.lang.reflect.Method.invokeNative(Native Method)

at android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:169)

at android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:154)

at android.test.InstrumentationTestRunner.onStart(InstrumentationTestRunner.
java:520)

at android.app.Instrumentation$InstrumentationThread.run(Instrumentation.
java:1447)

Well, this was something we were expecting as our conversion always
returns 0. Implementing our conversion, we discover that we need some
ABSOLUTE_ZERO_F constant:

Chapter 4

[113]

public class TemperatureConverter {
 public static final double ABSOLUTE_ZERO_C = -273.15d;
 public static final double ABSOLUTE_ZERO_F = -459.67d;

 private static final String ERROR_MESSAGE_BELOW_ZERO_FMT =
 "Invalid temperature: %.2f%c below absolute zero";

 public static double fahrenheitToCelsius(double f) {
 if (f < ABSOLUTE_ZERO_F) {
 throw new InvalidTemperatureException(
 String.format(ERROR_MESSAGE_BELOW_ZERO_FMT, f, 'F'));
 }
 return ((f - 32) / 1.8d);
 }
}

Absolute zero is the theoretical temperature at which entropy would reach its
minimum value. To be able to reach this absolute zero state, according to the laws of
thermodynamics, the system should be isolated from the rest of the universe. Thus
it is an unreachable state. However, by international agreement, absolute zero is
defined as 0K on the Kelvin scale and as -273.15°C on the Celsius scale or to -459.67°F
on the Fahrenheit scale.

We are creating a custom exception, InvalidTemperatureException, to indicate a
failure providing a valid temperature to the conversion method. This exception is
created simply by extending RuntimeException:

public class InvalidTemperatureException extends RuntimeException {

 public InvalidTemperatureException(String msg) {
 super(msg);
 }

}

Running the tests again we now discover that
testFahrenheitToCelsiusConversion test fails, however
testFahrenheitToCelsius succeeds. This tells us that now conversions are
correctly handled by the converter class but there are still some problems with the UI
handling this conversion.

A closer look at the failure trace reveals that there's something still returning 0 when
it shouldn't.

This reminds us that we are still lacking a proper EditNumber implementation.
Before proceeding to implement the mentioned methods, let's create the
corresponding tests to verify what we are implementing is correct.

Test Driven Development

[114]

The EditNumber tests
From the previous chapter, we can now determine that the best base class for our
custom View tests is AndroidTestCase, as we need a mock Context to create the
custom View but we don't need system infrastructure.

This is the dialog we have to complete to create the tests. In this case using android.
test.AndroidTestCase as the base class and com.example.aatg.tc.EditNumber
as the class under test:

After pressing Next >, we select the methods for which stubs are created:

Chapter 4

[115]

We need to update the auto-generated constructor to reflect the pattern we identified
before, the given name pattern:

 /**
 * Constructor
 */
 public EditNumberTests() {
 this("EditNumberTests");
 }

 /**
 * @param name
 */
 public EditNumberTests(String name) {
 setName(name);
 }

Test Driven Development

[116]

The next step is to create the fixture. In this case this is a simple EditNumber which
we will be testing:

 /* (non-Javadoc)
 * @see junit.framework.TestCase#setUp()
 */
 protected void setUp() throws Exception {
 super.setUp();

 mEditNumber = new EditNumber(mContext);
 mEditNumber.setFocusable(true);
 }

The mock context is obtained from the protected field mContext
(http://developer.android.com/reference/android/test/AndroidTestCase.
html#mContext) available in the AndroidTestCase class.

At the end of the test we set mEditNumber as a focusable View, that is it will be able
to gain focus, as it will be participating in a bunch of tests simulating UIs that may
need to request its focus explicitly.

Next, we test that the required clear() functionality is implemented correctly in the
testClear() method:

 /**
 * Test method for {@link com.example.aatg.tc.EditNumber#clear()}.
 */
 public final void testClear() {
 final String value = "123.45";
 mEditNumber.setText(value);
 mEditNumber.clear();
 String expectedString = "";
 String actualString = mEditNumber.getText().toString();
 assertEquals(expectedString, actualString);
 }

Running the test we verify that it fails:

junit.framework.ComparisonFailure: expected:<> but was:<123.45>

 at com.example.aatg.tc.test.EditNumberTests.testClear(EditNumberTests.java:62)

 at android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:169)

 at android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:154)

 at android.test.InstrumentationTestRunner.onStart(InstrumentationTestRunn
er.java:529)

Chapter 4

[117]

 at android.app.Instrumentation$InstrumentationThread.run(Instrumentation.
java:1447)

We need to implement EditNumber.clear() correctly.

This is a simple case, so just by adding this implementation to EditNumber we satisfy
the test:

 public void clear() {
 setText("");
 }

Run the test and proceed. Now let's complete the testSetNumber() implementation:

 /**
 * Test method for {@link
 com.example.aatg.tc.EditNumber#setNumber(double)}.
 */
 public final void testSetNumber() {
 mEditNumber.setNumber(123.45);
 final String expected = "123.45";
 final String actual = mEditNumber.getText().toString();
 assertEquals(expected, actual);
 }

Which fails unless we implement EditNumber.setNumber(), similar to
this implementation:

 private static final String DEFAULT_FORMAT = "%.2f";

 public void setNumber(double f) {super.setText(
 String.format(DEFAULT_FORMAT, f));
 }

We are using a constant, DEFAULT_FORMAT, to hold the desired format to convert the
numbers. This can be later converted to a property that could also be specified in the
xml layout definition of the field.

The same goes for the testGetNumber() and getNumber() pair:

 /**
 * Test method for {@link
 com.example.aatg.tc.EditNumber#getNumber()}.
 */
 public final void testGetNumber() {
 mEditNumber.setNumber(123.45);
 final double expected = 123.45;
 final double actual = mEditNumber.getNumber();

Test Driven Development

[118]

 assertEquals(expected, actual);
 }

And:

 public double getNumber() {
 Log.d("EditNumber", "getNumber() returning value
 of '" + getText().toString() + "'");
 return Double.valueOf(getText().toString());
 }

Surprisingly these tests succeed. But now there's a test that was passing that started
to fail: testFahrenheitToCelsiusConversion(). The reason is that now that we
have implemented EditNumber.setNumber() and EditNumber.getNumber()
correctly, some values are returned differently and this test method was relying on
spurious values.

This is a screenshot of the results obtained after running the tests:

Chapter 4

[119]

If you closely analyze the case, you can discover where the problem is.

Got it ?

Our test method is expecting the conversion to be realized automatically when the
focus changes, as was specified in our list of requirements: when one temperature is
entered in one field the other one is automatically updated with the conversion.

Remember, we don't have buttons or anything else to convert temperature values, so
the conversion is expected to be done automatically once the values are entered.

This leads us again to the TemperatureConverterActivity and the way it handles
the conversions.

The TemperatureChangeWatcher class
One way of implementing the required behavior of constantly updating the other
temperature value once one has changed is through a TextWatcher. From the
documentation we can understand that a TextWatcher is an object of a type that
is attached to an Editable; its methods will be called when the text is changed
(http://developer.android.com/intl/de/reference/android/text/
TextWatcher.html).

It seems that is what we need.

Test Driven Development

[120]

We implement this class as an inner class of TemperatureConverterActivity. This
is the screenshot of the New Java Class in Eclipse:

And this is our code after some additions to the recently created class.

 /**
 * Changes fields values when text changes applying the
 corresponding method.
 *
 */
 public class TemperatureChangedWatcher implements TextWatcher {

 private final EditNumber mSource;
 private final EditNumber mDest;
 private OP mOp;

Chapter 4

[121]

 /**
 * @param mDest
 * @param convert
 * @throws NoSuchMethodException
 * @throws SecurityException
 */
 public TemperatureChangedWatcher(TemperatureConverter.OP op) {
 if (op == OP.C2F) {
 this.mSource = mCelsius;
 this.mDest = mFahrenheit;
 }
 else {
 this.mSource = mFahrenheit;
 this.mDest = mCelsius;
 }
 this.mOp = op;
 }

 /* (non-Javadoc)
 * @see android.text.TextWatcher#afterTextChanged(
 android.text.Editable)
 */
 public void afterTextChanged(Editable s) {
 // TODO Auto-generated method stub

 }

 /* (non-Javadoc)
 * @see android.text.TextWatcher#beforeTextChanged(
 java.lang.CharSequence, int, int, int)
 */
 public void beforeTextChanged(
 CharSequence s, int start, int count, int after) {
 // TODO Auto-generated method stub

 }

 /* (non-Javadoc)
 * @see android.text.TextWatcher#onTextChanged(
 java.lang.CharSequence, int, int, int)
 */
 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 if (!mDest.hasWindowFocus() || mDest.hasFocus() || s == null)
 {
 return;
 }

 final String str = s.toString();

Test Driven Development

[122]

 if ("".equals(str)) {
 mDest.setText("");
 return;
 }

 try {
 final double temp = Double.parseDouble(str);
 final double result = (mOp == OP.C2F) ?
 TemperatureConverter.celsiusToFahrenheit(temp) :
 TemperatureConverter.fahrenheitToCelsius(temp);
 final String resultString = String.format("%.2f", result);
 mDest.setNumber(result);
 mDest.setSelection(resultString.length());
 } catch (NumberFormatException e) {
 // WARNING
 // this is generated while a number is entered,
 // for example just a '-'
 // so we don't want to show the error
 } catch (Exception e) {
 mSource.setError("ERROR: " + e.getLocalizedMessage());
 }
 }

 }

We implement extending TextWatcher and overriding the unimplemented methods.

Because we will be using the same TemperatureChangeWatcher implementation for
both fields, Celsius and Fahrenheit, we keep a reference to the fields used as source
and destination as well as the operation needed to update their values. To specify
this operation we are introducing an enum to the TemperatureConverter class.

 /**
 * C2F: celsiusToFahrenheit
 * F2C: fahrenheitToCelsius
 */
 public static enum OP { C2F, F2C };

This operation is specified in the constructor and the destination and source
EditNumber are selected accordingly. This way we can use the same watcher for
different conversions.

The method of the TextWatcher interface we are mainly interested in is
onTextChanged, that will be called any time the text changes. At the beginning
we avoid potential loops, checking who has focus and returning if the conditions
are not met.

Chapter 4

[123]

We also set the destination field as an empty String if the source is empty.

Finally, we try to set the resulting value of invoking the corresponding conversion
method to set the destination field. We flag the error as necessary, avoiding showing
premature errors when the conversion was invoked with a partially entered number.

We need to set the listener on the fields in TemperatureConverterActivity.
onCreate():

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mCelsius = (EditNumber) findViewById(R.id.celsius);
 mFahrenheit = (EditNumber) findViewById(R.id.fahrenheit);

 mCelsius.addTextChangedListener(
 new TemperatureChangedWatcher(OP.C2F));
 mFahrenheit.addTextChangedListener(
 new TemperatureChangedWatcher(OP.F2C));
 }

To be able to run the tests we should compile them. To compile we need at least to
define the celsiusToFahrenheit, which is not yet defined.

More TemperatureConverter tests
We need to implement celsiusToFahrenheit and as usual we start from the test.

This is fairly equivalent to the other conversion method fahrenheitToCelsius and
we can use the infrastructure we devised while creating this test:

 /**
 * Test method for {@link com.example.aatg.tc.TemperatureConverter#c
elsiusToFahrenheit(double)}.
 */
 public final void testCelsiusToFahrenheit() {
 for (double c: conversionTableDouble.keySet()) {
 final double f = conversionTableDouble.get(c);
 final double fa = TemperatureConverter.celsiusToFahrenheit(c);
 final double delta = Math.abs(fa - f);
 final String msg = "" + c + "C -> " + f + "F but is " + fa +
 " (delta " + delta + ")";
 assertTrue(msg, delta < 0.0001);
 }
 }

Test Driven Development

[124]

We use the conversion table to exercise the method through different conversions
and we verify that the error is less than a predefined delta.

Then, the correspondent conversion implementation in TemperatureConverter
class is:

 public static double celsiusToFahrenheit(double c) {
 if (c < ABSOLUTE_ZERO_C) {
 throw new InvalidTemperatureException(
 String.format(ERROR_MESSAGE_BELOW_ZERO_FMT, c, 'C'));
 }
 return (c * 1.8d + 32);
 }

Now all the tests are passing but we are still not testing all the common conditions.
You should check if errors and exceptions are correctly generated, besides all the
normal cases we created so far.

This is the test we create to check the correct generation of exceptions when a
temperature below absolute zero is used in a conversion:

 public final void testExceptionForLessThanAbsoluteZeroF() {
 try {
 TemperatureConverter.fahrenheitToCelsius(
 TemperatureConverter.ABSOLUTE_ZERO_F-1);
 fail();
 }
 catch (InvalidTemperatureException ex) {
 // do nothing
 }
 }

In this test we decrement the absolute zero temperature to obtain an even smaller
value and then we attempt the conversion. We check for the correct exception being
caught and finally we assert this condition:

 public final void testExceptionForLessThanAbsoluteZeroC() {
 try {
 TemperatureConverter.celsiusToFahrenheit(
 TemperatureConverter.ABSOLUTE_ZERO_C-1);
 fail();
 }
 catch (InvalidTemperatureException ex) {
 // do nothing
 }
 }

Chapter 4

[125]

In a similar manner we test for the exception being thrown when the attempted
conversion involves a temperature in Celsius which is lower than the absolute zero.

The InputFilter tests
We want to filter the input that is received by the conversion utility so no garbage
reaches this point.

The EditNumber class already filters valid input and generates exceptions
otherwise. We can verify this condition by generating some new tests in
TemperatureConverterActivityTests. We choose this class because we are
sending keys to the entry fields, just as a real user would do:

 public void testInputFilter() throws Throwable {
 runTestOnUiThread(new Runnable() {
 @Override
 public void run() {
 mCelsius.requestFocus();
 }
 });

 final Double n = -1.234d;
 sendKeys("MINUS 1 PERIOD 2 PERIOD 3 PERIOD 4");
 Object nr = null;
 try {
 nr = mCelsius.getNumber();
 }
 catch (NumberFormatException e) {
 nr = mCelsius.getText();
 }

 final String msg = "-1.2.3.4 should be filtered to " + n +
 " but is " + nr;
 assertEquals(msg, n, nr);
 }

This test requests the focus to the Celsius field using the pattern we have reviewed
before to run parts of a test in the UI thread, and then send some keys. The keys
sent are an invalid sequence containing more than one period, which is not
accepted for a well formed decimal number. It is expected that when the filter is
in place, this sequence will be filtered and only the valid characters reach the field.
We use the possibly generated NumberFormatException to detect the error and
then we assert that the value returned by mCelsius.getNumber() is what we are
expecting after filtering.

Test Driven Development

[126]

To implement this filter, we need to add an InputFilter to EditNumber. Because
this should be added to all of the constructors we create an additional method
init() which we invoke from them. To achieve our goal we use an instance of
DigitsKeyListener accepting digits, signs, and decimal points.

 /**
 * Initialization.
 * Set filter.
 *
 */
 private void init() {
 // DigistKeyListener.getInstance(true, true) returns an
 // instance that accepts digits, sign and decimal point
 final InputFilter[] filters = new InputFilter[]
 { DigitsKeyListener.getInstance(true, true) };
 setFilters(filters);
 }

Then from the constructors we should invoke this method:
 /**
 * @param context
 * @param attrs
 */
 public EditNumber(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

This init method is factored and invoked from different constructors.

Running the tests again we can verify that all have passed and now everything is
green again.

Viewing our final application
This is our final application which satisfies all the requirements.

In the following screenshot we are showing one of these requirements, which
is the detection of an attempt to convert a temperature below the absolute zero
temperature in Celsius (-1000.00C):

Chapter 4

[127]

The UI respects the guidelines provided; the temperatures can be converted by
entering them in the corresponding unit field.

To recap, this was the list of requirements:

•	 The application converts temperatures from Celsius to Fahrenheit and vice
versa

•	 The user interface presents two fields to enter the temperatures, one for
Celsius and the other for Fahrenheit

•	 When one temperature is entered in one field the other one is automatically
updated with the conversion

•	 If there are errors, they should be displayed to the user, possibly using the
same fields

•	 Some space in the user interface should be reserved for the on-screen keyboard
to ease the application operation when several conversions are entered

•	 Entry fields should start empty

Test Driven Development

[128]

•	 Values entered are decimal values with two digits after the point
•	 Digits are right aligned

But what is perhaps more important is that we can assure that the application not only
satisfies the requirements but also has no evident problems or bugs because we took
every step by analyzing the test results and fixing the problems at their first appearance.
This will ensure that the same bug, once discovered, will not resurface again.

Summary
We presented Test Driven Development introducing its concepts and later on
applying them step-by-step in a potential real-life problem.

We started with a concise list of requirement describing the Temperature
Converter application.

Then, we implemented every test followed by the code that satisfies it. In this
manner we implemented the application behavior as well as its presentation,
conducting tests to verify that the UI we designed follows the specifications.

Having the tests in place lead us to analyze the different possibilities we have in
running them and the next chapter will focus on the Testing Environment.

Android Testing Environment
We built our application and a decent set of tests that we run to verify the basic
aspect and behavior of the Temperature Converter application. Now it is time to
provide different conditions to run these tests, other tests, or even run the application
manually to understand what the user experience would be while using it.

In this chapter, we will cover:

•	 Creating Android Virtual Devices (AVD) to provide different conditions
and configurations for the application

•	 Understanding the different configurations we can specify while creating
AVDs

•	 How to run AVDs
•	 How to detach an AVD from its window to create headless emulators
•	 Unlocking the screen to be able to run all the tests
•	 Simulating real-life network conditions
•	 Running monkey to generate events to send to the application

Creating Android Virtual Devices
To get the best opportunity of detecting problems related with the device
where the application is running, you need the widest possible coverage of
features and configurations.

While final and conclusive tests should always be run on real devices with the
everyday increasing number of devices, it is virtually impossible that you will have
one device of each to test your application. There are also device farms in the cloud
to test on a variety of devices but its cost sometimes is above the average developer
budget. Hopefully, Android provides a way of simulating, more or less verbatim, a
great variety of features and configuration just from the convenience of the emulator
and AVD configurations.

Chapter 5

[131]

The properties that can be set are:

Property Type Description
Camera support boolean Whether the device has a camera

or not.
Cache partition size integer The size of the cache partition.
SD Card support boolean Whether the device supports

insertion and removal of virtual SD
Cards.

Cache partition support boolean Whether the cache partition is
supported. Usually this partition is
mounted in /cache.

Keyboard support boolean Whether the device has a physical
QWERTY keyboard.

Audio playback support boolean Whether the device can play audio
Audio recording support boolean Whether the device can record

audio.
DPAD support boolean Whether the device has DPAD keys.
Maximum vertical camera
pixels

integer The maximum vertical dimension
in pixels of the virtual camera.

Accelerometer boolean Whether the device has an
accelerometer.

GPS support boolean Whether the device has a GPS.
Device RAM size integer The amount of physical RAM on

the device. This is expressed in
megabytes.

Touch-screen support boolean Whether there is a touch screen on
the device.

Battery support boolean Whether the device can run on
battery.

GSM modem support boolean Whether there is a GSM modem in
the device.

Track-ball support boolean Whether there is a trackball on the
device.

Maximum horizontal camera
pixels

integer The maximum horizontal
dimension in pixels of the virtual
camera.

Android Testing Environment

[132]

After pressing Start... to start the AVD you can select other properties:

Setting the scale is also very useful to test your application in a window that
resembles the size of a real device. It is a very common mistake to test your
application in an AVD with a window size that is at least twice the size of a real
device, and using a mouse pointer believing that everything is fine, to later realize
on a physical device with a screen of 5 or 6 inches that some items on the UI are
impossible to touch with your finger.

To scale the AVD screen you should also set the Monitor dpi to a value that
corresponds to the monitor you are using.

Finally, it is also helpful to test your application under the same conditions
repeatedly. To be able to test under the same conditions again and again, it is
sometimes helpful to delete all the information that was entered in previous sessions.
If this is the case, check Wipe user data to start afresh every time.

Running AVDs from the command line
Wouldn't it be nice if we could run different AVDs from the command line and
perhaps automate the way we run our tests or script them?

By freeing the AVD from its windows, open a whole new world of automation and
scripting possibilities.

Well, let's explore these alternatives.

Chapter 5

[133]

Headless emulator
A headless emulator (its window is not displayed) comes in very handy when we
run automated tests and nobody is looking at the window, or the interaction between
the test runner and the application is so fast that we hardly see anything.

Anyway, it is also worth mentioning that sometimes you can't understand why some
tests fail until you see the interaction on the screen, so use both alternatives with a bit
of judgment.

One thing that we may have noticed running AVDs is that their communication
ports are assigned at runtime, incrementing the last used port by 2 and starting with
5554. This is used to name the emulator and set its serial number, for example, the
emulator using port 5554 becomes emulator-5554. This is very useful when we run
AVDs during the development process because we don't have to pay attention to
port assignment. But it can be very confusing and difficult to track which test runs on
which emulator if we are running more than one simultaneously.

In those cases, we will be assigning known ports to the communication ports to keep
the specific AVD under our control.

Usually, when we are running tests on more than one emulator at the same time, not
only do we want to detach the window, but also avoid sound output. We will add
options for this as well:

1. The command line to launch the test AVD we just created would be:
$ emulator -avd test -no-window -no-audio -no-boot-anim -port 5580 &

2. The port must be an integer between 5554 and 5584:
$ adb devices

List of devices attached

emulator-5580 device

This shows the device in the device list.
3. The next step is to install the application and the tests:

$ adb -s emulator-5580 install\
TemperatureConverter/bin/TemperatureConverter.apk

347 KB/s (16632 bytes in 0.046s)

 pkg: /data/local/tmp/TemperatureConverter.apk

Success

$ adb -s emulator-5580 install\
TemperatureConverterTest/bin/TemperatureConverterTest.apk

222 KB/s (16632 bytes in 0.072s)

Android Testing Environment

[134]

 pkg: /data/local/tmp/TemperatureConverterTest.apk

Success

4. Then we can use the specified serial number to run the tests on it:
$ adb -s emulator-5580 shell am instrument -w\
com.example.aatg.tc.test/android.test.InstrumentationTestRunner

com.example.aatg.tc.test.EditNumberTests:......

com.example.aatg.tc.test.
TemperatureConverterActivityTests:..........

com.example.aatg.tc.test.TemperatureConverterTests:....

Test results for InstrumentationTestRunner=....................

Time: 25.295

OK (20 tests)

Disabling the keyguard
We can see the tests being run with no intervention and not requiring access to the
emulator GUI.

But sometimes you may receive some errors for tests that are not failing if you run
in a more standard approach, like in a standard emulator launched from Eclipse. In
such cases one of the reasons is that the emulator may be locked at the first screen
and we need to unlock it to be able to run tests involving the UI.

To unlock the screen you can use:

$ adb -s emulator-5580 emu event send EV_KEY:KEY_MENU:1 EV_KEY:KEY_MENU:0

The lock screen can also be disabled programmatically; however this has the
disadvantage of including testing-related code in your application. This code should
be removed or disabled once the application is ready to ship.

To do this, the following permission should be added to the manifest file
(AndroidManifest.xml), and then disable the screen lock in your application
under test.

To add the permission, add this element to the manifest:

<manifest>

...

 <uses-permission android:name="android.permission.DISABLE_KEYGUARD"/>

...

Chapter 5

[135]

</manifest>

Then in the Activity under test you should add the following code, preferably in
onResume():

 mKeyGuardManager =
 (KeyguardManager) getSystemService(KEYGUARD_SERVICE);

 mLock = mKeyGuardManager.newKeyguardLock("com.example.aatg.tc");

 mLock.disableKeyguard();

That is, get the KeyguardManager, then obtain the KeyguardLock specifying a tag,
customize the package name to be able to debug who is disabling the keyguard.

Then disable the keyguard from showing using disableKeyguard(). If the
keyguard is currently showing, it is hidden. The keyguard will be prevented from
showing again until reenableKeyguard() is called.

Cleaning up
On certain occasions you also need to clean up services and processes started after
running some tests to prevent the results of the latter from being influenced by the
ending conditions of the previous tests. In these cases, it is always better to start from a
known condition freeing all the used memory, stopping services, reloading resources,
and restarting processes, which is achievable by warm-booting the emulator.

$ adb -s emulator-5580 shell 'stop; sleep 5; start'

This command line opens the emulator shell for our emulator and runs the stop and
start commands.

The evolution of these commands can be monitored using the logcat command:

$ adb -s emulator-5580 logcat

You will see messages like these:

D/AndroidRuntime(241):

D/AndroidRuntime(241): >>>>>>>>>>>>>> AndroidRuntime START
<<<<<<<<<<<<<<

D/AndroidRuntime(241): CheckJNI is ON

D/AndroidRuntime(241): --- registering native functions ---

I/SamplingProfilerIntegration(241): Profiler is disabled.

I/Zygote (241): Preloading classes...

Chapter 5

[137]

ja

$ adb –s emulator-5580 shell "getprop persist.sys.country"

JP

If you want to clear all the user data after playing with the persistent settings, you
can use the following command:

$ adb -s emulator-5580 emu kill

$ emulator -avd test -no-window -no-audio -no-boot-anim -port 5580\
-wipe-data

And the emulator will start afresh.

Simulating network conditions
It is extremely important to test under different network conditions but it is
neglected more often than not. This would lead to misconceptions and to believe that
the application behaves differently because we use the host network which presents
a different speed and latency.

The Android emulator supports network throttling, for example to support slower
network speeds and higher connection latencies. This can be done in the emulator
command line using the options -netspeed <speed> and -netdelay <delay>.

The complete list of supporting options is as follows:

For network speed:

Option Description Speeds [kbits/s]
-netspeed gsm GSM/CSD up: 14.4, down: 14.4
-netspeed hscsd HSCSD up: 14.4, down: 43.2
-netspeed gprs GPRS up: 40.0, down: 80.0
-netspeed edge EDGE/EGPRS up: 118.4, down: 236.8
-netspeed umts UMTS/3G up: 128.0, down: 1920.0
-netspeed hsdpa HSDPA up: 348.0, down: 14400.0
-netspeed full no limit up: 0.0, down: 0.0
-netspeed <num> select both upload and

download speed
up: as specified, down: as
specified

-netspeed <up>:<down> select individual up and
down speed

up: as specified, down: as
specified

Android Testing Environment

[138]

For latency:

Option Description Delay [msec]
-netdelay gprs GPRS min 150, max 550
-netdelay edge EDGE/EGPRS min 80, max 400
-netdelay umts UMTS/3G min 35, max 200
-netdelay none no latency min 0, max 0
-netdelay <num> select exact latency latency as specified
-netdelay <min>:<max> select min and max latencies minimum and maximum

latencies as specified

The emulator, if values are not specified, uses the following default values:

•	 Default network speed is 'full'
•	 Default network latency is 'none'

This is an example of an emulator using these options to select the GSM network
speed of 14.4 kbits/sec and a GPRS latency of 150 to 500 msec.

$ emulator -avd test -port 5580 -netspeed gsm -netdelay gprs

Once the emulator is running, you can verify these network settings or change them
interactively using the Android console using a TELNET client:

$ telnet localhost 5580

Trying ::1...

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Android Console: type 'help' for a list of commands

OK

After we are connected we can type the following command:

network status

Current network status:

 download speed: 14400 bits/s (1.8 KB/s)

 upload speed: 14400 bits/s (1.8 KB/s)

Chapter 5

[139]

 minimum latency: 150 ms

 maximum latency: 550 ms

OK

You can use the emulator to test applications using network services either manually
or in an automated way.

In some cases this not only involves throttling the network speed but also changing
the state of the GPRS connection to investigate how the application behaves and
copes with these situations. To change this status we can also use the Android
console in a running emulator.

For example to unregister the emulator from the network we can use:

$ telnet localhost 5580

Trying ::1...

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Android Console: type 'help' for a list of commands

OK

Next to receiving the OK subprompt, we can set the data network mode as
unregistered by issuing the following command:

gsm data unregistered

OK

quit

After testing the application under this condition you can return to a connected state
by using:

gsm data home

OK

To verify the status you can use:

gsm status

gsm voice state: home

Android Testing Environment

[140]

gsm data state: home

OK

Additional qemu options
You may know that the Android emulator is based on an Open Source project named
Qemu (http://qemu.org).

Qemu is a generic emulator and virtualizer. Android uses its emulator capabilities to
run an OS that is made for a different architecture on a different machine as your PC
or Mac. It uses dynamic translation achieving very good performance, so good that
to resemble real Android devices the emulation is throttled in some cases.

Because of this you can add some qemu-specific options when you run the emulator.

For example, we may want to open the qemu console which is accessible via VNC
[Virtual Network Computing], another Open Source project providing remote
frame-buffer capabilities (http://en.wikipedia.org/wiki/Virtual_Network_
Computing). In this console, we can issue some qemu-specific commands.

To do this, let's add the following options:

$ emulator -avd test -no-window -no-audio -no-boot-anim -port 5580\
-qemu -vnc :2 &

All the options following -qemu are passed verbatim to qemu. In this case we pass
-vnc :2, to open the virtual display 2, which is at the port 5902 as VNC starts
counting from 5900.

Using some VNC client, like Vinagre—Remote Desktop Viewer, which is provided
under the GNOME desktop in most of the distributions we can open the connection
to the console. Vinagre can be launched from the GNOME desktop by Applications
| Internet | Remote Desktop Viewer.

In Microsoft Windows RealVNC can be used as the client.

Then we should open the connection to the VNC server in qemu:

Chapter 5

[141]

We will then be presented with the qemu console:

The list of internal commands can be obtained by entering the following command
on the prompt:

(qemu) help

Chapter 5

[143]

Client-server monkey
There is another way of running monkey. It also presents a client-server model that
ultimately allows for the creation of scripts controlling what events are sent and not
relying only on random generation.

Usually the port used by monkey is 1080 but you can use another one if it better suits
your preferences.

$ adb -e shell monkey -p com.example.aatg.tc --port 1080 &

Then we need to redirect the emulator port:

$ adb -e forward tcp:1080 tcp:1080

Now we are ready to send events. To do it manually we can use a TELNET client:

$ telnet localhost 1080

Trying ::1...

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

After the connection is established we can type the specific monkey command:

tap 150 200

OK

To finish this exit the telnet command.

If we need to exercise the application repeatedly, it is much more convenient to create
a script with the commands we want to send. A monkey script could look like this:

monkey
tap 100 180
type 123
tap 100 280
press DEL
press DEL
press DEL
press DEL
press DEL
press DEL
press DEL
press DEL
type -460.3

Android Testing Environment

[144]

The events and its parameters are defined here.

After having started the Temperature Converter application we can run this script to
exercise the user interface. To start the application you can use the emulator window
and click on its launcher icon or use the command line, which is the only alternative
if the emulator is headless, as follows:

$ adb shell am start -n com.example.aatg.tc/.TemperatureConverterActivity

This is informed in the log by this line:

Starting: Intent { cmp=com.example.aatg.tc/.TemperatureConverterActivity }

Once the application has started you can send the events using the script and the
netcat utility:

$ nc localhost 1080 < monkey.txt

This will send the events contained in the script file to the emulator. These are the
following events:

•	 touch and select the Celsius field
•	 type 123
•	 touch and select the Fahrenheit field
•	 delete its content
•	 type -460.3

In this manner simple scripts consisting of touch events and key presses can be created.

Test scripting with monkeyrunner
The possibilities of monkey are fairly limited and the lack of flow control restricts its
use to very simple cases.

To circumvent these limitations a new project was created, named monkeyrunner
(http://developer.android.com/guide/developing/tools/monkeyrunner_
concepts.html). Notwithstanding that the name is almost the same and leads to not
a small amount of confusion, they are not related in any way.

Monkeyrunner, which is already included in the latest versions of the Android
SDK, is in its initial stages and nowadays its use is quite limited but its future could
be bright. It is a tool providing an API for writing scripts that externally control an
Android device or emulator.

Chapter 5

[145]

Monkeyrunner is built on top of Jython (http://www.jython.org/), a version of
Python (http://www.python.org/) programming language which is designed to
run on the Java(tm) Platform.

According to its documentation, monkeyrunner tool provides these unique features
for Android testing. These are just the highlights of the complete list of features,
examples and reference documentation that can be obtained from the monkeyrunner
home page (http://developer.android.com/guide/developing/tools/
monkeyrunner_concepts.html):

•	 Multiple device control: The monkeyrunner API can apply one or more test
suites across multiple devices or emulators. You can physically attach all the
devices or start up all the emulators (or both) at once, connect to each one in
turn programmatically, and then run one or more tests. You can also start up
an emulator configuration programmatically, run one or more tests, and then
shut down the emulator.

•	 Functional testing: monkeyrunner can run an automated start-to-finish test
of an Android application. You provide input values with keystrokes or
touch events, and view the results as screenshots.

•	 Regression testing: monkeyrunner can test application stability by running
an application and comparing its output screenshots to a set of screenshots
that are known to be correct.

•	 Extensible automation: Since monkeyrunner is an API toolkit, you can
develop an entire system of Python-based modules and programs for
controlling Android devices. Besides using the monkeyrunner API itself, you
can use the standard Python OS and subprocess modules to call Android
tools such as Android Debug Bridge.

•	 You can also add your own classes to the monkeyrunner API. This is
described in more detail in the online documentation under Extending
monkeyrunner with plugins.

Getting test screenshots
Currently, one of the most evident uses of monkeyrunner is getting screenshots of
the application under test to be further analyzed or compared.

These screenshots can be obtained with the help of the following steps:

1. Importing the needed modules.
2. Creating the connection with the device.
3. Checking for errors.

Android Testing Environment

[146]

4. Starting the TemperatureConverter activity.
5. Adding some delay.
6. Typing '123'
7. Adding some delay to allow for the events to be processed.
8. Obtaining the screenshots and saving it to a file.
9. Pressing BACK to exit the Activity.

The following is the code for the script needed to perform the above mentioned
steps:

#! /usr/bin/env monkeyrunner
'''
Created on 2011-03-12

@author: diego
'''

import sys

Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice,
MonkeyImage

Connects to the current device, returning a MonkeyDevice object
device = MonkeyRunner.waitForConnection()

if not device:
 print >> sys.stderr, "Couldn't get connection"
 sys.exit(1)

device.startActivity(component='com.example.aatg.tc/.
TemperatureConverterActivity')

MonkeyRunner.sleep(3.0)

device.type("123")

Takes a screenshot
MonkeyRunner.sleep(3.0)
result = device.takeSnapshot()

Writes the screenshot to a file
result.writeToFile('/tmp/device.png','png')

device.press('KEYCODE_BACK', 'DOWN_AND_UP')

Once this script runs, you will find the screenshot of TemperatureConverter
in /tmp/device.png.

Chapter 5

[147]

Record and playback
If you need something simpler probably there is no need to manually create these
scripts. To simplify the process, the script monkey_recorder.py, which is included
in the Android source repository in the sdk project (http://android.git.kernel.
org/?p=platform/sdk.git;a=summary), can be used to record event descriptions
that are later interpreted by another script called monkey_playback.py.

Run monkey_recorder.py from the command line and you will be presented with
this UI:

This interface has a toolbar with buttons to insert different commands in the
recorded script:

Button Description
Wait How many seconds to wait.

This number is requested by a dialog box.
Press a Button Sends a MENU, HOME, or SEARCH button. Press, Down, or Up event.
Type Something Sends a string.
Fling Sends a fling event in the specified direction, distance, and number of

steps.
Export Actions Saves the script.
Refresh Display Refreshes the copy of the screenshot that is displayed.

Once the script is completed, save it, let's say as script.mr and then you can re-run
it by using this command line:

$ monkey_playback.py script.mr

Now all the events will be replayed.

Android Testing Environment

[148]

Summary
In this chapter we covered all the alternatives we have to expose our application
and its tests to a wide range of conditions and configurations, ranging from different
screen sizes, the availability of devices such as cameras or keyboards, to simulating
real life network conditions to detect problems in our application.

We also analyzed all of the options we have to be able to control emulators remotely
when they are detached from its windows. This prepares the foundation for
Continuous Integration that we will be visiting in Chapter 8, Continuous Integration,
and relies on the ability to automatically run all the test suites and having the ability
to configure, start, and stop the emulator will be necessary.

At the end, some scripting alternatives were introduced and examples to get you
started were provided.

The next chapter will introduce Behavior Driven Development—a technique that
makes use of a common vocabulary to express the tests permitting the inclusion of
business people in the software development project.

Behavior Driven
Development

Behavior Driven Development can be understood as the evolution and confluence of
Test Driven Development and Acceptance Testing. Both techniques were discussed
in previous chapters, so you may want to look back at Chapter 1, Getting Started with
Testing and Chapter 4, Test Driven Development before proceeding.

Behavior Driven Development introduces some new concepts, such as the use of a
common vocabulary to describe the tests and the inclusion of business participants
in the software development project. And some people still believe that it is only Test
Driven Development done right.

We have visited Test Driven Development before and we focused on converting low
level requirements into tests that could drive our development process. Behavior
Driven Development forces us to concentrate on higher level requirements and on
using a specific vocabulary we can express these requirements in a way that can be
further analyzed or evaluated.

We will explore these concepts so that you can make your own conclusions.

Brief history
Behavior Driven Development was a term introduced by Dan North back in 2003
to describe a technique that focuses on collaboration between developers and other
stakeholders by using a process usually called outside-in software development. Its
primary goal is to satisfy the business needs of the client.

Behavior Driven Development grew out of a thought experiment based on Neuro
Linguistic Programming (NLP) techniques.

Behavior Driven Development

[150]

The primary idea is that the words used to describe a thought severely influence that
thought to the point that we seem to think in the language we speak.

There is empirical proof of the fact that subjects in memory tests are more likely to
remember a specific color if their mother language has a specific word for that color.
So if we have a specific language to describe our requirements, it would probably
influence the way we think about them and hence improve the way we write them.

Therefore, the words used by Behavior Driven Development were carefully selected
to influence the way you think about the specification of features. They are closely
related to the notion of cause-effect and follow this concept to describe a feature
starting from a known state, applying some process, and expecting some results.

These words are described in the next section.

Given, when, then
Given/When/Then words are the common vocabulary that spans the divide between
business and technology, and as described at http://behaviour-driven.org/ they
can also be referred to as the ubiquitous language of Behavior Driven Development.
The framework is based on three core principles that we reproduce here verbatim:

•	 Business and Technology should refer to the same system in the same way
•	 Any system should have an identified, verifiable value to the business
•	 Up-front analysis, design, and planning all have a diminishing return

Behavior Driven Development relies on the use of this specific vocabulary.
Additionally, the format in which requirements are expressed is predetermined
allowing tools to interpret and execute them.

•	 Given, is to describe the initial state before external stimuli is received.
•	 When, is to describe the key action the user performs.
•	 Then, is to analyze the results of the actions. To be observable the actions

performed should have some kind of outcome.

Chapter 6

[151]

FitNesse
FitNesse is a software development collaboration tool. Strictly speaking FitNesse is a
set of tools, described as follows:

•	 As a software testing tool, FitNesse is a lightweight, open source framework
that allows teams to collaborate

•	 It is also a Wiki where you can easily create and edit pages and share
information

•	 FitNesse is also a web server so it doesn't require additional configuration or
administrative privileges to set up or configure

Download the FitNesse distribution from http://fitnesse.org/. The distribution
is a JAR file that installs itself on first run. Throughout these examples we used
FitNesse release 20100303 but newer versions should also work.

Running FitNesse from the command line
By default when FitNesse runs it listens on port 80, so to run unprivileged you
should change the port on the command line. In this example we use 8900:

$ java -jar fitnesse.jar -p 8900

This is the output obtained when we run the command:

FitNesse (v20100303) Started...

 port: 8900

 root page: fitnesse.wiki.FileSystemPage at ./FitNesseRoot

 logger: none

 authenticator: fitnesse.authentication.PromiscuousAuthenticator

 html page factory: fitnesse.html.HtmlPageFactory

 page version expiration set to 14 days.

Chapter 6

[153]

To create the TemperatureConverterTests subwiki, we simply press the Edit button
below the FitNesse logo to edit the home page, adding the following:

| '''My Tests''' |
| TemperatureConverterTests | ''Temperature Converter Tests'' |

This adds a new table to the page, by using the "|" markup as the first character and
to delimit the columns.

Then a wiki page TemperatureConverterTests will be created and we also add
a column with a descriptive comment about the tests. This comment is turned into
italics by surrounding it by double single quotes ('').

Press Save and the page will be modified.

Once the page is displayed we can verify that TemperatureConverterTests is now
followed by [?] (question mark) because the page has not been created yet and will
be created when we click on it.

We can add some comments to clearly identify this newly-created front page
of the subwiki.

!contents -R2 -g -p -f -h

This is the !-TemperatureConverterTests SubWiki-!.

Here, the text TemperatureConverterTests SubWiki is escaped using !- and -! to
prevent it from being converted to another page link.

Save again.

Adding child pages to the subwiki
Now we add a new child page by using the [add child] link that appears next to the
page title.

There are different options for creating the child page, and we can select:

•	 Normal, for a normal wiki page
•	 Test, a page that contains tests
•	 Suite, a page containing other tests composing a suite
•	 Default, a default page

Behavior Driven Development

[154]

These are the values to use:

Field Value
Type of page: Suite
Name: TemperatureConverterTestSuite
Content: !contents

After pressing Add, this page is created and automatically added as a link
to the subwiki.

Let's follow this newly-created link to reach the test suite page.

Once you're here, add another child using the [add child] link. This time, let's add a
Test page and name it TemperatureConverterCelsiusToFahrenheitFixture as this
will contain our fixture.

These are the values to use:

Field Value
Type of page: Test
Name: TemperatureConverterCelsiusToFahrenheitFixture
Content: !contents

Click on Add to finish the operation.

Chapter 6

[155]

Adding the acceptance test fixture
Up until now, we were only creating wiki pages. Nothing exciting about that! But now
we will be adding our acceptance test fixture directly to the page. Be sure of navigating
to the newly added page, TemperatureConverterCelsiusToFahrenheitFixture, click
on Edit as usual, and add the following:

!contents

!|TemperatureConverterCelsiusToFahrenheitFixture |
celsius	fahrenheit?
0.0	~= 32
100.0	212.0
-1.0	30.2
-100.0	-148.0
32.0	89.6
-40.0	-40.0
-273.0	~= -459.4
-273	~= -459.4
-273	~= -459
-273	~= -459.40000000000003
-273	-459.40000000000003
-273	-459.41 < _ < -459.40
-274.0	Invalid temperature: -274.00C below absolute zero

This table defines several items for our text feature:

•	 TemperatureConverterCelsiusToFahrenheitFixture: This is the table
title and the test fixture name.

•	 celsius: This is the column name for the value we are providing as input to
the test.

•	 fahrenheit?: This is the column name for the value expected as the result of
the conversion. The question mark indicates that this is a result value.

•	 ~=: This indicates that the result is approximately this value.
•	 < _ <: This indicates that the expected value is within this range.
•	 Invalid temperature: -274.00C below absolute zero, is the value expected by

the failed conversion.

Save this content by clicking on Save.

Behavior Driven Development

[156]

Adding the supporting test classes
If we just press the Test button, which is below the FitNesse logo (see the next
screenshot for details), we will receive an error. In some way this is expected because
we haven't created the supporting test fixture yet. This is a very simple class that
invokes the TemperatureConverter methods.

FitNesse supports two different test systems:

•	 fit: This is the older of the two methods, and uses HTML, parsed just prior to
the fixture being called.

•	 slim: This is newer, all the table processing is done inside FitNesse, within
slim runners.

Further information about these test systems can be found at http://fitnesse.
org/FitNesse.UserGuide.TestSystems.

In this example we are using slim, which is selected by setting the variable TEST_
SYSTEM within the same page as:

!define TEST_SYSTEM {slim}

To create the slim test fixture we simply create a new package, named
com.example.aatg.tc.test.fitnesse.fixture, in our existing Android test project
TemperatureConverterTest. We will be creating the fixture inside this package.

Next, we have to create the TemperatureConverterCelsiusToFahrenheitFixture
class that we defined in our acceptance test table:

package com.example.aatg.tc.test.fitnesse.fixture;

import com.example.aatg.tc.TemperatureConverter;

public class TemperatureConverterCelsiusToFahrenheitFixture {
 private double celsius;

 public void setCelsius(double celsius) {
 this.celsius = celsius;
 }

 public String fahrenheit() throws Exception {

 try {
 return String.valueOf(
 TemperatureConverter.celsiusToFahrenheit(celsius));
 }
 catch (RuntimeException e) {
 return e.getLocalizedMessage();
 }

 }
}

Behavior Driven Development

[158]

We can easily identify every test that succeeded by their green color and failed ones
by their red color. In this example, we don't have any failure so everything is green.

FitNesse has another useful feature which is the Test History. All the test runs and
a specific number of results are saved for a period of time so that you can review
the results later on and compare the results, and thus analyze the evolution of
your changes.

This feature is accessed by clicking Test History at the bottom of the list of options
on the left pane.

In the following image we can see the results for the last 4 test runs, where 3 failed
and 1 succeeded. Also by clicking on the "+" (plus) or "-" (minus) signs, you can
expand or collapse the view to show or hide detailed information about the test run.

GivWenZen
GivWenZen is a framework that builds upon FitNesse and Slim to allow the user to
exploit the Behavior Driven Development technique of expressing the tests using
the Given-When-Then vocabulary to describe tests. These test descriptions are also
created using the FitNesse wiki facility of expressing the tests as plain text contained
in tables in a wiki page.

Chapter 6

[159]

The idea is pretty simple and straightforward and follows up what we have been
doing with FitNesse, but this time instead of writing acceptance tests giving a table
of values we will use the three Behavior Driven Development magic words Given-
When-Then to describe our scenarios.

Firstly, let's install GivWenZen. Download the full distribution from its download
list page at http://code.google.com/p/givwenzen/downloads/list and follow
the instructions on its website. We used givwenzen 1.0.1 in these examples but newer
versions should work as well.

The GivWenZen full distribution includes all the dependencies needed, including
FitNesse, so if you have FitNesse running from previous examples it is better to stop
it or you must use a different port for GivWenZen.

Upon startup, point your browser to the home page and you will find a familiar
FitNesse front page. You can take some time to explore the examples included.

Creating the test scenario
Let's create a simple scenario for our Temperature Converter to understand things
better.

In plain tests, our scenario would be:

Given I'm using the Temperature Converter, When I enter 100 into Celsius field, Then
I obtain 212 in the Fahrenheit field.

And it is directly translated into a GivWenZen scenario by adding this to a wiki page:

-|script|
given	I'm using the !-TemperatureConverter-!
when	I enter 100 into Celsius field
then	I obtain 212 in Fahrenheit field

The translation is straightforward. The table title must be script, and in this case it
is preceded by a dash (-) to hide it. Then each of the Give-When-Then scenarios is
placed in a column and the predicate in the other column.

Before running this script, when the whole page is executed, we need to initialize
GivWenZen by running yet another script. In this case it would be:

|script |
|start|giv wen zen for slim|

Behavior Driven Development

[160]

We need to initialize the classpath and add the corresponding imports before the
script that starts GivWenZen. Usually this is done in one of the SetUp pages, which
are executed before running every test script, but for the sake of simplicity we are
adding the initialization to this same page:

!define TEST_SYSTEM {slim}

!path ./target/classes/main
!path ./target/classes/examples
!path ./lib/commons-logging.jar
!path ./lib/fitnesse.jar
!path ./lib/log4j-1.2.9.jar
!path ./lib/slf4j-simple-1.5.6.jar
!path ./lib/slf4j-api-1.5.6.jar
!path ./lib/javassist.jar
!path ./lib/google-collect-1.0-rc4.jar
!path ./lib/dom4j-1.6.1.jar
!path ./lib/commons-vfs-1.0.jar
!path ./lib/clover-2.6.1.jar
!path /home/diego/workspace/TemperatureConverter/bin
!path /home/diego/workspace/TemperatureConverterTest/bin

If you just run the test here by clicking the Test button, you will receive the
following message:

__EXCEPTION__:org.givwenzen.DomainStepNotFoundException:

You need a step class with an annotated method matching this pattern: "I'm using
the TemperatureConverter".

Typical causes of this error are:

•	 StepClass is missing the @DomainSteps annotation
•	 StepMethod is missing the @DomainStep annotation
•	 The step method annotation has a regular expression that is not matching the

current test step

This, and the other exception messages are very helpful in implementing the steps
class, however you should add some behavior.

The step class should be placed in the package or subpackage of bdd.steps, or your
own custom package if defined.

For example:

Chapter 6

[161]

 @DomainSteps
 public class StepClass {
 @DomainStep("I'm using the TemperatureConverter")
 public void domainStep() {
 // TODO implement step
 } }

In our particular case this will be the implementation of the StepClass:

package bdd.steps.tc;

import org.givwenzen.annotations.DomainStep;
import org.givwenzen.annotations.DomainSteps;

import com.example.aatg.tc.TemperatureConverter;

@DomainSteps
public class TemperatureConverterSteps {

 private static final String CELSIUS = "Celsius";
 private static final String FAHRENHEIT = "Fahrenheit";

 private static final String ANY_TEMPERATURE =
 "([-+]?\\d+(?:\\.\\d+)?)";
 private static final String UNIT = "(C|F)";
 private static final String UNIT_NAME =
 "(" + CELSIUS + "|" + FAHRENHEIT + ")";

 private static final double DELTA = 0.01d;

 private double mValue = Double.NaN;

 @DomainStep("I(?: a|')m using the TemperatureConverter")
 public void createTemperatureConverter() {
 // do nothing
 }

 @DomainStep("I enter " + ANY_TEMPERATURE + " into "
 + UNIT_NAME + " field")
 public void setField(double value, String unitName) {
 mValue = value;
 }

 @DomainStep("I obtain " + ANY_TEMPERATURE + " in "
 + UNIT_NAME + " field")
 public boolean verifyConversion(double value, String unitName) {
 try {
 final double t = (FAHRENHEIT.compareTo(unitName) == 0) ?
 getFahrenheit() : getCelsius();
 return (Math.abs(t-value) < DELTA);
 }
 catch (RuntimeException ex) {
 return false;
 }
 }

Behavior Driven Development

[162]

 @DomainStep("Celsius")
 public double getCelsius() {
 return TemperatureConverter.fahrenheitToCelsius(mValue);
 }

 @DomainStep("Fahrenheit")
 public double getFahrenheit() {
 return TemperatureConverter.celsiusToFahrenheit(mValue);
 }
}

In this example, we are using a subpackage of bdd.steps because, by default, this is
the package hierarchy GivWenZen searches for steps implementations. Otherwise,
extra configuration is needed.

Classes implementing steps should be annotated by @DomainSteps and the step's
methods annotated by @DomainStep. The latter receives a regular expression String
as a parameter. This regular expression is used by GivWenZen to match the steps.

For example, in our scenario we have defined this step:

I enter 100 into Celsius field

Our annotation is:

@DomainStep("I enter " + ANY_TEMPERATURE + " into "
 + UNIT_NAME + " field")

This will match, and the regular expression group values defined by ANY_
TEMPERATURE and UNIT_NAME will be obtained and provided to the method as its
argument's value and unitName:

public void setField(double value, String unitName)

Recall that in a previous chapter, I recommended reviewing regular expressions
because they could be useful. Well this is probably one of these places where they are
extremely useful. In ANY_TEMPERATURE we are matching every possible temperature
value with the optional sign and decimal point. Consequently UNIT and UNIT_NAME
match the unit symbol or its name; that is Celsius or Fahrenheit.

These regular expressions are used in the construction of the @DomainStep
annotation parameters. Groups, delimited by "()" parenthesis in these regular
expressions are converted into method parameters. This is how setField() obtains
its parameters.

Then we have a verifyConversion() method that returns true or false depending
on whether the actual conversion is within a DELTA value of the expected one.

Behavior Driven Development

[164]

This method obtains the exception message, temperature value, and unit from the
regular expression. Then this is compared against the actual exception message to
verify that it matches.

Additionally, we can create other scenarios which, in this situation, will be supported
by the existing steps methods. These scenarios could be:

-|script|
given	I'm using the !-TemperatureConverter-!
when	I enter -100 into Celsius field
then	I obtain -148 in Fahrenheit field

-|script|
given	I'm using the !-TemperatureConverter-!	
when	I enter -100 into Fahrenheit field	
then	I obtain -73.33 in Celsius field	
show	then	Celsius

-|script|
|given|I'm using the !-TemperatureConverter-! |
|when |I enter -460 into Fahrenheit field |
|then |I obtain 'Invalid temperature: -460.00F below absolute zero'
exception|

Because GivWenZen is based on FitNesse, we are free to combine both approaches
and include the tests from our previous session in the same suite. Doing so, we can
run the entire suite from the suite page obtaining the overall results.

Chapter 6

[165]

Summary
In this chapter we covered Behavior Driven Development as an evolution of Test
Driven Development which we examined in previous chapters.

We discussed the origin and driving forces behind Behavior Driven development.
We analyzed the concepts serving as the foundations, explored the Given-When-
Then vocabulary idea, and introduced FitNesse and Slim as helpful tools in
deploying tests.

We presented GivWenZen, a tool based on FitNesse that gives us the ability to create
scenarios and test them.

We introduced these techniques and tools to our sample Android project. However,
we are still limited to test subjects that are testable under the JVM avoiding the use
of Android-specific classes and mainly the User Interface. We will be exploring some
alternatives to overcome this limitation in Chapter 10, Alternative Testing Tactics.

The next chapter presents practical examples of different common situations that you
will encounter, applying all the disciplines and techniques discussed so far.

Testing Recipes
This chapter provides practical examples of different common situations that you
will encounter by applying the disciplines and techniques described in the previous
chapters. The examples are presented in a Cookbook style so you can adapt and use
them for your projects.

The following are the topics that will be covered in this chapter:

•	 Android Unit tests
•	 Testing activities and applications
•	 Testing databases and ContentProviders
•	 Testing local and remote services
•	 Testing UIs
•	 Testing exceptions
•	 Testing parsers
•	 Testing for memory leaks

After this chapter you will have a reference to apply testing to your projects and to
know what to do in every situation.

Android Unit tests
There are some cases where you really need to test parts of the application in isolation
with little connection to the underlying system. In such cases we have to select a base
class that is high enough in the hierarchy to remove some of the dependencies but not
high enough for us to be responsible for some of the basic infrastructure.

The candidate base class in this case is possibly AndroidTestCase. This example
has been taken from the Android CTS test suite (http://source.android.com/
compatibility/cts-intro.html):

Testing Recipes

[168]

/*
 * Copyright (C) 2009 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
 * either express or implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 */

package com.android.cts.appaccessdata;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import android.test.AndroidTestCase;

/**
 * Test that another app's private data cannot be accessed.
 *
 * Assumes that {@link APP_WITH_DATA_PKG} has already created
 the private data.
 */
public class AccessPrivateDataTest extends AndroidTestCase {

 /**
 * The Android package name of the application that owns
 the private data
 */
 private static final String APP_WITH_DATA_PKG =
 "com.android.cts.appwithdata";

Up to here we have:

•	 The standard Android Open Source Project copyright.
•	 The package definition. This test lives in com.android.cts.appaccessdata.
•	 Some imports.

Chapter 7

[169]

•	 The definition of AccessPrivateDataTest, which extends AndroidTestCase
because it's a unit test that doesn't require the system infrastructure. In this
particular case we could have also used TestCase directly, because we are
not accessing Context.

•	 The definition of the constant APP_WITH_DATA_PKG, indicating the package
name of the application containing the private data we are trying to access:

 /**
 * Name of private file to access. This must match the name
 * of the file created by
 * {@link APP_WITH_DATA_PKG}.
 */
 private static final String PRIVATE_FILE_NAME =
 "private_file.txt";

 /**
 * Tests that another app's private file cannot be accessed
 * @throws IOException
 */
 public void testAccessPrivateData() throws IOException {
 try {
 // construct the absolute file path to the app's
 private file
 String privateFilePath = String.format(
 "/data/data/%s/%s", APP_WITH_DATA_PKG,
 PRIVATE_FILE_NAME);
 FileInputStream inputStream = new
 FileInputStream(privateFilePath);
 inputStream.read();
 inputStream.close();
 fail("Was able to access another app's private data");
 } catch (FileNotFoundException e) {
 // expected
 } catch (SecurityException e) {
 // also valid
 }
 }
}

In this second part, we have:

•	 The definition of PRIVATE_FILE_NAME, containing the name of the file we will
try to access

•	 The test method testAccessPrivateData, which actually exercises the
feature

Testing Recipes

[170]

This test method, testAccessPrivateData(), tests the access to other packages'
private data and fails if this is possible. To achieve this, the expected exceptions are
caught and if this doesn't happen fail() is invoked with a custom message.

Testing activities and applications
This section shows some examples of activities and applications tests. They cover
some common cases that you will find in your day-to-day testing and you can adapt
them to suit your specific needs.

Applications and preferences
In Android parlance, application refers to a base class used when it is needed to
maintain a global application state. This is usually utilized for dealing with shared
preferences. We expect that tests altering these preferences' values don't affect the
behavior of the real application. Imagine the tests deleting user account information
for an application storing these values as shared preferences. It doesn't sound like a
good idea. So what we really need is the ability to mock a Context that also mocks
the access to the SharedPreferences.

Our first attempt could be to use RenamingDelegatingContext, but unfortunately,
it does not mock SharedPreferences, although it is close because it mocks database
and filesystem access. So, first we need to create a specialized mock Context that
also mocks the latter.

The RenamingMockContext class
Let's create the specialized Context. The class RenamingDelegatingContext is a very
good point to start from because as we mentioned before, database and filesystem
access will be mocked. The problem is how to mock SharedPreferences access.

Remember that RenamingDelegatingContext as its name suggests, delegates
everything to a Context. So the root of our problem lies in this Context. Because it is
a mock Context as well, MockContext seems to be the correct base class. As you may
remember, in Chapter 3, Building Blocks on the Android SDK, we looked at the mock
object and we noted that MockContext can only be used to inject other dependencies
and all methods are non-functional and throw UnsupportedOperationException.
However, this is also a feature we can use to our advantage in detecting the
minimum set of methods that needs to be implemented in a case like this. So let's
start creating an empty MockContext to whom the other Context, that we can name
RenamingMockContext, delegates:

Chapter 7

[171]

 private static class RenamingMockContext extends
 RenamingDelegatingContext {

 private static final String PREFIX = "test.";

 public RenamingMockContext(Context context) {
 super(new DelegatedMockContext(context), PREFIX);
 }

 private static class DelegatedMockContext extends MockContext {
 public DelegatedMockContext(Context context) {
 // TODO Auto-generated constructor stub
 }
 }
 }

We created a mock Context, RenamingMockContext, that delegates to another
empty MockContext, DelegatedMockContext, and uses a renaming prefix.

The TemperatureConverterApplicationTests class
We have the RenamingMockContext, now we need a test that uses it. Because we will
be testing an application, the base class for the test would be ApplicationTestCase.
This test case provides a framework in which you can test application classes in a
controlled environment. It provides basic support for the lifecycle of an application,
and hooks by which you can inject various dependencies and control the environment
in which your application is tested. We can inject the RenamingMockContext before the
Application is created using the setContext() method.

Our TemperatureConverter application, which we started in Chapter 4, Test Driven
Development, will be storing the decimal places as a shared preference. Consequently
we will be creating a test to set the decimal places and then retrieving it to verify
its value:

public class TemperatureConverterApplicationTests extends
 ApplicationTestCase<TemperatureConverterApplication> {

 private TemperatureConverterApplication mApplication;

 public TemperatureConverterApplicationTests() {
 this("TemperatureConverterApplicationTests");
 }

 public TemperatureConverterApplicationTests(String name) {
 super(TemperatureConverterApplication.class);
 setName(name);
 }

 @Override
 protected void setUp() throws Exception {

Testing Recipes

[172]

 super.setUp();
 final RenamingMockContext mockContext = new
 RenamingMockContext(getContext());
 setContext(mockContext);
 createApplication();
 mApplication = getApplication();
 }

 @Override
 protected void tearDown() throws Exception {

 super.tearDown();
 }

 public final void testPreconditions() {
 assertNotNull(mApplication);
 }

 public final void testSetDecimalPlaces() {
 final int expected = 3;
 mApplication.setDecimalPlaces(expected);
 assertEquals(expected, mApplication.getDecimalPlaces());
 }
}

We extend ApplicationTestCase using the TemperatureConverterApplication
template parameter. Soon, we will be creating the class extending Application.

Then we use the Given name constructor pattern that we discussed in Chapter 3,
Building Blocks on the Android SDK.

In the setUp() method we create the mock context and set the context for this test
using setContext() method; we create the application using createApplication()
and finally hold a reference to it as it will be used frequently in our tests.

Regarding our tests, using the Test preconditions pattern that we reviewed
previously, we check that the recently created application is not null.

Lastly is the test that actually tests for the required behavior setting the decimal
places, retrieving it, and verifying its value.

Our first objective is to get these tests to compile. Later we will focus on
the success of these tests. To get it to compile, we need to create the class
TemperatureConverterApplication and the getter and setter for decimal places, that
ultimately should use SharedPreferences to store and retrieve the specific preference:

/**
 * Copyright (C) 2010-2011 Diego Torres Milano
 */

Chapter 7

[173]

package com.example.aatg.tc;

import android.app.Application;

/**
 * @author diego
 *
 */
public class TemperatureConverterApplication extends
Application {

 /**
 *
 */
 public TemperatureConverterApplication() {
 // TODO Auto-generated constructor stub
 }

 public void setDecimalPlaces(int expected) {
 // TODO Auto-generated method stub

 }

 public Object getDecimalPlaces() {
 // TODO Auto-generated method stub
 return null;
 }

}

Running the tests we obtain a failure related to the fact that we are not storing the
decimal places anywhere. We can implement this using SharedPreferences in
this way:

/**
 * Copyright (C) 2010-2011 Diego Torres Milano
 */
package com.example.aatg.tc;

import android.app.Application;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.preference.PreferenceManager;

/**
 * @author diego
 *
 */
public class TemperatureConverterApplication extends Application {
 private static final String TAG =
 "TemperatureConverterApplication";

Testing Recipes

[174]

 public static final int DECIMAL_PLACES_DEFAULT = 2;
 public static final String DECIMAL_PLACES = "decimalPlaces";

 private SharedPreferences mSharedPreferences;

 /**
 *
 */
 public TemperatureConverterApplication() {
 // TODO Auto-generated constructor stub
 }

 @Override
 public void onCreate() {
 super.onCreate();
 mSharedPreferences =
 PreferenceManager.getDefaultSharedPreferences(this);
 }

 public void setDecimalPlaces(int d) {
 final Editor editor = mSharedPreferences.edit();
 editor.putString(DECIMAL_PLACES, Integer.toString(d));
 editor.commit();
 }

 public int getDecimalPlaces() {
 return Integer.parseInt(
 mSharedPreferences.getString(DECIMAL_PLACES,
 Integer.toString(DECIMAL_PLACES_DEFAULT)));
 }
}

If we complete these steps, compile and run the tests, we discover that they fail with
an UnsupportedOperationException in MockContext.getPackageName().

We change DelegateMockContext to override getPackageName(), delegating to the
original context passed as a parameter to the constructor:

 private static class RenamingMockContext extends
 RenamingDelegatingContext {

 /**
 * The renaming prefix.
 */
 private static final String PREFIX = "test.";

 public RenamingMockContext(Context context) {
 super(new DelegatedMockContext(context), PREFIX);
 }

 private static class DelegatedMockContext extends MockContext {

Chapter 7

[175]

 private Context mDelegatedContext;

 public DelegatedMockContext(Context context) {
 mDelegatedContext = context;
 }

 @Override
 public String getPackageName() {
 return mDelegatedContext.getPackageName();
 }
 }

Running the tests again, this time we obtain a different, though somewhat expected,
UnsupportedOperationException. This exception is received while invoking
getSharedPreferences(). Thus, the next step is to override this method in
DelegatedMockContext:

 @Override
 public SharedPreferences getSharedPreferences(
 String name, int mode) {
 return mDelegatedContext.getSharedPreferences(
 PREFIX + name, mode);
 }

Any time that a SharedPreference is requested, this method will invoke the
delegating context, adding the prefix for the name. The original SharedPreferences
used by the application are unchanged.

We can verify this behavior by furnishing the TemperatureConverterApplication
class with the previously mentioned methods, then storing some value in the shared
preferences, running the tests, and eventually verifying that this value was not
affected by running the tests.

Testing activities
The next example shows how an activity can be tested in complete isolation using
ActivityUnitTestCase<Activity> base class as opposed to ActivityInstrume
ntationTestCase2<Activity>. This method requires more care and attention but
also provides a greater flexibility and control over the Activity under test. This
kind of test is intended for testing general Activity behavior and not an Activity
instance's interaction with other system components or UI related tests.

Testing Recipes

[176]

We are taking this example from the ApiDemos sample application (http://
developer.android.com/resources/samples/ApiDemos/index.html) that is
provided as an SDK companion. This sample is somewhat long so we have split it
into several code snippets to improve its readability:

/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 */

package com.example.android.apis.app;

import com.example.android.apis.R;
import com.example.android.apis.view.Focus2ActivityTest;

import android.content.Context;
import android.content.Intent;
import android.test.ActivityUnitTestCase;
import android.test.suitebuilder.annotation.MediumTest;
import android.widget.Button;

This first code snippet has nothing more than the required copyrights and imports:

/**
 * This demonstrates completely isolated "unit test" of an Activity
 * class.
 *
 * <p>This model for testing creates the entire Activity (
 * like {@link Focus2ActivityTest}) but does
 * not attach it to the system (for example, it cannot launch another
 * Activity).
 * It allows you to inject additional behaviors via the
 * {@link android.test.ActivityUnitTestCase#setActivityContext(
 * Context)} and

Chapter 7

[177]

 * {@link android.test.ActivityUnitTestCase#setApplication(
 * android.app.Application)} methods.
 * It also allows you to more carefully test your Activity's
 * performance
 * Writing unit tests in this manner requires more care and
 * attention, but allows you to test
 * very specific behaviors, and can also be an easier way
 * to test error conditions.
 *
 * <p>Because ActivityUnitTestCase creates the Activity
 * under test completely outside of
 * the usual system, tests of layout and point-click UI
 * interaction are much less useful
 * in this configuration. It's more useful here to concentrate
 * on tests that involve the
 * underlying data model, internal business logic, or exercising
 * your Activity's life cycle.
 *
 * <p>See {@link com.example.android.apis.AllTests} for
 * documentation on running
 * all tests and individual tests in this application.
 */
public class ForwardingTest extends
 ActivityUnitTestCase<Forwarding> {

 private Intent mStartIntent;
 private Button mButton;

 public ForwardingTest() {
 super(Forwarding.class);
 }

This second snippet includes the test case definition extending ActivityUnitTest
Case<Forwarding> as we mentioned earlier as a unit test for an Activity class. This
activity under test will be disconnected from the system so it is only intended to test
internal aspects of it and not its interaction with other components.

The no-argument constructor is also defined here as we mentioned
in previous examples:

 @Override
 protected void setUp() throws Exception {
 super.setUp();

 // In setUp, you can create any shared test data,
 // or set up mock components to inject
 // into your Activity. But do not call startActivity()

Testing Recipes

[178]

 // until the actual test methods.
 mStartIntent = new Intent(Intent.ACTION_MAIN);
 }

This setUp() method follows the pattern of invoking the super method and
initializes the field with the Intent used to start the Activity. In this case we are
saving the Intent as member mStartIntent:

 /**
 * The name 'test preconditions' is a convention to
 * signal that if this
 * test doesn't pass, the test case was not set up
 * properly and it might
 * explain any and all failures in other tests.
 * This is not guaranteed
 * to run before other tests, as junit uses reflection
 * to find the tests.
 */
 @MediumTest
 public void testPreconditions() {
 startActivity(mStartIntent, null, null);
 mButton = (Button) getActivity().findViewById(R.id.go);

 assertNotNull(getActivity());
 assertNotNull(mButton);
 }

This defines the testPreconditions() method that we also explained before. As
noted in the method's comment, remember that this name is just a convention and no
execution order is guaranteed:

 /**
 * This test demonstrates examining the way that activity calls
 * startActivity() to launch
 * other activities.
 */
 @MediumTest
 public void testSubLaunch() {
 Forwarding activity = startActivity(
 mStartIntent, null, null);
 mButton = (Button) activity.findViewById(R.id.go);

 // This test confirms that when you click the button,
 // the activity attempts to open
 // another activity (by calling startActivity) and
 // close itself (by calling finish()).
 mButton.performClick();

Chapter 7

[179]

 assertNotNull(getStartedActivityIntent());
 assertTrue(isFinishCalled());
 }

This test performs a click on the "go" button of the Forwarding Activity. The
onClickListener of that button invokes startActivity() with an Intent
defining the component as the ForwardTarget class, thus this is the Activity
that will be started.

After performing this action we verify that the Intent used to launch the new
Activity is not null and that finish() was called on our Activity.

Once the activity under test is started using startActivity(mStartIntent, null,
null), the components are verified to assure that they are as expected. In order to
do that, the recently started activity is verified for "not null" using an assertion on
getActivity() and then the button that was obtained by findViewById() is also
verified for a "not null" value:

 /**
 * This test demonstrates ways to exercise the Activity's
 * life cycle.
 */
 @MediumTest
 public void testLifeCycleCreate() {
 Forwarding activity = startActivity(
 mStartIntent, null, null);

 // At this point, onCreate() has been called, but nothing else
 // Complete the startup of the activity
 getInstrumentation().callActivityOnStart(activity);
 getInstrumentation().callActivityOnResume(activity);

 // At this point you could test for various configuration
 // aspects, or you could
 // use a Mock Context to confirm that your activity has made
 // certain calls to the system
 // and set itself up properly.

 getInstrumentation().callActivityOnPause(activity);

 // At this point you could confirm that the activity has
 // paused properly, as if it is
 // no longer the topmost activity on screen.

 getInstrumentation().callActivityOnStop(activity);

 // At this point, you could confirm that the activity has
 // shut itself down appropriately,
 // or you could use a Mock Context to confirm that your
 // activity has released any system

Testing Recipes

[180]

 // resources it should no longer be holding.

 // ActivityUnitTestCase.tearDown(), which is always
 // automatically called, will take care
 // of calling onDestroy().
 }
}

This is perhaps the most interesting test method in this test case. This test case
demonstrates how to exercise the Activity lifecycle. After starting the Activity,
onCreate() was automatically called, and we then exercise other lifecycle methods
by invoking them manually. To be able to invoke these methods we use the
Intrumentation of this test.

Finally, we don't manually invoke onDestroy() as it will be invoked for us
in tearDown().

Next, we have the testSubLaunch() test. This test checks for various conditions
after starting the Activity under test using startActivity(mStartIntent,
null, null). The Button is obtained using findViewById() and then it is pressed
issuing performClick(). The action when this button is touched is to launch a
new Activity and this is precisely the condition that is checked, asserting that
getStartedActivityIntent() returns "not null". The latter method returns the
Intent that was used if the Activity under tests invoked startActivity(Intent)
or startActivityForResult(Intent, int). The last step is to verify that finish()
was called if the other Activity was launched and we do that by verifying the
return value of isFinishCalled(), which returns true if one of the finish methods
(finish(), finishFromChild(Activity), or finishActivity(int)) were called in
the Activity under test.

It's time to exercise the Activity lifecycle for which the testLifeCycleCreate()
method is used. This method starts the Activity in the same way as the previously
analyzed test.

After that, the activity is started, its onCreate() method is called, and
the Instrumentation is used to invoke other lifecycle methods like
getInstrumentation().callActivityOnStart(activity) and
getInstrumentation().callActivityOnResume(activity) to complete the
Activity under test start up.

The Activity is now completely started and its time to test for the aspects we are
interested in. Once this is achieved, we can follow other steps in the lifecycle. Note
that this sample test does not test for anything special here.

Chapter 7

[181]

To finish the lifecycle, we will call getInstrumentation().
callActivityOnPause(activity) and getInstrumentation().
callActivityOnStop(activity). As it's mentioned in the method's comments, we
don't have to worry about calling onDestory() as it will be automatically called by
tearDown().

If you want to run the tests, once you have the ApiDemos.apk and its tests installed
onto a device or emulator, you can run this command line:

$ adb -e shell am instrument -w -e class com.example.android.apis.
app.ForwardingTest com.example.android.apis.tests/android.test.
InstrumentationTestRunner

The output is as follows:

com.example.android.apis.app.ForwardingTest:...

Test results for InstrumentationTestRunner=...

Time: 0.614

OK (3 tests)

This test represents a skeleton you can reuse to test your Activities in isolation and
to test lifecycle related cases. The injection of mock object could also facilitate testing
other aspects of the Activity such as accessing system resources.

Testing files, databases, and
ContentProviders
Some test cases have the need to exercise databases or ContentProviders operations,
and soon comes the need to mock these operations. For example, if we are testing an
application on a real device, we don't want to interfere with the normal operation of
applications on such devices, mainly when we change values that may be shared by
more than one application.

Such cases can take advantage of another mock class that is not a part
of android.test.mock package but of android.test instead, namely
RenamingDelegatingContext.

This class lets us mock file and database operations. A prefix supplied in the
constructor is used to modify the target of these operations. All other operations are
delegated to the delegating Context that you must specify in the constructor too.

Testing Recipes

[182]

Suppose our Activity under test uses some files or databases that we want to
control in some way, maybe to introduce specialized content to drive our tests, and
we don't want to, or we cannot use real files or database. In such cases we create
RenamingDelegatingContext specifying a prefix. We provide mock files using this
prefix and introduce any content we need to drive our tests, and the Activity under
test could you use them with no alteration.

The advantage of keeping our Activity unchanged, that is not modifying it to
read from a different source, is that this assures all tests are valid. If we introduce
a change only intended for our tests, we will not be able to assure that under real
conditions, the Activity behaves the same.

To demonstrate this case, we will create an extremely simple Activity.

The activity MockContextExampleActivity displays the content of a file inside
TextView. What we intend to demonstrate is how it displays different content
during normal operation of Activity as compared to when it is under test:

package com.example.aatg.mockcontextexample;

import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;
import android.widget.TextView;

import java.io.FileInputStream;

public class MockContextExampleActivity extends Activity {

 public final static String FILE_NAME = "myfile.txt";

 private TextView mTv;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mTv = (TextView) findViewById(R.id.TextView01);
 final byte[] buffer = new byte[1024];

 try {
 final FileInputStream fis = openFileInput(FILE_NAME);
 final int n = fis.read(buffer);
 mTv.setText(new String(buffer, 0, n-1));
 } catch (Exception e) {
 mTv.setText(e.toString());
 mTv.setTextColor(Color.RED);
 }

Chapter 7

[183]

 }

 public String getText() {
 return mTv.getText().toString();
 }
}

This is our simple Activity. It reads the content of the myfile.txt file and displays
it on a TextView. It also displays any error that may occur.

We need some content for this file. Probably the easiest way of creating the files
is as shown:

$ adb shell echo "This is real data" \> \
 /data/data/com.example.aatg.mockcontextexample/files/myfile.txt

$ adb shell echo "This is *MOCK* data" \> \
 /data/data/com.example.aatg.mockcontextexample/files/test.myfile.txt

We created two different files, one named myfile.txt and the other test.myfile.
txt, with different content. The latter indicates that it is a mock content.

The following code demonstrates the use of this mock data in our activity tests:

package com.example.aatg.mockcontextexample.test;

import com.example.aatg.mockcontextexample.
 MockContextExampleActivity;

import android.content.Intent;
import android.test.ActivityUnitTestCase;
import android.test.RenamingDelegatingContext;

public class MockContextExampleTest extends ActivityUnitTestCase<MockC
ontextExampleActivity> {

 private static final String PREFIX = "test.";
 private RenamingDelegatingContext mMockContext;

 public MockContextExampleTest() {
 super(MockContextExampleActivity.class);
 }

 protected void setUp() throws Exception {
 super.setUp();

 mMockContext = new RenamingDelegatingContext(
 getInstrumentation().getTargetContext(), PREFIX);
 mMockContext.makeExistingFilesAndDbsAccessible();
 }

 protected void tearDown() throws Exception {
 super.tearDown();

Chapter 7

[185]

The BrowserProvider tests
These tests are taken from the Android Open Source Project (AOSP). Source code
can be obtained as a component of the Browser.git project at http://android.git.
kernel.org/?p=platform/packages/apps/Browser.git. They are intended to test
some aspects of the Browser Bookmarks content provider, BrowserProvider, which is
part of the standard Browser included with the Android platform.

/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 */

package com.android.browser;

import android.app.SearchManager;
import android.content.ContentValues;
import android.database.Cursor;
import android.net.Uri;
import android.test.AndroidTestCase;
import android.test.suitebuilder.annotation.MediumTest;

import java.util.ArrayList;
import java.util.Arrays;

This first code snippet has nothing more than the required copyrights and imports:

/**
 * Unit tests for {@link BrowserProvider}.
 */
@MediumTest
public class BrowserProviderTests extends AndroidTestCase {

 private ArrayList<Uri> mDeleteUris;

 @Override

Testing Recipes

[186]

 protected void setUp() throws Exception {
 mDeleteUris = new ArrayList<Uri>();
 super.setUp();
 }

 @Override
 protected void tearDown() throws Exception {
 for (Uri uri : mDeleteUris) {
 deleteUri(uri);
 }
 super.tearDown();
 }

This second snippet includes the test case definition extending AndroidTestCase.
The class BrowserProviderTests extends AndroidTestCase because a Context is
needed to access provider content.

The fixture created in the setUp() method creates an ArrayList of Uris that is used
to keep track of the inserted Uris to be deleted in the tearDown() method. Perhaps
we could have saved all this hassle using a mock content provider, maintaining the
isolation between our tests and the system. Anyway, tearDown() iterates over this
list and deletes the stored Uris.

There is no need to override the constructor here as AndroidTestCase is not a
parameterized class and we don't need to do anything special in it:

 public void testHasDefaultBookmarks() {
 Cursor c = getBookmarksSuggest("");
 try {
 assertTrue("No default bookmarks", c.getCount() > 0);
 } finally {
 c.close();
 }
 }

 public void testPartialFirstTitleWord() {
 assertInsertQuery("http://www.example.com/rasdfe",
 "nfgjra sdfywe", "nfgj");
 }

 public void testFullFirstTitleWord() {
 assertInsertQuery("http://www.example.com/",
 "nfgjra dfger", "nfgjra");
 }

 public void testFullFirstTitleWordPartialSecond() {
 assertInsertQuery("http://www.example.com/",
 "nfgjra dfger", "nfgjra df");

Chapter 7

[187]

 }

 public void testFullTitle() {
 assertInsertQuery("http://www.example.com/",
 "nfgjra dfger", "nfgjra dfger");
 }

The next test, testHasDefaultBookmarks(), is a test for the default bookmarks.
Upon startup a cursor iterates over the default bookmarks obtained by invoking
getBookmarksSuggest(""), which returns the bookmarks unfiltered; that is why the
query parameter is "".

Then, testPartialFirstTitleWord(), testFullFirstTitleWord(),
testFullFirstTitleWordPartialSecond(), and testFullTitle() test for the
insertion of bookmarks. To achieve this they invoke assertInsertQuery() using the
bookmarked Url, its title, and the query. The method assertInsertQuery() adds
the bookmarks to the bookmark provider, inserting the Url issued as a parameter
with the specified title. The Uri returned is verified to be not null and not exactly the
same as the default one. Finally the Uri is inserted in the list of Uri instances to be
deleted in testDown():

// Not implemented in BrowserProvider
// public void testFullSecondTitleWord() {
// assertInsertQuery("http://www.example.com/rasdfe",
// "nfgjra sdfywe", "sdfywe");
// }

 public void testFullTitleJapanese() {
 String title = "\u30ae\u30e3\u30e9\u30ea\u30fc\
 u30fcGoogle\u691c\u7d22";
 assertInsertQuery("http://www.example.com/sdaga",
 title, title);
 }

 public void testPartialTitleJapanese() {
 String title = "\u30ae\u30e3\u30e9\u30ea\u30fc\
 u30fcGoogle\u691c\u7d22";
 String query = "\u30ae\u30e3\u30e9\u30ea\u30fc";
 assertInsertQuery("http://www.example.com/sdaga",
 title, query);
 }

 // Test for http://b/issue?id=2152749
 public void testSoundmarkTitleJapanese() {
 String title = "\u30ae\u30e3\u30e9\u30ea\u30fc\
 u30fcGoogle\u691c\u7d22";
 String query = "\u30ad\u30e3\u30e9\u30ea\u30fc";
 assertInsertQuery("http://www.example.com/sdaga",
 title, query);
 }

Testing Recipes

[188]

These tests are similar to the tests presented before, but in this case they use Japanese
titles and queries. It is recommended to test the application's components under
different conditions like in this case where other languages with different character
sets are used.

We have several tests that are intended to verify the utilization of this
bookmark provider for other locales and languages than just English. These
particular cases cover the Japanese language utilization in bookmark titles.
The tests testFullTitleJapanese(), testPartialTitleJapanese(), and
testSoundmarkTitleJapanese() are the Japanese versions of the tests introduced
before using Unicode characters:

 //
 // Utilities
 //

 private void assertInsertQuery(String url, String title,
 String query) {
 addBookmark(url, title);
 assertQueryReturns(url, title, query);
 }

 private void assertQueryReturns(String url, String title,
 String query) {
 Cursor c = getBookmarksSuggest(query);
 try {
 assertTrue(title + " not matched by " + query,
 c.getCount() > 0);
 assertTrue("More than one result for " + query,
 c.getCount() == 1);
 while (c.moveToNext()) {
 String text1 = getCol(c,
 SearchManager.SUGGEST_COLUMN_TEXT_1);
 assertNotNull(text1);
 assertEquals("Bad title", title, text1);
 String text2 = getCol(c,
 SearchManager.SUGGEST_COLUMN_TEXT_2);
 assertNotNull(text2);
 String data = getCol(c,
 SearchManager.SUGGEST_COLUMN_INTENT_DATA);
 assertNotNull(data);
 assertEquals("Bad URL", url, data);
 }
 } finally {
 c.close();
 }
 }

Chapter 7

[189]

 private Cursor getBookmarksSuggest(String query) {
 Uri suggestUri = Uri.parse(
 "content://browser/bookmarks/search_suggest_query");
 String[] selectionArgs = { query };
 Cursor c = getContext().getContentResolver().query(
 suggestUri, null, "url LIKE ?",selectionArgs, null);
 assertNotNull(c);
 return c;
 }

 private void addBookmark(String url, String title) {
 Uri uri = insertBookmark(url, title);
 assertNotNull(uri);
 assertFalse(
 android.provider.Browser.BOOKMARKS_URI.equals(uri));
 mDeleteUris.add(uri);
 }

 private Uri insertBookmark(String url, String title) {
 ContentValues values = new ContentValues();
 values.put("title", title);
 values.put("url", url);
 values.put("visits", 0);
 values.put("date", 0);
 values.put("created", 0);
 values.put("bookmark", 1);
 return getContext().getContentResolver().insert(
 android.provider.Browser.BOOKMARKS_URI, values);
 }

 private void deleteUri(Uri uri) {
 int count = getContext().getContentResolver().
 delete(uri, null, null);
 assertEquals("Failed to delete " + uri, 1, count);
 }

 private static String getCol(Cursor c, String name) {
 int col = c.getColumnIndex(name);
 String msg = "Column " + name + " not found, columns: "
 + Arrays.toString(c.getColumnNames());
 assertTrue(msg, col >= 0);
 return c.getString(col);
 }
}

Several utility methods follow. These are the utilities used in the tests. We briefly
looked at assertInsertQuery() before, so now let's look at the other methods as well.

Testing Recipes

[190]

The method assertInsertQuery() invokes assertQueryReturns(url,
title, query), after addBookmark(), to verify that the Cursor returned by
getBookmarksSuggest(query) contains the expected data. This expectation can be
summarized as:

•	 Number of rows returned by the query is greater than 0
•	 Number of rows returned by the query is equal to 1
•	 The title in the returned row is not null
•	 The title returned by the query is exactly the same as the method parameter
•	 The second line for the suggestion is not null
•	 The URL returned by the query is not null
•	 This URL matches exactly the URL issued as the method parameter

This is a simplified Activity Diagram that will help us understand the relationship
among these methods:

These tests follow the basic structure described before and are depicted in the UML
activity diagram. Firstly, assertInsertQuery() is invoked which in turns invokes
addBookmark() and assertQueryReturns(). Then, getBookmarksSuggest() is
called and finally the asserts to validate the conditions we are testing. The most
outstanding thing here is the utilization of asserts in these utility methods, which
helps us test conditions along the way.

Chapter 7

[191]

This strategy provides an interesting pattern to follow in our tests. Some of the
utility methods that we need to create to complete our tests can also carry their own
verification of several conditions and improve our test quality.

Creating assert methods in our classes allows us to introduce domain-specific testing
language that can be reused when testing other parts of the system.

Testing exceptions
We have mentioned this before. In Chapter 1, Getting Started with Testing we stated that
you should test for exceptions and wrong values instead of just testing positive cases.

We have also presented this test before but here we are digging deeper into it:

 public final void testExceptionForLessThanAbsoluteZeroF() {
 try {
 TemperatureConverter.fahrenheitToCelsius(
 TemperatureConverter.ABSOLUTE_ZERO_F-1);
 fail();
 }
 catch (InvalidTemperatureException ex) {
 // do nothing
 }
 }

 public final void testExceptionForLessThanAbsoluteZeroC() {
 try {
 TemperatureConverter.celsiusToFahrenheit(
 TemperatureConverter.ABSOLUTE_ZERO_C-1);
 fail();
 }
 catch (InvalidTemperatureException ex) {
 // do nothing
 }
 }

Every time we have a method that is supposed to generate an exception, we should
test this condition. The best way of doing it is by invoking the method inside a try-
catch block, catching the expected Exception, and failing otherwise. In this precise
case we test for InvalidTemperature:

 public void testLifeCycleCreate() {
 Forwarding activity = startActivity(mStartIntent,
 null, null);

 // At this point, onCreate() has been called,

Testing Recipes

[192]

 // but nothing else
 // Complete the startup of the activity
 getInstrumentation().callActivityOnStart(activity);
 getInstrumentation().callActivityOnResume(activity);

 // At this point you could test for various
 // configuration aspects, or you could
 // use a Mock Context to confirm that your activity has made
 // certain calls to the system and set itself up properly.

 getInstrumentation().callActivityOnPause(activity);

 // At this point you could confirm that the activity has
 // paused properly, as if it is
 // no longer the topmost activity on screen.

 getInstrumentation().callActivityOnStop(activity);

 // At this point, you could confirm that the activity
 // has shut itself down appropriately,
 // or you could use a Mock Context to confirm that your
 // activity has released any system
 // resources it should no longer be holding.

 // ActivityUnitTestCase.tearDown(), which is always
 // automatically called, will take care
 // of calling onDestroy().
 }

Testing local and remote services
This test is also from a ApiDemos sample application (http://developer.android.
com/resources/samples/ApiDemos/index.html).

The idea is to extend the ServiceTestCase<Service> class to test a service in a
controlled environment:

/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software
 * distributed under the License is distributed on an "AS IS" BASIS,

Chapter 7

[193]

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 */

package com.example.android.apis.app;

import android.app.Notification;
import android.app.NotificationManager;
import android.content.Context;
import android.content.Intent;
import android.os.Handler;
import android.os.IBinder;
import android.test.MoreAsserts;
import android.test.ServiceTestCase;
import android.test.suitebuilder.annotation.MediumTest;
import android.test.suitebuilder.annotation.SmallTest;

This first code snippet has nothing more than the required copyrights and imports:

/**
 * This is a simple framework for a test of a Service.
 * See {@link android.test.ServiceTestCase
 * ServiceTestCase} for more information on how to write and
 * extend service tests.
 *
 * To run this test, you can type:
 * adb shell am instrument -w \
 * -e class com.example.android.apis.app.LocalServiceTest \
 * com.example.android.apis.tests/android.test.
 * InstrumentationTestRunner
 */
public class LocalServiceTest extends ServiceTestCase<LocalService> {

 public LocalServiceTest() {
 super(LocalService.class);
 }

Then, we are using the no argument constructor as we did before, invoking the super
constructor using the service class LocalService:

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 }

Now we are using the pattern of invoking the super methods in setUp()
and tearDown().

Testing Recipes

[194]

We are not setting up any specific fixture in this test so we are just invoking
super methods:

 /**
 * The name 'test preconditions' is a convention to signal that
 * if this
 * test doesn't pass, the test case was not set up properly and
 * it might
 * explain any and all failures in other tests. This is not
 * guaranteed to run before other tests, as junit uses
 * reflection to find the tests.
 */
 @SmallTest
 public void testPreconditions() {
 }

We now have an empty testPreconditions(). We don't need any preconditions
tested here:

 /**
 * Test basic startup/shutdown of Service
 */
 @SmallTest
 public void testStartable() {
 Intent startIntent = new Intent();
 startIntent.setClass(getContext(), LocalService.class);
 startService(startIntent);
 }

 /**
 * Test binding to service
 */
 @MediumTest
 public void testBindable() {
 Intent startIntent = new Intent();
 startIntent.setClass(getContext(), LocalService.class);
 IBinder service = bindService(startIntent);
 }
}

The constructor, as in other similar cases, invokes the parent constructor passing this
service class as a parameter.

Chapter 7

[195]

This is followed by a testStartable() test. It is annotated with the SmallTest
annotation to categorize this test. Next we start the service using an Intent that we
create here, setting its class to the class of the service under test. We also use the
instrumented Context for this Intent. This class allows for some dependency injection,
as every service depends on the Context in which it runs, and the application with
which it is associated. This framework allows you to inject modified, mock, or isolated
replacements for these dependencies, and thus performs a true unit test.

As we simply run our tests as-is, the Service will be injected with a fully-functional
Context, and a generic MockApplication object.

Then we start the service using the startService(startIntent) method,
in the same way as if it was started by Context.startService(), providing
the arguments it supplied. If you use this method to start the service, it will
automatically be stopped by tearDown().

Another test, testBindable(), which is categorized as MediumTest, will be testing if
the service can be bound. This test uses bindService(startIntent), which starts the
service under test, in the same way as if it was started by Context.bindService(),
providing the arguments it supplied. It returns the communication channel to
the service. It may return null if clients cannot bind to the service. Most probably
this test should check for the null return value in the service with an assertion like
assertNotNull(service) to verify that the service was bound correctly, but it
doesn't. Be sure to include this test when you write code for similar cases.

The returned IBinder is usually for a complex interface that has been described
using AIDL. In order to test with this interface, your service must implement a
getService() method, as shown in samples.ApiDemos.app.LocalService, which
has this implementation of that method:

 /**
 * Class for clients to access. Because we know this service
 * always runs in the same process as its clients,
 * we don't need to deal with IPC.
 */
 public class LocalBinder extends Binder {
 LocalService getService() {
 return LocalService.this;
 }
 }

Testing Recipes

[198]

Importing libraries
We have added an EasyMock library to the project's Java Build Path. This is usually
not a problem, but sometimes rebuilding the project leads us to the following error
that avoids the final APK. The problem is found when this final APK cannot be
created because there is a problem while it is archived:

[2010-10-28 01:12:29 - TemperatureConverterTest] Error generating final archive:
duplicate entry: LICENSE

This depends on how many libraries are included by the project and what they are.

Most of the available Open Source libraries have a similar content as proposed by
GNU and include files like LICENSE, NOTICE, CHANGES, COPYRIGHT, INSTALL,
among others. We will find this problem as soon as we try to include more than one
in the same project to ultimately build a single APK.

The solution to this problem is to repackage the library content renaming these files;
for example, LICENSE could be renamed to LICENSE.<library>. It is recommended
to add the suffix android to the repackaged library to keep track of these changes.

This is an example of the steps you may need to rename those files:

$ mkdir mylib-1.0

$ (cd mylib-1.0; jar xf /path/to/mylib-1.0.jar)

$ mv mylib-1.0/META-INF/LICENSE mylib-1.0/META-INF/LICENSE.mylib

$ mv mylib-1.0/META-INF/NOTICE mylib-1.0/META-INF/NOTICE.mylib

$ (cd mylib-1.0; jar cf /path/to/mylib-1.0-android.jar .)

The idea is to move the common file names to a name suffixed by the library name to
provide some uniqueness.

The testTextChanged test
This test will exercise EditNumber behavior, checking the method calls on the
TextWatcher mock and verifying the results.

We are using an AndroidTestCase because we are interested in testing EditNumber
in isolation of other components or Activities.

Chapter 7

[199]

This test defines two String arrays: sai and sar. sai stands for String array input
and sar for String array result. As you may have guessed already, sai contains the
input and sar the expected result for the corresponding element in the input after
filters have been applied.

In real life you should select more descriptive names for the variables used in the
tests as you should do for your code, but here we are constrained by the space and
thus we have selected very short names. The names saInput and saResult would
be good choices:

 /**
 * Test method for {@link com.example.aatg.tc.EditNumber}.
 * Several input strings are set and compared against the
 * expected results after filters are applied.
 * This test use {@link EasyMock}
 */
 public final void testTextChanged() {
 final String[] sai = new String[] {
 null, "", "1", "123", "-123", "0", "1.2", "-1.2",
 "1-2-3", "+1", "1.2.3" };
 final String[] sar = new String[] {
 "", "", "1", "123", "-123", "0", "1.2", "-1.2",
 "123", "1", "12.3" };

 // mock
 final TextWatcher watcher = createMock(TextWatcher.class);
 mEditNumber.addTextChangedListener(watcher);

 for (int i=1; i < sai.length; i++) {
 // record
 watcher.beforeTextChanged(stringCmp(sar[i-1]), eq(0),
 eq(sar[i-1].length()), eq(sar[i].length()));
 watcher.onTextChanged(stringCmp(sar[i]), eq(0),
 eq(sar[i-1].length()), eq(sar[i].length()));
 watcher.afterTextChanged(stringCmp(
 Editable.Factory.getInstance().newEditable(sar[i])));

 // replay
 replay(watcher);

 // exercise
 mEditNumber.setText(sai[i]);

 // test
 final String actual = mEditNumber.getText().toString();
 assertEquals(sai[i] + " => " + sar[i] + " => " + actual,
 sar[i], actual);

 // verify
 verify(watcher);

Testing Recipes

[200]

 // reset
 reset(watcher);
 }
 }

We begin creating sai and sar. As we explained before they are two String arrays
containing the inputs and results expected.

Then we create a mock TextWatcher using createMock(TextWatcher.class) and
assign it to mEditNumber, the EditNumber created in the test fixture.

We create a loop to iterate over every element of the sai array.

Next, we take the seven common steps usually needed to use the mock object:

1. Create the mock using createMock(), createNiceMock(), or
createStrictMock().

2. Record the expected behavior; all methods invoked will be recorded.
3. Replay, to change the state of the object from record to play when it really

behaves like a mock object.
4. Exercise the methods, usually by invoking methods of the class under test.
5. Test the results of the exercised methods using asserts. This step is optional

for simpler cases.
6. Verify that the behavior specified was actually followed. If this was not the

case we will receive an exception.
7. Reset can be used to reuse a mock object, clearing its state.

In the record step we declare all the methods we are expecting to be invoked on the
mock object together with its arguments. We use comparators for the arguments.

We will be using a special Comparator, stringCmp(), because we are interested
in comparing the String content for different classes used by Android, such as
Editable, CharSequence, String, and so on.

The other comparator, eq(), expects an int that is equal to the given value. The
latter is provided by EasyMock for all primitive types and Object, but we need to
implement stringCmp() as it supports some Android-specific usage.

EasyMock has a predefined matcher that would help us in creating our comparator:

public static <T> T cmp(T value, Comparator<? super T>
 comparator, LogicalOperator operator)

Chapter 7

[201]

The cmp comparator method expects an argument that will be compared using
the provided comparator using the operator. The comparison that will take place
is comparator.compare(actual, value) operator 0 where operator can be one
of logical operator values in EasyMock's LogicalOperator enum, representing
<,<=,>,>=, or ==.

As you may have already realized, its frequent use in a test could be really complex
and may lead to errors, so to simplify this process we will be using a helper class that
we call StringComparator:

 public static final class StringComparator<T> implements
 Comparator<T> {

 /* (non-Javadoc)
 * @see java.util.Comparator#compare(
 java.lang.Object, java.lang.Object)
 *
 * Return the {@link String} comparison of the arguments.
 */
 @Override
 public int compare(T object1, T object2) {
 return object1.toString().compareTo(object2.toString());
 }
 }

This class implements the Comparator<T> interface, which has an abstract
method named compare. We implement this method by returning the result of the
comparison of the objects passed as arguments after they are converted to String.
Remember that compareTo(String string) applied to a String compares the string
specified as a parameter to the string using the Unicode values of the characters. Its
return value is:

•	 0 (zero) if the strings contain the same characters in the same order
•	 A negative integer if the first non-equal character in this string has a Unicode

value which is less than the Unicode value of the character at the same position
in the specified string, or if this string is a prefix of the specified string

•	 A positive integer if the first non-equal character in this string has a Unicode
value which is greater than the Unicode value of the character at the same
position in the specified string, or if the specified string is a prefix of this string

We could invoke EasyMock.cmp() directly using this comparator but to simplify
things even further we will create a generic static method stringCmp:

 /**
 * Return {@link EasyMock.cmp} using a {@link StringComparator} and
 * {@link LogicalOperator.EQUAL}

Chapter 7

[203]

Hamcrest matchers
Hamcrest comes with a library of useful matchers. Here are some of the most
important ones:

•	 Core
	° anything: Always matches; useful if you don't care what the object

under test is
	° describedAs: Decorator to adding custom failure description
	° is: Decorator to improve readability

•	 Logical
	° allOf: Matches if all matchers match, short circuits (like Java &&)
	° anyOf: Matches if any matchers match, short circuits (like Java ||)
	° not: Matches if the wrapped matcher doesn't match and vice versa

•	 Object
	° equalTo: Test object equality using Object.equals
	° hasToString: Test Object.toString
	° instanceOf, isCompatibleType: Test type
	° notNullValue, nullValue: Test for null
	° sameInstance: Test object identity

Testing Recipes

[204]

•	 Beans
	° hasProperty: Test JavaBeans properties

•	 Collections
	° Array: Test an array's elements against an array of matchers
	° hasEntry, hasKey, hasValue: Test a map containing an entry, key, or

value
	° hasItem, hasItems: Test a collection containing elements
	° hasItemInArray: Test an array containing an element

•	 Number
	° closeTo: Test floating point values are close to a given value
	° greaterThan, greaterThanOrEqualTo, lessThan,

lessThanOrEqualTo: Test ordering
•	 Text

	° equalToIgnoringCase: Test string equality ignoring case
	° equalToIgnoringWhiteSpace: Test string equality ignoring

differences in runs of whitespace
	° containsString, endsWith, startsWith: Test string matching

The hasToString matcher
Our next step is to create the matcher to replace the previous use of the stringCmp()
Comparator. EasyMock2Adapter is an adapter class provided by hamcrest:

import org.hamcrest.integration.EasyMock2Adapter;
import org.hamcrest.object.HasToString;

 /**
 * Create an {@link EasyMock2Adapter} using a
 * {@link HasToString.hasToString}
 *
 * @param <T> The original class of the arguments
 * @param o The argument to the comparison
 * @return o
 */
 public static <T> T hasToString(T o) {
 EasyMock2Adapter.adapt(
 HasToString.hasToString(o.toString()));
 return o;
 }

Chapter 7

[205]

Having this matcher implemented, the following step is still required. We need to
adapt the testTextChanged() method to include this newly created matcher instead
of stringCmp():

 // record
 watcher.beforeTextChanged(hasToString(sar[i-1]), eq(0),
 eq(sar[i-1].length()), eq(sar[i].length()));
 watcher.onTextChanged(hasToString(sar[i]), eq(0),
 eq(sar[i-1].length()), eq(sar[i].length()));
 watcher.afterTextChanged(hasToString(
 Editable.Factory.getInstance().newEditable(sar[i])));

Testing Views in isolation
The test we are analyzing here also belongs to the ApiDemos project. It demonstrates
how some properties of the Views conforming a Layout can be tested when the
behavior itself cannot be isolated. Testing focus is one of these situations.

To avoid creating the full Activity, this test is extending AndroidTestCase:

/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
 * either express or implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 */

package com.example.android.apis.view;

import com.example.android.apis.R;

import android.content.Context;
import android.test.AndroidTestCase;
import android.test.suitebuilder.annotation.SmallTest;
import android.view.FocusFinder;
import android.view.LayoutInflater;

Testing Recipes

[206]

import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;

As in previous cases we start with the required copyright and imports:

/**
 * This exercises the same logic as {@link Focus2ActivityTest} but in
 * a lighter weight manner; it doesn't need to launch the activity,
 * and it can test the focus behavior by calling {@link FocusFinder}
 * methods directly.
 *
 * {@link Focus2ActivityTest} is still useful to verify that, at an
 * end to end level, key events actually translate to focus
 * transitioning in the way we expect.
 * A good complementary way to use both types of tests might be to
 * have more exhaustive coverage in the lighter weight test case,
 * and a few end to end scenarios in the functional {@link
 * android.test.ActivityInstrumentationTestCase}.
 * This would provide reasonable assurance that the end to end
 * system is working, while avoiding the overhead of
 * having every corner case exercised in the slower,
 * heavier weight way.
 *
 * Even as a lighter weight test, this test still needs access to a
 * {@link Context} to inflate the file, which is why it extends
 * {@link AndroidTestCase}.
 *
 * If you ever need a context to do your work in tests, you can
 * extend {@link AndroidTestCase}, and when run via an {@link
 * android.test.InstrumentationTestRunner},
 * the context will be injected for you.
 *
 * See {@link com.example.android.apis.app.ForwardingTest} for
 * an example of an Activity unit test.
 *
 * See {@link com.example.android.apis.AllTests} for
 * documentation on running
 * all tests and individual tests in this application.
 */
public class Focus2AndroidTest extends AndroidTestCase {

As we mentioned before, this test extends AndroidTestCase to provide a
lightweight alternative to ActivityInstrumentationTestCase<Activity>
when possible.

Chapter 7

[207]

You may have thought about using just TestCase, but unfortunately this is not
possible as we need a Context to inflate the XML layout via LayoutInflater, and
AndroidTestCase will provide us with this component:

 private FocusFinder mFocusFinder;

 private ViewGroup mRoot;

 private Button mLeftButton;
 private Button mCenterButton;
 private Button mRightButton;

 @Override
 protected void setUp() throws Exception {
 super.setUp();

 mFocusFinder = FocusFinder.getInstance();

 // inflate the layout
 final Context context = getContext();
 final LayoutInflater inflater = LayoutInflater.from(context);
 mRoot = (ViewGroup) inflater.inflate(R.layout.focus_2, null);

 // manually measure it, and lay it out
 mRoot.measure(500, 500);
 mRoot.layout(0, 0, 500, 500);

 mLeftButton = (Button) mRoot.findViewById(R.id.leftButton);
 mCenterButton = (Button)
 mRoot.findViewById(R.id.centerButton);
 mRightButton = (Button) mRoot.findViewById(
 R.id.rightButton);
 }

The fixture set up is as follows:

1. FocusFinder is a class that provides the algorithm used to find the next
focusable View. It implements the singleton pattern and that's why we
use FocusFinder.getInstance() to obtain a reference to it. This class
has several methods to help us find focusable and touchable items as we
mentioned, given various conditions as the nearest in a given direction or
searching from a particular rectangle.

2. Then we get the LayoutInflater and inflate the layout under test.
3. One thing we need to take into account, as our test is isolated from

other parts of the system, is that we have to manually measure and
layout the components.

Testing Recipes

[208]

4. Then, we use the find views pattern and we assign the found views
to the fields:

 /**
 * The name 'test preconditions' is a convention to signal
 * that if this test doesn't pass, the test case was not
 * set up properly and it might explain any and all failures
 * in other tests. This is not guaranteed to run before
 * other tests, as junit uses reflection to find the tests.
 */
 @SmallTest
 public void testPreconditions() {
 assertNotNull(mLeftButton);
 assertTrue("center button should be right of left button",
 mLeftButton.getRight() < mCenterButton.getLeft());
 assertTrue("right button should be right of center button",
 mCenterButton.getRight() < mRightButton.getLeft());
 }

Once the fixture has been configured we describe the precondition in a test which, as we
mentioned earlier is named testPreconditions(). However, because tests are found
using reflection, there is no guarantee that it will run in a particular order, as all of the
test methods are looked for by evaluating if their name begins with test.

These preconditions include the verification of the relative position on the screen for
the components. In this case their edges relative to the parent are used.

In a previous chapter we enumerated all the available asserts in our arsenal and you
may remember that to test Views position, we had a complete set of assertions in the
ViewAsserts class. However, this depends on how the layout is defined:

 @SmallTest
 public void
 testGoingRightFromLeftButtonJumpsOverCenterToRight() {
 assertEquals("right should be next focus from left",
 mRightButton, mFocusFinder.findNextFocus(
 mRoot, mLeftButton, View.FOCUS_RIGHT));
 }

 @SmallTest
 public void testGoingLeftFromRightButtonGoesToCenter() {
 assertEquals("center should be next focus from right",
 mCenterButton, mFocusFinder.findNextFocus(
 mRoot, mRightButton, View.FOCUS_LEFT));
 }
}

Chapter 7

[209]

The method testGoingRightFromLeftButtonJumpsOverCenterToRight(),
as its name suggests, tests the focus gained by the right button when the focus
moves from the right to the left button. To achieve this search, the instance of
FocusFinder obtained during the setUp() method is employed. This class has a
findNextFocus() method to obtain the View receiving focus in a given direction.
The value obtained is checked against our expectations.

In a similar way, the test testGoingLeftFromRightButtonGoesToCenter(), tests
the focus going in the other direction.

Testing parsers
There are many occasions where your Android application relies on external XML,
JSON messages, or documents obtained from web services. These documents are
used for data interchange between the local application and the server. There are
many use cases where XML or JSON documents are obtained from the server or
generated by the local application to be sent to the server. Ideally, methods invoked
by these activities have to be tested in isolation to have real unit tests and to achieve
this, we need to include some mock files somewhere in our APK to run the tests.

But the question is where can we include these files?

Let's find out.

Android assets
To begin, a brief review of the assets definition can be found in the Android SDK
documentation:

The difference between "resources" and "assets" isn't much on the surface,
but in general, you'll use resources to store your external content much more
often than you'll use assets. The real difference is that anything placed in the
resources directory will be easily accessible from your application from the R
class, which is compiled by Android. Whereas, anything placed in the assets
directory will maintain its raw file format and, in order to read it, you must use
the AssetManager to read the file as a stream of bytes. So keeping files and data in
resources (res/) makes them easily accessible.

Clearly, assets are what we need to store the files that will be parsed to test the parser.

So our XML or JSON files should be placed on the assets folder to prevent
manipulation at compile time and to be able to access their raw content while the
application or test run.

Testing Recipes

[210]

But be careful; we need to place them in the assets folder of our test project because
they are not part of the application and we don't want them packed with it.

The parser activity
This is an extremely simple activity to demonstrate the case. Our activity obtains an
XML or JSON document from a server and then parses it. Let's assume we have a
parseXml method:

package com.example.aatg.parserexample;

import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserFactory;

import android.app.Activity;
import android.os.Bundle;

import java.io.InputStream;
import java.io.InputStreamReader;

public class ParserExampleActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public String parseXml(InputStream xml) {
 try {
 XmlPullParserFactory factory =
 XmlPullParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XmlPullParser parser = factory.newPullParser();
 parser.setInput(new InputStreamReader(xml));

 int eventType = parser.getEventType();
 StringBuilder sb = new StringBuilder();
 while (eventType != XmlPullParser.END_DOCUMENT) {
 if(eventType == XmlPullParser.TEXT) {
 sb.append(parser.getText());
 }
 eventType = parser.next();
 }
 return sb.toString();
 }
 catch (Exception e) {
 // TODO Auto-generated catch block

Chapter 7

[211]

 e.printStackTrace();
 }
 return null;
 }
}

This is an oversimplified example of an activity that includes a parser method to
illustrate the use of assets. Your real application may look very different and your
parser could be implemented as an external class that could be tested in isolation and
integrated at a later stage.

The parser test
This test implements an ActivityInstrumentationTestCase2 for the
ParserExampleActivity class:

package com.example.aatg.parserexample.test;

import com.example.aatg.parserexample.ParserExampleActivity;

import android.test.ActivityInstrumentationTestCase2;

import java.io.IOException;
import java.io.InputStream;

public class ParserExampleActivityTest extends
 ActivityInstrumentationTestCase2<ParserExampleActivity> {

 public ParserExampleActivityTest() {
 super(ParserExampleActivity.class);
 }

 protected void setUp() throws Exception {
 super.setUp();
 }

 protected void tearDown() throws Exception {
 super.tearDown();
 }

 public final void testParseXml() {
 ParserExampleActivity activity = getActivity();
 String result = null;

 try {
 InputStream myxml = getInstrumentation().getContext().
 getAssets().open("my_document.xml");
 result = activity.parseXml(myxml);
 } catch (IOException e) {
 fail(e.getLocalizedMessage());
 }

Testing Recipes

[212]

 assertNotNull(result);
 }
}

Almost all the methods are simple implementations of the default ones and the
only interesting method for us is testParseXml(). Firstly, the activity is obtained
by invoking getActivity(). Then an InputStream is obtained, opening the file
my_document.xml from the assets by getInstrumentation().getContext().
getAssets(). Note that the Context and thus the assets obtained here are from the
tests package not from the Activity under test.

Next, the activity parseXml() method is invoked using the recently obtained
InputStream. If there is an Exception, fail() is invoked and if everything goes
well we test that the result is not null.

We should then provide the XML we want to use for the test in an asset named
my_document.xml.

The content could be:

<?xml version="1.0" encoding="UTF-8"?>
<!-- place this file in assets/my_document.xml -->
<my>This is my document</my>

Testing for memory leaks
Sometimes memory consumption is an important factor to measure the good behavior
of the test target, be it an Activity, Service, ContentProvider, or other Component.

To test for this condition, we can use a utility test that you can invoke from other
tests mainly after having run a test loop:

 public final void assertNotInLowMemoryCondition() {
 //Verification: check if it is in low memory
 ActivityManager.MemoryInfo mi = new
 ActivityManager.MemoryInfo();
 ((ActivityManager)getActivity().getSystemService(
 Context.ACTIVITY_SERVICE)).getMemoryInfo(mi);
 assertFalse("Low memory condition", mi.lowMemory);
 }

This assertion can be called from other tests. At the beginning it obtains the
MemoryInfo from ActivityManager using getMemoryInfo(), after getting the
instance using getSystemService(). The field lowMemory is set to true if the system
considers itself to currently be in a low memory situation.

Chapter 7

[213]

In some cases we want to dive even deeper in the resource usage and we can obtain
more detailed information from the process table.

We can create another helper method to obtain process information and use it
in our tests:

 public final String captureProcessInfo() {
 String cmd = "ps";
 String memoryUsage = null;

 int ch; // the character read
 try {
 Process p = Runtime.getRuntime().exec(cmd);
 InputStream in = p.getInputStream();
 StringBuffer sb = new StringBuffer(512);
 while ((ch = in.read()) != -1) {
 sb.append((char) ch);
 }
 memoryUsage = sb.toString();
 } catch (IOException e) {
 fail(e.getLocalizedMessage());
 }
 return memoryUsage;
 }

To obtain this information, a command (in this case, ps is used but you can adapt
it to your needs) is executed using Runtime.exec(). The output of this command
is concatenated in a String that is later returned. We can use the return value
to print it to the logs in our test or we can further process the content to obtain
summary information.

This is an example if logging the output:

 Log.d(TAG, captureProcessInfo());

When this test is run we obtain information about the running processes:

11-12 21:10:29.182: DEBUG/ActivityTest(1811): USER PID PPID VSIZE RSS
WCHAN PC NAME

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 1 0 312 220 c009b74c
0000ca4c S /init

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 2 0 0 0 c004e72c
00000000 S kthreadd

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 3 2 0 0 c003fdc8
00000000 S ksoftirqd/0

Testing Recipes

[214]

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 4 2 0 0 c004b2c4
00000000 S events/0

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 5 2 0 0 c004b2c4
00000000 S khelper

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 6 2 0 0 c004b2c4
00000000 S suspend

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 7 2 0 0 c004b2c4
00000000 S kblockd/0

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 8 2 0 0 c004b2c4
00000000 S cqueue

11-12 21:10:29.182: DEBUG/ActivityTest(1811): root 9 2 0 0 c018179c
00000000 S kseriod

[…]

The output was cut for brevity but you will get the complete list of processes running
on the system.

A brief explanation of the information obtained is as follows:

Column Description
USER This is the textual user ID.
PID Process ID number of the process.
PPID Parent process ID.
VSIZE Virtual memory size of the process in KiB. This is the virtual memory the

process reserves.
RSS Resident set size, the non-swapped physical memory that a task has used (in

pages). This is the actual amount of real memory the process takes in pages.

This does not include pages which have not been demand-loaded in.
WCHAN This is the "channel" in which the process is waiting. It is the address of a

system call, and can be looked up in a namelist if you need a textual name.
PC The current EIP (instruction pointer).
State (no
header)

The process state.
•	 S for sleeping in an interruptible state
•	 R for running
•	 T for a stopped process
•	 Z for a zombie

Chapter 7

[215]

Column Description
NAME Command name. Application processes in Android are renamed after its

package name.

Summary
In this chapter, several real world examples of tests that cover a wide range of
cases were presented. You can use them as a starting point while creating your
own tests.

We covered a variety of testing recipes that you can extend for your own tests. We
used mock contexts and showed how a RenamingDelegatingContext can be used
in various situations to change the data obtained by the tests. We also analyzed the
injection of these mock context into test dependencies.

Then, we used ActivityUnitTestCase to test Activities in complete isolation.
We tested Views in isolation using AndroidTestCase. We demonstrated the use
of EasyMock 2 to mock objects combined with Hamcrest to provide comparators.
Finally we treated the analysis of potential memory leaks.

The next chapter focuses on automating the testing process using
Continuous Integration.

Continuous Integration
Continuous Integration is one agile technique for software engineering that aims
to improve the software quality and to reduce the time taken to integrate changes
by continuously applying integration and testing frequently, opposed to the more
traditional approach of integrating and testing by the end of the development
cycle. The original article was written by Martin Fowler back in 2000 (http://www.
martinfowler.com/articles/continuousIntegration.html), and describes the
experience of putting together Continuous Integration on a large software project.

Continuous Integration has received a broad adoption in recent years, and a
proliferation of commercial tools and Open Source projects is a clear demonstration
of its success. That is not very difficult to understand, as anybody who during their
professional career has participated in a software development project using a
traditional approach, is very likely to have experienced the so called integration hell,
where the time it takes to integrate the changes exceeds the time it took to make the
changes. Does this remind you of anything?

On the contrary, Continous Integration is the practice to integrate changes frequently
and in small steps. These steps are negligible and usually no errors as a product of the
integration can arise without beign noticed immediately. The most common practice is
to trigger the build process after every commit to the source code repository.

This practice also implies other requirements, beside the source code being
maintained by a Version Control System (VCS):

•	 Builds should be automated by running a single command. This feature has
been supported for a very long time by tools like make and more recently by
ant and maven.

•	 The build should be self tested to confirm that the newly built software meets
the expectations of the developers, and this has been the subject of this book
so far.

•	 The artifacts and results of the tests should be easy to find and view.

Continuous Integration

[218]

In previous chapters, we have written some tests for our Android projects and
now we would like to take Continuous Integration into account. To achieve this we
want to create a model that coexists with the traditional Eclipse and Android ADT
environments, so both alternatives are supported from the source tree.

In this chapter we are going to discuss:

•	 Automating the build process
•	 Introducing Version Control Systems to the process
•	 Continuous Integration with Hudson
•	 Automating tests

After this chapter you will be able to apply Continuous Integration to your own
project no matter its size, whether it is a medium or large software project employing
dozens of developers or it is just you programming solo.

Building Android applications manually
using Ant
If we aim to incorporate Continuous Integration in our development process, the
first step will be building Android applications manually, as we can combine it with
this technique to automate the procedure.

In doing this we intend to keep our project compatible with the Eclipse and ADT
plugin building process, and this is what we are going to do. As I understand, this is
a great advantage and speeds up the development process by automatically building
and eventually showing the errors that may exist in your project immediately.
This is an invaluable tool too when editing resources or other files that generate
intermediate classes, otherwise some simple errors would be discovered too late in
the building process.

Fortunately, Android supports this alternative with the existing tooling and not
much effort is needed to merge both approaches in the same project. In such cases,
building manually with ant is supported. However, other options exist too, though
not supported out-of-the-box, like using maven or even make.

Continuous Integration

[220]

Immediately after finishing this step we are ready to build the project manually from
the command line. This buildfile features the following targets:

Target Description
help Displays a short help.
clean Removes output files created by other targets.
compile Compiles project's .java files into .class files.
debug Builds the application and signs it with a debug key.
release Builds the application. The generated .apk file must be signed before it is

published.
install Installs/reinstalls the debug package onto a running emulator or device.

If the application was previously installed, the signatures must match.
uninstall Uninstalls the application from a running emulator or device.

Some of these targets operate on a device or emulator. If there are several devices or
emulators connected to the build machine we need to specify the specific target on
the command line. For this reason the targets uses a variable named adb.device.
arg for us to specify the target:

$ ant -Dadb.device.arg='-s emulator-5554' install

This is the output generated:

Buildfile: build.xml

 [setup] Android SDK Tools Revision 9

 [setup] Project Target: Android 2.3.1

 [setup] API level: 9

 [setup] Importing rules file: platforms/android-8/ant/ant_rules_r2.xml

-compile-tested-if-test:

-dirs:

 [echo] Creating output directories if needed...

 [mkdir] Created dir: TemperatureConverter/bin/classes

-resource-src:

 [echo] Generating R.java / Manifest.java from the resources...

Chapter 8

[221]

-aidl:

 [echo] Compiling aidl files into Java classes...

compile:

 [javac] Compiling 6 source files to TemperatureConverter/bin/classes

-dex:

 [echo] Converting compiled files and external libraries into
TemperatureConverter/bin/classes.dex...

-package-resources:

 [echo] Packaging resources

 [aaptexec] Creating full resource package...

-package-debug-sign:

[apkbuilder] Creating TemperatureConverter-debug-unaligned.apk and signing it
with a debug key...

[apkbuilder] Using keystore: .android/debug.keystore

debug:

 [echo] Running zip align on final apk...

 [echo] Debug Package: TemperatureConverter/bin/TemperatureConverter-
debug.apk

install:

 [echo] Installing TemperatureConverter/bin/TemperatureConverter-debug.apk
onto default emulator or device...

 [exec] 371 KB/s (18635 bytes in 0.049s)

 [exec] pkg: /data/local/tmp/TemperatureConverter-debug.apk

 [exec] Success

Continuous Integration

[222]

BUILD SUCCESSFUL

Total time: 6 seconds

That is, running the command line mentioned, the following steps are executed:

•	 Environment setup, including the specific rules for the version used
•	 Create the output directories if needed
•	 Compile the sources, including resources, aidl, and Java files
•	 Convert the compiled files into dex
•	 Package creation and signing
•	 Installation onto the given device or emulator

Once we have the APK installed, and because we are now doing everything from the
command line, we can even start the TemperatureConverterActivity. Using the
am start command and an Intent using the action MAIN and the Activity we are
interested to launch as the component, we can create a command line as follows:

$ adb -s emulator-5554 shell am start -a android.intent.action.MAIN -n
com.example.aatg.tc/.TemperatureConverterActivity

The Activity is started as you can verify in the emulator. Then, we can proceed in a
similar way for the test project:

$ cd </path/to>/TemperatureConverterTest

$ android update test-project --path $PWD --main <path/to>/
TemperatureConverter

Running this command, we will obtain output similar to the following if everything
goes well:

Updated default.properties

Updated local.properties

Added file <path/to>/TemperatureConverterTest/build.xml

Updated file <path/to>/TemperatureConverterTest/proguard.cfg

Updated build.properties

Chapter 8

[223]

Also as we did before with the main project, we can build and install the tests. To do
it, once we have our test project converted we can build it using ant as we did for the
main project. To build and install it on a running emulator, use:

$ ant -Dadb.device.arg='-s emulator-5554' install

It is worth noting that to be able to build the project successfully we need the
libraries used to reside in the libs directory inside the project. You can create
symbolic links to their original location to avoid copying them if you prefer.

Also, it is a good practice to keep the Eclipse and Ant build processes synchronized, so
if you add the required libraries to the libs directory you can also replace the locations
of the libraries in the Eclipse project using Properties | Java Build Path | Libraries.

Now we can run the tests from the command line as we already discussed in
previous chapters:

$ adb -e shell am instrument -w com.example.aatg.tc.test/android.test.
InstrumentationTestRunner

Running the command we will obtain the tests results:

com.example.aatg.tc.test.EditNumberTests:........

com.example.aatg.tc.test.TemperatureConverterActivityTests:..........

com.example.aatg.tc.test.TemperatureConverterApplicationTests:.....

com.example.aatg.tc.test.TemperatureConverterTests:....

Test results for InstrumentationTestRunner=...........................

Time: 12.125

OK (28 tests)

We have done everything from the command line by just invoking some simple
commands, which is what we were looking for in order to feed this into a
Continuous Integration process.

Continuous Integration

[224]

Git—the fast version control system
Git is a free and Open Source, distributed version control system designed to handle
everything from small to very large projects with speed and efficiency. It is very
simple to setup so I strongly recommend its use even for personal projects. There is
no project simpler enough that could not benefit from the application of this tool.
You can find information and downloads at http://git-scm.com/.

On the other hand, a version control system or VCS (also known as Source Code
Management or SCM) is an unavoidable element for development projects where
more than one developer is involved. Furthermore, even if it is possible to apply
continuous integration with no VCS in place, as it is not a requisite clearly, is not a
reasonable practice.

Other, and probably more traditional, options exist in the VCS arena such as
Subversion or CVS that you are free to use if you feel more comfortable. Anyway,
Git is used extensively by the Android project so it is worth investing some time to at
least understand the basics.

Having said that and remembering that this is a very broad subject to justify a book
in itself (and certainly there are some good books about it) we are discussing here the
most basic topics and supplying examples to get you started if you haven't embraced
this practice yet.

Creating a local git repository
These are the simplest possible commands to create a local repository and populate
it with the initial source code for our projects. In this case again we are using
TemperatureConverter and TemperatureConverterTest projects created and used
in previous chapters. We are selecting a directory named git-repos as the parent for
both projects and copying the code we used in the previous section, where we built
manually:

$ cd <path/to>/git-repos

$ mkdir TemperatureConverter

$ cd TemperatureConverter

$ git init

$ cp -a <path/to>/TemperatureConverter/. .

$ ant clean

$ rm local.properties

$ git add .

$ git commit -m "Initial commit"

Continuous Integration

[226]

Installing and configuring Hudson
We mentioned easy installation as one of Hudson's advantages and installation could
not be any easier.

Download the native package for the operating system of your choice from
http://hudson-ci.org/. There are native packages for Debian/Ubuntu, RedHat/
Fedora/Centos, openSUSE, OpenSolaris/Nevada, and FreeBSD or download the
latest generic hudson.war (which will work on Mac and Windows as well). In the
following examples we will be using version 2.0. We will show the latter as it is the
one that does not require administrative privileges to install, configure, and run.

Once finished, copy it into a selected directory, let's say ~/hudson, and then run the
following:

$ java -jar hudson-2.0.0.war

This expands and starts Hudson.

The default configuration uses port 8080 as the HTTP listener port, so pointing your
browser of choice to http://localhost:8080 should present you with the Hudson
home page.

You can verify and change Hudson's operating parameter if required, by accessing
the Manage Hudson screen. We should add to this configuration the plugins needed
for Git integration and support for Android emulator during builds. These plugins
are named Hudson GIT plugin and Android Emulator Plugin respectively.

This screenshot displays the information you can obtain about the plugins following
the hyperlinks available on the Hudson administration page:

Chapter 8

[227]

After installing and restarting Hudson these plugins will be available for use. Our
next step is to create the jobs necessary to build the projects.

Creating the jobs
Let's start by creating the TemperatureConverter job using New Job in the Hudson
home page. Different kind of jobs can be created; in this case we are selecting Build a
free-style software project, allowing you to connect any SCM with any build system.

Continuous Integration

[228]

After clicking on the OK button you will be presented with the specific job options,
which that are described in the following table. This is the job properties page:

All of the options in the New Job screen have a help text associated, so here we are
only explaining the ones we are entering:

Option Description
Project name The name given to the project.
Description Optional description.
Discard Old Builds This helps you save on disk consumption by managing how

long to keep records of the builds (such as console output, build
artifacts, and so on.)

This build is parameterized This allows you to configure parameters that are passed to the
build process to create parameterized builds.

Disable Build (No new
builds will be executed until
the project is re-enabled.)

Temporarily disable the project.

Execute concurrent builds
if necessary (beta)

This permits the execution of several builds concurrently.

Chapter 8

[229]

Option Description
Source Code Management Also know as VCS.

Where is the source code for the project? In this case we are
using git and a repository where the URL is the absolute path of
the repository we created earlier. For example, /home/diego/
aatg/git-repos/TemperatureConverter.

Build Triggers How this project is automatically built. In this case we want that
every change in the source code triggers the automatic build so
we are selecting Poll SCM.
The other option is to use Build periodically. This feature is
primarily for using Hudson as a cron replacement, and it is not
ideal for continuously building software projects. When people
first start continuous integration, they are often so used to the
idea of regularly scheduled builds like nightly/weekly that they
use this feature. However, the point of continuous integration is
to start a build as soon as a change is made, to provide a quick
feedback to the change.

Schedule This field follows the syntax of cron (with minor differences).
Specifically, each line consists of five fields separated by TAB or
whitespace:
MINUTE HOUR DOM MONTH DOW.

For example if we want to poll continuously at thirty minutes
past the hour specify:
30 * * * *

Check the documentation for a complete explanation of all the
options.

Build environment Lets you specify different options for the build environment and
for the Android emulator that may run during the build.

Build This describes the build steps. We are selecting Invoke Ant as
we are reproducing the steps we did before to manually build
the project.

The target we use here is debug as we only want to compile
the project and generate the APK, and not install or run it.
Additionally, using the Advanced... options we need to specify the
Android SDK directory and the Android target version Properties.

sdk.dir=/opt/android-sdk
target=android-9

Post build actions These are a series of actions we can do after the build is done.
We are interested in saving the APKs so we are enabling Archive
the artifacts and then defining the path for them as Files to
archive; in this precise case it is **/*-debug.apk.

Continuous Integration

[230]

Now there are two options: you can force a build using Build now, or introduce
some changes to the source code through Git and wait for them to be detected by our
polling strategy. Either way, we would get our project built and our artifacts ready to
be used for other purposes, such as dependency projects or QA.

So far we haven't run any tests and this is just what we are presenting now. Hudson
has the ability to handle dependencies between projects, so we are now creating a
Hudson job, TemperatureConverterTest depending on TemperatureConverter.

Proceed in the same way as before. We are only pinpointing the differences in setting
up this project against the previous setup.

Option Description
Build Triggers This is how we trigger the build of this project. Built after other

projects are built is selected so that when some other projects
finish building, a new build is scheduled for this project. We
need this to be built after TemperatureConverter.

This is convenient for running an extensive test after a build is
complete as in this example.

Build environment Our intention is to install and run the tests on an emulator so
for our build environment we use the facilities provided by
the Android Emulator Plugin. This comes in handy if you
wish to automatically start an Android emulator of your choice
before the build steps execute, with the emulator being stopped
after building is complete.

You can choose to start a pre-defined, existing Android
emulator instance (AVD).

Alternatively, the plugin can automatically create a new
emulator on the build slave with properties you specify here.

In any case, the logcat output will automatically be captured
and archived.

Then select 2.3 for the Android OS version, 240 DPI for the
Screen density and WVGA for Screen resolution.

Feel free to experiment and select the options that better suit
your needs.

Common emulator options We would like to Reset emulator state at start-up to wipe user
data and disable Show emulator window, so the emulator
window is not displayed.

Chapter 8

[231]

Option Description
Build Select Invoke ant as the build step and install as the Target.

Here again, as we did in TemperatureConverter, we have
to set some variables to build and install the current job. Using
the Advanced... options set:

sdk.dir=/opt/android-sdk

target=android-9

tested.project.dir=../../TemperatureConverter/
workspace/

adb.device.arg=-s $ANDROID_AVD_DEVICE

As before, we specified the Android SDK directory and the
target version. Additionally, here we should specify the target
project directory, that is the SUT, and the device where we
want to install the APK. We are using a special variable set by
the Android Emulator Plugin to identify the ADV that was
chosen as the target.

After configuring and building this project, we have the APK installed on the target
emulator. Some steps are still needed as we still miss running the tests and obtaining
the results to be displayed in Hudson.

Obtaining Android test results
To be able to display test results we should store raw XML results in the test runner.
The default android.test.InstrumentationTestRunner does not support storing
raw XML so the solution here is to extend it to provide the missing functionality.

I found the nbandroid-utils (http://code.google.com/p/nbandroid-utils/)
project hosted in Google code that provides almost the same functionality that
we need.

The com.neenbedankt.android.test.InstrumentationTestRunner class extends
the Android one so that an XML of the test results is written to the device when
running the tests.

We also want the ability to specify the filename from the test arguments and be able
to store files in external storage just in case test results become very large, so we are
slightly modifying the class to support these features. Also, to make these changes
evident we are naming the new class XMLInstrumentationTestRunner:

Continuous Integration

[232]

package com.neenbedankt.android.test;

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;

import org.xmlpull.v1.XmlPullParserFactory;
import org.xmlpull.v1.XmlSerializer;

import android.os.Bundle;
import android.util.Log;
/*
 * Copyright (C) 2010 Diego Torres Milano
 *
 * Base on previous work by
 * Copyright (C) 2007 Hugo Visser
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS,WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
 * either express or implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 */
/**
 * This test runner creates an xml in the files directory of
 * the application under test. The output is compatible with
 * that of the junitreport ant task, the format that is
 * understood by Hudson. Currently this implementation does not
 * implement the all aspects of the junitreport format, but
 * enough for Hudson to parse the test results.
 */
public class XMLInstrumentationTestRunner extends android.test.
InstrumentationTestRunner {

 private Writer mWriter;
 private XmlSerializer mTestSuiteSerializer;
 private long mTestStarted;

Chapter 8

[233]

Here we are providing the field to keep the name of the output file as well as its
default value.

We are also defining the name of the argument our test runner will use to receive
this value:

 /**
 * Output file name.
 */
 private String mOutFileName;

 /**
 * Outfile argument name.
 * This argument can be passed to the instrumentation using
 <code>-e</code>.
 */
 private static final String OUT_FILE_ARG = "outfile";

 /**
 * Default output file name.
 */
 private static final String OUT_FILE_DEFAULT = "test-results.xml";

In our onCreate() method we verify if the argument has been provided and if so we
store it in the previously defined field:

 @Override
 public void onCreate(Bundle arguments) {
 if (arguments != null) {
 mOutFileName = arguments.getString(OUT_FILE_ARG);
 }

 if (mOutFileName == null) {
 mOutFileName = OUT_FILE_DEFAULT;
 }

 super.onCreate(arguments);
 }

In the onStart() method we create the file and we use it as the JUnit output:

 @Override
 public void onStart() {
 try {
 File dir = getTargetContext().getExternalFilesDir(null);
 if (dir == null) {
 dir = getTargetContext().getFilesDir();
 }

Continuous Integration

[234]

 final File outFile = new File(dir, mOutFileName);

 startJUnitOutput(new FileWriter(outFile));
 } catch (IOException e) {
 throw new RuntimeException(e);
 }

 super.onStart();
 }

The following code is the original code for this test runner:

 void startJUnitOutput(Writer writer) {
 try {
 mWriter = writer;
 mTestSuiteSerializer = newSerializer(mWriter);
 mTestSuiteSerializer.startDocument(null, null);
 mTestSuiteSerializer.startTag(null, "testsuites");
 mTestSuiteSerializer.startTag(null, "testsuite");
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 private XmlSerializer newSerializer(Writer writer) {
 try {
 XmlPullParserFactory pf =
 XmlPullParserFactory.newInstance();
 XmlSerializer serializer = pf.newSerializer();
 serializer.setOutput(writer);
 return serializer;
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public void sendStatus(int resultCode, Bundle results) {
 super.sendStatus(resultCode, results);
 switch (resultCode) {
 case REPORT_VALUE_RESULT_ERROR:
 case REPORT_VALUE_RESULT_FAILURE:
 case REPORT_VALUE_RESULT_OK:
 try {
 recordTestResult(resultCode, results);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }

Chapter 8

[235]

 break;
 case REPORT_VALUE_RESULT_START:
 recordTestStart(results);
 default:
 break;
 }
 }

 void recordTestStart(Bundle results) {
 mTestStarted = System.currentTimeMillis();
 }

 void recordTestResult(int resultCode, Bundle results)
 throws IOException {
 float time = (System.currentTimeMillis() -
 mTestStarted) / 1000.0f;
 String className = results.getString(REPORT_KEY_NAME_CLASS);
 String testMethod = results.getString(REPORT_KEY_NAME_TEST);
 String stack = results.getString(REPORT_KEY_STACK);
 int current = results.getInt(REPORT_KEY_NUM_CURRENT);
 int total = results.getInt(REPORT_KEY_NUM_TOTAL);

 mTestSuiteSerializer.startTag(null, "testcase");
 mTestSuiteSerializer.attribute(null, "classname", className);
 mTestSuiteSerializer.attribute(null, "name", testMethod);

 if (resultCode != REPORT_VALUE_RESULT_OK) {
 mTestSuiteSerializer.startTag(null, "failure");
 if (stack != null) {
 String reason = stack.substring(0,
 stack.indexOf('\n'));
 String message = "";
 int index = reason.indexOf(':');
 if (index > -1) {
 message = reason.substring(index+1);
 reason = reason.substring(0, index);
 }
 mTestSuiteSerializer.attribute(null,
 "message", message);
 mTestSuiteSerializer.attribute(null, "type", reason);
 mTestSuiteSerializer.text(stack);
 }
 mTestSuiteSerializer.endTag(null, "failure");
 } else {
 mTestSuiteSerializer.attribute(null,
 "time", String.format("%.3f", time));
 }

Continuous Integration

[236]

 mTestSuiteSerializer.endTag(null, "testcase");
 if (current == total) {
 mTestSuiteSerializer.startTag(null, "system-out");
 mTestSuiteSerializer.endTag(null, "system-out");
 mTestSuiteSerializer.startTag(null, "system-err");
 mTestSuiteSerializer.endTag(null, "system-err");
 mTestSuiteSerializer.endTag(null, "testsuite");
 mTestSuiteSerializer.flush();
 }
 }

 @Override
 public void finish(int resultCode, Bundle results) {
 endTestSuites();
 super.finish(resultCode, results);
 }

 void endTestSuites() {
 try {
 if (mTestSuiteSerializer != null) {
 mTestSuiteSerializer.endTag(null, "testsuites");
 mTestSuiteSerializer.endDocument();
 mTestSuiteSerializer.flush();
 }
 if (mWriter != null) {
 mWriter.flush();
 mWriter.close();
 }
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
}

There are still a few steps required to achieve our objective. The first is to add this
test runner to our project using the combination git add/git commit.

You can simply use these commands:

$ git add src/com/neenbedankt/

$ git commit -a -m "Added XMLInstrumentationTestRunner"

Then we need to declare the instrumentation using the test runner in
AndroidManifest.xml. That is use the recently created test runner com.
neenbedankt.android.test.XMLInstrumentationTestRunner as the
instrumentation for the com.example.aatg.tc package:

Chapter 8

[237]

 <instrumentation
 android:targetPackage="com.example.aatg.tc"
 android:label="TemperatureConverter tests"
 android:name="com.neenbedankt.android.test.
 XMLInstrumentationTestRunner"
 />

Also, add it to the repository as we did before with other files.

And finally, as we have the ability to add a step in the build process by using Add
build step that executes arbitrary commands in a shell script, we add this as an
Execute shell step in the job configuration page. We are using some shell variables to
be able to re-utilize this step for other projects:

PKG=com.example.aatg.tc
OUTDIR=/data/data/${PKG}/files/
OUTFILE=test-results.xml
ADB=/opt/android-sdk/platform-tools/adb
$ADB -s $ANDROID_AVD_DEVICE install -r "$WORKSPACE/../../
 TemperatureConverter/lastSuccessful/
 archive/bin/TemperatureConverter-debug.apk"
$ADB -s $ANDROID_AVD_DEVICE shell am instrument -w -e
outfile "$OUTFILE" $PKG.test/com.neenbedankt.android.test.
XMLInstrumentationTestRunner
$ADB -s $ANDROID_AVD_DEVICE pull "$OUTDIR/$OUTFILE"
"$WORKSPACE/$OUTFILE"

Let us explain these steps in greater detail:

•	 We assign a specific project package name to PKG variable.
•	 OUTDIR is the name of the directory where the test runner will leave the

file OUTFILE. Note that this is a directory on the emulator or device, not a
local directory.

•	 Install the package under test onto the emulator or device.
•	 Run the instrumentation from the command line, as we have seen

previously, but in this case adding an extra argument -e outfile with
the name of the file we are expecting to receive.

•	 Get the test results from that file, pulling from the device to the
local workspace.

Continuous Integration

[238]

Almost everything is in place. The only thing left is to tell Hudson where to expect
these test results. In this scenario we use the Post Build Actions also in the job
configuration page.

Option Description
Publish Junit test
results report

When this option is configured, Hudson can provide useful information
about test results, such as historical test result trends, a web UI for
viewing test reports, tracking failures, and so on.
To use this feature, first set up your build to run tests, then use com.
neenbedankt.android.test.XMLInstrumentationTestRunner
as the test runner, specify the output using -e outfile in the
instrumentation, and use this same name to tell Hudson where to find the
results. Ant glob syntax, such as **/build/test-reports/*.xml, can
also be used.
Be sure not to include any non-report files into this pattern.
In simple terms, this is simply test-results.xml as we specified in the
OUTFILE variable before.
Once there are a few builds running with test results, you should start
seeing some trend charts displaying the evolution of tests.

Having done all of the steps described before, only forcing a build is left to see the
results. Press Build now as usual and after a few moments you will see your test
results and statistics displayed in a similar way as the following screenshot depicts:

Chapter 8

[239]

From here we can easily understand our project status, knowing how many tests
failed and why. Digging through the failed tests we can also find the extensive Error
message and Stack trace.

It is also really helpful to understand the evolution of a project through the
evaluation of different trends and Hudson is able to provide such information. Every
project presents the current trends using weather-like icons from sunny, when the
health of the project increases 80%, and to thunderstorm when the health lies bellow
20%. In addition, for every project the evolution of the trend of the tests success
versus failure ratio is displayed in a chart that is reproduced here:

In this case we can see how since the last build, one test started to fail.

To see how a project status changes by forcing a failure let's add a failing test like
the following:

 public final void testForceFailure1() {
 fail("Forced fail");
 }

Continuous Integration

[240]

Yet another very interesting feature that is worth mentioning is the ability of Hudson
to keep and display the Timeline and Build Time Trend, as shown in the following
screenshot:

This page presents the build history with hyperlinks to every particular build that
you can follow to see the details.

Now we have less concern to be worried about and every time somebody in the
developer team commits changes to the repository we know that these changes will be
immediately integrated and the whole project will be built and tested and if we further
configure Hudson we can even receive the status by e-mail. To achieve this, in the job
configuration page enable E-mail Notification and enter the desired Recipients.

Summary
This chapter has introduced Continuous Integration in practice providing valuable
information to start applying it soon to your projects no matter what their size is,
whether you are developing solo or on a big company team.

Chapter 8

[241]

The techniques presented focus on the particularities of Android projects
maintaining and supporting widely used development tools like Eclipse and
Android ADT.

We introduced real-world examples with real-world tools available from the vast
Open Source arsenal. We employed Ant to automate the building process, git to
create a simple version control system repository to store our source code and
manage the changes, and finally installed and configured Hudson as the Continuous
Integration of choice.

In this course we detailed the creation of jobs for automating the creation of
TemperatureConverter and its tests and we emphasized on the relationship
between the projects.

Finally, we analyzed a way of getting XML results from Android tests and
implemented this to obtain an attractive interface to monitor the running of tests,
their results, and the existing trends.

The next chapter deals with a different aspect of testing concentrating on
performance and profiling which is probably the natural step to follow after
we have our application behaving correctly and according to our specifications.

Performance Testing and
Profiling

In the previous chapters, we studied and developed tests for our Android
application. Those tests let us evaluate the compliance to a certain number of
specifications and allow us to determine if the software is behaving correctly or
according to these rules by taking a binary verdict, whether it complies or not. If it
does the software is correct; if it does not we have to fix it until it does.

In many other cases, mainly after we have verified that the software conforms to all
these specifications, we want to move forward and know how or in what manner they
are satisfied, and at the same time how the system performs under different situations
to analyze other attributes such as usability, speed, response time, and reliability.

According to Android Developer's Guide (http://developer.android.com/guide/
index.html), these are the best practices when it comes to designing our application:

•	 Designing for performance
•	 Designing for responsiveness
•	 Designing for seamlessness

It's extremely important to follow these best practices and start thinking mainly in
terms of performance and responsiveness from the very beginning of the design.
Since our application will run on mobile devices with limited computer power, the
bigger gains are obtained by identifying the targets for the optimization once our
application is built, at least partially, and applying the performance testing that we
will be discussing soon.

Performance Testing and Profiling

[244]

As Donald Knuth popularized years ago:

"Premature optimization is the root of all evil".

These optimizations, which are based on guesses, intuition, and even superstition
often interfere with the design over short term periods, and with readability and
maintainability over long term periods. On the contrary, micro-optimizations are
based on identifying the bottlenecks or hot-spots that require optimization, apply
the changes, and then benchmark again to evaluate the improvements of the
optimization. So the point we are concentrating on here is on measuring the existing
performance and the optimization alternatives.

This chapter will introduce a series of concepts related to benchmarking and profiles
as follows:

•	 Traditional logging statement methods
•	 Creating Android performance tests
•	 Using profiling tools
•	 Microbenchmarks using Caliper

Ye Olde Logge method
Sometimes this is too simplistic for real scenarios but I'm not going to say that it
could not help in some cases mainly because its implementation takes minutes and
you only need the logcat text output to analyze the case, which comes in handy
during situations as described in previous chapters where you want to automate
procedures or apply Continuous Integration.

This method consists in timing a method, and or a part of it, surrounding it by two
time measures and logging the difference at the end:

 /* (non-Javadoc)
 * @see android.text.TextWatcher#onTextChanged(
 * java.lang.CharSequence, int, int, int)
 */
 public void onTextChanged(CharSequence s, int start,
 int before, int count) {
 if (!mDest.hasWindowFocus() || mDest.hasFocus() ||
 s == null) {
 return;
 }

 final String str = s.toString();
 if ("".equals(str)) {

Chapter 9

[245]

 mDest.setText("");
 return;
 }

 final long t0;
 if (BENCHMARK_TEMPERATURE_CONVERSION) {
 t0 = System.currentTimeMillis();
 }

 try {
 final double temp = Double.parseDouble(str);
 final double result = (mOp == OP.C2F) ?
 TemperatureConverter.celsiusToFahrenheit(temp) :
 TemperatureConverter.fahrenheitToCelsius(temp);
 final String resultString = String.format("%.2f", result);
 mDest.setNumber(result);
 mDest.setSelection(resultString.length());
 } catch (NumberFormatException e) {
 // WARNING
 // this is generated while a number is entered,
 // for example just a '-'
 // so we don't want to show the error
 } catch (Exception e) {
 mSource.setError("ERROR: " + e.getLocalizedMessage());
 }

 if (BENCHMARK_TEMPERATURE_CONVERSION) {
 long t = System.currentTimeMillis() - t0;
 Log.i(TAG, "TemperatureConversion took " + t +
 " ms to complete.");
 }
 }

This is very straightforward. We take the times and log the difference. For this we
are using the Log.i() method and we can see the output in logcat while we run
the application. You can control the execution of this benchmark by setting true or
false to the BENCHMARK_TEMPERATURE_CONVERSION constant that you should have
defined elsewhere.

When we launch the activity with the BENCHMARK_TEMPERATURE_CONVERSION
constant set to true in the logcat, we will receive messages like these every time the
conversion takes place:

INFO/TemperatureConverterActivity(392): TemperatureConversion took 55 ms to
complete.

Performance Testing and Profiling

[246]

INFO/TemperatureConverterActivity(392): TemperatureConversion took 11 ms to
complete.

INFO/TemperatureConverterActivity(392): TemperatureConversion took 5 ms to
complete.

Something you should take into account is that these benchmark-enabling constants
should not be enabled in the production build, as other common constants are used
like DEBUG or LOGD. To avoid this mistake you should integrate the verification of
these constants values in the build process you are using for automated builds such
as Ant or Make.

Pretty simple, but this would not apply for more complex cases.

Performance tests in Android SDK
If the previous method of adding log statements does not suit you, there is a different
method of getting performance test results from our application.

Unfortunately, performance tests in Android SDK are half baked (at least up to
Android 2.3 Gingerbread, the latest version available at the time this book was
written). There is no reasonable way of getting performance test results from an
Android SDK application as the classes used by Android tests are hidden in the
Android SDK and only available to system applications, that is to applications that
are built as part of the main build or system image. This strategy is not available for
SDK applications so we are not digging deeper in that direction and we will focus on
other available choices.

Launching the performance test
These tests are based on a similar approach like the one used by Android to test
system applications. The idea is to extend android.app.Instrumentation to
provide performance snapshots, automatically creating a framework that we can
even extend to satisfy other needs. We are presenting a simple case here due to the
limitations imposed by this medium.

Creating the LaunchPerformanceBase
instrumentation
Our first step is to extend Instrumentation to provide the functionality we need.
We are using a new package named com.example.aatg.tc.test.launchperf to
keep our tests organized:

Chapter 9

[247]

package com.example.aatg.tc.test.launchperf;

import android.app.Instrumentation;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;

/**
 * Base class for all launch performance Instrumentation classes.
 */
public class LaunchPerformanceBase extends Instrumentation {

 public static final String TAG = "LaunchPerformanceBase";

 protected Bundle mResults;
 protected Intent mIntent;

 /**
 * Constructor.
 */
 public LaunchPerformanceBase() {
 mResults = new Bundle();
 mIntent = new Intent(Intent.ACTION_MAIN);
 mIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 setAutomaticPerformanceSnapshots();
 }

 /**
 * Launches intent {@link #mIntent}, and waits for idle before
 * returning.
 */
 protected void LaunchApp() {
 startActivitySync(mIntent);
 waitForIdleSync();
 }

 @Override
 public void finish(int resultCode, Bundle results) {
 Log.v(TAG, "Test reults = " + results);
 super.finish(resultCode, results);
 }

}

We are extending Instrumentation here. The constructor initialized the two
fields in this class: mResults and mIntent. At the end we invoke the method
setAutomaticPerformanceSnapshots() which is the key here to create this
performance test.

Performance Testing and Profiling

[248]

The method LaunchApp() is in charge of starting the desired Activity and waiting
before returning.

The finish() method logs the results received and then invokes Instrumentation's
finish().

Creating the
TemperatureConverterActivityLaunchPerformance
class
This class sets up the Intent to invoke the TemperatureConverterActivity and
furnish the infrastructure provided by the LaunchPerformanceBase class to test the
performance of launching our Activity:

package com.example.aatg.tc.test.launchperf;

import com.example.aatg.tc.TemperatureConverterActivity;
import android.app.Activity;
import android.os.Bundle;

/**
 * Instrumentation class for {@link TemperatureConverterActivity}
launch performance testing.
 */
public class TemperatureConverterActivityLaunchPerformance extends
LaunchPerformanceBase {

 /**
 * Constructor.
 */
 public TemperatureConverterActivityLaunchPerformance() {
 super();
 }

 @Override
 public void onCreate(Bundle arguments) {
 super.onCreate(arguments);

 mIntent.setClassName("com.example.aatg.tc",
 "com.example.aatg.tc.TemperatureConverterActivity");
 start();
 }

 /**
 * Calls LaunchApp and finish.
 */
 @Override
 public void onStart() {

Chapter 9

[249]

 super.onStart();
 LaunchApp();
 finish(Activity.RESULT_OK, mResults);
 }
}

Here, onCreate() calls super.onCreate() as the Android lifecycle dictates.
Then the Intent is set, specifying the class name and the package. Then one of
the Instrumentation's methods is called, start(), which creates and starts a
new thread in which to run instrumentation. This new thread will make a call to
onStart(), where you can implement the instrumentation.

Then onStart() implementation follows, invoking LaunchApp() and finish().

Running the tests
To be able to run this test we need to define the specific Instrumentation in the
AndroidManifest.xml of the TemperatureConverterTest project.

This is the snippet of code we have to add to the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.aatg.tc.test" android:versionCode="1"
 android:versionName="1.0">

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <uses-library android:name="android.test.runner" />
 </application>

 <uses-sdk android:minSdkVersion="9" />
 <instrumentation android:targetPackage="com.example.aatg.tc"
 android:name="android.test.InstrumentationTestRunner"
 android:label="Temperature Converter Activity Tests"
 android:icon="@drawable/icon" />

 <instrumentation android:targetPackage="com.example.aatg.tc"
 android:label="Temperature Converter Activity Launch Performance"
 android:name=".launchperf.TermeratureConverterActivity
 LaunchPerformance" />

</manifest>

Once everything is in place we are ready to start running the test.

Performance Testing and Profiling

[250]

First, install the APK that includes these changes. Then, we have several options to
run the tests as we have reviewed in previous chapters. In this case we are using
the command line as it is the easiest way of getting all the details. Replace the serial
number for what is applicable in your case:

$ adb -s emulator-5554 shell am instrument -w com.example.aatg.tc.test/.
launchperf.TermeratureConverterActivityLaunchPerformance

We receive the set of results for this test in the standard output:

INSTRUMENTATION_RESULT: other_pss=13430
INSTRUMENTATION_RESULT: java_allocated=2565
INSTRUMENTATION_RESULT: global_freed_size=16424
INSTRUMENTATION_RESULT: native_private_dirty=504
INSTRUMENTATION_RESULT: native_free=6
INSTRUMENTATION_RESULT: global_alloc_count=810
INSTRUMENTATION_RESULT: other_private_dirty=12436
INSTRUMENTATION_RESULT: global_freed_count=328
INSTRUMENTATION_RESULT: sent_transactions=-1
INSTRUMENTATION_RESULT: java_free=2814
INSTRUMENTATION_RESULT: received_transactions=-1
INSTRUMENTATION_RESULT: pre_sent_transactions=-1
INSTRUMENTATION_RESULT: other_shared_dirty=5268
INSTRUMENTATION_RESULT: pre_received_transactions=-1
INSTRUMENTATION_RESULT: execution_time=4563
INSTRUMENTATION_RESULT: native_size=11020
INSTRUMENTATION_RESULT: native_shared_dirty=1296
INSTRUMENTATION_RESULT: cpu_time=1761
INSTRUMENTATION_RESULT: java_private_dirty=52
INSTRUMENTATION_RESULT: native_allocated=11013
INSTRUMENTATION_RESULT: gc_invocation_count=0
INSTRUMENTATION_RESULT: java_shared_dirty=1860
INSTRUMENTATION_RESULT: global_alloc_size=44862
INSTRUMENTATION_RESULT: java_pss=1203
INSTRUMENTATION_RESULT: java_size=5379
INSTRUMENTATION_RESULT: native_pss=660
INSTRUMENTATION_CODE: -1

We have highlighted two of the values we are interested in: execution_time and cpu_
time. They account for the total execution time and the CPU time used respectively.

Running this test on an emulator increases the potential for mis-measurement, because
the host computer is running other processes that also take on the CPU, and the
emulator does not necessarily represent the performance of a real piece of hardware.

Chapter 9

[251]

Because of this we are taking these two measures into account. The execution_
time gives us the real time and cpu_time the total time used by the CPU to
compute our code.

Needless to say, that in this and any other case where you measure something that is
variable over time, you should use a measurement strategy and run the test several
times to obtain different statistical values, such as average or standard deviation.

Unfortunately, the current implementation of Android ADT does not allow using an
instrumentation that does not extend android.test.InstrumentationTestRunner,
though .launchperf.TemperatureConverterActivityLaunchPerformance
extends LaunchPerformaceBase that extends Instrumentation.

This screenshot shows the error trying to define this Instrumentation in Eclipse
Run Configurations:

Using the Traceview and dmtracedump
platform tools
The Android SDK includes among its various tools two that are specially
intended to analyze performance problems and potentially determine the
target to apply optimizations.

Performance Testing and Profiling

[252]

These tools have an advantage over other alternatives: usually no modification to
the source code is needed for simpler tasks. However, for more complex cases some
additions are needed, but they are very simple as we will see shortly.

If you don't need precision about starting and stopping tracing, you can drive it from
the command line or Eclipse. For example, to start tracing from the command line
you can use the following command. Remember to replace the serial number for
what is applicable in your case:

$ adb -s emulator-5554 am start -n com.example.aatg.tc/.
TemperatureConverterActivity

$ adb -s emulator-5554 shell am profile com.example.aatg.tc start /mnt/
sdcard/tc.trace

Do something, for example enter a temperature in the Celsius field to force
a conversion.

$ adb -s emulator-5554 shell am profile com.example.aatg.tc stop

$ adb -s emulator-5554 pull /mnt/sdcard/tc.trace /tmp/tc.trace

1132 KB/s (2851698 bytes in 2.459s)

$ traceview /tmp/tc.trace

Otherwise, if you need more precision about when profiling starts, you can add this
piece of code instead of the previous one:

 @Override
 public void onTextChanged(CharSequence s, int start,
 int before, int count) {

 if (!dest.hasWindowFocus() || dest.hasFocus() || s == null) {
 return;
 }

 final String ss = s.toString();
 if ("".equals(ss)) {
 dest.setText("");
 return;
 }

 if (BENCHMARK_TEMPERATURE_CONVERSION) {
 Debug.startMethodTracing();
 }

 try {
 final double result = (Double) convert.invoke(
 TemperatureConverter.class, Double.parseDouble(ss));
 dest.setNumber(result);

Chapter 9

[255]

Clicking on a column will set the order of the list according to this column in
ascending or descending order.

This table describes the available columns and their descriptions:

Column Description
name The name of the method including its package name in the form described

above, which is using "/" (slash) as the delimiter. Also the parameters and the
return type are displayed.

Incl% The inclusive time, as a percentage of the total time, used by the method. That
is including all of its children.

Inclusive The inclusive time, in milliseconds, used by this method. That is including
this method and all of its children.

Excl% The exclusive time, as a percentage of the total time, used by the method.
That is excluding all of its children.

Exclusive The exclusive time, in milliseconds, this is the total time spent in this method.
That is excluding all of its children.

Calls+Recur

Calls/Total

This column shows the number of calls for this method and the number of
recursive calls.
The number of calls compared with the total number of calls made to this
method.

Time/Call The time in milliseconds of every call.
That is Inclusive/Calls.

Microbenchmarks
Benchmarking is the act of running a computer program or operation in order to
compare operations in a way that produces quantitative results, normally by running
a set of tests and trials against them.

Benchmarks can be organized in two big categories:

•	 Macrobenchmarks
•	 Microbenchmarks

Macrobenchmarks exist as a means to compare different platforms in specific
areas such as processor speed, number of floating point operations per unit of time,
graphics and 3D performance, and so on. They are normally used against hardware
components but can also be used to test software specific areas, such as compiler
optimization or algorithms.

Performance Testing and Profiling

[256]

As opposed to these traditional macrobenchmarks, a microbenchmark attempts
to measure the performance of a very small piece of code, often a single method.
The results obtained are used to choose between competing implementations that
provide the same functionality deciding the optimization path.

The risk here is to microbenchmark something different than what you think you
are measuring. This is something to take into account mainly in the case of JIT
compilers as used by Android starting with version 2.2 Froyo. The JIT compiler may
compile and optimize your microbenchmark differently than the same code in your
application. So, be cautious when taking your decision.

This is different from the profiling tactic introduced in the previous section as this
approach does not consider the entire application but a single method or algorithm
at a time.

Caliper microbenchmarks
Caliper is Google's Open Source framework for writing, running, and viewing
results of microbenchkmarks. There are many examples and tutorials on its website
at http://code.google.com/p/caliper/.

It's a work in progress but still useful in many circumstances. We are exploring its
essential use here and will introduce more Android related usage in the next chapter.

Its central idea is to benchmark methods, mainly to understand how efficient
they are; we may decide that this is the target for our optimization, perhaps after
analyzing the results provided by profiling via traveview.

Caliper benchmark extends normally com.google.caliper.SimpleBenchmark which
implements the Benchmark interface. Benchmarks are structured in a similar fashion as
JUnit 3 tests and maintain the same structure with the difference that here benchmarks
start with the prefix time as opposed to test. Every benchmark then accepts an int
parameter usually named reps, indicates the number of repetitions to benchmark the
code that sits inside the method surrounded by a loop counting the repetitions.

The setUp() method is also present.

We need caliper installed in our computer. At the time of this writing, caliper is not
distributed as binary but as source code that you can download and build yourself.
Follow the instructions provided in its website which basically is getting the source
code and building yourself.

Put in a very simple way, you can do it using these command lines. You need
Subversion and Ant installed to do it:

Chapter 9

[257]

$ svn checkout http://caliper.googlecode.com/svn/trunk/ caliper-read-only

$ cd caliper-read-only

$ ant

The calliper-0.0.jar and allocation.jar will be found in the build/
caliper-0.0/lib subdirectory.

Creating the TemperatureConverterBenchmark
project
Let's start by creating a new Java project in Eclipse. Yes, this time is not an Android
project, just Java.

For consistency use the package com.example.aatg.tc.benchmark as the
main package.

Add the caliper library and the existing TemperatureConverter project to the Java
Build Path in the project's properties.

Then create the TemperatureConverterBenchmark class that is containing
our benchmarks:

package com.example.aatg.tc.benchmark;

import java.util.Random;
import com.example.aatg.tc.TemperatureConverter;
import com.google.caliper.Param;
import com.google.caliper.SimpleBenchmark;

/**
 * Caliper Benchmark.

 * To run the benchmarks in this class:

 * {@code $ CLASSPATH=... caliper com.example.aatg.tc.
 * benchmark.TemperatureConverterBenchmark.
 * CelsiusToFahrenheitBenchmark} [-Dsize=n]
 *
 * @author diego
 *
 */
public class TemperatureConverterBenchmark {

 public static class CelsiusToFahrenheitBenchmark extends
 SimpleBenchmark {

 private static final double T = 10; // some temp

 @Param
 int size;

 private double[] temps;

Performance Testing and Profiling

[258]

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 temps = new double[size];
 Random r = new Random(System.currentTimeMillis());
 for (int i=0; i < size; i++) {
 temps[i] = T * r.nextGaussian();
 }
 }

 public final void timeCelsiusToFahrenheit(int reps) {
 for (int i=0; i < reps; i++) {
 for (double t: temps) {
 TemperatureConverter.celsiusToFahrenheit(t);
 }
 }
 }
 }

 public static void main(String[] args) {
 System.out.println("This is a caliper benchmark.");
 }
}

We have a setUp() method that, similar to JUnit tests, is run before the benchmarks
are run. This method initializes an array of random temperatures used in the
conversion benchmark. The size of this array is passed as a parameter to caliper and
annotated here with the @Param annotation. Caliper will provide the value of this
parameter automatically.

We use a Gaussian distribution for the pseudo-random temperatures as this could be
a good model of the reality.

Then the benchmark itself. As we noted before it should start with the prefix
time, as in this instance timeCelsiusToFahrenheit(). Inside this method we
loop for the repetitions and invoke the conversion TemperatureConverter.
celsiusToFahrenheit() which is the method we wish to benchmark.

Running caliper
To run caliper we use a script which is based on the script that comes with the
distribution. Be sure to place it in a directory included in the PATH or use the correct
path to invoke it:

#!/bin/bash

VERSION=0.0
CALIPER_DIR=/opt/caliper-$VERSION

Chapter 9

[259]

export PATH=$PATH:$JAVA_HOME/bin
exec java -cp ${CALIPER_DIR}/lib/caliper-${VERSION}.jar:$CLASSPATH
com.google.caliper.Runner "$@"

Adapt it to your needs. Before running it, remember that we still need to set our
CLASSPATH so caliper can find the TemperatureConverter and the benchmarks
themselves. For example:

$ export CLASSPATH=$CLASSPATH:~/workspace/TemperatureConverter/bin:~/
workspace/TemperatureConverterBenchmark/bin

Afterwards we can run caliper as:

$ caliper com.example.aatg.tc.benchmark.TemperatureConverterBenchmark.
CelsiusToFahrenheitBenchmark -Dsize=1

This will run the benchmarks and if everything goes well we will be presented with
the results:

 0% Scenario{vm=java, benchmark=CelsiusToFahrenheit, size=1} 8.95ns; σ=0.11ns
@ 10 trials

.caliperrc found, reading properties...

ns logarithmic runtime

 9 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

vm: java

benchmark: CelsiusToFahrenheit

size: 1

Alternatively we can repeat the benchmark for different number of temperatures to
find out if the values itself affect the performance of the conversion. In such cases
we run:

$ caliper com.example.aatg.tc.benchmark.TemperatureConverterBenchmark.
CelsiusToFahrenheitBenchmark -Dsize=1,10,100

Here we added different sizes for the temperatures array and the results obtained are
as follows:

 0% Scenario{vm=java, trial=0, benchmark=CelsiusToFahrenheit, size=1} 3.47 ns;
σ=0.19 ns @ 10 trials

33% Scenario{vm=java, trial=0, benchmark=CelsiusToFahrenheit, size=10} 11.67
ns; σ=1.20 ns @ 10 trials

Chapter 9

[261]

Summary
In this chapter we dissected the available alternatives to test the performance
measures of our application benchmarking and profiling our code.

While some options that should be provided by the Android SDK are not yet
completed by the time of this writing, and there is no possibility to implement
Android PerformanceTestCases because some code is hidden in the SDK, we
visited and analyzed some other valid alternatives.

Among these alternatives we found that we can use simple log statements to more
sophisticated code extending Instrumentation.

Subsequently we analyzed profiling alternatives and described and exemplified the
use of traceview and dmtracedump.

Finally, we discovered caliper—a microbenchmarking tool that has native support
for Android. However, we introduced its most basic usage and postponed more
specific Android and Dalvik VM usage for the next chapter.

In the next chapter we will be building Android from source code to obtain an
EMMA instrumented build and we will be executing coverage report on our code.
We will also introduce alternative tactics and tools by the end of the chapter.

Alternative Testing Tactics
Up to this point we have analyzed the most common and accessible tactics to
implement testing in our projects. However, there are a few missing pieces in our
puzzle and with the current versions of the Android SDK (Android 2.3 Gingerbread as
of this writing) these features are not yet implemented. Nevertheless, not everything
is lost. One of the biggest and strongest benefits of Android is its Open Source nature
and the features we are going to exploit here precisely depend on it because we will
be using the complete source code to introduce some changes required by what we
plan to provide.

Building Android from source code is not for the faint hearted. It is extremely time
consuming mainly at the beginning while you are familiarizing yourself with the
whole Android environment, and it also requires a lot of disk space and horsepower.
To illustrate this assertion, one simple build for one target takes almost 10GB of disk
space and almost an hour to build on a 4 core machine. I'm not trying to scare you
but warn you and at the same time ask for a little endurance.

They say that great sacrifices come with great rewards and this seems to be another
case that follows this rule.

In this chapter we will be covering:

•	 Building Android from source
•	 Code coverage using EMMA
•	 Adding code coverage to our Temperature Converter project
•	 Introducing Robotium
•	 Testing on host's JVM
•	 Introducing Robolectric

Alternative Testing Tactics

[264]

Building Android from source
Perhaps Android's Achilles' heel would be the lack of documentation and the number
of places you have to visit to get the complete version of what you are trying to find,
or what's even worse in many cases the official documentation is incorrect or has not
been updated to match the current release. One example of this is the documentation
(available at http://source.android.com/source/download.html at the time of
this writing) of the requirements to build Android from source that still states that
Java 6 is not supported and Ubuntu 8.10 (intrepid) 32bit can be used, which is totally
wrong. Funnily enough, Java 6 and at least Ubuntu 10.04 (lucid) 64bit are required.
Starting with Android 2.3 (Gingerbread), building on 32bit machines is no longer
supported. But that's enough for a rant, I will leave them for my personal blog,
otherwise if the documentation were complete, books like this one would not be
needed and I could be writing one about Windows Phone 7...

Just kidding, I don't think this could happen in the near future.

Code coverage
One of our objectives in building Android from source is enabling code coverage via
EMMA (http://emma.sourceforge.net/).

Code coverage is a measure used in software testing that describes the amount of
source code that was actually tested by the tests suite and to what degree following
some criteria. As code coverage inspects the code directly it is therefore a form of
white box testing.

From the several tools available providing code coverage analysis for Java we
are using EMMA, an open-source toolkit for measuring and reporting Java code
coverage that is supported by the Android project, and the infrastructure to start
using it for your own projects is already there, therefore minimizing the effort
needed to implement it. EMMA came to fill an existing gap in the vast Open Source
ecosystem where no coverage tools existed with compatible licenses. EMMA is based
on IBM's Common Public License v1.0 and is thus free for both Open Source and
commercial development.

EMMA distinguishes itself from other tools by going after a unique feature
combination: support for large-scale enterprise software development while keeping
individual developer's work fast and iterative. This is fundamental in a project the
size of Android and EMMA shines at its best providing code coverage for it.

Chapter 10

[265]

EMMA features
Android 2.3 includes EMMA v2.0, build 5312. The most distinctive set of features,
paraphrasing its documentation, which can be found at its website are the following:

•	 EMMA can instrument classes for coverage either offline (before they are
loaded) or on the fly (using an instrumenting application classloader).

•	 Supported coverage types: Class, method, line, basic block. EMMA can detect
when a single source code line is covered only partially.

•	 Coverage stats are aggregated at method, class, package, and "all classes"
levels.

•	 Output report types: Plain text, HTML, XML. All report types support drill-
down, to a user-controlled detail depth. The HTML report supports source
code linking.

•	 Output reports can highlight items with coverage levels below user-provided
thresholds.

•	 Coverage data obtained in different instrumentation or test runs can be
merged together.

•	 EMMA does not require access to the source code and degrades gracefully
with decreasing amounts of debug information available in the input classes.

•	 EMMA can instrument individual .class files or entire .jar files (in place,
if desired). Efficient coverage subset filtering is possible, too.

•	 Makefile and ANT build integration are supported on an equal footing.
•	 EMMA is quite fast: The runtime overhead of added instrumentation is small

(5 to 20%) and the bytecode instrumentor itself is very fast (mostly limited by
file I/O speed). Memory overhead is a few hundred bytes per Java class.

•	 EMMA is 100% pure Java, has no external library dependencies, and works
in any Java 2 JVM (even 1.2.x).

Some minor changes were introduced by Android to the EMMA project to fully
adapt it and support code coverage:

•	 Change coverage.out.file location in core/res/emma_default.
properties to /data/coverage.ec

•	 Remove reference to sun.misc.* in core/java14/com/vladium/util/
IJREVersion.java

•	 Remove reference to sun.misc.* and SunJREExitHookManager class from
core/java13/com/vladium/util/exit/ExitHookManager.java

•	 Add java.security.cert.Certificate cast to core/java12/com/
vladium/emma/rt/InstrClassLoader.java to fix compiler error

Alternative Testing Tactics

[266]

•	 Move out/core/res/com/vladium/emma/rt/RTExitHook.closure (from
Emma Ant build) into pregenerated/ so it does not have to be generated in
Android's make-based build, but also doesn't break Emma's build

System requirements
The Android build for gingerbread requires a 64-bit build environment as well as
some other tools:

Required packages:

•	 Git, JDK, flex, and the other development packages
•	 Java 6
•	 Pieces from the 32-bit cross-building environment
•	 X11 development

The instructions if you are running the recommended Ubuntu 10.04 LTS 64bit
are as follows:

$ sudo apt-get install git-core gnupg flex bison gperf libsdl-dev \
 libesd0-dev libwxgtk2.6-dev build-essential zip curl libncurses5-dev \
 zlib1g-dev
$ sudo apt-get install gcc-multilib g++-multilib libc6-dev-i386 \
 lib32ncurses5-dev ia32-libs x11proto-core-dev libx11-dev \
 lib32readline5-dev lib32z-dev

Set the system to use the right version of java by default:

$ sudo update-java-alternatives -s java-6-sun

In any case, check the AOSP website (http://source.android.com/source/
download.html) for updated instructions.

Downloading the Android source code
The Android project is a large collection of relatively independent projects put
under the Android umbrella. All of them use Git as the version control system.
You can see what I mean by visiting the Gitweb interface for the Android project at
http://android.git.kernel.org/.

As you can see, dozens of projects are listed and you need all to build the entire
platform. To simplify the process of dealing with this great number of Git projects at
the same time Google created repo, a tool that was built on top of Git to help manage
the many Git repositories, uploads to the revision control system, and automate parts
of the Android development work-flow.

Chapter 10

[267]

Repo is a complementary tool that does not replace Git, but just makes it easier to
work with Git in the context of Android. The repo command is an Python executable
wrapped into a shell script and can be put anywhere in your path.

Detailed information about Git and Repo in the scope of Android project can be
obtained from their information page at http://source.android.com/source/
git-repo.html.

Installing repo
As we mentioned before, repo is our key to the Android source code world,
therefore the first measure is installing it.

Follow these commands:

$ curl http://android.git.kernel.org/repo > ~/bin/repo

$ chmod a+x ~/bin/repo

This creates the initial repo script, which will initialize the complete repository
and will include the repo.git project as well, so repo is auto-maintained. Every
time you synchronize with the repository, changes to repo itself are propagated if
necessary. That's a very clever use of the tool.

Creating the working copy
Our working copy of the repository can be created anywhere in our computer. Just
remember that there should be at least 10GB of free space and sometimes much more
is needed if you build for different targets.

Let's say that we decide to create the working copy in ~/android/android-2.3,
then use the following commands:

$ mkdir ~/android/android-2.3

$ cd ~/android/android-2.3

$ repo init -u git://android.git.kernel.org/platform/manifest.git

These three simple steps have created our working copy ready to be synchronized.
Remember that is a very big download and depending on your network connection
speed and the load on the servers it could take some time. So it is very smart to wait
some days after a major release is pushed to the servers.

When you are ready to synchronize just invoke this command in your working copy:

$ repo sync

Alternative Testing Tactics

[268]

When you run repo sync, this is what happens:

•	 If the project has never been synchronized, then repo sync is equivalent
to git clone. All branches in the remote repository are copied to the local
project directory.

•	 If the project has already been synchronized once, then repo sync is
equivalent to:

	° git remote update
	° git rebase origin/branch
	° Where branch is the currently checked-out branch in the local

project directory. If the local branch is not tracking a branch
in the remote repository, then no synchronization will occur
for the project.

•	 If the git rebase operation results in merge conflicts, you will need to use
the normal Git commands (for example, git rebase --continue) to resolve
the conflicts.

Once finished, the complete Android source code has been downloaded to your
working copy. We haven't specified any specific branch so we just downloaded the
latest Android Open Source Project (AOSP) main branch.

The Building Steps
We are ready to start our build supporting code coverage analysis.

To achieve this we need to follow the steps to set the environment and chose
your combo:

~/android/android-2.3$ source build/envsetup.sh

including device/htc/passion/vendorsetup.sh

including device/samsung/crespo/vendorsetup.sh

~/android/android-2.3$ lunch

You're building on Linux

Lunch menu... pick a combo:

 1. full-eng

 2. full_x86-eng

Chapter 10

[269]

 3. simulator

 4. full_passion-userdebug

 5. full_crespo-userdebug

Which would you like? [full-eng]

Select full-eng in this case.

==

PLATFORM_VERSION_CODENAME=AOSP

PLATFORM_VERSION=AOSP

TARGET_PRODUCT=full

TARGET_BUILD_VARIANT=eng

TARGET_SIMULATOR=false

TARGET_BUILD_TYPE=release

TARGET_BUILD_APPS=

TARGET_ARCH=arm

TARGET_ARCH_VARIANT=armv5te

HOST_ARCH=x86

HOST_OS=linux

HOST_BUILD_TYPE=release

BUILD_ID=OPENMASTER

==

One more step is needed in this case. As we want to enable EMMA code coverage we
need to set this in the environment:

~/android/android-2.3$ export EMMA_INSTRUMENT=true

Get set, ready, go:

~/android/android-2.3$ make -j4

Chapter 10

[271]

A possible location for our application and tests inside the main Android tree
could be development/samples, so we are going to use it. Should you decide on
a different location, minor adaption might be needed in the files and commands
presented here.

We already have our TemperatureConverter project and its tests
TemperatureConverterTests somewhere in our filesystem, and if you followed
the examples presented before they are probably checked into the version control
system of your choice, so the options here are checking out the project again at this
location or creating a symbolic link. Let's choose the latter for the sake of simplicity
for this example:

~/android/android-2.3/development/samples$ ln -s ~/workspace/
TemperatureConverter .

~/android/android-2.3/development/samples$ ln -s ~/workspace/
TemperatureConverterTest .

Following, we need to add the makefiles. We built our projects from Eclipse
and later on we added ant support. Now we are adding support for a third build
system: make.

Android built is make based and we should follow its conventions and style to be
able to build our application and its tests as part of the main build.

Create the following Android.mk inside the TemperatureConverter project:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := samples

Only compile source java files in this apk.
LOCAL_SRC_FILES := $(call all-java-files-under, src)

LOCAL_PACKAGE_NAME := TemperatureConverter

LOCAL_SDK_VERSION := current

include $(BUILD_PACKAGE)

This makefile will be included as part of the main build if executed.

To build it separately we can use a helper function that was defined in our
environment when we set it up at the beginning using envsetup.sh. This function is
mm and is defined as:

mm ()
{
 if [-f build/core/envsetup.mk -a -f Makefile]; then
 make $@;

Alternative Testing Tactics

[272]

 else
 T=$(gettop);
 local M=$(findmakefile);
 local M=`echo $M|sed 's:'$T'/::'`;
 if [! "$T"]; then
 echo "Couldn't locate the top of the tree.
 Try setting TOP.";
 else
 if [! "$M"]; then
 echo "Couldn't locate a makefile from the
 current directory.";
 else
 ONE_SHOT_MAKEFILE=$M make -C $T all_modules $@;
 fi;
 fi;
 fi
}

The boilerplate code to locate and include needed components is provided
by this function.

Using it to build the application is simply done by invoking it when our current
working directory is the project we want to compile.

~/android/android-2.3/development/samples/TemperatureConverter$ EMMA_
INSTRUMENT=true mm

Because we enabled EMMA by setting EMMA_INSTRUMENT=true in our environment
among the messages produced by this command, we should see the following:

EMMA: processing instrumentation path ...

EMMA: instrumentation path processed in 149 ms

EMMA: [14 class(es) instrumented, 4 resource(s) copied]

EMMA: metadata merged into [/home/diego/android/android-2.3/out/target/
common/obj/APPS/TemperatureConverter_intermediates/coverage.em] {in 16 ms}

This indicates that our build is being instrumented.

We should proceed in a similar manner to build and instrument our tests.

In the TemperatureConverterTest project create its corresponding makefile:
Android.mk, this time containing this information, which is slightly different from
the main project:

Chapter 10

[273]

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

We only want this apk build for tests.

LOCAL_MODULE_TAGS := tests

LOCAL_JAVA_LIBRARIES := android.test.runner

LOCAL_STATIC_JAVA_LIBRARIES := easymock hamcrest-core \

 hamcrest-integration hamcrest-library

Include all test java files.

LOCAL_SRC_FILES := $(call all-java-files-under, src)

LOCAL_PACKAGE_NAME := TemperatureConverterTest

LOCAL_INSTRUMENTATION_FOR := TemperatureConverter

LOCAL_SDK_VERSION := current

include $(BUILD_PACKAGE)

LOCAL_PREBUILT_STATIC_JAVA_LIBRARIES := \

 easymock:libs/easymock-2.5.2.jar \

 hamcrest-core:libs/hamcrest-core-1.2-android.jar \

 hamcrest-integration:libs/hamcrest-integration-1.2-android.jar \

 hamcrest-library:libs/hamcrest-library-1.2-android.jar

include $(BUILD_MULTI_PREBUILT)

This is a little more involved because the tests are using external libraries we need to
define to be used during the build process.

Again, we should build it using the mm function:

~/android/android-2.3/development/samples/TemperatureConverterTest \
 $ EMMA_INSTRUMENT=true mm

We have successfully built the TemperatureConverter application and its tests,
now as part of the main Android build. At this point we are ready to obtain the code
coverage analysis reports, just by following a few more steps.

Alternative Testing Tactics

[274]

Generating code coverage analysis report
Having reached this point, we have TemperatureConverter and its tests
instrumented and compiled residing in our output directory which is out/target/
common/obj/APPS/.

We need an instance of the emulator that belongs to our instrumented built. This
emulator is in the out directory too.

In this case we extend the default system partition size up to 256MB and include a
sdcard image that should have been created previously. These elements are needed
because some data will be collected during the instrumented test run and we need
some room to save it.

~/android/android-2.3$./out/host/linux-x86/bin/emulator -sdcard ~/tmp/
sdcard.img -partition-size 256

Our intention is now to synchronize the image running on the emulator with
our changes.

These steps avoid creating a new image when some changes or updates are available
just by copying the modified files.

To be able to do it we first need to enable writing to the system image:

~/android/android-2.3$ adb remount

This command when finished successfully should give this output:

remount succeeded

Followed by the synchronization of changes:

~/android/android-2.3/development/samples/TemperatureConverterTest$ adb
sync

The list of files being copied to the emulator image are displayed. Once everything is
updated we can now run the tests using am instrument as we previously did. As we
mentioned in Chapter 2, Testing on Android when we reviewed the available options
for this command, -e can be used to set various suboptions. In this case we use it to
enable code coverage collection:

~/android/android-2.3$ adb shell am instrument -e coverage 'true' \
 -w com.example.aatg.tc.test/android.test.InstrumentationTestRunner

This following message verifies that our tests are collecting coverage data:

EMMA: collecting runtime coverage data ...

Alternative Testing Tactics

[276]

EMMA: writing [html] report to [/home/diego/android/android-2.3/out/emma/tc/
coverage/index.html] ...

This has created the report files inside the coverage directory, so we can open the
index by invoking:

~/android/android-2.3/out/emma/tc$ firefox coverage/index.html

Then, the coverage analysis report is displayed:

This report has three main sections:

•	 Overall coverage summary: The summary for all classes is presented here.
•	 Overall stats summary: The statistics of the coverage are presented here, for

example how many packages, classes, or lines were present.
•	 Coverage breakdown by package: In the case of bigger applications this will

display the coverage for particular packages. In this example, it's the same as
the total because there is a single package.

The information presented in the report includes coverage metrics in a way that
allows for drilling down into data in a top-down fashion, starting with all classes
and going all the way to the level of individual methods and source lines (in the
HTML report).

Chapter 10

[277]

The fundamental unit of code coverage in EMMA is the basic blocks; all other types
of coverage are derived from the basic block coverage in some way. Line coverage is
mostly used to link to the source code.

This table describes the important pieces of information in the EMMA coverage report:

Label Description
name The name of the class or package
Class, % The percentage of classes covered over the total and the detailed number.
Method, % The percentage of methods covered over the total and the detailed

number. This is a basic java method which is composed by a given
number of basic blocks.

Block, % The percentage of blocks covered over the total and the detailed number.
A basic block is defined as a sequence of bytecode instructions without
any jumps or jump targets.

The number of basic blocks in a method is a good measure of its
complexity.

Line, % The percentage of lines covered over the total and the detailed number.
This is basically used to link to the source code.

When the values presented are under a threshold coverage metric value, these
metrics are presented in red in the report. By default, these values are:

•	 For methods: 70%
•	 For blocks: 80%
•	 For lines: 80%
•	 For classes: 100%

All of these values can be changed, specifying parameters on the command line or
in a configuration file. Please refer to the documentation for details (http://emma.
sourceforge.net/docs.html).

We can drill-down from the package to specific methods and the lines covered
are presented in green while uncovered ones appear in red and partially covered
in yellow.

Alternative Testing Tactics

[278]

This is an example of this report for the TemperatureConverter class:

In this report we can see that the class TemperatureConverter is not 100% covered
but all the basic blocks inside it are.

Do you know why ?

Think for a moment...

Yes, because the implicit default constructor has not been tested. But wait a second;
this is a utility class which is not supposed to be instantiated at all. We can see here
not only how this analysis is helping us to test our code and find potential bugs but
also to improve the design.

What we need to do to prevent TemperatureConverter from being instantiated is to
create a private default constructor:

public TemperatureConverter {
 …

 private TemperatureConverter() {
 }

 ...
}

Chapter 10

[279]

Once we add this private constructor and run the tests and coverage again we can
see now that even though the class is not yet 100% covered and thus not green we
can assure that this constructor won't be invoked from any other class.

Covering the restoring the instance state
There is another case that we will analyze. In the report for
TemperatureConverterActivity we can see that some blocks are still not covered
and they are red. One of such blocks is the partial support for restoring a saved
instance we added before, though this block is not yet functional and its only logging
a message we should cover it with a test.

The code mentioned in TemperatureConverterActivity.java is:

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 if (savedInstanceState != null) {
 Log.d(TAG, "Should restore state from " +
 savedInstanceState);
 }

 …

To test this block we must control the invocation of the onCreate() method and
inject a mock Bundle to simulate the actual Android lifecycle.

We may think of using one of our previously created test classes to add the needed
test, but if you remember from our previous chapters we stated that when we need a
higher degree of control over the creation of the Activity under test, instead of Act
ivityInstrumentationTestCase2<T> we should use ActivityUnitTestCase<T>,
which is also derived from InstrumentationTestCase (see the UML class diagram
for ActivityInstrumentationTestCase2<T> in Chapter 3, Building Blocks on the
Android SDK).

The test case based on ActivityUnitTestCase<T> allows us to inject the desired
values to onCreate() while starting the Activity by using startActivity(Intent
intent, Bundle savedInstanceState, Object lastNonConfigurationInstance).

Alternative Testing Tactics

[280]

The following code snippet shows the test case we are adding to our already existing
TemperatureConverterActivityUnitTests class:

package com.example.aatg.tc.test;

import com.example.aatg.tc.TemperatureConverterActivity;
import com.example.aatg.tc.TemperatureConverterApplication;

import android.app.Instrumentation;
import android.content.Intent;
import android.os.Bundle;
import android.test.ActivityUnitTestCase;

public class TemperatureConverterActivityUnitTests extends
 ActivityUnitTestCase<TemperatureConverterActivity> {

 public TemperatureConverterActivityUnitTests(String name) {
 super(TemperatureConverterActivity.class);
 setName(name);
 }

 protected void setUp() throws Exception {
 super.setUp();

 mStartIntent = new Intent(Intent.ACTION_MAIN);
 mInstrumentation = getInstrumentation();
 setApplication(new TemperatureConverterApplication());
 }

 protected void tearDown() throws Exception {
 super.tearDown();
 }

 // other tests not displayed here …

 public final void testOnCreateBundle() {

 Bundle savedInstanceState = new Bundle();
 savedInstanceState.putString("dummy", "dummy");
 setApplication(new TemperatureConverterApplication());
 Intent intent = new Intent(mInstrumentation.getTargetContext(),
 TemperatureConverterActivity.class);
 startActivity(intent, savedInstanceState, null);
 TemperatureConverterActivity activity = getActivity();
 assertNotNull(activity);
 }
}

We are creating a Bundle containing only dummy values as nothing
special is expected in the Activity. Additionally we are injecting a real
TemperatureConverterApplication object instead of an Application mock because
it is used, and casted, inside the Activity's onCreate() method and it would fail.

Chapter 10

[281]

No additional tests were added to this class as nothing special is done when the
saved state is restored. For your particular application probably you would like to
check that some values were restored correctly.

Should we run the test coverage report again we would see that now the mentioned
block is now covered.

Covering the exceptions
Continuing with our examination of the coverage report will lead us to discover
another block that is not exercised by our current tests. The block in question is the
last catch in the following try-catch block in TemeratureConverterActivity:

 try {
 final double temp = Double.parseDouble(str);
 final double result = (mOp == OP.C2F) ?
 TemperatureConverter.celsiusToFahrenheit(temp) :
 TemperatureConverter.fahrenheitToCelsius(temp);
 final String resultString = String.format("%.2f", result);
 mDest.setNumber(result);
 mDest.setSelection(resultString.length());
 } catch (NumberFormatException e) {
 // WARNING
 // this is generated while a number is entered,
 // for example just a '-'
 // so we don't want to show the error
 } catch (InvalidTemperatureException e) {
 mSource.setError("ERROR: " + e.getLocalizedMessage());
 }

We should provide a test, or better a pair of tests, one for each temperature unit, that
furnishing an invalid temperature verifies that the error is displayed. This is the test
in TemperatureConverterActivityTests for the Celsius case and you can easily
convert it to provide the other case:

 public void testInvalidTemperatureInCelsius() throws Throwable {
 runTestOnUiThread(new Runnable() {
 @Override
 public void run() {
 mCelsius.clear();
 mCelsius.requestFocus();
 }
 });

 // temp less than ABSOLUTE_ZERO_C

Alternative Testing Tactics

[282]

 assertNull(mCelsius.getError());
 sendKeys("MINUS 3 8 0");
 assertNotNull(mCelsius.getError());
 }

We clear and request the focus for the field under test. As we did before, we
should achieve this by using a Runnable on the UI thread otherwise we will
receive an exception.

Then we check there's no previous error, set the invalid temperature, and retrieve the
error message to verify that is not null. Running the end-to-end process again we can
attest that the block is now covered giving us total coverage as intended.

This is the iterative process you should follow to change as much as possible of
the code to green. Ideally this should be 100% but sometimes this is not achievable
mainly for some blocks that are not reachable during the tests.

Bypassing access restrictions
One of the blocks we added to satisfy our needs, the private constructor for
TemperatureConverter, is now unreachable by our tests and is marked red. In
cases like this we can leave it as it is or we can use a more convoluted solution using
reflection to bypass the access restrictions and create a test. Though this is not really
advisable because strictly speaking you should limit to test the public interface, we
are including this as an illustration of this technique.

This is the test we are adding to the TemperatureConverterTests class:

 public final void testPrivateConstructor() throws
 SecurityException, NoSuchMethodException,
 IllegalArgumentException, InstantiationException,
 IllegalAccessException, InvocationTargetException {
 Constructor<TemperatureConverter> ctor =
 TemperatureConverter.class.getDeclaredConstructor();
 ctor.setAccessible(true);
 TemperatureConverter tc = ctor.newInstance((Object[])null);
 assertNotNull(tc);
 }

This example uses reflection to bypass the access restriction and create a new
TemperatureConstructor instance and then verify that it was successfully created.

If you are not familiar with this technique or Java reflection in general you can read
the excellent tutorial at The Java Tutorials by Oracle (http://download.oracle.
com/javase/tutorial/reflect/).

Chapter 10

[283]

Covering the options menu
Taking another look at the coverage report, we can yet identify a method
that's not covered by our tests. It is the TemperatureConverterActivity.
onCreateOptionsMenu() which creates the menu holding the Preferences option in
our particular situation. What it does is very simple and straightforward. It creates
a MenuItem that when clicked invokes the TemperatureConverterPreferences
Activity through the corresponding intent. This is right what we are going to test.
From our experience we know that if we are interested in knowing if an Activity was
launched from our Activity under tests, then what we need is an ActivityMonitor,
so we are establishing the test based on this component.

This is the new test we will add to the TemperatureConverterActivityTests class:

 public final void testOnCreateOptionsMenu() {
 final Instrumentation instrumentation = getInstrumentation();
 final ActivityMonitor preferencesMon =
 instrumentation.addMonitor(
 "com.example.aatg.tc.TemperatureConverterPreferences",
 null, false);
 assertTrue(instrumentation.invokeMenuActionSync(
 mActivity, TemperatureConverterActivity.
 MENU_ID_PREFERENCES, 0));
 final Activity preferences =
 preferencesMon.waitForActivityWithTimeout(3000);
 assertNotNull(preferences);
 preferences.finish();
 }

Firstly we get the Instrumentation as in other cases. We then add a monitor using
addMonitor(), a convenience wrapper that also creates the ActivityMonitor for
us and returns it, defining the name of the Activity class to monitor, null as a result
as we are not interested in it, and false not to block the start of the Activity. This
monitor will be hit if an Activity that matches the class is launched.

Next, we invoke the menu option with ID 0, as it was defined in
onCreateOptionsMenu(), and passing no flags (0 again). We assert that the
invocation was successful as invokeMenuActionSync() returns true in such cases.

We wait for the Activity to start, verify that it was actually started as
waitForActivityWithTimeout() returns null if the timeout expires before the
Activity was started, and finally finishing() the Activity.

Chapter 10

[285]

 [exec] com.example.aatg.tc.test.
 TemperatureConverterApplicationTests:....
 [exec] com.example.aatg.tc.test.TemperatureConverterTests:.......
 [exec] com.example.aatg.tc.test.robotium.
 TemperatureConverterActivityTests:..
 [exec] Test results for
 InstrumentationTestRunner=..........................
 [exec] Time: 61.931
 [exec]
 [exec] OK (38 tests)
 [exec]
 [exec]
 [exec] Generated code coverage data to
 /data/data/com.example.aatg.tc/files/coverage.ec
 [echo] Downloading coverage file into project directory...
 [exec] 14 KB/s (751 bytes in 0.050s)
 [echo] Extracting coverage report...
...
 [echo] Saving the report file in <path/to>/
 TemperatureConverterTest/coverage/coverage.html

BUILD SUCCESSFUL
Total time: 1 minute 31 seconds

This automates several of the steps we described before. However it is not
documented yet so it can be removed or changed in the future. On the other hand,
when the projects are complex or there are a lot of dependencies this build target
may fail when the makefile succeeds, so use it with caution.

Introducing Robotium
One component of the vast emerging robotic fauna is Robotium (http://code.
google.com/p/robotium/), a test framework created to simplify the writing of tests
requiring minimal knowledge of the application under test. Robotium is mainly
oriented to write powerful and robust automatic black-box test cases for Android
applications. It can cover function, system, and acceptance test scenarios, even
spanning multiple Android activities of the same application automatically.

Robotium can also be used to test applications that we don't have the source code
for, or even pre-installed applications.

Robotium has full support for Activities, Dialogs, Toasts, Menus, and Context Menus.

Let's put Robotium to work creating some new tests for TemperatureConverter.
To keep our tests organized we create a new package named com.example.

Alternative Testing Tactics

[286]

aatg.tc.tests.robotium in the TemperatureConverterTest project. In
this package we are creating the class for our test cases, because we will be
initially testing TemperatureConverterActivity. It is reasonable to call it
TemperatureConverterActivityTests even though we have a class with the same
name in another package also extending ActivityInstrumentationTestCase2.
After all, this class will be containing tests for this same Activity too.

Downloading Robotium
We need to download the robotium-solo JAR file and its Javadoc so we can add
them to our project. Go to the Robotium download site (http://code.google.
com/p/robotium/downloads/list) and pick the latest version available, which at
the time of this writing is robotium-solo-2.1.jar.

Configuring the project
In the properties of our TemperatureConverterTest project we need to add this
JAR to Java Build Path | Libraries. Once added, you can expand this node and
add the Javadoc location to point to the companion JAR file using the Javadoc in
archive option.

Creating the test cases
From previous chapter we know that if we are creating test cases for an Activity
that should run connected to the system infrastructure, we should base it on
ActivityInstrumentationTestCase2, and that is what we are going to do.

The testFahrenheitToCelsiusConversion() test
More or less the test cases have the same structure as other Instrumentation based
tests. The main difference is that we need to instantiate Robotium's Solo in the test
setUp() and finalize() it in the tearDown():

package com.example.aatg.tc.test.robotium;

import android.test.ActivityInstrumentationTestCase2;

import com.example.aatg.tc.TemperatureConverterActivity;
import com.jayway.android.robotium.solo.Solo;

/**
 * @author diego
 *
 */
public class TemperatureConverterActivityTests extends

Chapter 10

[287]

 ActivityInstrumentationTestCase2<TemperatureConverterActivity> {

 private Solo mSolo;
 private TemperatureConverterActivity mActivity;

 /**
 * @param name
 */
 public TemperatureConverterActivityTests(String name) {
 super(TemperatureConverterActivity.class);
 setName(name);
 }

 /* (non-Javadoc)
 * @see android.test.ActivityInstrumentationTestCase2#setUp()
 */
 protected void setUp() throws Exception {
 super.setUp();

 mActivity = getActivity();
 mSolo = new Solo(getInstrumentation(), mActivity);
 }

 /* (non-Javadoc)
 * @see android.test.ActivityInstrumentationTestCase2#tearDown()
 */
 protected void tearDown() throws Exception {
 try {
 mSolo.finalize();
 }
 catch (Throwable ex) {
 ex.printStackTrace();
 }

 mActivity.finish();
 super.tearDown();
 }
}

To instantiate Solo we have to pass a reference to the Instrumentation and to the
Activity under test.

On the other hand, to finalize Solo we should precisely call the finalize() method,
then finish the Activity, and invoke super.tearDown().

Solo provides a variety of methods to drive UI tests and some assertions. Let's
start by re-implementing the testFahrenheitToCelsiusConversion() that we
previously implemented using the conventional approach, but in this case using
Solo facilities:

Alternative Testing Tactics

[288]

 public final void testFahrenheitToCelsiusConversion() {
 mSolo.clearEditText(CELSIUS);
 mSolo.clearEditText(FAHRENHEIT);

 final double f = 32.5d;
 mSolo.clickOnEditText(FAHRENHEIT);
 mSolo.enterText(FAHRENHEIT, Double.toString(f));
 mSolo.clickOnEditText(CELSIUS);
 final double expectedC =
 TemperatureConverter.fahrenheitToCelsius(f);
 final double actualC =
 Double.parseDouble(mSolo.getEditText(CELSIUS).
 getText().toString());
 final double delta = Math.abs(expectedC - actualC);
 final String msg = "" + f + "F -> " + expectedC +
 "C but was " + actualC + "C (delta " + delta + ")";
 assertTrue(msg, delta < 0.005);
 }

This is pretty similar, however the first difference you may have noticed is that in
this case we are not getting references to the UI elements as we previously did in
the setUp() method using findViewById() to locate the View. However, we are
using one of the biggest advantages of Solo that is locating the Views for us using
some criteria. In this case the criteria are used in the order in which they appear
on the screen and since they are counted an index is assigned. The method mSolo.
clearEditText(int index) expects an integer index of the position on the screen
starting from 0. Consequently we should add these constants to the test case, as in
our UI the Celsius field is on top and Fahrenheit beneath:

 private static final int CELSIUS = 0;
 private static final int FAHRENHEIT = 1;

The other methods follow the same convention and we are supplying these
constants when necessary. This test is very similar to the one in com.example.
aatg.tc.test.TemperatureConverterActivityTest but you may have noticed
that there is a subtle difference. Here we are located at a much higher level and we
don't have to worry about internals or implementation details; for example when in
our previous test we invoked mCelsius.requestFocus() to trigger the conversion
mechanism, but here we just simulate what the user does and issue a mSolo.
clickOnEditText(CELSIUS).

Because of this, we don't want to cast and use EditNumber.getNumber() either.
We just obtain the textual data that is on the screen, convert it to a Double, and then
compare it against the expected value.

We simplified the test sensibly but the biggest advantage of using Solo is yet to come.

Chapter 10

[289]

The testOnCreateOptionsMenu() revisited
You may have been waiting for this since the announcement in our preceding
testOnCreateOptionsMenu() implementation. This time we are situated at a much
higher level and we don't deal with implementation details. It is not our problem if
a new Activity is launched when we click on the menu item; we only treat this case
from the UI perspective.

This is a screenshot showing the preferences dialog for Decimal places:

Our purpose is also to change the value of Decimal places preferences to 5, and
verify that the change actually took place.

The following code snippet illustrates the details of the test:

 public final void testOnCreateOptionsMenu() {
 final int decimalPlaces = 5;
 final String numberRE = "^[0-9]+$";

 mSolo.sendKey(Solo.MENU);
 mSolo.clickOnText("Preferences");
 mSolo.clickOnText("Decimal places");
 assertTrue(mSolo.searchText(numberRE));
 mSolo.clearEditText(DECIMAL_PLACES);
 assertFalse(mSolo.searchText(numberRE));
 mSolo.enterText(DECIMAL_PLACES,
 Integer.toString(decimalPlaces));
 mSolo.clickOnButton("OK");
 mSolo.goBack();

Alternative Testing Tactics

[290]

 mSolo.sendKey(Solo.MENU);
 mSolo.clickOnText("Preferences");
 mSolo.clickOnText("Decimal places");
 assertTrue(mSolo.searchText(numberRE));
 assertEquals(decimalPlaces, Integer.parseInt(
 mSolo.getEditText(DECIMAL_PLACES).
 getText().toString()));
 }

Can you already appreciate the difference? There are no gory details about how all
this is implemented. We only test its functionality.

We start by pressing the MENU key, clicking on Preferences.

Wow, we just specify the menu item title and that's it!

The new Activity is started but we don't have to worry about it. We continue and
click on Decimal places.

We verify that some field containing a number, the prior value of this preference,
appeared. Do you remember what I said about regular expressions: they always
come in handy in one way or another; here to match any decimal integer number
(any digit followed by zero or more digits). Then we clear the field and verify that it
was in fact cleared.

We enter the string representing the number we want to use as a preference, 5 in this
case. Click on the OK button, and the preference is saved.

It remains to verify that it actually happened. The same procedure is used to get the
menu and the field and finally we verify that the actual number is already there.

You may wonder where DECIMAL_PLACES comes from. We previously defined
CELSIUS and FAHRENHEIT index constants for the fields on the screen and this is the
same case, because this will be the third EditText we should define in our class:

 private static final int DECIMAL_PLACES = 2;

Tests can be run from Eclipse or the command line according to your preferences.

I hope you have enjoyed this simplicity as much as I did and that your brain is now
bubbling with ideas to implement your own tests.

Alternative Testing Tactics

[292]

These are the steps needed to do it:

1. First we create the project and select JavaSE-1.6 as the execution environment:

2. Pressing Next > we can select the Java Settings for the project and as our
intention is to create the tests for the TemperatureConverter project we
should add it as a Required project on the build path:

3. Then we create a new package in this project to keep our tests, named com.
example.aatg.tc.test. In this package we create a new JUnit Test Case,
named TemperatureConverterTests, using JUnit version 4, as opposed to
the supported JUnit version 3 used in standard Android test cases. Select
TemperatureConverter as the Class under test:

Chapter 10

[293]

4. Pressing Next > this time we can select the methods to test and the method
stubs will be generated automatically:

Alternative Testing Tactics

[294]

Now we have the test case template and the method stubs completed. We now need
to enter the test code we created in previous chapters for TemperatureConverter in
these stubs:

package com.example.aatg.tc.test;

import static org.junit.Assert.*;

import java.util.HashMap;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import com.example.aatg.tc.TemperatureConverter;

public class TemperatureConverterTests {

 private static final HashMap<Double, Double> conversionTableDouble =
 new HashMap<Double, Double>();

 static {
 // initialize (c, f) pairs
 conversionTableDouble.put(0.0, 32.0);
 conversionTableDouble.put(100.0, 212.0);
 conversionTableDouble.put(-1.0, 30.20);
 conversionTableDouble.put(-100.0, -148.0);
 conversionTableDouble.put(32.0, 89.60);
 conversionTableDouble.put(-40.0, -40.0);
 conversionTableDouble.put(-273.0, -459.40);
 }

The previous code snippet shows the imports and the definition of the
TemperatureConverterTests. This is almost exactly the same as before
but with the sole addition of JUnit 4 annotations:

 @Before
 public void setUp() throws Exception {
 }

 @After
 public void tearDown() throws Exception {
 }

 /**
 * Test method for {@link com.example.aatg.tc.
 TemperatureConverter#fahrenheitToCelsius(double)}.
 */
 @Test
 public void testFahrenheitToCelsius() {
 for (double c: conversionTableDouble.keySet()) {

Chapter 10

[295]

 final double f = conversionTableDouble.get(c);
 final double ca = TemperatureConverter.fahrenheitToCelsius(f);
 final double delta = Math.abs(ca - c);
 final String msg = "" + f + "F -> " + c + "C but is " + ca +
 " (delta " + delta + ")";
 assertTrue(msg, delta < 0.0001);
 }
 }

 /**
 * Test method for {@link com.example.aatg.tc.
 TemperatureConverter#celsiusToFahrenheit(double)}.
 */
 @Test
 public void testCelsiusToFahrenheit() {
 for (double c: conversionTableDouble.keySet()) {
 final double f = conversionTableDouble.get(c);
 final double fa = TemperatureConverter.celsiusToFahrenheit(c);
 final double delta = Math.abs(fa - f);
 final String msg = "" + c + "C -> " + f + "F but is " + fa +
 " (delta " + delta + ")";
 assertTrue(msg, delta < 0.0001);
 }
 }

Again, this code snippet shows no changes against our previous version of the test
case but with the sole addition of JUnit 4 annotations:

 @Test
 public final void testExceptionForLessThanAbsoluteZeroF() {
 try {
 final double c = TemperatureConverter.fahrenheitToCelsius(
 TemperatureConverter.ABSOLUTE_ZERO_F-1);
 fail("Less than absolute zero F not detected");
 }
 catch (InvalidTemperatureException ex) {
 // do nothing
 }
 }

 @Test
 public final void testExceptionForLessThanAbsoluteZeroC() {
 try {
 final double f = TemperatureConverter.celsiusToFahrenheit(
 TemperatureConverter.ABSOLUTE_ZERO_C-1);
 fail("Less than absolute zero C not detected");
 }

Alternative Testing Tactics

[296]

 catch (RuntimeException ex) {
 // do nothing
 }
 }
}

The code is exactly the same with just a few minor differences. One such
difference is that we are now annotating the tests with @Test, as JUnit
4 finds the test methods by this annotation and not by their name. So in
this example we are using the same names for tests methods as we used
before, but strictly speaking we could have used something different, for
example shouldRaiseExceptionForLessThanAbsoluteZeroC instead of
testExceptionForLessThanAbsoluteZeroC.

Comparing the performance gain
Once the tests are finished we can run them from Eclipse by selecting the appropriate
test launcher, Eclipse JUnit Launcher:

The distinction is evident. There is no emulator start up, any device communication
and therefore the speed gain is important. Analyzing the evidence we can find out
these differences.

Running all tests in my development computer takes 0.005 seconds, with some
tests taking so little time that they are not even accounted for, and are displayed
as 0.000 seconds:

Chapter 10

[297]

Comparing this with the time it took to run the same tests on the emulator makes
this huge difference evident:

These same tests took 0.443 seconds to run, almost 100 times more and that's a huge
difference if you consider hundreds of tests running tens of times a day.

It is also good to notice that other advantages exists beside the speed gain and they
are the availability of several mock frameworks and code coverage tools.

Adding Android to the picture
We intentionally left Android outside our picture. Let's analyze what happens if we
include a simple Android test. Remember that for these tests to compile android.
jar from the SDK should also be added to the project libraries.

Add this test to a new JUnit test case named
TemperatureConverterActivityUnitTests:

package com.example.aatg.tc.test;
import static org.junit.Assert.assertNotNull;

import org.junit.After;
import org.junit.Before;

Alternative Testing Tactics

[298]

import org.junit.Test;

import android.app.Application;
import android.content.Intent;
import com.example.aatg.tc.TemperatureConverterActivity;
import com.example.aatg.tc.TemperatureConverterApplication;

public class TemperatureConverterActivityUnitTests {
 @Before
 public void setUp() throws Exception {
 }

 @After
 public void tearDown() throws Exception {
 }

 @Test
 public final void testApplication() {
 Application application = new TemperatureConverterApplication();
 assertNotNull(application);
 }
}

And here is what we obtain:

java.lang.RuntimeException: Stub!

 at android.content.Context.<init>(Context.java:4)

 at android.content.ContextWrapper.<init>(ContextWrapper.java:5)

 at android.app.Application.<init>(Application.java:6)

 at com.example.aatg.
tc.TemperatureConverterApplication.<init>(TemperatureConverterApplication.
java:27)

 …

The reason is that android.jar provides only the API, not the implementation. All
methods throw java.lang.RuntimeException: Stub! when used.

If we want to circumvent this limitation to test some classes outside of the
Android operating system, we should create an android.jar that mocks every
class. However, we will also find problems for subclasses of Android classes
like TemperatureConverterApplication. This would be a daunting task and a
significant amount of work, so we should look for another solution.

Chapter 10

[299]

Introducing Robolectric
Robolectric (http://pivotal.github.com/robolectric/) is a unit test
framework that intercepts the loading of Android classes and rewrites the method
bodies. Robolectric re-defines Android methods so they return default values,
like null, 0, or false, and if provided it forwards method calls to shadow objects
giving Android behavior.

A large number of shadow objects are provided, but this is far from complete
coverage, however it is improving constantly. This should also lead you to treat it
as an evolving Open Source project, for which you should be ready to contribute to
make it better, but also to depend on it with caution because you may discover that
what you need for your tests has not been implemented yet. This is not in any way to
diminish its promising future.

Installing Robolectric
Robolectric can be installed by downloading the robolectric-<version>-jar-
with-dependencies.jar from the Maven central repository (http://repo1.
maven.org/maven2/com/pivotallabs/robolectric/). By the time of this writing
the latest JAR available is robolectric-0.9.8-jar-with-dependencies.jar and
this is what we are going to use in our samples.

Conveniently you can also download the corresponding Javadoc and attach it to the
library in you project properties so you can access the documentation from Eclipse.

Creating a new Java project
To keep our tests organized we are creating a new Java project as we did in our
previous section. This time we are adding the following libraries:

•	 robolectric-<version>-jar-with-dependencies.jar.
•	 android.jar from your Android SDK.
•	 maps.jar also from your Android SDK. Note that this is an optional package

when you install the SDK.
•	 JUnit 4.

Writing some tests
We will get acquainted with Robolectric by reproducing some of the tests we
wrote before.

Alternative Testing Tactics

[300]

One good example can be re-writing the EditNumber tests. Let's create a new
EditNumberTests class, this time in the newly created project, and copy the tests
from the EditNumberTests in TemperatureConverterTest project:

package com.example.aatg.tc.test;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;

import com.example.aatg.tc.EditNumber;
import com.xtremelabs.robolectric.RobolectricTestRunner;

@RunWith(RobolectricTestRunner.class)
public class EditNumberTests {

 private static final double DELTA = 0.00001d;
 private EditNumber mEditNumber;

In the previous snippet we defined the package. In this case using com.example.aatg.
tc.test as usual. Also we declare the test runner with the @RunWith annotation. Later
we defined the mEditNumber field to hold the reference to the EditNumber:

 @Before
 public void setUp() throws Exception {

 mEditNumber = new EditNumber(null);
 mEditNumber.setFocusable(true);
 }

 @After
 public void tearDown() throws Exception {

 }

 @Test
 public final void testPreconditions() {
 assertNotNull(mEditNumber);
 }

 /**
 * Test method for {@link com.example.aatg.tc.EditNumber#
 EditNumber(android.content.Context, AttributeSet attrs,
 int defStyle)}.
 */
 @Test
 public final void testEditNumberContextAttributeSetInt() {
 final EditNumber e = new EditNumber(null, null, -1);
 assertNotNull(e);

Chapter 10

[301]

 }

This snippet comprises the usual setup() and tearDown() methods followed by the
testPreconditions() test. In the setUp() method we created an EditNumber with
a null context and then we set it as focusable:

 /**
 * Test method for {@link com.example.aatg.tc.EditNumber#clear()}.
 */
 @Test
 public final void testClear() {
 final String value = "123.45";
 mEditNumber.setText(value);
 mEditNumber.clear();
 String expectedString = "";
 String actualString = mEditNumber.getText().toString();
 assertEquals(expectedString, actualString);
 }

 /**
 * Test method for {@link com.example.aatg.tc.EditNumber#
 setNumber(double)}.
 */
 @Test
 public final void testSetNumber() {
 mEditNumber.setNumber(123.45);
 final String expected = "123.45";
 final String actual = mEditNumber.getText().toString();
 assertEquals(expected, actual);
 }

 /**
 * Test method for {@link com.example.aatg.tc.EditNumber#
 getNumber()}.
 */
 @Test
 public final void testGetNumber() {
 mEditNumber.setNumber(123.45);
 final double expected = 123.45;
 final double actual = mEditNumber.getNumber();
 assertEquals(expected, actual, DELTA);
 }
}

In this last snippet we have the basic tests which are the same as the EditNumber
tests of our previous examples.

Alternative Testing Tactics

[302]

We are highlighting the most important changes. The first one is to specify the test
runner JUnit will delegate the processing of the tests to, by using the annotation @
RunWith. In this case we need to use RobolectricTestRunner.class as the runner.
Then we create an EditText using a null Context as this is a class that cannot be
instantiated. Finally, a DELTA value is specified in testGetNumber as assertEquals
since the floating point number requires it in JUnit 4. Additionally we added the @
Test annotation to mark the method as tests.

The other test methods that existed in the original EditNumberTests cannot be
implemented or simply fail for a variety of reasons. For example, as we mentioned
before, Robolectric classes return default values, like null, 0, false, and so on,
and this is the case for Editable.Factory.getInstance() which returns null and
causes the test to fail; because there is no other way of creating an Editable object
we are at a dead end.

Similarly, the InputFilter that EditNumber sets is non functional. It is futile to
create a test that expects some behavior.

The alternative to these shortcomings would be to create Shadow classes but this
requires alteration of the Robolectric source and the creation of Robolectric.
shadowOf() methods. This procedure is described in the documentation that you
may follow if you are interested in applying this approach to your tests.

Before being able to run your tests you need to create symbolic links for
TemperatureConverter project's AndroidManifest.xml and resources which are
used by Robolectric.

$ cd ~/workspace/TemperatureConverterJVMTests

$ ln -s ../TemperatureConverter/AndroidManifest.xml

$ ln -s ../TemperatureConverter/res . # note the dot at the end

Having identified these issues we can proceed to run the tests from inside Eclipse
and they will run in the host's JVM with no need to start or communicate with an
emulator or device.

Chapter 10

[303]

Summary
This chapter has been a little more involved than previous ones, with the sole
intention of facing realistic situations and state-of-the-art Android testing.

We started analyzing the requirements and steps to build Android from source. This
measure is needed to be able to activate code coverage through EMMA, which we
did and later on we ran our tests obtaining a detailed code coverage analysis report.

We then used this report to improve our tests and we created some to cover areas
we were not aware that have not been tested. This led us to better tests and in some
cases improved the design of the project under test.

We introduced Robotium, a very useful tool to ease the creation of test cases for our
Android applications and we improved some tests with it.

Then we analyzed one of the hottest topics on Android testing as it is testing on the
development host JVM optimizing and reducing considerably the time needed to
run the tests, something that is highly desirable when we are applying Test Driven
Development to our process. Within this scope, we analyzed JUnit 4 and Robolectric
and created some tests as demonstrations and to get you started on these techniques.

We have reached the end of this journey through the available methods and tools to
Android testing. You should now be much better prepared to start applying this to
your own projects. The results will be visible as soon as you begin to use them.

Finally, I hope that you have enjoyed reading this book as much as I did writing it.

Happy testing!

Index
Symbols
@DomainStep annotation 160
@DomainSteps annotation 160
@FlakyTest annotation 36
@LargeTest annotation 36
@MediumTest annotation 36
@Param annotation 258
-prop command line 136
@SmallTest annotation 36
@Smoke annotation 36
@Supress annotation 37
@UIThreadTest annotation 37, 56, 105
@UIThredTest 18
@VeryImportantTest 44

A
activities

testing 175-181
ActivityInstrumentationTestCase2 class

about 74
constructor 75
setUp method 75, 76
tearDown method 76
testPreconditions method 76
UML class diagram 74

ActivityInstrumentationTestCase2.
getActivity() method 97

Activity Manager, test application
running 25

ActivityMonitor inner class
about 66
example 66

ActivityTestCase class
about 72, 73
scrubClass method 73

adb shell command 42
addBookmark() 190
addMonitor() 283
am instrument command 41
Android

about 7
adding, to JUnit test case 297, 298
applications, testing 170
assertions 50
building, from source 264
command-line options 47
Dalvik JIT compiler 23
demonstration application 50
EasyMock 196
EMMA features 265
history 7, 8
JUnit 28
JUnit 3, using 13
Mock Objects 58
mock objects, in android.test.mock

package 12
Package explorer 31
test case, creating 32-35
Test Driven Development 85
testing on 27
tests, debugging 45
tests, running 37

Android ADT plugin 18
Android applications

building manually, Ant used 218-223
Android assets 209
Android, building from source

Android source code, downloading 266
building steps 268-270
code coverage 264
repo, installing 267

[306]

system requisites 266
working copy, creating 267

Android CTS test suite 167
Android Development Challenge (ADC1) 8
Android emulator

supporting options, for latency 138
supporting options, for network speed 137

Android Emulator Plugin 226
android.jar 299
AndroidManifest.xml 40
Android project

creating 28
external libraries, using 80-83

Android sample project
creating 88

Android SDK
dmtracedump, using 251
performance tests 246
Traceview, using 251

Android SDK and AVD Manager 130
Android source code

downloading 266
AndroidTestCase base class

about 62, 63
assertActivityRequiresPermission()

method 63
assertReadingContentUriRequiresPermis-

sion method 64
assertWritingContentUriRequiresPermis-

sion() method 65
Android testing framework

about 23
features 23
instrumentation framework 23, 25
targets, testing 25

android.test.mock package 17
android.test.mock package, classes

MockApplication 58
MockContentProvider 58
MockContentResolver 58
MockContext 58
MockCursor 58
MockDialogInterface 59
MockPackageManager 59
MockResources 59

Android Test Project
creating 29

Android test results
obtaining 231-240

android:text property 100
Android Unit tests

about 167-169
BrowserProvider tests 185-190

Android Virtual Devices. See AVD
ApiDemos sample application 192
applications

RenamingMockContext class,
testing 170, 171

TemperatureConverterApplicationTests
class, testing 171-175

testing 170
assertActivityRequiresPermission() method

about 63
className parameter 64
description 64
example 64
packageName parameter 64
permission parameter 64

assertAssignableFrom 55
assertBaselineAligned 54
assertBottomAligned 54
assertContainsInAnyOrder 55
assertContainsInOrder 55
assertContainsRegex 55
assertEmpty 55
assertEquals 55
assertGroupContains 54
assertGroupIntegrity 54
assertGroupNotContains 54
assertHasScreenCoordinates 54
assertHorizontalCenterAligned 54
assertInsertQuery() 187, 190
assertions

about 50, 51
assertAssignableFrom 55
assertBaselineAligned 54
assertBottomAligned 54
assertContainsInAnyOrder 55
assertContainsInOrder 55
assertContainsRegex 55
assertEmpty 55
assertEquals() 53, 55
assertGroupIntegrity 54
assertGroupNotContains 54

[307]

assertHasScreenCoordinates 54
assertHorizontalCenterAligned 54
assertLeftAligned 54
assertMatchesRegex 55
assertNotContainsRegex 55
assertNotEmpty 55
assertNotMatchesRegex 55
assertOffScreenAbove 54
assertOffScreenBelow 54
assertOnScreen 54
assertRightAligned 54
assertTopAligned 54
checkEqualsAndHashCodeMethods 56
custom messages 52
static imports 52, 53

assertLeftAligned 54
assertMatchesRegex 55
assert* methods 16

assertEquals() 16
assertFalse() 16
assertNotNull() 16
assertNotSame() 16
assertNull() 16
assertSame() 16
assertTrue() 16
fail() 16

assertNotContainsRegex 55
assertNotEmpty 55
assertNotMatchesRegex 55
assertOffScreenAbove 54
assertOffScreenBelow 54
assertOnScreen 54
assertOnScreen method 55, 101
assertQueryReturns() 190
assertReadingContentUriRequiresPermis-

sion method
about 64
description 64
example 65
permission parameter 65
uri parameter 65

assertRightAligned 54
assertVerticalCenterAligned 54
assertWritingContentUriRequiresPermis-

sion() method
about 65
description 65

example 66
permission parameter 65
uri parameter 65

AVD
cleaning up 135
creating 129-132
emulator configurations 136
emulator, terminating 136
hardware properties 130
headless emulator 133
keyguard, disabling 134, 135
monkey application 142
running, from command line 132
scripting, testing with monkeyrunner 144

B
Behavior Driven Development

about 21, 149
Given/When/Then words 150
history 149, 150

benchmarking 255
benchmarks

about 255
macrobenchmarks 255
microbenchmark 256

BrowserProvider tests 185-190
bugs 8, 9
buildfile

targets 220

C
Caliper

about 256
running 258, 260

Caliper microbenchmarks
about 256
TemperatureConverterBenchmark project,

creating 257, 258
celsiusToFahrenheit 123
checkEqualsAndHashCodeMethods 56
clear() functionality 116
clear() method 107
code coverage

about 264
enabling, via EMMA 264

[308]

code coverage analysis report,
TemperatureConverter

generating 274-277
command line options

-e annotation <annotation-name> 43
-e func true 43
-e log true 44
-e <NAME> <VALUE> 41
-e perf true 43
-e size {small | medium | large} 43
-e unit true 43
-p <FILE> 41
-r 41
-w 41

ContentProviders
about 12
testing 181-184

ContentProvider test 78
Continuous Integration

about 11, 217
features 217
with Hudson 225

coverage reports 10
createApplication() 172
createMock() 200
createNiceMock() 200
createStrictMock() 200
custom annotation

creating 43

D
Dalvik JIT compiler 23
Dalvik virtual machine 25
databases

testing 181-184
debugging

Android tests 45, 46
Debug.stopMethodTracing() 253
Debug.waitForDebugger() 45
default constructor, TestCase base class 61
demonstration application, Android 50
disableKeyguard() 135
dmtracedump

about 252
using 252

E
EasyMock

about 196
benefits 196
demonstrating 196
easymock JAR file, adding to Test

project 197
amcrest, introducing 202
libraries, importing 198
testTextChanged test 198-200

EasyMock2Adapter 204
EditNumber class 105
EditNumber tests 114
Electron 8
EMMA

about 10
code coverage report, displaying 10
URL 264

EMMA features 265
emulator configurations, AVD

about 136
network conditions, simulating 137-139
Qemu options 140, 141

exceptions
testing 191, 192

external libraries, using
using, in Android project 80-83

F
fahrenheitToCelsius 123
fail method 35
files

testing 181-184
findViewById() 179, 180
finish() method 248
FitNesse

about 151
features 151
running, from command line 151
TemperatureConverterTests subwiki,

creating 152
test systems 156
URL 151

functionality, TemperatureConverterActivi-
tyTests project

adding 104

[309]

EditNumber class 105-110
EditNumber tests 114-119
InputFilter tests 125, 126
TemperatureChangeWatcher class 119-122
temperature conversion 104
TemperatureConverter tests 123-125
TemperatureConverter unit tests 110-113

functional or acceptance tests
about 20, 21
test case scenario 22

G
getActivity() 74, 97, 179
getBookmarksSuggest() 190
getContext() method 63
getDecorView() 101
getNumber() method 107
getPackageName() 174
getprop command 136
getSharedPreferences() 175
getStartedActivityIntent() 180
Git

about 224
downloads 224
local git repository, creating 224, 225
URL 224

Gitweb interface 266
given name constructor, TestCase

base class 62
GivWenZen

about 158
downloading 159
features 158, 159
test scenario, creating 159-164

Gravity class 103

H
hamcrest

about 202
matchers 203
using 202

hamcrest library
URL 202

hamcrest matchers
allOf 203
anyOf 203

anything 203
array 204
Beans 204
closeTo 204
Collections 204
containsString 204
core 203
describedAs 203
endsWith 204
equalTo 203
equalToIgnoringCase 204
equalToIgnoringWhiteSpace 204
greaterThan 204
greaterThanOrEqualTo 204
hasEntry 204
hasItem 204
hasItemInArray 204
hasItems 204
hasKey 204
hasProperty 204
hasToString 203
hasValue 204
instanceOf 203
is 203
isCompatibleType 203
lessThan 204
lessThanOrEqualTo 204
logical 203
not 203
notNullValue 203
nullValue 203
number 204
object 203
sameInstance 203
startsWith 204
Text 204

hardware properties, AVD
accelerometer 131
audio playback support 131
audio recording support 131
battery support 131
cache partition size 131
cache partition support 131
camera support 131
device RAM size 131
DPAD support 131
GPS support 131

[310]

GSM modem support 131
keyboard support 131
maximum horizontal camera pixels 131
maximum vertical camera pixels 131
SD Card support 131
touch-screen support 131
track-ball support 131

hasToString matcher 204
headless emulator 133
Hudson

about 225
Android test results, obtaining 231-240
configuring 226
downloading 226
installing 226
jobs, creating 227-230
new job screen options 228, 229

Hudson GIT plugin 226

I
InputFilter tests 125
instrumentation 66
instrumentation framework, Android

testing framework 23, 25
instrumentation tag 40
InstrumentationTestCase class

about 68
launchActivity method 69
launchActivityWithIntent method 69
runTestOnUiThread helper method 71, 72
sendKeys method 69-71
sendRepeatedKeys method 69-71

InstrumentationTestCase class, subclasses
68

ActivityInstrumentationTestCase2<T
extends Activity> 68

ActivityTestCase 68
ActivityUnitTestCase<T extends

Activity> 68
ProviderTestCase2<T extends

ContentProvider> 68
SyncBaseInstrumentation 68

InstrumentationTestCase.launchActivity()
74

integration tests 20
invokeMenuActionSync() 283

isFinishCalled() 180
IsolatedContext class 59
ItelliJ 19

J
jbehave

about 22
URL 22

JUnit
about 13, 28
Eclipse and other IDEs support 18

junit.framework.Assert class 35
JUnit TestCase 32
JVM virtual machine 25
Jython

URL 145

K
keyguard

disabling 134, 135
KeyguardManager 135

L
launchActivity method 69
launchActivityWithIntent method 69
LaunchApp() method 248
LaunchPerformanceBase instrumentation

creating 246, 247
LinearLayout 101
local and remote services

testing 192-195
local git repository

creating 224
LocalService class 193
logcat command 135
Log.i() method 245

M
macrobenchmarks 255
mActivity field 96
maps.jar 299
memory leaks

testing 212, 213
mFahrenheit.setNumber(f) method 109

[311]

microbenchmark 256
mMessage.getRootView() 55
MockApplication class 58
MockContentProvider class 58
MockContentResolver class 58, 60
MockContext class 58, 59
MockCursor class 58
MockDialogInterface class 59
Mock Objects

about 17, 58
IsolatedContext class 59
MockContentResolver class 60
MockContext class 59

mock objects, in android.test.mock package
MockApplication 17
MockContentProvider 17
MockContentResolver 17
MockContext 17
MockCursor 17
MockDialogInterface 17
MockPackageManager 17
MockResources 17

MockPackageManager class 59
MockResources class 59
monkey application

client-server monkey 143
running 142

MonkeyRecorder 147
monkeyrunner

about 144
features 145
test screenshots, acquiring 145, 146

MyFirstProjectTest project 31

N
Netbeans 19
Neuro Linguistic Programming (NLP)

techniques 149

O
onCreate(Bundle) 96
onCreate() method 180, 279
onDestroy() 180
onDestroy() event 12
onPause() event 12
Open Handset Alliance 7

P
Package explorer 31
parser Activity 210, 211
parsers

testing 209
parser test 211
performance gain

comparing 296, 297
performance tests

about 22-246
launching 246
LaunchPerformanceBase instrumentation,

creating 246, 247
running 249, 251
temperatureConverterActivityLaunch

Performance class, creating 248, 249
performClick() 180
Positron 7
ProviderTestCase2<T> class

about 76
constructor 77
example 78
UML class diagram 76

public void methods 16
Python

URL 145

Q
Qemu

about 140
URL 140

qemu-specific options 140, 142

R
reenableKeyguard() 135
RenamingDelegatingContext class 60
RenamingMockContext class 170, 171
repo

about 266
installing 267
URL 267

Robolectric
about 299
installing 299
new Java project, creating 299

[312]

tests, writing 299-302
URL 299

robolectric-<version>
-jar-with-dependencies.jar 299

Robotium
about 285, 286
downloading 286
project, configuring 286
test cases, creating 286
testFahrenheitToCelsiusConversion()

test 286-288
testOnCreateOptionsMenu() 289

runTestOnUiThread helper method 71, 72

S
scripting

testing, monkeyrunner used 144-146
scrubClass method 73
sendKeys method 69-71
sendRepeatedKeys method 69-71
ServiceTestCase<T>

about 78
constructor 79
UML class diagram 78, 79

setActivityIntent(Intent intent) 74
setAutomaticPerformanceSnapshots()

method 247
setContext() method 171
setName() method, TestCase base class 62
setNumber() method 107
setUp() method 15, 75, 96, 97, 172, 256, 301
special methods, Android test case

setUp method 36
tearDown method 36
testSomething method 36

startActivity() 179
startService(startIntent) method 195
stringCmp() 200
stringCmp() Comparator 204
system tests 23

T
targetPackage attribute 66
TDD

about 85, 86
advantages 88

code, refactoring 87
requisites 88
sample project, creating 88
TemperatureConverterActivityTests

project, creating 92
test case, writing 86
tests, running 87
UML activity diagram 86

tearDown() method 15, 73, 76, 180, 301
TemperatureConverterActivityLaunch

Performance class
creating 248, 249

TemperatureConverterActivityTests project
creating 92-96
empty fields 100
final application, viewing 126, 127
fixture, creating 96, 97
functionality, adding 104
IDs, defining 98, 99
preconditions, testing 97
requirements, translating to tests 99
screen layout 104
user Interface components, testing 98
user interface, creating 97, 98
views properties 100-103

Temperature Converter, Android sample
project

creating 88-91
requisites 89
user Interface concept design 89

TemperatureConverterApplicationTests
class 171-175

TemperatureConverter.celsiusTo
Fahrenheit() 258

TemperatureConverterCelsiusTo
FahrenheitFixture 154

TemperatureConverter code coverage
about 270-273
access restrictions, bypassing 282
code coverage analysis report,

generating 274-279
exceptions, covering 281, 282
options menu, covering 283
restoring instance state, covering 279, 280

TemperatureConverter.
fahrenheitToCelsius(f) 109

[313]

TemperatureConverterJVMTest project
creating 291-296

TemperatureConverter methods 156
TemperatureConverterTests subwiki

acceptance test fixture, adding 155
child pages, adding 153, 154
creating 152, 153
supporting test classes, adding 156-158

TemperatureConverter utility class 107
testAccessPrivateData() method 170
test annotations, Android

@FlakyTest 36
@LargeTest 36
@MediumTest 36
@SmallTest 36
@Smoke 36
@Supress 37
@UIThreadTest 37

testBindable() test 195
test case, Android

creating 32, 34, 35
special methods 36
test annotations 36

TestCase base class
about 61
default constructor 61
given name constructor 62
setName() method 62
UML class diagram 61

testClear() method 116
testConversionError() 16
testConversionToString() 16
Test Driven Development. See TDD 9
testFahrenheitToCelsiusConversion()

test 286-288
test fixture 15
testFullFirstTitleWord() 187
testFullFirstTitleWordPartialSecond() 187
testFullTitle() 187
testFullTitleJapanese() 188
testHasDefaultBookmarks() 187
testing

activity lifecycle events 12
characteristics, of devices 12
code 11
database and filesystem operations 12

testOnCreateBundle method 96

testOnCreateOptionsMenu() 289, 290
testParseXml() 212
testPartialFirstTitleWord() 187
testPartialTitleJapanese() 188
testPreconditions method 76
testPreconditions() method 16, 194
tests, Android

all tests, running 42
debugging 45, 46
dry run 44
performance tests, running 44
running 37
running, from command line 41, 42
running, from Eclipse 37
running, from emulator 39-41
running, from specific test case 42
single test case. running from Eclipse 38
specific test, running by name 42
specific tests, running by category 43

test scenario, GivWenZen
creating 159-163

testSomething() method 34, 43
testSoundmarkTitleJapanese() 188
testStartable() test 195
tests, types

functional or acceptance tests 20
integration tests 20
performance tests 22, 23
system tests 23
unit tests 13

testSubLaunch() test 180
TestSuiteBuilder.FailedToCreateTests

class 80
testTextChanged() method 205
testTextChanged test 198
testValues() 16
TextWatcher 119
TextWatcher mock 198
timeCelsiusToFahrenheit() 258
TouchUtils class

about 57
usage 57

TouchUtils helper class 18
Traceview

about 251
using 252

[314]

U
UI tests 18
UML class diagram

ActivityInstrumentationTestCase2 class 74
ActivityTestCase class 72, 73
AndroidTestCase base class 62, 63
InstrumentationTestCase class 68
ProviderTestCase2<T> class 76
ServiceTestCase<T> 79
TestCase base class 61

undocumented Ant coverage target 284
unit tests

about 13
actual tests 16
setUp() method 15
tearDown() method 15
test fixture 15
testPreconditions() method 16

V
VCS 224
verifyConversion() method 162
View.getRootView() 55
views

testing, in isolation 205-208

W
waitForActivityWithTimeout() 283

Y
Ye Olde Logge method 244, 245

	Team rebOOk

