
A Complete I�troduction to
Functional Test

Automation

abstracta

EVERYTHING YOU NEED TO KNOW BEFORE
GETTING STARTED WITH TEST AUTOMATION

by PhD Federico Toledo

“Test automation is
computer-assisted

testing.”
– Cem Kaner

INTRODUCTION

It is often said that “Automating chaos just gives faster
chaos” and not only faster, but also (paraphrasing a
Daft Punk song) harder, faster, stronger...chaos. Yet,
seemingly everyone is moving into an agile, DevOps or
continuous delivery/continuous integration environ-
ment. Automating tests is increasingly necessary to be
successful in said environments. This ebook focuses on
the automation of functional tests in general, showcas-
ing the benefits it brings in the most objective way pos-
sible. It goes without saying that if you automate with-
out sound judgment, you will not reap any benefits
from it. What you are about to read is not a user manual
for a tool. Neither is this ebook intended to convince
anyone that automation is like a magic wand that will
make all of our tests better. As our friend, Jim Hazen
says, “It’s automation, not automagic!” The goal of this
ebook is to provide you with a thorough introduction to
functional test automation so that you can determine if
it’s right for you and if so, how to go about it in the best

possible way.

Source: http://pitchfork.com/

http://pitchfork.com/

TABLE OF CONTENTS
• CHAPTER 1: GETTING ACQUAINTED WITH FUNCTIONAL

TEST AUTOMATION
A. REGRESSION TESTS
B. WHEN CAN WE SEE RESULTS?
C. WHY AUTOMATE AND TO WHAT END?

I. RETURN ON INVESTMENT
1. RUNNING THE NUMBERS
2. BUSINESS VALUE
3. IT VALUE

II. WHAT TO AUTOMATE AND WHAT NOT TO
AUTOMATE

D. COMMON CHALLENGES OF STARTING OUT AND
HOW TO OVERCOME THEM

I. RECEIVING THE GREENLIGHT FROM
MANAGEMENT

II. SELECTING AND USING THE APPROPRIATE
TOOLS

III. IDENTIFYING A STARTING STRATEGY
IV. SETTING REALISTIC EXPECTATIONS

• CHAPTER 2: KNOWING THE BASIC PRINCIPLES
A. THE AUTOMATION PYRAMID

I. BASE LAYER: UNIT TESTS
II. MID-LAYER: API/INTEGRATION/COMPONENT

TESTS
III. TOP LAYER: UI TESTS

B. UI AUTOMATION APPROACHES
I. RECORD AND PLAYBACK
II. MODEL BASED TESTING/MODEL DRIVEN

TESTING
C. TEST DESIGN ACCORDING TO GOALS

D. PRIORITIZING: DECIDING WHAT AND WHEN TO
AUTOMATE

E. RISK-BASED TESTING
F. TEST SUITES DESIGNS

• CHAPTER 3: AVOIDING COMMON PITFALLS OF
AUTOMATION

A. STARTING OFF WITH THINGS CLEAR
I. DENOMINATION

II. COMMENTS AND DESCRIPTIONS
B. LINK BETWEEN TEST CASE AND AUTOMATED

SCRIPT
C. AVOIDING FALSE NEGATIVES AND FALSE

POSITIVES
I. IN SEARCH OF FALSE NEGATIVES

II. IN SEARCH OF FALSE POSITIVES
D. SYSTEM TESTS THAT INTERACT WITH EXTERNAL

SYSTEMS
E. THINKING OF AUTOMATION WHEN PLANNING THE

PROJECT

• CHAPTER 4: RUNNING YOUR AUTOMATED TESTS
A. MANAGING TEST ENVIRONMENTS
B. HOW TO EXECUTE THE TESTS

I. WHAT SKILLS DO I NEED TO AUTOMATE?
C. WHAT DO I DO WITH A BUG?

• CHAPTER 5: FINAL COMMENTS

Chapter 1
GETTING ACQUAINTED

WITH TEST AUTOMATION

As we are focusing on functional test automation, we
first have to discuss regression tests. It is one of the
most popular types of tests to automate, although it
is not the only use of test automation.

REGRESSION TESTS

Regression tests are a subset of scheduled tests
selected to be periodically executed before every
new product release, for instance. Their objective is
to verify that the product hasn't suffered any regres-
sions. There are three types of tests that we generally
automate which I will touch upon in chapter two: unit
tests, API tests, and UI tests.

Why are they called regression tests?

At first I believed it meant to go back to execute the
same tests, given that it is related to that. After a
while, I realized the concept is actually associated
with verifying that what I am testing has no regres-
sions. I imagined that “not having regressions”
referred to there not being a regression in quality or
functionality, but I heard the rumor that the concept
comes from the following situation: if users have ver-
sion N installed, and we install N+1, and the latter has
bugs, we will be tormented by having to go back to
the previous version, to regress to version N. We
want to avoid these regressions! And that is why
these tests are carried out.

It is incorrect to think that regression tests are limited
to verifying that the reported bugs were fixed, as it is
just as important to see if what used to work is still
working properly.
Generally speaking, when the tests for certain func-
tionalities are designed, a decision has already been
made about what tests are being considered within
the set of regression tests such as the ones that will
be executed before every new product release or in
each development cycle. Running regression tests
consists of executing the previously designed tests all
over again.

There are those who argue that by having a checklist
of steps to follow and what things to observe, one is
not really testing, but simply checking. James Bach
and Michael Bolton, two experts in the field of testing,
often discuss the differences between testing and
checking. Testing is where one uses creativity, focus,
searches for new paths to take, and asks oneself,
“How else can this break?” By checking, one simply
follows an aforementioned list, thought of by some-
one else.

04

A PROBLEM ARISES
WITH THIS VIEW OF
REGRESSION TESTS:

IT MAKES THEM
SOUND BORING.

01
CH

Boredom fosters distraction. Distraction leads to mis-
takes. Regression tests are tied to human error. It's
tedious to have to check the same thing again! That
makes one pay less attention, and in addition, it can
lead to a situation where one wishes something to
work and subconsciously sees what they want to see
in order to bring about the desired result.

Test automation consists of a machine being able to
execute the test cases automatically, somehow read-
ing its specifications which could be scripts in a gen-
eral purpose programming language or a tool specific
language, from spreadsheets, models, etc. For
instance, Selenium (one of the most popular open
source tools for test automation of web applications)
has a language called Selense, offering a format for
each command (action) that it can execute; so a
script would be a series of commands that abide by
that syntax. The tool also allows one to directly
export to a JUnit test in Java and other test execution
environments.

AUTOMATE
AUTOMATE
AUTOMATE
AUTOMATE

05

NOTE: We are not saying that test-
ing is dull! We love it! We are stating
that routines can be monotonous,
therefore, prone to error. Moreover,
IT people at least, have a habit of
seeing things that can be automated
and wonder how we could program
them so as not to have to manually

do the task.

That's when automated testing
can be introduced, given that

robots don't get bored!

http://www.seleniumhq.org/

TESTER

D
EV

ELOPER

I
want to make

changes to the applica-
tion, but I am afraid I might
break other things. Testing

them all over again would be
too much work. Executing auto-
mated tests gives me peace of
mind by knowing that despite
the changes I've made, things

that have been automated
will continue working

correctly.

When I am given a
new version of the

application, there is nothing
worse than finding that what

used to work no longer does. If the
error is due to something new, then

it's understandable, however, when it
has to do with something that
supposedly worked and now

doesn't, then it’s not so easy to
forgive. Regression tests could

help eliminate these errors
before the update is in

production.

When I have a
big system in

which changes in one
module could affect

many functionalities, I
hold back from inno-

vating in fear of
breaking
things.

While I automate
I can see if the applica-

tion is working as required
and afterwards I know that

whatever has been automated
has already been tested, giving

me the opportunity to dedi-
cate my time to other tests,

therefore guaranteeing
better quality of my

product.

USER

06

Here’s what some stakeholders within the
development process might say they want to
accomplish by automating regression tests:

WHEN CAN WE SEE THE RESULTS?

We are prone to believe that if the tests find a mis-
take, that's the moment when we are reaping the
benefits and then we can measure the amount of
bugs detected by the automated tests. In reality, the
benefits immediately appear from the moment we
start modeling and specifying the tests to be carried
out in a formal way. Afterwards, the information
resulting from the execution of the tests also pro-
vides great value.

Detecting an error is not the only useful result, but
also the “OK” results telling me the tests that I have
already automated are verifying what they should are
useful as well. An article in Methods and Tools states
that a large amount of bugs are found upon automat-
ing test cases. When automating, one must explore
the functionalities, test different data, and so on. Gen-
erally, it takes a while when you are fiddling around
with the functionality to be automated. Afterwards,
we execute it with different data to prove that the
automation went well. At that time, a rigorous testing
process is already taking place.

THE VALUE OF
AUTOMATING

IS NOT IN THE AMOUNT OF
TESTS OR THE FREQUENCY IN
WHICH THEY ARE EXECUTED,

BUT IN THE INFORMATION
THEY PROVIDE.

07

Note! If we automate tests in one
module, and we consider that it's
good enough with those tests, do we
stop testing? The risk is that the
automated tests aren't covering all
the functionalities (for example, like
in the the pesticide paradox). It de-
pends on the quality of the tests. We
might have a thousand tests and
therefore believe that we have a
solid amount of testing, but those
tests might not be verifying enough,
may be superficial, or too similar to

each other.

http://www.methodsandtools.com/archive/archive.php?id=33
http://sqa.stackexchange.com/questions/6440/what-is-meant-by-the-term-pesticide-paradox-in-testing-point-of-view

WHY AUTOMATE AND TO WHAT
END?

If we take the traditional definition of automation from
industrial automation, we can say it refers to a technolo-
gy that can automate manual processes, bringing about
several other advantages:

• It improves quality, as there are fewer human
errors.

• It improves production performance, given that
more work can be achieved with the same amount
of people, at a higher speed and larger scale,
therefore improving people's performance.

This definition also applies perfectly to software test
automation (or checking).

Now, I would like to bring the “zero accumulation”
theory forward. Basically, the features keep growing as
time goes by (from one version to the next) but the
tests do not grow (I haven't heard of any company that
hires more testers as it develops more functionalities).

The fact that the features grow with time means that
the effort put into testing should grow in a proportion-
ate manner. Herein lies the problem of not having
enough time to automate, given that there is not even
time for manual testing.

THIS SIGNIFIES A PROBLEM, AS IT
MEANS THAT, MORE AND MORE, WE
HAVE TO CHOOSE WHAT TO TEST

AND WHAT NOT TO TEST, LEAVING
MANY THINGS UNTESTED.

08

WE DON´T
AUTOMATE

WE DON´T HAVE TIME
TO AUTOMATE

BECAUSE

BECAUSE

A
cc

um
ul

at
ed

 E
�

or
t

Increase

v1 v2 v3 v4 v5 v6

Testing

Product
Versions

Development

Note! The test cases have to be easily
maintainable, if not, the accumulation

cannot be carried out efficiently.

Ernesto Kiszkurno, an Argentinian colleague from a
consulting firm specializing in quality and process engi-
neering, says that the hardest thing (aka most expen-
sive) in testing is design and execution. We would con-
sider that the design is accumulative, given that we
design and record it in spreadsheets or documents. The
difficulty is that test executions are not accumulative.
Every time a new version of the system is released it's
necessary (well it's desirable, yet should be necessary)
to test all the accumulated functionalities, not just the
ones from the last addition. This is because it’s possible
that some of the functionalities implemented in previ-
ous versions change their desired behavior due to the
new changes.

It's the only way to make testing constant (without
requiring more effort as time goes by and as the soft-
ware to be tested grows). The challenge is to perform
testing efficiently, in a way that pays off, where we can
see results, in a way that it adds value, and so that it
accompanies the accumulation of the development.

THE GOOD NEWS IS THAT
AUTOMATION IS ACCUMULATIVE.

09

SHOW
ME THE

ROI!!

What’s the Return on Investment?

Before we dive into the “how,” “who,” “what,” and
“where” of automation, let’s look at it’s business and
IT value to understand the “why.”

To find out if we should invest, we must analyze
whether this investment is just the cost of quality or if
it will lead to minimizing other costs associated with
the lack of quality down the road. We will need to
look at it in numbers to understand it and believe it.

For these tests, although they are "automatic" and
"executed by a machine," we will need skilled people.
As Cem Kaner once explained, a tool does not teach
your testers how to test and if the testing is confus-
ing, the tools will reinforce the confusion. He recom-
mends correcting the testing processes before auto-
mating.

In addition, the idea is not to reduce the amount of
staff dedicated to testing, seeing as manual testing is
still needed and automated tests require some effort
for their construction and maintenance. So, if we
don’t save money on staff, then where are the finan-
cial benefits?

Source: Jerry Maguire (1996)

LET’S PUT THE BENEFITS
TO THE TEST.

THE COST OF A SINGLE
DEFECT IN MOST
ORGANIZATIONS CAN
OFFSET THE PRICE OF ONE
OR MORE TOOL LICENSES
(“SURVIVING THE TOP 10
CHALLENGES OF SOFTWARE
TEST AUTOMATION” -
RANDALL W. RICE).

10

11

Here we will look at the case example from Paul
Grossman’s white paper, “Automated Testing

ROI: Fact or Fiction?”

Consider the case of practicing manual testing only. If
a tester on average costs $50 an hour and if a senior
tester who creates automated tests costs $75 an
hour, that would cost about $400 and $600 respec-
tively per day per tester.

Now, consider a team of 10 testers, five senior-level
and five entry-level, with a monthly loaded cost of
$105,000 (for 168 hours per month). We’d get a total
of 1,350 hours costing $78.00/ hour (this is assuming
each tester realistically works 135 hours per month
due to breaks, training days, vacations, etc.). If we
automate testing, the cost of labor would remain the
same, but for the effort of 3 test automation engi-
neers, we’d achieve 16 hours a day of testing and will

run 5x more tests per hour.

This results in the equivalent of 5,040 hours per
month of manual testing created by the three test
automation engineers. Then, consider the rest of the
team doing manual testing (7 people x 135
hours/month). That amounts to 945 hours more,
ending with a combined total of 5,985 hours of test-
ing at $17.54/hour ($105,000 divided by 5,985
hours).

Or you could look at it this way; we have increased
testing from 1,350 hours to 5,985 equivalent hours
and gained $315,000 worth of testing per month for
the same cost (5,040 times the average hourly cost
of a tester).

Manual Automated
Hours
(10x135) = 1,350 hours

Hours
(3x21) +
(7x135) = Total of 5985 hours

Cost
$78/hour

Cost
$17.5/hour

IN THIS SCENARIO, WE’VE
DRAMATICALLY REDUCED
THE COST OF EACH TEST

HOUR FROM $78 TO $17.54,
WHICH IS A BENEFIT THAT

THE CFO WILL CLEARLY
UNDERSTAND.

12

Data Source: (Planning Report 02-3, “The Economic Impacts of Inade-
quate Infrastructure for Software Testing,” Prepared by RTI for National
Institute of Standards and Technology, May 2002, p 7-12.).

Coding/Unit
Testing

Beta
Testing

Post-
Release

Integration

Hours
to fix

Cost to
fix ($)

3.2

240

9.7

728

12.2

915

14.8

1,110

which means we can find more bugs! But, finding
bugs certainly means we will have more work to do
and need boatloads of more money to fix them, right?
Not necessarily.

It costs much less to fix bugs that are detected earlier
in the development cycle. In the chart below, you can
see the cost of correcting a defect detected by the
stage in which it has been found (development, inte-
gration, beta testing, or production). We will assume
that it costs $75/hour to fix bugs. These bug costs
don’t include hidden ones as well such as loss of repu-
tation, trust, and even equipment wear.

As you can see, the sooner we find bugs, the cheaper
and easier it is to fix them. If we practice test automa-
tion, it’s more probable that we will find more bugs
before the beta testing and production phases. It’s
difficult to estimate how much, but in general for
every bug that we find in the early stages, we will
save $200 (not bad)! Coding defects found post-re-
lease cost five times more to fix than those found
during unit testing.

NOT ONLY DO WE
TEST QUICKER, BUT

THE TEST COVERAGE
IS EXPANDED,

13

IT VALUE

• TEST IN PARALLEL, IN AN
UNATTENDED MANNER, ON
DIFFERENT PLATFORMS

• SIMPLIFY ROUTINE TASKS
• RUN MORE TESTS WITHOUT

INCREASING COSTS IN THE SAME
AMOUNT OF TIME

• INCREASE SCOPE OF COVERAGE
• FIND THE HARD-TO-DETECT

DEFECTS EARLIER, WHEN THEY ARE
EASIER TO FIX

• IMPROVE OVERALL SOFTWARE
QUALITY

BUSINESS VALUE

• IMPROVE SOFTWARE QUALITY
• AVOID OPERATIONAL PROBLEMS
• MAINTAIN A GOOD CUSTOMER

IMAGE
• AVOID LEGAL PROBLEMS AND

MINIMIZE RISK
• DECREASE THE COST OF FIXING

BUGS BY 5X

It’s safe to say that there is a high ROI of test
automation and that it is a GOOD investment
because it provides value in two ways:

14

What to Automate or What Not to Automate?

As I have already stated, after designing the tests, we
have to execute them every time there is a change in
the system like before every new release of a different
version. Even though its benefits are well known to all, it
can also be argued that it requires a certain effort to
automate and maintain regression tests. Almost all
automation tools provide the possibility of “recording”
the tests and later being able to execute them, which is
known as record and playback. This usually works for
simple tests and to learn how to use the tool. However,
when we need to carry out more complex tests, it is
generally necessary to know the way the tool works
more in-depth, how to handle sets of test data, manage
test environments, the test databases, and so on. Once
these are taken care of, we can execute the test as
many times as we want to with very little effort.

The best tests to automate are the ones which are quite
repetitive, given that it’s necessary to execute them
many times (either because it is a product which will
have a lot of versions or due to making frequent fixes
and patches or because it has to be tested on different
platforms).

If tests for a development cycle are automated, the
automated tests for the next cycle can once again
check what has already been automated with little
effort, allowing the testing team to increase the volume
of the set of tests, therefore increasing coverage. Other-
wise, we would end up having test cycles that are larger
than the development cycles (and they’d keep getting
larger every time) or we would choose to leave things
untested, accepting the risk that that involves.

One of the most significant factors is the amount of
times we are going to have to repeat the execution
of a test case.

However, the cost of a single repetition is larger in the
automated case. The graph below represents this
hypothetically. Where the lines cross is the inflection
point when one makes more sense cost-wise than the
other. If the test case is executed less than that amount
of times it's better not to automate. Conversely, if we
are going to test more than that amount, then it’s better
to automate.

The amount of times is determined by many things:
• The number of versions of the application that we

want to test
• The different platforms we will be executing on
• The data (Does the same test case have to be run sev-

eral times with different data?)

Cost

0

1
RepetitionsOptimal

Automation
Level

Manual

Automated

_
Common Challenges of
Starting Out and
How to Overcome them

16

Unfortunately, a lot of automation projects fail because
it is so much easier said than done. When a manager
tells her team to start automating, it’s a very tall order
that should not be brushed off as just another task.
These are just some of the typical problems that can
stop your automation efforts dead in their tracks and
how you can overcome them.

Challenge 1: Receiving the Green Light
from Management

As with any company department, associates are
always asking for things that may or may not be
allowed for in the budget. Testers may already know
that automation offers both business and IT benefits,
but how can testers convince the finance department
and the QA director to allocate the necessary time and
funds for implementing test automation?

To prove to management that the financial benefits are
substantial, one can show them the simple breakdown I
did of the ROI of test automation. He or she should be
impressed by how a team of 5 senior and 5 entry level
testers could hypothetically reduce the cost of testing
from $78/hour to just $17.58/hour and increase testing
from 1,350 hours per month to 5,985 equivalent hours,
gaining $315,000 worth of testing via automation. Not
to mention all of the qualitative benefits of automation
that we have gone over.

It is important to also be very transparent with any and
all stakeholders. Don’t lie to them and say that automa-
tion doesn’t require much effort up front, because it
truly does, but in the end, it may be worth it!

Challenge 2: Selecting and Using the
Appropriate Tools

Many teams do not get past this phase due to several
reasons. They may lack the expertise to use a certain
tool, the tool they want doesn’t exist, the tool does not
offer 100% test case coverage, the cost of a tool
exceeds the test budget, etc.

If you don’t have a sufficient base knowledge for how
to use a tool, you have a few options:

• Take an online course.
• Have someone that helped create the tool come and

give training sessions.
• Hire a consultant to help you master it.
• When all else fails, outsource your automation efforts!

It may be quicker to simply hire someone who
already has the expertise to use it and employ him or
her for your automation project.

“54% OF IT LEADERS INDICATE THAT THEIR
ORGANIZATIONS LACK SUITABLE TOOLS
FOR AUTOMATION WHILE PROVISIONING
TEST ENVIRONMENTS TO THEIR TEAMS.” -
WORLD QUALITY REPORT 2014-2015.

Check out our online certifica-
tion course that we, Abstracta,
created with the folks at Blaze-
Meter for performance testing

with JMeter and BlazeMeter

http://www.abstracta.us/performance-testing-certification/?utm_source=ebook&utm_medium=ebooky&utm_campaign=automationebook
http://www.abstracta.us/performance-testing-certification/?utm_source=ebook&utm_medium=ebooky&utm_campaign=automationebook
http://www.abstracta.us/performance-testing-certification/?utm_source=ebook&utm_medium=ebooky&utm_campaign=automationebook

17

UNFORTUNATELY, THE TOOLS
THEMSELVES DO NOT TELL
YOU WHAT TO AUTOMATE,
JUST AS NEW PARENTS FIND
TO THEIR DISMAY THAT
CHILDREN DO NOT COME WITH
A HANDBOOK.

If you think a tool doesn’t exist, it might be
good to confirm it with the testing
community. Go onto forums like
uTest, Stack Exchange, or Testers.io
where fellow testers are often
found discussing developments in
testing.

If you can’t find the specific tool you
need, you might want to see if it’s

feasible or worthwhile to create it
yourself. In our case, we have created

several tools that we have made available to the
open source community on our Abstracta Github
account. We also created an automation tool for
GeneXus called GXTest which enabled the software
development platform to reduce the time invested in
designing and maintaining regression tests by over
50%, making it possible to execute millions of test
cases per month. Learn more about it here.

In case that the tool you have doesn’t do everything
you need, consider finding a multi-tool solution.
Remember, it’s impossible to test absolutely every-
thing, but you can use the tools that test the most
important things.

Lastly, if a tool is out of budget, do a quick cost vs.
benefit analysis and present your case. You can

measure the damage done by a previous bug you
have encountered and show how much time and
money you could have saved if you had had the tool
in place.

Challenge 3: Identifying a Starting
Strategy

Ok, so you might have all the tools and the support to
begin automating, but what do you actually automate
and how?

Will you raise a generation of outstanding automated
tests or will they turn out to be spoiled wrecks? Of
course you’d hope for the former! In reality, you can’t
automate everything so you have to be strategic. You
can use two approaches to help with this which we
will go over in the next chapter of this ebook:

• Risk-based testing
• The automation pyramid

Learn more about the do’s and don’ts of
software testing outsourcing HERE.

http://abstracta.us/2016/01/13/white-paper-10-mistakes-companies-make-when-outsourcing-software-testing/
https://www.utest.com/
http://www.testers.io/
http://sqa.stackexchange.com/
https://github.com/abstracta
http://www.abstracta.us/wp-content/uploads/2016/04/Artech_TestAutomation_Success_Story.compressed.pdf

Challenge 4: Setting Realistic
Expectations of Automation

No matter how great your tools and processes are,
it’s important to remember that testing is never com-
plete. Test automation is not a panacea for bug laden
systems and shouldn’t be used in place of, but in con-
junction with non-automated tests. Remember that
the value of a test comes from the information that it
provides, not the quantity of tests executed, nor the
frequency. What we care most about is if we are get-
ting the right information so that we can make the
best possible decisions when improving the quality of
our systems.

Make sure your team and management agree on and
understand the desired outcome(s) from your auto-
mation plan so that everyone is on the same page!

18

Chapter 2
BASIC PRINCIPLES OF

TEST AUTOMATION

He who thinks a tool can
fix all problems, has a

new problem.

Generally speaking (and even more so in the IT
world), we tend to search for a tool which will fix all
of our problems. The fact of the matter is that having
a good tool is not enough for doing a good job.

In this chapter we will begin to look at some of the
considerations to take into account so that your tests
really do provide the benefits you want and to avoid
common causes of failure. You will find that this sec-
tion has an almost chronological order, in the sense
that I begin with the basic concepts and afterwards
take a look at the different activities and ways of
designing tests in the same order in which you can do
them in your test automation projects.

 The Automation Pyramid

Many agilists adopt automation as it helps to speed
up the process of testing and the entire development
process. If you want to understand more about agile
environments, you can find a good explanation here.
In non-agile software development, many people end
up inadvertently falling into the “ice cream cone
anti-pattern” for testing by putting more emphasis on
automating at the UI level.

I’m more fond of the practice that flips that ice cream
cone upside down. Made popular by Mike Cohn, the
agile test automation pyramid gives you the most
bang for your automation buck, improving the ROI of
automation and guaranteeing that you will receive
the most benefits from automation.

20

IF YOU DO NOT KNOW
WHICH TESTS ARE THE
MOST IMPORTANT AND
WHICH TESTS ARE THE
MOST APPLICABLE FOR
AUTOMATION, THE TOOL
WILL ONLY HELP PERFORM
A BAD TEST FASTER.
(FEWSTER & GRAHAM). 02

CH

http://agilemethodology.org/

21

Unit Tests
Unit
Tests

Automated
GUI Tests

Acceptance/
Integration/

Component Tests

Acceptance/
Integration/
Component

Tests

Ideal Test
Automation Pyramid

Automation “Ice
Cream Cone” Anti-Pattern

Automated
GUI Tests

Manual &
Exploratory

Testing

Manual &
Exploratory Testing

More Time
& E�ort

Higher
ROI

WHEN MOST OF OUR EFFORTS ARE FOCUSED ON AUTOMATION AT THE UI LEVEL, THE
FOCUS IS ON FINDING BUGS, WHEREAS WITH THE AGILE PYRAMID, THE IDEA IS TO

PREVENT THEM.

In the figure below, you can see how the two
approaches differ.

Base Layer: Unit Tests

Most of the testing should take place in the develop-
ment stage, running unit tests after every build. These
tests are the easiest, cheapest, and fastest to complete
and are an important aspect of test driven develop-
ment. Running more tests at a lower level allows us to
“check our work” as we go, getting feedback immedi-
ately and allowing us to know exactly where the bugs
are when it is much harder for them to hide. Here, the
bugs will also have a shorter life span, having been
born and removed in less than a minute, perhaps.
During the UI tests, bugs will have lived for much
longer and will put up a greater fight because they
have lived there very comfortably for a longer period
of time (perhaps even a couple of days).

Mid-layer: API / Integration / Component
Tests

After we run all of the unit tests and they pass, we can
move onto the API/ integration/ component testing
phase. Integration tests are run to make sure that all
the components work together properly. This is where
we can test most of the logic and business processes
without going through the UI. It is best to automate
here as much as possible. If you have to decide wheth-
er to automate at this level or at the UI level, here you’ll
have less problems, easier maintenance, faster test
execution (meaning finding bugs sooner and decreas-
ing their lifespans) and you get to test the logic of your
system. These tests are slower and more complex than
unit tests, but they are still faster and less brittle than
UI tests.

Top Layer: UI Tests

Last and run least are UI tests. It’s best to run as few as
possible as they are costly, more difficult to prepare
and maintain, and take a long time. Here you just want
to make sure that the user interface itself works prop-
erly, knowing that all the other aspects of the system
should have already been tested. Automate only the
most critical tests end to end. For example, starting
from the user login and ending with the approval of an
invoice. It’s also helpful to focus on things related to
the browsers or the UI. Be careful with these tests as
they are more likely to provide false negatives and
false positives. After running the UI tests, manual and
exploratory testing can be conducted (as shown in the
sphere shape above the pyramid).

22

TL;DR
The pyramid is a stronger, more bene-
ficial and cost-effective way to imple-
ment test automation because it pro-
vides a strong testing base in the unit
testing phase from upon which to
build further testing in the integration
and UI phases whereas the ice cream
cone approach is more “top heavy”

and less stable.

UI AUTOMATION APPROACHES

There are several automation approaches, and for
every context some will be more useful than others. It
is good to bear them in mind when selecting the test
strategy and even more for selecting the adequate
tools.

Scripting

This is one of the most common approaches to test
automation. Usually tools possess a language where
one can specify the test cases as a sequence of com-
mands that manage to execute actions on the system
being tested.

These languages can be tool-specific, as in the case
of Selense from the Selenium tool, or they could be a
library or API for a general purpose language like
JUnit for Java.

The type of commands provided by the tool will vary
according to the level of the test case. There are tools
that work on a graphic interface level so we’d have
commands that allow actions like clicks or data input
in fields to be executed. Others work on a communi-
cations protocol level, so we’d have actions related to
those, for example, at an http level like the HttpUnit
tool, which gives us the possibility of executing GET
and POST at protocol level.

Imagine the following example: a JUnit test invokes a
functionality of the system directly onto an object
being tested. We use a certain input value for its
parameters and the output parameters are checked.
In this case, the execution is on an object, whereas for
Selenuim, the parameters will be loaded onto existing
inputs in the websites, and then the execution of the
functionality will be performed by pressing submit on
the corresponding button. Now let's visualize a Sele-
nium automated test case. First the values are added
in two inputs with the “type” command and then we
click the button to send the form.

In order to prepare automated tests following this
approach, it's necessary to program the scripts. For
this we need to know the language or API of the tool
and the different elements of the system we are inter-
acting with. For example, it could be the buttons in a
website, the methods of the logic we want to exe-
cute, or the parameters we need to send in a GET
request of a web system.

23

LET'S NOW TURN TO THREE
APPROACHES THAT BASED ON
MY EXPERIENCE, ARE THE
MOST COMMON AND MOST
BENEFICIAL (TYPICALLY WHEN
THINKING OF AUTOMATING AT
THE USER INTERFACE LEVEL).

http://httpunit.sourceforge.net/

Record and Playback

Given that programming the scripts is usually an
expensive task, the paradigm of “record and
playback” will allow us to create (at least the

basics) of the scripts in a simple way.

The point is for the tool to be able to capture the
user’s actions (record) on the system we are testing,
and can later put that in a script that can be repro-
duced (playback). Let's try to imagine this process by
breaking it down into three parts:

• The user manually executes on the system being
tested

• At the same time the tool captures the actions
• It creates a script that can later be executed

onto the same system

Without this sort of functionality, it would be neces-
sary to manually write the test cases and in order to
do so, as previously mentioned, insider knowledge of
the application and the language for scripting of the
tool would be essential. Maybe it would be possible if
done by a developer, but for a tester it can prove
more difficult. That’s why it’s desirable to posses this
functionality.

The scripts created by the recording of the user’s
actions usually have to be modified, therefore we
must know the language and the elements of the
system being tested but, fortunately, it’s much easier
to edit a generated script than to program one from
scratch. Among the changes that might be necessary
or useful, we could mention test parametrizing, so

that the script includes different test data (following
the data-driven testing approach) or by adding cer-
tain logic to the scripts. For instance, we can use
structures like if-then-else in case different work
flows or loop structures need to be pursued.

Scripts can then be recorded from our execution of a
test case on the application. For automation, it is nec-
essary to first design the tests and then record with
the tool. Bearing this in mind, we could argue that the
most difficult and expensive task is that of designing
tests.

24

TESTER / USER

1. Manual execution
of the test case

2. Automation,
the tool captures
the user actions

3. Automated
execution of
the test case

Test Script

http://www.

http://www

25

Model Based Testing / Model Driven
Testing

The next level of automation implies automating not
just the test execution but also its design. I suggest
following a model based approach, which can come
from two different sources:

• Model based testing
• Model driven testing

On the one hand this approach can rely on the tester
somehow developing a specific model for test cre-
ation, for example, a state machine or any other type
of model with information on how the system being
tested should behave. On the other hand, certain
developmental devices, or from the actual applica-
tion, could be taken advantage of in order to create
tests from that information. These could be the UML
diagrams from the design stage, use cases, user sto-
ries, the database diagram, or the KB if we are talking
about a system developed using GeneXus.

The results obtained will depend on each tool, but
generally speaking, it will be specifically designed
test cases in a certain language, tests data or scripts
of automated tests in order to directly execute the
generated test cases.

This way, the tests are based in an abstraction from
reality via a model. This allows one to work in a higher
degree of abstraction, without having to deal with the
technical difficulties, focusing only in the model of the
problem, and making the tests easier to understand
and maintain.

I will continue talking mainly about automation with
scripting, relying on tools like Record and Playback
that allow us to parametrize their actions in order to
follow a Data-driven Testing approach. In addition, I’ll
make suggestions related to test design, and differ-
ent aspects of the automation environment, consid-
ering the design will be done manually, not necessari-
ly with model based technique tools.

25

http://www.genexus.com

THE MOST IMPORTANT TEST
AUTOMATION PATTERN: PAGE
OBJECT

As I mentioned before, it’s VERY important to work
with maintainable code for the test automation, oth-
erwise your test cases will not be considered useful,
will not have the expected ROI or will die because
they will be more expensive to maintain than execut-
ing the test suite manually. What can we do in order
to have maintainable test code? Well, basically we
can do the same thing that we do to have maintain-
able code for our applications, such as paying atten-
tion to different internal quality metrics to using
proper design patterns.

Design patterns are a well-known solution for this
problem. They are adaptable to different contexts so
that we don’t need to reinvent the wheel every time
we face similar problems.

As you can imagine, creating and updating test code
in an efficient way is a very common problem. The
solution mainly focuses on the abstraction layers,
trying to encapsulate the application in different
objects that absorb the impact of the changes that
our system under test could suffer during its develop-
ment. It’s pretty typical that the User Interface gets
modified from its structure to its elements or its attri-
butes. So, our test framework should consider that
these elements could potentially change and we must
be prepared for that.

What can we do for that? Well, the page object pat-
tern proposes having an adaptation layer conformed
by specific objects to manage the interaction
between the test cases and the application under
test. For that, we mainly need to store the different
element locators in a very organized way. For exam-
ple, we could have a class for each web page (if our
system has a Web interface, which is the most
common situation when we apply this pattern) and
we could have different attributes for each element
that which the test interacts.

Which problem are we solving by having maintain-
able code? If we have 100 test cases which interact
with a certain button and the development changed
the element locator for this button, then we would
need to maintain 100 test cases or at least 100 lines of
code! The solution for that is very simple: encapsula-
tion. We have to have the element locator defined in
one single place and reference the element from
the 100 test cases. Then, if the change happens
you only need to maintain one line of code and
all your test cases will work properly.

26

If you want to see some good

examples, check out this.

http://www.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern

BAD DECISION
You have to maintain 100
lines of code if the locator
for the button1 changes

GOOD DECISION
You have to maintain only one
line of code if the locator for the
button1 changes

TestCase1()
 ...
 click (“html_id_button1”)

TestCase2()
 ...
 click (“html_id_button1”)

TestCase100()
 ...
 click (“html_id_button1”)

·
·
·
·
·

·
·
·
·
·

TestCase1()
 ...
 click (OK_button)

TestCase2()
 ...
 click (OK_button)

TestCase100()
 ...
 click (OK_button)

Login_PageObject()
 String OK_button=“html_id_button1”

27

28

Therefore, when you find yourself starting
an automation project and designing your
test framework, take into consideration at
least the two following things as the basis:

• Page object pattern
• Data-driven testing

Going one step further, there is more encapsulation and
abstraction that could be added to our test architecture.
We could define different test methods in the page
objects, including common actions. The most basic
example is when you have the login page, you could
have a login method which executes the following steps:

• Access the URL
• Type the username
• Type the password
• Press the button
• Verify if the login was successful

Again, if you do not do that, then you will have many
lines of duplicated code, undermining maintainability.

Test Design According to Goals

As with everything in life, we must have an objective
in mind for test automation. We must think about
what we want the automated tests to be used for and
act accordingly. So, we will have to make certain
decisions about going one way or another, selecting
certain test cases instead of others and designing
them with a certain approach or strategy.

Even though we might think that our test automation
objectives are trivial, they can actually vary widely
from one company to another.

28

These are just a few noteworthy goals of
functional test automation that an

organization can have:

Run test cases
unsupervised

Find regression errors
at a lower cost and at
an earlier stage

Run test cases
more often

Improve the software's
quality (more testing = more
chances for improvement)
and therefore increasing
user confidence

M e a s u r e
performance

Test different operating systems,
browsers, settings, DBMS
(Database Management Systems),
and so on without doubling the
execution cost

Reduce the release
time to market/run
tests faster

Improve tester morale

Follow a continuous
integration approach,
and therefore detect
bugs earlier. This
involves having a set
of test cases that run
every night.

Have a set of test cases
to run before every new
product version

Have basic tests such as
smoke tests or sanity checks
to know if the version
released for testing is valid
or catches fire very easily

Make sure that the incidents
reported don't come back to
the client

Fix reported errors and have
an automated test to verify
that those errors no longer
exist

29

3030

NONE OF THESE OBJECTIVES ARE
EXCLUSIVE, THEY EVEN

COMPLEMENT EACH OTHER.

Even though some of these might look similar, it is import-
ant to ask ourselves which of these objectives we want to
accomplish and how to measure whether or not we are
hitting our targets before beginning with any automation
project.

It is also said that automation allows us to find mistakes
more easily than if done manually. For example, memory
errors that happen after having run a functionality many
times, not to mention if we are dealing with concurrency or
performance tests.

Some things only a manual tester can observe, and others
are more likely to be found by an automated test. For
instance, if our aim is to verify that every server request
gives us an error free response code (in the case of http
would be no 404 or 500 error) or if we want to see that all
URL are configured with https, that can be programmed
and automated so that it is verified in all tests, whereas a
manual tester probably wouldn't pay attention to it every
time.

It is just as important to keep the objectives in mind as it
is defining the objectives. A possible danger could be,
for example, when the person in charge of automating
is a programmer and when using the tool, they find
it to be technically challenging and entertaining. So
much so, that they end up automating a lot of func-
tionalities without having analyzed beforehand how
relevant they actually are in order to reach their
goals.

Risk-Based Testing

With an objective in mind, it will be easier to determine
which test cases to automate. For this, we use
“risk-based testing.” This test strategy gives higher
priority to testing the elements that are most at risk of
failing, whereas, if said failures were to occur, they would
carry the greatest negative consequences.

With this in mind, it is paramount to run a risk analysis to
decide which test cases to automate, taking into
account different factors:

• How important or how critical it is for running the
business.

• The potential financial impact of the errors.
• The probability of failure (it would be a good idea

to ask developers, who would know, for example,
which module had to be finished in less time than
expected, because they themselves would doubt
its stability or quality).

• Service Level Agreements (SLA).
• If there is money or lives are at stake (it may

seem dramatic, but we know that many systems
deal with highly sensitive information).

When thinking about the probability of errors popping
up, we must also think of the ways the system is used.

Not just what the most popular functionalities are, but
also which flows, data, and options are most popular
among users. In addition, we should combine how criti-
cal the operation is because as an example, paying
wages might only be executed once a month, but a mis-

take in that functionality would come at a high
cost if say, it paid wages ten times a month!

When thinking about how critical a test case is,
one must consider how critical the product as a
whole is and not just think about the next release,
given that the criteria will more than likely be differ-
ent.

For categorizing tests by priority, a very widely used
method is MoSCoW, which is an acronym for Must,
Should, Could and Won’t (and yes, there are test cases
to which you will say, “No, I won’t automate that”).

Once the priority of the tests has been established, it
would be advisable to check them every once in awhile,
given that the business or client requirements might
change.

HOW MUCH SHOULD
BE AUTOMATED?

Every case will be different, but some recommend start-
ing off with an aim of 10% or 15% of regression tests, until
reaching approximately 60%. For me, it would be
important not to automate 100% of the tests as that
would go against any tester’s work ethic.

Defining the steps, which data, what response to expect,
etc. is just as important as the test case selection.

31

http://www.allaboutagile.com/prioritization-using-moscow/

How to Automate

Let's say we already have our test cases designed. We
will start by checking the functionality inventory (or
backlog or wherever you store this information) and
assign priorities to each. Afterwards, we will assign
priorities to each test case prepared for each of the
different functionalities. This organizing and prioritizing
will help divide the work (in case it's a group of testers)
and to put it in order, given that grouping the test
devices by some criteria, for example by functionality,
is highly recommended.

Test case designs for automated testing are better off
being defined on two levels of abstraction.

Let's review these concepts and apply them to this par-
ticular context. Abstract test cases are test scripts that
when indicating what data will be used, do not refer to
concrete values, but to equivalency classes, or a valid
set of values, such as “number between 0 and 18” or
“string of length 5” or “valid client ID”.

On the other hand, there are concrete test cases, where
abstract test cases have specific values, like for
instance, the number “17”, or the “abcde” string, and
“1.234.567-8” which could be said is a valid identifier.
These last ones are the ones we can actually execute
and that’s why they are also called “executable test
cases”.

It is important for us to make the distinction between
these two “levels” as we will be working with them at
different stages of the automation process in order to
follow a data-driven testing approach, which greatly
differs from simple scripting.

For automated tests scripts, data-driven testing
implies testing the application by using information
taken from a data source, like a CSV file, spreadsheet,
file, database, etc., instead of having the same data
hardcoded in the script. In other words, we parame-
trize the test case, allowing it to run with different data.
The main goal is to be able to add more test cases by
simply adding more lines to the test data file.

In addition, we must consider the test oracle. When a
test case is designed, the tester expresses the actions
and data to be used in the execution, but what happens
with the oracle? How do we determine if the result of
the test case is valid or invalid? It is necessary to define
the validation actions that permit us to fully capture an
oracle capable of determining whether the behavior of
the system is correct or incorrect. We have to add suf-
ficient validations in order to reach a verdict while also,
step by step, pursuing the goal of avoiding false posi-
tives and false negatives.

AND ON THE OTHER
HAND, THE SO CALLED
SPECIFIC TEST CASES
OR CONCRETE TEST

CASES.

ON THE ONE SIDE, WE
HAVE WHAT WE WILL
CALL ABSTRACT OR
PARAMETRIC TEST

CASES

32

Test Suites Designs

Usually all tools allow us to group test cases, in order for
them to be organized and run them all together. The
organization can be defined by different criteria, from
which we could mention:

• Module or Functionality: grouping all test cases
that act on the same functionality.

• How critical it is: We could define test cases that
must always be run (in every build), given that
they are the most important ones. Then another
medium level (not as critical), that we run less
frequently (or perhaps only selected if changes
occur in some particular functionalities) and one
of less importance that we would choose to run if
there were time to do so (or when a development
cycle ends and we want to run all possible tests).

These approaches could even be combined by having a
crossed or nested criteria.

33

Defining dependencies between

suites can be highly interesting,

given that there are some

functionalities that if they fail,

they directly invalidate other

tests. It makes no sense to waste

time by running tests which we

know will fail. Meaning, why run

them if they will not bring any

new information to the table? It's

better to stop everything when a

problem arises and attack it head

on and then run the test again

until everything is working

properly (this follows the Jidoka

methodology).

https://en.wikipedia.org/wiki/Autonomation
https://en.wikipedia.org/wiki/Autonomation

Chapter 3
AVOIDING COMMON

PITFALLS OF
AUTOMATION

With what we have learned so far we
can begin our first steps into test
automation, but when we start to
really get into the thick of it, we will
face more daunting situations that
are not so easy to fix. In this chapter
I will discuss different approaches to
help tackle certain problems I have
faced several times in the past, bor-
rowing from my favorite projects
and past experiences at Abstracta.

35

START OFF WITH THINGS CLEAR

Over the years of a product's shelf life, we will have to
maintain the set of tests we automated. When we have
a small set of tests, it isn't difficult to find the test we
want to tweak when necessary, but when the set of tests
begins to grow, it can get quite messy. It is therefore
essential to clearly define the organization and denomi-
nation to be used, which in the future, will help us deal
with the large set of tests we’ll have in a simple manner.

Denomination

One must define a denomination of test cases and fold-
ers (or whatever the automation tool provides to orga-
nize the tests). Even though this practice is simple, it
yields great benefits.

Some style recommendations:

• Use names for test cases in such a way that it is
easy to distinguish the ones we run from the ones
that are part of the main test cases (also recom-
mended when following a modularization strate-
gy). The test cases we are definitely running,
which we could consider as functional cycles, that
call upon more varied atomic test cases, could be
named Cycle_XX, where “XX” will generally refer
to the most important entity or action related to
the test.

• It is useful to define a structure of folders that
allows for separating the general test cases (typi-
cally login, menu access, etc.) from the different
test case modules. The aim of this is to promote
the recycling of test cases designed in such a way
that it is easy to include them in other cases.

• On many occasions as well there is a need for tem-
poral test cases, which could be named with a
common prefix such as pru or tmp.

The way you define a

denomination depends

on your preferences

and specific needs. My

suggestion is to have

this clear before

preparing scripts and

before the repository

begins to grow in a

disorganized manner.

03
CH

Comments and Descriptions

Every test case and datapool can have a description
that roughly tells us its objective. In addition, we
could include comments that illustrate the different
steps to follow for each test case. Inside the data-
pools, we could also add an extra column to write
down comments in which the objective of each con-
crete data used for the tests is indicated, telling us
what it's trying to prove.

Link between Test Case and Automated
Script

How should scripts be done with the tool? One for
every test case? Could a script be made that tests
different test cases at the same time?

Below, both options are represented. On the left we
have a script that runs different test cases. When it
runs, it might analyze various options upon the data or
the system state and according to its evaluation,
decide to execute one test case or another. On the
right, we could have a test case modularized into
different scripts. It would have different smaller test
cases that are run by a script that includes and manag-
es them all.

As with anything in software engineering, in this partic-
ular instance, it all depends on the test case. Some pro-
pose to think of how many logical bifurcations present
themselves in the test case. From my point of view, the
best way would be to take a modular approach.

Meaning, to have different modules (scripts) that
carry out different parts of the test and then a script
that manages all of those parts. This way, we can
reuse the small parts and run different tests that com-
pose them in various ways.

In that case the relationship would be a test case
made of several scripts.

36

SCRIPT TEST CASE

Test
Case

Test
Case

Test
Case

Script

Script

Script

Script

37

Advantages

• Maintenance:
• Easier to maintain
• Modules can be reused
• The flow can be changed at different levels
• The test case script is clearer, as one can see

the whole flow going through the “bigger
picture”, and then dive deeper into the parts

• It's easier to manage the flow of the test case
• For example, it’s easier to make a certain

module repeat itself a certain amount of
times (fixed or variable). In the typical exam-
ple of an invoice, if we modularize the part
where we enter a line of the invoice with a
certain product and quantity, we can make
that part execute a certain amount of times,
with the aim of testing the invoice with
different amounts of lines.

• It’s easier to analyze the result reports

If we have documentation of the test cases (if they
used to be manually executed for instance), a good
practice would be to have a matrix that connects all
the test cases with the different scripts involved. This
allows us to know what to verify when certain
requirements change that have an impact on tests
and consequently, on some scripts.

An alternative would be designing test cases in a
linear manner in case the results are deterministic
and only if they have some undefined variability
beforehand to add different flows, but the best
option is to keep things simple and sequential. A lot
of times, coming from a programming background,
we tend to make very generic test cases (that cover
all cases) and they end up being too complex.

If only one test case is designed to contemplate all
options, it will probably be more difficult to compre-
hend. Therefore, we have to analyze what is being
checked in each decision (bifurcation), what is being
done with one flow or the other, and so on, unless we
are very careful and fill the test case with comments
to simplify that analysis. Anyway, a sequential test
case with a descriptive name informs us of what it is
and what it does.

However, if one day we decide to add a new case,
where should we do it? How do we add the bifurca-
tion? How do we handle the data associated with it?
If on the other hand, we create a new test case, a
sequential one, with a datapool for the case, it rather
simplifies that task.

38

Avoiding False Positives and False
Negatives

When dealing with automation, one of its most delicate
subjects is results that lie, otherwise known as false posi-
tives and false negatives. Those of us who have already
automated know this to be an issue and those of you who
are about to begin, let me give you fair warning that you
will encounter this problem. What can we do to avoid it?
What can we do so that the test case does what it is sup-
posed to do?

These definitions come from the medical field:
• False Positive: an examination indicates a disease

when there is none.
• False Negative: an examination indicates everything

is normal when in fact the patient is sick.

If one were to translate this to our field, we could say the
following:

• False Positive: when a test is executed and despite it
running correctly, the test tells us there is an error
(that there is a disease). This adds a lot of cost, as
the tester will search for the nonexistent bug.

• False Negative: when the execution of a test shows
no faults even though there is a bug in the applica-
tion. This, as much as the false negative, can be due
to an incorrect initial state of the database or prob-
lems dealing with the test environment setting.

If we believe that the false positive is a problem due to the
extra costs, with a false negative, errors are there but we
are not aware of them and we feel at ease! We trust all
functionalities are covered and that they are being tested.
Therefore, they must not have any mistakes.

We obviously want to avoid results lying to us! No one
likes a liar. The expectation of an automated test case is
that its results should be reliable and that we aren't wast-
ing time on checking whether the results are correct or
not.

The only choice is to carry out a proactive analysis, check-
ing the quality of our tests and anticipating possible errors.
We must actually think about the test and not just simply
do a record and playback.

To lower the risk of environment or data problems, we
should have a controlled environment that is only accessi-
ble through automated tests to avoid some major head-
aches. Moreover, we should check the actual test cases!
Because who can assure us they are programmed correct-
ly?

DOESN'T THAT SOUND LIKE,

TESTING?

AT THE END OF THE DAY,
THE TEST CODE IS CODE

AFTER ALL, AND AS SUCH,
CAN EXHIBIT FLAWS OR
BE IMPROVED. AND WHO

BETTER THAN US
TESTERS TO TEST IT?

In Search of False Positives

If the software is healthy and we don't want it to dis-
play any errors, we must make sure the test is testing
what it wants to test, which means verifying the start-
ing conditions just as much as the final ones. Meaning,
although a test case tries to execute a determined set
of actions with certain input data to verify the outgo-
ing data and the final state, it is highly important
(especially when the system we are testing uses a
database) to make sure the initial state is what we
expected it to be.

Therefore, if for example, we are creating an instance
of a particular entity in the system, the test should
verify if that information already exists before begin-
ning the execution of the actions to be tested
because if so, the test will fail (due to duplicate key or
similar), but in reality, the problem is not with the
system but with the data on the test. We have two
options: checking if it exists, and if so, we've already
used that information, or we finish off the test by
saying the result is “inconclusive” (or are pass and fail
the only possible results for a test?).

If we make sure all the things that could affect our
result are in place just as expected, then we will
reduce the percentage of errors that aren't errors.

In Search of False Negatives

If the software is sick, the test must fail! One way of
detecting false negatives is to insert errors into the
software and verify that the test case finds the mis-
take. This goes in line with mutation testing. It is very
difficult when not working directly with the developer
to input the mistakes into the system. It’s also quite
expensive to prepare every error, compile it and
deploy it, and so on, and to verify that the test finds
that fault. In many cases, it can be done by varying
the data of the test or playing around with different
things. For example, if I have a plain text file as input,
I can change something in the content of the file in
order to force the test to fail and verify that the auto-
mated test case finds that error. In a parameterizable
application, it could also be achieved by modifying
some parameter.

The idea is to verify that the test case realizes the
mistake and that's why we try to make it fail with
these alterations. Anyway, what we could at least do
is think about what happens if the software fails at
this point, will this test case notice it, or should we
add some other validation?

Both strategies will allow us to have more robust test
cases, but keep in mind: would they be more difficult
to keep up later? Of course this will not be done to
every test case we automate; only to the most critical

ones, or the ones really worthwhile, or perhaps the
ones we know will stir up trouble for us every

now and again.

39

40

System Tests that Interact with External
Systems

What happens if my application communicates with other
applications through complex mechanisms? What hap-
pens if it uses web services exposed to other servers?
What happens if my application has a very complex logic?
Can I automate more tests in these situations?

Let's imagine the following: A button in the application
being tested executes a complex logic, there’s communi-
cation between several external applications, and a rocket
is fired.

The automation tools (at least the ones we are focusing on
here) have the objective of reproducing the user interac-
tion with the system, therefore these background com-
plexities almost don't matter. Once the user presses a
button, the logic being executed due to that action could
be simple or complex, but to the tool this is hidden (just as
hidden as it is for the user). It doesn't matter if you shoot a
rocket or something else, what’s important to automate is
the user interface in this case.

Sometimes the test case requires other actions to be
carried out that cannot be done in the browser or the
graphical user interface of the system being tested, for
example, consulting a database, copying files from a spe-
cific place, etc. For these actions the tools generally bring
about the possibility to do them by carrying out a special
functionality or by programming in a general purpose
language.

The fact that an application with a complex logic doesn't
add difficulties to the automation process does not mean
it doesn't add difficulties at the time of thinking about and
designing the tests. Two aspects that can get the most

complicated are the data preparation and the simulation
of the external services used. Particularly regarding the
latter, there are times in which it would be preferable for
the system being tested to actually connect to the exter-
nal service and other times when it would be better to sim-
ulate the service and even test the interaction with it. The
device that mimics the external service is generally known
as Mock Service, and there are tools to implement it with
ease. For example, in the case that the service is a web
service, you could consider the SoapUI tool. It has a user
friendly interface to create Mock Services and to test Web
Services as well.

Thinking of Automation When Planning
the Project

A lot of people still believe that testing is something that
should be left for the end of the software development life
cycle... if there is time to spare. In reality, it’s a task that
should be well thought out and planned from the begin-
ning, even before planning development.

When it comes to automation, these are a few of the
tasks you need to plan for:

• Automation
• Maintenance
• Executions
• Verifying and reporting bugs
• Fixing detected bugs

One must decide when to start automating (from the
beginning or after a certain stage in which a stable
version of the application is achieved) and consider
the upkeep it will incur. This is inevitably linked to
the tool we choose and the conveniences it brings.

https://www.soapui.org/

40

Chapter 4
RUNNING

AUTOMATED TESTS

Using tools like Record and Play-
back sounds easy but as we've
already seen, several matters must
be taken into account for the
moment before Playback. Now we
will also see there are some
important aspects to consider for
the moment of Playback.

MANAGING TEST
ENVIRONMENTS

It is of paramount importance to properly
manage the test environments. For that to
happen one must consider many elements that are
part of the environment:

• The sources and executables of the application
being tested

• The test devices and the data they use
• If the information is related to the database of the

system being tested, wherewith we would have to
manage the outline and the information of the
database that corresponds to the test environment

Let's add the complication that we might have differ-
ent tests to be run with different settings, parameters,
etc. So for this we have more than one test environ-
ment, or we have one environment and a lot of data-
base backups, one per every set of tests. This adds the
extra complexity of having to carry out specific main-
tenance for each backup (for example, every time
there is a change in the system where the database is
modified, it will be necessary to impact every backup
with those changes).

But if one of these elements is out of sync with the
rest, the tests will likely fail and we would be wasting
our resources. It's important that every time a test
reports an error that it be due to an actual bug and
not because of a false alarm.

04
CH

42

How to Execute the Tests, Where and by
Whom

Now let's discuss more in depth another topic that
doesn't have to do with the “technical” side of testing:
Planning. It is necessary to plan the executions, but not
just that. Ideally the testing would be considered from
the beginning (Yes, I am repeating myself, but it needs
to be clear!) and if one is to automate, to think about the
tasks associated with it from the start.

The first thing that comes to mind is as frequently as
possible. However, resources may be slim and depend-
ing on the quantity of automated tests, the time it takes
to run them could be quite long. The decision could be
made following this pseudo-algorithm:

If we don't have a lot of tests or they run in a short
amount of time, then execute: ALL OF THEM.

If they take too long to execute, then select what to run:
• Consider priority based on risk
• Take into account impact analysis (based on the

changes of the new version to test)

Know that larger amounts of executions mean you will
see a higher return on investment (ROI).

It is not enough to test, we have to correct as well and
the time it takes to do so must be considered when plan-
ning.

Besides planning when one must think of whom. Usually
one could aim at having some very distanced environ-
ments. For example:

• The development environment (each developer)
• The development integration environment
• The testing environment (within the development

team)
• The pre-production environment (testing in cus-

tomer testing facilities)
• The production environment

The set of tests and the frequency of the same in each of
these environments might be different.

For instance, in development, one needs more agility,
given that we would want to run the tests more
frequently, after every major change, before doing a
commit in the code repository. For that, it would be con-
venient to only run the necessary tests. The aim of these
tests is to provide the developer with quick feedback.

Once the developer frees his or her module or moves to
the consolidation stage, Integration Tests would be run.
Ideally they would run at night, so in the morning when
the developers arrive they have a list of possible
issues to solve, and feedback from the changes
introduced the day before. The less time between
changes and the test results, the faster they will fix
it. This would mean preventing things that don't
work from moving onto the testing stage. They
would be like smoke tests in a way.

WHEN TO RUN?

43

Then when the application is passed on to testing, a
larger set of regression tests should be run to try to
assure that the mistakes that have been reported and
have been marked as fixed aren't there in this new
version. This set of tests might take longer to run.
They don't have to be periodic, but they can adjust to
the project's schedule alongside the foreseen release
dates.

When the deliverable version of the application is
achieved (approved by the testing team), the same is
released to the client. The client would generally also
test it in a pre-production environment, which should
be completely symmetrical in settings as that of pro-
duction (this is the difference with the development
team testing environment). Having an automated set
of tests at this point would also add value.

This set of tests could at least be like the one ran at
testing and one could even give the client the auto-
mated test set along with the released application,
providing them more security and confidence by
knowing that it was tested prior to its release.

_
What Skills Do I Need
to Automate?

TESTER

Business
Expert Programmer

According to testing guru, James Bach, you do not need
special conditions to automate. Ideally, the same testers
who have been responsible for the traditional functional
testing should address the task of automation because
they already know the requirements and the business
function of the application. This would prevent the auto-
mation from falling into the lap of someone who only
knows how to use the tool but is unfamiliar with the app.

These testers are better suited for the task for several
reasons:

• No competition would be generated between
manual and automated testing

• It would help ensure the correct choice of which
tests to automate

• The automated testing tools could also be of
service in generating data for test cases

• Letting the manual testers perform automation
would also eliminate any reason for them to fear
being replaced

Things you should know about:

• The application and business domain
• The automation tool
• The platform with which you are working (for typi-

cal technical problems)
• Testing (techniques for generating test cases)

Each skill will add value in different ways, making our
profile move in different areas of knowledge shown in
the figure below. Clearly, the closer we come to the
center, the more capacity we will have to add value to

the development of a product, but you might
want to specialize in one of these areas or any
special intersection.

I suggest that in parallel with the manual work, one
should begin training with the tool that will be used as
well as read material about automated testing method-
ology and experiences in general. To begin, a recom-
mended reading besides this ebook, is the 4th Edition of
the Testing Experience Magazine which focuses on
automated testing.

FINALLY, NOTE THAT TEST
AUTOMATION IS NOT

SOMETHING THAT CAN BE
DONE IN ONE’S FREE TIME.

46

http://www.testingexperience.com/issues/testingexperience04_12_08.pdf
http://www.testingexperience.com/issues/testingexperience04_12_08.pdf

What Do I Do with a Bug?

Lastly, I’ll comment about incident management in
automation. If a report is telling me there was an error,
the first step is to determine if it's due to the test cases.
One must make sure the error does not lie with the test
before reporting it to a developer. Doing so will also
improve the relationship between testers and devel-
opers :)

It’s necessary to manually verify the cause of the bug,
see if it always happens, see if it had to do with the
data, the environment, if it occurs by chance, etc. After-
wards, the tester must figure out what’s the easiest
way to reproduce the bug so that it’s easier for the
developer to fix it.

What comes next is reporting it in the incident manag-
er system just like how it’s done with bugs that are
found in manual test runs.

47

FEEDBACK

NEW

RESOLVED

CLOSED

ASSIGNED

TESTER
DEVELOPER

R e
p

o
rt

s

 Needs more inform
atio

n

Reso
lv

es

 It is checke d

but not correcte d

 Adds the info.

Checks
that
it is
resolved

It is assigned
to a Dev.

This is a scheme developed by the UN for
bug reporting and fixing. There could be a
thousand variations of it based on the size of
the team, how it is organized, etc. One of the
most common problems I have found when
working with clients is that once a developer
fixes a bug, he or she marks it as resolved,
but it is imperative that a tester double check
to make sure it was fixed! How smoothly
teams manage incidents is often where you
can see if the testers and developers feel like
they are part of the same team that shares
the same goals.

Here’s a look at the life cycle of a bug:

48

48

Chapter 5
FINAL COMMENTS

“Test automation is
simply an automatic

way of doing what
testers were doing

before”
- Steve Rowe

(Tester at Microsoft)

“In the beginning testers had a software to test, they
would push buttons, invoke functions with different
parameter values, and then verify that the behavior
was as expected. Then these functions became more
complex, each time with more buttons, more sophisti-
cated systems, and testers couldn't handle all of it.
Developers had to wait too long for the testers’
approval before releasing it for sale. Therefore, the
solution was in automated testing, which consists of
something as simple as a program that runs the func-
tions with different data, pushes the buttons the same
as the testers, and then programmatically verifies if
the result is correct.” - Steven Rowe

The above mentioned paragraph belongs to a post
from Steve Rowe's blog, which James Bach respond-
ed to in his blog, criticizing his opinion. Among other
things, at Abstracta, we emphasize this quotation,
which we believe sums it up pretty well:

From my humble opinion, I agree more with James, as
I don't believe automation can replace a tester's job,
but it can make it better and more encompassing.

Not everything should be automated, and we
shouldn't try replacing manual testing for automatic,
for there are things which cannot be automated
(mostly if visual verification is necessary and a deci-
sion on part of the user) and sometimes it is easier to
manually execute something than to automate it. In
fact, if all executions could be run manually, it would
probably be much better in the sense that by execut-
ing manually, other things can be found. Do remem-
ber that automated tests check but don't test. The
problem is that it takes more time to do it manually
and that is why it’s convenient to automate what is
worth automating.

On behalf of Abstracta, thanks for reading our
test automation ebook! We hope it helps you in
your endeavor to automate functional testing.
Please feel free to shoot me an email at
federico@abstracta.us if you have any
questions regarding the topics raised in this
ebook or just want to say hello!

ANY TESTER WOULD TAKE OFFENSE
BY READING THIS, BECAUSE IN
REALITY, TESTERS CANNOT BE

REPLACED BY MACHINES!

“AUTOMATION DOES NOT DO WHAT
TESTERS USED TO DO, UNLESS ONE
IGNORES MOST THINGS A TESTER
REALLY DOES. AUTOMATED TESTING
IS USEFUL FOR EXTENDING THE REACH
OF THE TESTERS WORK, NOT TO
REPLACE IT.” - JAMES BACH

05
CH

50

mailto:federico@abstracta.us
http://www.abstracta.us/

ADDITIONAL RESOURCES

Here are some blogs, papers, sites etc. that I highly
recommend to read up on automation and testing.

• Read James Bach’s Blog. All of it.
http://www.satisfice.com/blog/

• Check out The Ministry of Testing and SmartBear’s
Tips to Approach Test Automation (A Checklist)

• Looking to evaluate the right tools? Check out this test
automation tools list

• Get insights on how to pick the right quality assurance
partner: 10 Mistakes Companies Make When Out-
sourcing Software Testing

• Read more of my posts on the Abstracta Software
Testing Blog

• Prefer Spanish? Here’s our frequently updated
Spanish Testing Blog

• Want to receive future content like this ebook to your
inbox? Opt-in to the Abstracta newsletter here (if you
haven’t yet)!

51

http://www.satisfice.com/blog/
http://www.ministryoftesting.com/wp-content/uploads/2014/01/SmartBear-Test-Automation-Checklist-1.pdf
http://www.capterra.com/automated-testing-software/
http://www.capterra.com/automated-testing-software/
http://www.abstracta.us/wp-content/uploads/2016/05/10-Mistakes-Companies-Make-When-Outsourcing-Software-Testing-White-Paper_FINAL-1.pdf
http://abstracta.us/knowledge-center/
http://blog.abstracta.com.uy/search/label/ES
http://www.abstracta.us/contact-us/

ABOUT THE AUTHOR

PhD Federico Toledo, COO and Co-founder of Abstracta

Federico has over 10 years of experience in consulting,
research and testing related to the area of development
as well as more than 7 years of teaching experience at
various universities. He has a Bachelor’s degree in com-
puter engineering and graduated cum laude from Uni-
versity of Castilla-La Mancha, Spain with a PhD in test-
ing. While receiving his doctorate, he was a part of the
eminent Alarcos Research Group which received the
2008 Quality Award in R&D, awarded by the Associa-
tion of engineers of Castilla-La Mancha and the Federa-
tion of Enterprises of Technology. He has published
scholarly articles and is frequently invited to participate
in international conferences and seminars. He published
“Introduction to Information Systems Testing,” one of
the first books in Spanish on testing with a practical
approach.

Ayessa Melgar, Lead Graphic Designer of Abstracta

Ayessa holds a technical degree in Social Communi-
cation and is an advanced undergraduate student of
Visual Communication Design at the College of Archi-
tecture, Design and Urbanism in Montevideo, Uru-
guay. She has taken numerous courses and work-
shops related to the creative and graphic area, with
more than five years of experience in the field of
graphic design. She enjoys solving visual communica-
tion problems efficiently and creatively.

Kalei White, CMO of Abstracta

Kalei graduated cum laude from California Polytech-
nic State University San Luis Obispo with a B.S. in
Business Administration. She has several years of
marketing experience from working for software
companies and marketing agencies. She enjoys ana-
lyzing data, creating content, and disseminating it
throughout the software testing community. She
manages Abstracta’s inbound marketing activities.

CONTRIBUTORS

+1 408 757 0005
44 Tehama St,
San Francisco, CA 94105

+598 2709 6613
José Ellauri 1126, Montevideo,
11300, Uruguay

Learn about how we built GXTest, a custom
test automation tool for Artech, the creator of
the widely used development platform,
Genexus, to reduce the time invested in
designing and maintaining regression tests by
more than 50%. According to the CEO of
Genexus, “With it we execute millions of test
cases every month to ensure the quality of our
product. This would be humanly impossible to

do without GXTest.”

READ CASE STUDY

ABOUT ABSTRACTA

Formed by PhDs and passionate computer engineers,
Abstracta is a world leader in quality assurance and
testing focused on improving the performance of
software applications. With offices in Silicon Valley
and Latin America, we have over 50 combined years
of expertise working not only with leading-edge pro-
prietary and open source testing tools, but develop-
ing specialized tools for financial, retail and technolo-
gy including companies such as BBVA Financial
Group, Verifone, GeneXus software and the largest
retail bookseller in the United States. Our main prod-
ucts are: GXtest (used in more than 15 countries
worldwide) and Monkop, a first-of-its-kind tool for
mobile testing.

We are specialists in:
• Test automation
• Performance testing
• Test case design, execution and reporting
• Functional testing
• Mobile testing, etc.
• Corporate and individual testing training

We are comfortable working within a variety of soft-
ware development environments such as agile, con-
tinuous delivery/continuous integration, waterfall,
etc. Our testers are based in Uruguay, making our ser-
vices convenient (minimal time difference), cost-ef-
fective and friendly (we share your business culture
and speak your language). Learn more about our
complete services at www.abstracta.us.

http://www.abstracta.us
http://www.abstracta.us/wp-content/uploads/2016/04/Artech_TestAutomation_Success_Story.compressed.pdf
http://www.monkop.com/
http://www.abstracta.us/wp-content/uploads/2016/04/Artech_TestAutomation_Success_Story.compressed.pdf

Now that you’ve
got a firm grasp of
automation, take
the next step!

Contact our quality
assurance professionals
today to discuss your
automation possibilities!

http://www.abstracta.us/lets-get-started/

abstracta www.abstracta.us | hello@abstracta.us
© Abstracta

Please feel free to share your
thoughts and reactions!

http://www.abstracta.us
mailto:hello@abstracta.us
https://www.facebook.com/sharer/sharer.php?u=http%3A//bit.ly/1TIddXz%20
https://twitter.com/home?status=Read%3A%20A%20Complete%20Introduction%20to%20Functional%20%23TestAutomation%20Ebook%20http%3A//bit.ly/1spkvZn%20via%20%40AbstractaUS
https://www.linkedin.com/shareArticle?mini=true&url=http%3A//www.abstracta.us/2016/05/31/ebook-complete-introduction-to-functional-test-automation/?utm_source=linkedin%26utm_medium=linkedinsharebutton%26utm_campaign=sharelinkedinfrombook&title=&summary=&source=
https://plus.google.com/share?url=Check%20out%20the%20ebook%20by%20Abstracta,%20%22A%20Complete%20Introduction%20to%20Functional%20Test%20Automation%3A%20Everything%20you%20need%20to%20know%20before%20getting%20started%20with%20automation%E2%80%9D%20http%3A//bit.ly/1sZjB6z
https://www.pinterest.com/pin/create/extension/?url=http%3A%2F%2Fwww.abstracta.us%2F2016%2F05%2F31%2Febook-complete-introduction-to-functional-test-automation%2F%3Futm_source%3Dtwitter%26utm_medium%3Debooksharebutton%26utm_campaign%3Debooktweetfrombook&media=http%3A%2F%2Fwww.abstracta.us%2Fwp-content%2Fuploads%2F2016%2F05%2FE-book_social-1.png&h=800&w=800&xv=cr1.39.1&xm=g&xuid=Req2Tj6x8ipE&description=%5BEBOOK%5D%20%22A%20Complete%20Introduction%20to%20Functional%20Test%20Automation%3A%20Everything%20you%20need%20to%20know%20before%20getting%20started%20with%20automation%22%20via%20Abstracta%20bit.ly/1RJQEPX

