
Hans-Gerhard Gross

Component-Based Software Testing with UML

Hans-Gerhard Gross

123

Component-Based
Software Testing
with UML

With 121 Figures and 24 Tables

Library of Congress Control Number: 2004111059

ACM Computing Classification (1998): D.2.4, D.2.5, D.2.13

ISBN 3-540-20864-X Springer Berlin Heidelberg New York

Hans-Gerhard Gross
Fraunhofer Institute
for Experimental Software Engineering
Sauerwiesen 6
67661 Kaiserslautern
e-mail: hans-gerhard.gross@iese.fraunhofer.de

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Typesetting: by the author
Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

To Marc, Heiko, Isabell,

and Oliver

Foreword

The promise of object-oriented development to enable the flexible composi-
tion and reuse of software artifacts finds an extended realization in component
technologies such as CORBA components, EJB, and .Net. Although off-the-
shelf components and component composition, configuration and deployment
methods are nowadays available, an intrinsic problem of component-based
software construction is not yet well addressed. How can software engineers
ensure that a component used in a certain component assembly fits the re-
quirements and the context? How can software engineers select a component
from a component repository? How can software engineers check its correct-
ness and performance in that component assembly? Only if the overall efforts
of developing reusable components, their composition into new component
assemblies and correctness checks thereof are made more efficient than de-
veloping everything from scratch will component-based software development
become a new software development paradigm in industry.

Traditional testing methods where the test system is independent from the
tested system do not offer good support for the evaluation of software compo-
nents in new contexts when procuring off-the-shelf components or reusing in-
house components. Although testing is the means to obtain objective quality
metrics about components in their target component assembly, the separation
of functional component and test component in traditional testing leaves the
problem up to the component user to design and develop tests that assess
the correctness and performance of a component in a new component assem-
bly. However, the argument of reuse should not only apply to a functional
component but also to its test component. The idea is as simple as it is com-
pelling: why not bring test components up to the same level of reuse as the
components they are supposed to evaluate?

Built-in contract-based tests as developed and put forward in this book
advocate a tight coupling of components with their test components. Built-
in tests provide basic test functionality to flexibly assess the behavior of a
software component. In addition, they enable checks by the component it-

VIII Foreword

self of its environment, as inadequate contexts will typically make a software
component fail and should be detected by the component itself.

Although built-in tests follow well-known principles of hardware develop-
ment, where readily built-in validation infrastructure belongs to any high-
quality system, software component testing imposes new challenges when de-
signing and developing built-in component tests as well as when applying and
using them. First of all, as components may bear complex internal data and
behavior that might show nondeterministic reactions when driven via compo-
nent interfaces only, components must be made observable and controllable
by opening the access to component internals in order to gain unambigu-
ous, well-focused and repeatable results. Built-in tests provide solutions here.
Secondly, as components will be typically used in new, possibly unforeseen
contexts, the component tests must be made flexibly adaptable and extend-
able so as to analyze new usage scenarios and the reactions of a component in
new assemblies. While the client components can freely compose new tests by
invoking the base test functionality offered via the component’s testing inter-
face, the component itself can analyze its requirements that are preconditions
for its correct behavior in a given context. Thirdly, testing a component as-
sembly is an ongoing activity when constructing component assemblies, but
when putting this assembly into production no checks or only sanity checks
should be kept in order to avoid unnecessary code. Component technologies
such as built-in testing help here as well.

However, the solution of built-in contract-based testing would only be half
of a solution if not accompanied by approaches for how to design and construct
them. This book puts the ideas of built-in contract-based tests into a UML-
based development process and discusses the various aspects and views of
how to develop them. The powerful KobrA development method is used as a
basis, both for the system and the test system development, which brings test
development not only onto the same level as system development but enables
also the exchange and reuse of system artifacts in test development, and vice
versa. In addition, it enables the exchange of information and the support of
interaction between system architects, designers and developers on the one
hand, and test architects, designers and developers on the other hand.

Hans-Gerhard Gross and I were members of the MDTS project which
focused on “Model-Based Development of Telecommunication Systems” in
which one of the major subjects was the integrated development of a system
and its test system. While the first approaches were developed in this project,
this book nicely completes the ideas and discusses the various parts in great
detail. The fundamental concept of built-in contract-based tests, although not
new in itself, is thoroughly discussed in the context of software components.
Although some questions such as the quality of tests remain open, the book
advances the state of the art in component testing. Of particular interest to
me is the use of the UML 2.0 Testing Profile in this book and its application
and extension to the special case of built-in tests. This demonstrates not only
the capabilities of UML-based test specification in a standardized way but

Foreword IX

also the flexibility of the testing profile to address real needs from testing
software components.

This book is an exhaustive compendium for component-based software
testing based on UML, and it provides good examples for applying the devel-
oped approach. As a reader, I enjoyed the detailed discussion arguing about
business-, technical- and process-oriented aspects, and I would like to see
follow-ups.

Berlin, Ina Schieferdecker
July 2004

Preface

This book summarizes and consolidates my primary research interests over the
course of the last four to six years, and its main subjects represent the outcome
of three major research projects, Component+, MDTS, and Empress, in which
I was involved during my work at the Fraunhofer Institute for Experimental
Software Engineering (IESE), Kaiserslautern, Germany. The three projects
were carried out almost in a sequence that represents the “natural evolutionary
steps” in developing the technologies introduced in this book.

The primary testing technology described here, built-in testing, with its
two main incarnations, built-in contract testing and built-in quality-of-service
testing, were developed within the Component+ project (www.component-
plus.org) which was funded under the 5th IST European Framework Program.
These technologies are described mainly in Chaps. 4, 5, and 7. The project
consortium comprised a balanced number of academic research institutes and
industry partners who applied the built-in testing approaches in a number of
real-world case studies. I did not use these case studies as examples in this
book because none of them addresses all the issues that are discussed in the
book. I found it easier to explain the issues using two examples only, a thought-
out vending machine specification and a real system specification from the
Fraunhofer IGD’s Resource Information Network. The descriptions of the in-
dustrial case studies and their results can be obtained from the Component+

project Web site.
The second project, MDTS, which stands for Model-Driven Development

of Telecom Systems (www.fokus.gmd.de/mdts), funded by the German Na-
tional Department of Education and Research (BMBF), devised the model-
based testing and test modeling approaches that are introduced in the book.
The validation of these concepts was based on the Resource Information Net-
work (RIN), an application that was developed by Fraunhofer IGD, Darm-
stadt, Germany. The technologies of this project are described mainly in
Chaps. 3 and 5.

The third research project, the ITEA project Empress (www.empress-
itea.org), also funded by the German government, dealt with software evo-

XII Preface

lution for embedded real-time systems. Here, my primary focus was on the
adoption of search-based software engineering technologies for dynamic tim-
ing analysis and validation of real-time software according to modern object-
oriented and component-based development principles. This work represents
a combination of the main subject from Component+ with the work that I
carried out at the University of Glamorgan, Wales, UK, prior to my position
at IESE. This more visionary subject is treated in Chap. 7.

Another major subject of the book, and I am going to start with this, is the
overall unifying framework for all introduced technologies: the KobrA method
(www.iese.fhg.de/Projects/Kobra Method). This is a component-based and
model-driven software development method that was devised with signifi-
cant involvement by IESE in another project funded by the German govern-
ment, which resulted in a book by Colin Atkinson, and others, with the title
“Component-Based Product Line Engineering with UML;” its title is similar
to that of this book, and this reflects the similarity of the context. The work
described in this book can be seen as an extension of the KobrA method in
the area of testing. All the principles introduced are fully in line with the
KobrA method, and the projects that I have mentioned above were applying,
at least partially, principles of the KobrA method. I give an overview on the
most fundamental and important topics of the KobrA method, so that the
book can be read more cohesively. A much more comprehensive treatment of
the KobrA method can be found in the other book. I introduce the KobrA
principles in Chap. 2 of this book.

This book is by no means an exhaustive treatment of the combination
of the subjects component-based development, modeling, and testing. It only
deals with a few facets of these subjects, and, as such, only reflects my personal
opinions and experiences in these subjects. Each of them are fields of extensive
research and development in their own right. Some readers will disagree with
my opinions, some others will be disappointed with the choice of subjects
that I have treated in the book. I have tried to include pointers, to my best
knowledge, to other similiar, related subjects of interest throughout the text.

Acknowledgements

Books are not simply cast into form. Besides the author, there are usually
many more people who contribute in terms of ideas and discussions, and in
the form of technical as well as emotional support. I cannot list all who helped
to sustain me over the course of writing this book, and I apologize for any
possible omissions.

First of all, I would like to thank all the people in the Component+ project
in which most of the results that eventually led to the production of the book
were produced. These are H̊akan Edler and Jonas Hörnstein (IVF, Mölndal,
Sweden), Franck Barbier, Jean Michel Bruel, and Nicolas Belloir (University
of Pau, France), John Kinghorn and Peter Lay (Philips, Southampton, UK),
Graham King (Southampton Institute, UK), Jonathan Vincent (Bournemouth

Preface XIII

University, UK), Stefano di Panfilis and Matteo Melideo (Engineering Infor-
matica, Rome, Italy), Aracéli Gomez, José Maria Lázaro, and Joseba Iñaki
Angulo Redondo (Labein, Bilbao, Spain), Atanas Manafov (ISOFT, Sofia,
Bulgaria), Mariusz Momotko, Bartosz Nowicki, and Witold Staniszkis (RO-
DAN, Warsaw, Poland), Enn Öunapuu (Technical University of Tallinn, Es-
tonia), Ivan Stanev (University of Rousse, Bulgaria), Istvan Forgacs and Eva
Takacs (4D Soft, Budapest, Hungary).

In addition, I would like to thank the people from the MDTS project for
the outstanding cooperation over the course of nearly three years of working
together: Marc Born, especially for the crash course on component platforms,
Julia Reznik (Fraunhofer Fokus, Berlin), Pedro Sanchez (Fraunhofer IGD,
Darmstadt), for the provision of the RIN case study including ongoing sup-
port, and, in particular, Ina Schieferdecker (Humboldt University, Berlin), for
advice on model-based testing and the TTCN-3, and for writing the Foreword.

For the fruitful cooperation in the Empress project I would like to thank, in
particular, the people with whom I have cooperated most intensively: Stefan
van Baelen (KU Leuven, Belgium), Linde Loomans (Jabil, Hasselt, Belgium),
and Ruurd Kuiper (Technical University of Eindhoven, Netherlands).

Very special thanks go to Colin Atkinson, a former colleague of mine at the
Fraunhofer Institute, now affiliated with the University of Mannheim. I see
him as my mentor and teacher in the area of component-based development
and modeling. I would also like to thank my current colleagues at Fraunhofer
IESE: Christian Bunse for his advice and Christian Peper for reviewing the
UML diagrams. My former colleagues Nikolas Mayer and Javier Mauricio
Paredes deserve special recognition for their commitment to implementing
and assessing optimization-based timing analysis.

In addition, I would like to thank the Springer team, in particular Ralf
Gerstner, for ongoing support in technical issues, and the reviewers and the
copy editor who provided me with valuable feedback and helped to improve
the book considerably.

Finally, I would also like to thank my friends and family, for their support
and love throughout the time of writing, and Isabell Beutke, especially, for
tolerating my occasional phases of social disability over a considerable period
of time.

Neunkirchen, Hans-Gerhard Gross
July 2004

Contents

1 Introduction . 1
1.1 Component-Based Software Development 2

1.1.1 Component Definition . 2
1.1.2 Core Principles of Component-Based Development 4
1.1.3 Component Meta-model . 7
1.1.4 Component Engineering vs. Application Engineering . . . 9

1.2 Component-Based Software Testing . 11
1.2.1 Challenges in Component-Based Software Testing 12
1.2.2 The ARIANE 5 Failure . 14
1.2.3 The Lessons Learned . 15

1.3 Model-Based Development and Testing . 16
1.3.1 UML and Testing . 16
1.3.2 Model-Based Testing . 18
1.3.3 Test Modeling . 18

1.4 Summary and Outline of This Book . 18

2 Component-Based and Model-Driven Development with
UML . 21
2.1 Principles of the KobrA Method . 22

2.1.1 Decomposition . 24
2.1.2 Embodiment . 26
2.1.3 Composition . 27
2.1.4 Validation . 27
2.1.5 Spiral Model vs. Waterfall Model . 27

2.2 Context Realization . 29
2.2.1 Usage Model . 30
2.2.2 Enterprise or Business Process Model 33
2.2.3 Structural Model . 33
2.2.4 Activity and Interaction Model . 35

2.3 Component Specification . 38
2.3.1 Structural Specification . 39

XVI Contents

2.3.2 Functional Specification . 41
2.3.3 Behavioral Specification . 42

2.4 Component Realization . 44
2.4.1 Realization Structural Specification 46
2.4.2 Realization Algorithmic Specification 48
2.4.3 Realization Interaction Specification 48

2.5 Component Embodiment . 50
2.5.1 Refinement and Translation . 53
2.5.2 The Normal Object Form . 55
2.5.3 Component Reuse . 56
2.5.4 COTS Component Integration . 58
2.5.5 System Construction and Deployment 60

2.6 Product Family Concepts . 61
2.6.1 Decision Models . 62
2.6.2 Framework Engineering . 64
2.6.3 Application Engineering . 68

2.7 Documentation and Quality Assurance Plan 69
2.8 Summary . 70

3 Model-Based Testing with UML . 73
3.1 Model-Based vs. Traditional Software Testing 74

3.1.1 White Box Testing Criteria . 75
3.1.2 Black Box Testing Criteria . 77

3.2 Model-Based Testing . 80
3.2.1 Usage Modeling . 80
3.2.2 Use Case Diagram-Based Testing . 81
3.2.3 Use Case and Operation Specification-Based Testing . . 84
3.2.4 Structural Modeling . 88
3.2.5 Structural Diagram-Based Testing 95
3.2.6 Behavioral Modeling with Statecharts 98
3.2.7 Statechart Diagram-Based Testing 99
3.2.8 Behavioral Modeling with Activity Diagrams 102
3.2.9 Activity Diagram-Based Testing . 104
3.2.10 Interaction Modeling . 106
3.2.11 Interaction Diagram-Based Testing 109

3.3 Test Modeling . 112
3.3.1 Structural Aspects of Testing . 112
3.3.2 Behavioral Aspects of Testing . 113
3.3.3 UML Testing Profile Mapping . 115
3.3.4 Extension of the Testing Profile . 118

3.4 Summary . 119

Contents XVII

4 Built-in Contract Testing . 121
4.1 Concepts of Built-in Testing . 123

4.1.1 Assertions . 123
4.1.2 Built-in Testing . 124

4.2 Motivation for Built-in Contract Testing 127
4.2.1 Objective of Built-in Contract Testing 127
4.2.2 Component Contracts . 129

4.3 Model and Architecture of Built-in Contract Testing 130
4.3.1 Explicit vs. Implicit Servers . 133
4.3.2 The Testing Interface . 134
4.3.3 Optimal Design of the Testing Interface 140
4.3.4 Tester Components . 146
4.3.5 Optimal Design of a Tester Component 148
4.3.6 Component Associations in Built-in Contract Testing . . 152

4.4 Development Process for Built-in Contract Testing 157
4.4.1 Identification of Tested Interactions 163
4.4.2 Definition and Modeling of the Testing Architecture . . . 164
4.4.3 Specification and Realization of the Testing Interfaces . . 167
4.4.4 Specification and Realization of the Tester Components 169
4.4.5 Integration of the Components . 174

4.5 Summary . 177

5 Built-in Contract Testing and Implementation Technologies179
5.1 Instantiation and Embodiment of Built-in Contract Testing . . 183
5.2 Built-in Contract Testing with Programming Languages 187

5.2.1 Procedural Embodiment Under C 188
5.2.2 Object-Oriented Embodiment Under C++ and Java 191

5.3 Component Technologies . 200
5.3.1 JavaBeans and Enterprise JavaBeans 201
5.3.2 COM, DCOM, ActiveX, COM+, and .NET 203
5.3.3 CORBA, OMA and CCM . 204
5.3.4 Component Technologies and Built-in Contract Testing 206

5.4 Built-in Contract Testing and Web Services 209
5.4.1 Checking Web Services Through Contract Testing 210
5.4.2 Testing of Readily Initialized Server Components 212

5.5 Implementation Technologies for Built-in Contract Testing . . . 214
5.5.1 The XUnit Testing Framework . 215
5.5.2 JUnit and Built-in Contract Testing 216
5.5.3 The Testing and Test Control Notation – TTCN-3 219
5.5.4 TTCN-3 and Built-in Contract Testing 223

5.6 Summary . 226

XVIII Contents

6 Reuse and Related Technologies . 229
6.1 Use and Reuse of Contract Testing Artifacts 231

6.1.1 Development-Time Reuse . 232
6.1.2 Runtime Reuse . 235

6.2 Component Certification and Procurement 238
6.2.1 The CLARiFi Component Broker Platform 239
6.2.2 Customer Self-certification . 240

6.3 Product Families and Testing . 242
6.3.1 Testing of Product Families . 244
6.3.2 Testing as a Product Family Development 253

6.4 Summary . 254

7 Assessing Quality-of-Service Contracts . 255
7.1 Quality-of-Service Contracts in Component-Based

Development . 256
7.2 Timing Analysis and Assessment with Components 260

7.2.1 Typical Timing Problems . 261
7.2.2 Timing Analysis Approaches . 263

7.3 Extended Model of Built-in Contract Testing 265
7.3.1 Testing Interface for the Extended Model 267
7.3.2 Tester Component for the Extended Model 268
7.3.3 Optimization-Based Timing Analysis 272
7.3.4 Application to the RIN System. 274

7.4 QoS Contract Testing for Dynamic Updates 279
7.5 Built-in Quality-of-Service Runtime Monitoring 280
7.6 Summary . 283

Glossary . 285

References . 297

Index . 307

1

Introduction

Component-based software development and software testing are two subdisci-
plines of what today is generally understood as software engineering. Software
engineering is a discipline that attempts to bring software development activ-
ities, and testing is part of that, more in line with the traditional engineering
disciplines such as civil engineering, mechanical engineering, or electrical en-
gineering. The main goal of software engineering is to come up with standard
ways of doing things, standard techniques and methods, and standard tools
that have a measurable effect on the primary dimensions that all engineering
disciplines address: cost and quality. Software engineering is still in its relative
infancy compared with the more traditional engineering disciplines, but it is
on its way.

Component-based software development directly addresses the cost dimen-
sion, in that it tries to regard software construction more in terms of the tra-
ditional engineering disciplines in which the assembly of systems from readily
available prefabricated parts is the norm. This is in contrast with the tradi-
tional way of developing software in which most parts are custom-designed
from scratch. There are many motivations for why people allocate more and
more effort toward introducing and applying component-based software con-
struction technologies. Some will expect increased return on investment, be-
cause the development costs of components are amortized over many uses.
Others will put forward increased productivity as an argument, because soft-
ware reuse through assembly and interfacing enables the construction of larger
and more complex systems in shorter development cycles than would other-
wise be feasible. In addition, increased software quality is a major expectation
that people are looking for under this subject. These are all valid anticipations,
and to some extent they have yet to be assessed and evaluated. Heineman and
Councill [89] present a nice collection of articles that address these issues, and
many of the discussions in this field are about the economics of software com-
ponents and component-based software construction. However, this is not the
subject of this book.

2 1 Introduction

Testing directly addresses the other dimension, quality, and it has turned
out that it must be dealt with somewhat differently in component-based
software engineering compared with traditional development projects. This
is because component-based systems are different and the stakeholders in
component-based development projects are different, and they have contrast-
ing points of view. How component-based systems are different and how they
must be treated in order to address the challenges of testing component-based
systems are the main subjects of this book. In the following sections we will
have a look at the basics of component-based software engineering and what
makes testing so special in this discipline, and we will look at the role that
the Unified Modeling Language (UML), which emerges as a major accepted
standard in software engineering, plays under this subject.

1.1 Component-Based Software Development

1.1.1 Component Definition

The fundamental building block of component-based software development is
a component. On first thought it seems quite clear what a software component
is supposed to be: it is a building block. But, on a second thought, by looking
at the many different contemporary component technologies, and how they
treat the term component, this initial clarity can easily give way to confusion.
People have come up with quite a number of diverse definitions for the term
component, and the following one is my personal favorite:

A component is a reusable unit of composition with explicitly specified
provided and required interfaces and quality attributes, that denotes
a single abstraction and can be composed without modification.

This is based on the well-known definition of the 1996 European Conference on
Object-Oriented Programming [157], that defines a component in the following
way:

A component is a unit of composition, with contractually specified
interfaces and context dependencies only, that can be deployed inde-
pendently and is subject to composition by third parties.

In this book I chose a somewhat broader terminology that avoids being in-
dependently deployable, since I am not specifically restricting the term com-
ponent to contemporary component technologies such as CORBA, .NET, or
COM, which provide independent execution environments. In this respect, I
see the term component closer to Booch’s definition, or the definition of the
OMG:

1.1 Component-Based Software Development 3

A component is a logically cohesive, loosely coupled module [20].

A component is a modular, deployable, and replaceable part of a sys-
tem that encapsulates implementation and exposes a set of interfaces
[118].

But there are many other definitions that all focus on more or less similar
properties of a component, for example:

A software component is an independently deliverable piece of func-
tionality providing access to its services through interfaces [24].

A software component is a software element that conforms to a compo-
nent model and can be independently deployed and composed without
modification according to a composition standard [89].

From these definitions it becomes apparent that components are basically
built on the same fundamental principles as object technology. If we consider
an object-oriented language as the only deployment environment, we can also
say that objects are independently deployable within this environment. The
principles of encapsulation, modularity, and unique identities that the com-
ponent definitions put forward are all basic object-oriented principles that
are subsumed by the component paradigm [6]. However, the single most im-
portant feature of a component, in my opinion, is that it may be reused in
a number of different contexts that have initially not been anticipated by
the component producer. Only the component user decides whether it may
be fit for a particular purpose, and this, in fact, is the single most impor-
tant distinguishing factor of component-based development with respect to
the traditional approaches. From the component definitions, we can actually
derive a number of important properties for software components according
to [24, 66, 89, 158]:

• Composability is the primary property of software components as the term
implies, and it can be applied recursively: components make up compo-
nents, which make up components, and so on.

• Reusability is the second key concept in component-based software devel-
opment. Development for reuse on the one hand is concerned with how
components are designed and developed by a component provider. Devel-
opment with reuse on the other hand is concerned with how such existing
components may be integrated into a customer’s component framework.

• Having a unique identity requires that a component should be uniquely
identifiable within its development environment as well as its runtime en-
vironment.

• Modularity and encapsulation refers to the scoping property of a com-
ponent as an assembly of services that are related through common data.
Modularity is not defined through similar functionality as is the case under
the traditional development paradigms (i.e., module as entity with func-
tional cohesion), but through access to the same data (i.e., data cohesion).

4 1 Introduction

• Interaction through interface contracts; encapsulation and information
hiding require an access mechanism to the internal workings of a com-
ponent. Interfaces are the only means for accessing the services of a com-
ponent, and these are based on mutual agreements on how to use the
services, that is, on a contract.

In the following paragraphs we will take a closer look at the concepts that the
component definitions put forward.

1.1.2 Core Principles of Component-Based Development

Component Composition

Components are reusable units for composition. This statement captures the
very fundamental concept of component-based development, that an applica-
tion is made up and composed of a number of individual parts, and that these
parts are specifically designed for integration in a number of different appli-
cations. It also captures the idea that one component may be part of another
component [6], or part of a sub-system or system, both of which represent
components in their own right. As a graphical representation, composition
maps components into trees with one component as the root of the parts from
which it is composed, as shown in Fig. 1.1.

<<root>>
Component

Subcomponent 1 Subcomponent 2 Subcomponent n
. . .

Sub-sub-
component 2.1

Sub-sub-
component 2.2

Sub-sub-
component 2.n. . .

<<contains>>

<<contains>>

<<acquires>>

Fig. 1.1. Composition represented by a component nesting tree, or a so-called
component containment hierarchy

1.1 Component-Based Software Development 5

Component Clientship

An additional important concept that is related to component composition
and assembly is clientship. It is borrowed from object technology and sub-
sumed by the component concept. Clientship or client/server relationship is a
much more fundamental concept than component composition. It represents
the basic form of interaction between two objects in object-oriented systems.
Without clientship, there is no concept of composition and no interaction be-
tween components. Clientship means that a client object invokes the public
operations of an associated server object. Such an interaction is unidirectional,
so that the client instance has knowledge of the server instance, typically
through some reference value, but the server instance needs no knowledge of
the client instance. A clientship relation defines a contract between the client
and the server. A contract determines the services that the server promises to
provide to the client if the client promises to use the server in its expected way.
If one of the two parties fails to deliver the promised properties, it breaks the
contract, and the relation fails. This typically leads to an error in the clientship
association. A composite is usually the client of its parts. A graphical repre-
sentation of clientship forms arbitrary graphs, since clientship is not depen-
dent on composition. This is indicated through the �acquires�-relationship
in Fig. 1.1. It means that Sub-subcomponent 2.1 acquires the services of
Sub-subcomponent 2.2, thereby establishing the client/server relationship.
Clientship between contained components in a containment hierarchy is rep-
resented by the anchor symbols in Fig. 1.1. The minimal contract between two
such entities is that the client, or the containing component, at least needs to
invoke the constructor of its servers, or the contained components.

Component Interfaces

A component’s syntax and semantics are determined through its provided and
required interfaces. The provided interface is a collection of functionality and
behavior that collectively define the services that a component provides to its
associated clients. It may be seen as the entry point for controlling the com-
ponent, and it determines what a component can do. The required interface
is a collection of functionality and behavior that the component expects to
get from its environment to support its own implementation. Without correct
support from its servers at its required interface, the component cannot guar-
antee correct support of its clients at its provided interface. If we look at a
component from the point of view of its provided interface, it takes the role
of a server. If we look at it from the point of view of its required interface, the
component takes the role of a client. Provided and required interfaces define a
component’s provided and required contracts. These concepts are illustrated
in Fig. 1.2.

6 1 Introduction

Client

Server

Client

Server

Interface/Contract (B/C)

B’s Required Interfface

C’s Provided Interface

B’s Provided Interface

A’s Required Interface

Interface/Contract (A/B)

Component
A

Component
B

Component
C

Fig. 1.2. UML-style representation of components with provided and required in-
terfaces

Quality Attributes

Quality attributes have the same meaning for the non-functional aspects of a
component that interfaces have for the functional and behavioral aspects of the
component. Quality attributes define additional requirements of components,
such as dependability and performance.

Quality Documentation

The documentation can be seen as part of a component’s specification, or a
refinement of its specification. Sometimes, a pure specification may be too ab-
stract, so that it is difficult for users to see and understand how a component’s
operations may be called or can be applied. It is particularly useful in order
to document how sequences and combinations of operation invocations add
to the overall behavior. A documentation provides a deeper insight into how
a component may be used in typical contexts and for typical usage profiles
that the provider of the component had anticipated.

Persistent Component State

An additional requirement of Szyperski’s component definition [157] that is
often cited in the literature is that a component may not have a persistent

1.1 Component-Based Software Development 7

state. It means that whenever a component is integrated in a new applica-
tion, it is not supposed to have any distinct internal variable settings that
result from previous operation invocations by clients of another context. This
requires that a runtime component, a so-called component instance, will al-
ways be created and initialized before it is used. However, this is not practical
for highly dynamic component systems such as Web services, which may be
assembled and composed of already existing component instances that are
acquired during runtime. It is not a fact that because components have per-
sistent states they cannot be integrated into a running system. It is a fact that
they must have a well-defined and expected persistent state so that they can
be incorporated into a running application. The fact that a component may
already have a state must be defined a priori, and it is therefore a fundamental
part of the underlying clientship relation between two components. The in-
vocation of a constructor operation, for example, represents a transition into
the initial state of a component. This is also a well-defined situation that the
client must know about in order to cooperate with the component correctly.
In this respect, it may also be seen as a persistent state that the client must
be aware of.

1.1.3 Component Meta-model

The previous paragraphs have briefly described the basic properties of a com-
ponent and component-based development. The following paragraphs summa-
rize the items that make up a component and draw a more complete picture of
component concepts. I also introduce the notion of a UML component meta-
model, which will be extended over the course of this book, to illustrate the
relations between these concepts.

Figure 1.3 summarizes the concepts of a component and their relations
in the form of a UML meta-model. It is a meta-model, a model of a model,
because it does not represent or describe a physical component but only the
concepts from which physical components are composed. The diagram defines
a component as having at most one provided interface and one required inter-
face. These two interfaces entirely distinguish this component from any other
particular component. The provided interface represents everything that the
component is providing to its environment (its clients) in terms of services,
and the required interface represents everything that the component expects
to get from its environment in order to offer its services. This expectation is
represented by the other associated (sub-)components that the subject com-
ponent depends upon, or by the underlying runtime environment.

Provided and required interfaces must be public, as indicated through
the UML stereotype �public�. Otherwise we cannot sensibly integrate the
component into an application, because we do not know how the component
will be connected with other components in its environment. Provided and
required interfaces are also referred to as export and import interfaces.

8 1 Introduction

<<subject>>
Component

<<interface>>
Provided
Interface

<<interface>>
Required
Interface

<<private>>
Implementation

Operation

Parameter

State

Output
Parameter

Input
Parameter

Precondition Post Condition

Specification Realization
Specification

Quality Attributes Quality
Documentation

definesdefines

constrains constrains
1

*

1

1 1

1

1..*

1..*

1..*

1..*

constrains

defines
1 1

11

defines

Fig. 1.3. Component meta-model

The implementation of a component realizes its private design. This is
the collection of algorithms by which a component achieves its functionality,
its internal attributes, internal and external operations, and operation calls
to its associated (sub-)components. The implementation is hidden inside the
encapsulating shell of the component, and is arbitrarily exchangeable through
any other implementation that realizes the same external features.

Provided and required interfaces comprise operations. The operations in
the provided interface are access points that the client of the component can
use to control its functionality, and the operations in the required interface are
the access points to other associated components that the subject component

1.1 Component-Based Software Development 9

depends on or to the underlying runtime system. The functionality of an oper-
ation depends on pre and postconditions. A precondition is an invariant that
must be true or fulfilled in order for the operation to guarantee the postcon-
dition. A precondition constrains the input parameters of an operation and
defines an initial state of the component that must be valid before the opera-
tion may be invoked. A postcondition constrains the output parameters of an
operation to the guaranteed values and defines a final state of the component
that becomes valid after operation invocation.

The combination of precondition, operation invocation with input param-
eters, and postcondition, with output parameters, represents a transition from
one state to another. A state is a distinct combination of a component’s in-
ternal attribute values that are constantly changed through the operations.
These attributes may be owned by the component, or by any subordinate
component that in itself may be seen as an attribute of the superordinate
component. States are not directly visible outside a component’s encapsula-
tion boundary because they are determined through internal attributes. A
state manifests itself through differing observable external behavior of a com-
ponent only if the same operation is invoked; an operation may not be invoked
at all under the conditions of a certain state. For example, the storeItem()
operation of a storage component behaves differently if the storage is already
completely used up. In this case the component won’t store any more items.

So far we have looked only at the parts of a physical component in Fig.
1.3. A physical component is an executable binary version of the component.
But a component is not really usable if it does not come with some addi-
tional description or documentation, which can be seen as the logical part
of the component. Additional descriptive artifacts are the specification and
realization of the component that represent its quality documentation and
a specification of the quality attributes. A specification of a component is
a collection of descriptive documents that define what a component can do.
It comprises descriptions of the externally provided and required operations
with their behavior and pre and postconditions and exceptions. A realiza-
tion defines how a component implements its functionality, e.g., in terms of
interaction with other subordinate components and additional algorithmic
information. The quality documentation defines quality attributes that the
component is abiding with, plus the quality attributes that it expects from
its associated subordinate components. The quality attributes constrain the
internal implementation of the component as well as the required interface.
This means that a component can only accept an associated server compo-
nent as long as it provides not only the expected function and behavior but,
additionally, the expected quality features.

1.1.4 Component Engineering vs. Application Engineering

Component-based software construction may be subdivided into two distinct
development activities: component engineering and application engineering.

10 1 Introduction

While component engineering is concerned with the development of compo-
nents as individual building blocks in component-based software construc-
tion, application engineering is concerned with the assembly and integration
of these building blocks into new software applications. Component engineer-
ing is primarily performed by the provider of a component, and application
engineering is mainly carried out be the component user. I have referred to
these activities above respectively as development for reuse and development
with reuse.

In its purest form, component-based development is only concerned with
the second item, development with reuse (component integration), represent-
ing a bottom-up approach to system construction. This requires that every
single part of the overall application is already available in a component repos-
itory in a form that exactly maps to the requirements of that application.
Typically, this is not the case, and merely assembling readily available parts
into a configuration will likely lead to a system that is not consistent with its
original requirements.

Because the shape of the building blocks that are assembled and integrated
during application engineering is so essential to component engineering, de-
velopment for reuse (component engineering) is an important activity that
needs also to be considered in the context of component-based development.
After all, component engineering is initially responsible for how suitably and
easily components can be composed and reused.

But there is another important dimension to the activities of component
engineering and application engineering. Application engineering deals with
how a system is decomposed into finer-grained parts that are individually con-
trollable. Component engineering deals with how individual components will
fit into the logical decomposition hierarchy that application engineering has
come up with. Both are interdependent, and component-based development
methods must deal with these two orthogonal approaches.

Component-based development is usually a mixture of top-down decom-
position and bottom-up composition. In other words, the system is decom-
posed into finer-grained parts, that is, subsystems or components, and these
are to be mapped to individual prefabricated building blocks. If no suitable
components are found, decomposition is continued. If partially suitable com-
ponents are found, the decomposition is repeated according to the needs of
the candidate component. A found suitable component represents a feasible
and acceptable solution for the entire system or the subsystem considered.
The whole process is iterative and must be followed until all requirements are
mapped to corresponding components or until the system is fully decomposed
into the lowest desirable level of abstraction. If suitable third-party compo-
nents are found, they can be composed to make up the system or subsystem
under consideration. Such a process is always goal-oriented in that it accepts
only components that are fit for the purpose of the system. It means that only
these parts will be selected that somehow map to the system specification. The

1.2 Component-Based Software Testing 11

outcome of such a development process is usually a heterogeneous assembly
consisting of combinations of prefabricated parts plus implementations.

All these considerations fall into the scope of component-based develop-
ment methods that provide guidelines on what, when, and how such activities
have to be carried out during component-based software construction. The
next chapter (Chap. 2, “Component-Based and Model-Driven Development
with UML”) is devoted entirely to how component-based development should
ideally be done in the context of a development method that follows the
ideas of model-driven software construction. Development methods provide
the framework for applying modern software engineering principles, and they
are also responsible for integrating dynamic quality assurance techniques, the
main subject of this volume.

1.2 Component-Based Software Testing

Component-based software development has been and still is considered to be
the primary technology to overcome the software crisis [23, 89, 159]. Its main
idea is to build new software products by reusing readily available parts, rather
than by developing everything from scratch. The expected savings in product
development are based on the assumption that software reuse has a much
higher return on investment than pure software development. This is certainly
true for product development, because parts of one system whose investment
has already been amortized and written off are used again in another system
without any extra cost. However, this is not entirely true. The assumption
becomes a reality, and a component-based development project becomes a
success, only if the costs of adapting all components to their new environment,
and of integrating them in their new context is much lower than the whole
system being developed from scratch. The cost of assembling and integrating
a new product also includes the assuring of its quality.

The expectation that software developers and software development or-
ganizations place in component-based software engineering is founded on the
assumption that the effort involved in integrating readily available components
at deployment time is less than that involved in developing code from scratch
and validating the resulting application through traditional techniques. How-
ever, this does not take into account the fact that when an otherwise fault-free
component is integrated into a system of other components, it may fail to func-
tion as expected. This is because the other components to which it has been
connected are intended for a different purpose, have a different usage pro-
file, or may be faulty. Current component technologies can help to verify the
syntactic compatibility of interconnected components (i.e., components that
they use and that provide the right signatures), but they do little to ensure
that applications function correctly when they are assembled from indepen-
dently developed components. In other words, they do nothing to check the
semantic compatibility of interconnected components so that the individual

12 1 Introduction

parts are assembled into meaningful configurations. Software developers may
therefore be forced to perform more integration and acceptance testing to at-
tain the same level of confidence in the system’s reliability. In short, although
traditional development-time verification and validation techniques can help
assure the quality of individual units, they can do little to assure the quality
of applications that are assembled from them at deployment time.

In the previous two paragraphs, I have already presented some ideas on the
challenges that we have to consider and address in component-based software
testing. In the following subsection we will have a closer look at the typical
problems that emerge from this subject.

1.2.1 Challenges in Component-Based Software Testing

The software engineering community has acknowledged the fact that the val-
idation of component-based systems is different from testing traditionally de-
veloped systems. This manifests itself in the number of publications in that
field, in people’s interest in the respective forums and workshops on the topic,
and, in the production of this book; references include [65, 67, 77, 175, 176].
Component-based software testing refers to all activities that are related to
testing and test development in the scope of a component-based development
project. This comprises tests and testing activities during component engi-
neering, carried out by the provider of a component, as well as all testing
activities during application engineering, carried out by the user of the com-
ponent. Here, it is important to note that the two roles, component provider
and user, may be represented by the same organization, i.e., in case of in-
house components that are reused in a number of diverse component-based
development projects.

A test that the provider performs will typically check the internal work-
ings of a component according to the provider’s specification. It can be seen
as a development-time test in which the individual parts, classes, or subcom-
ponents of the tested component are integrated and their mutual interactions
are assessed. It concentrates on assessing the component’s internal logic, data,
and program structure, as well as the correct performance of its internal algo-
rithms. Since the provider assumes full internal knowledge of the component, it
can be tested according to typical white box testing criteria [11]. This compo-
nent test will likely concentrate on the individual services that the component
provides and not so much on the combination or sequence of the services. The
aim of the component provider is to deliver a high-quality reusable product
that abides by its functional and behavioral specification.

A second test that the user of the component will typically carry out is to
assess whether the module fits well into the framework of other components
of an application. This sees a component as a black box entity, so typical
black box testing techniques [12] will be readily applied here. The aim of the
component user is to integrate an existing component into the component

1.2 Component-Based Software Testing 13

framework, and assess whether both cooperate correctly according to the re-
quirements of the user. For his or her own developments the user will assume
the role of the producer and carry out typical producer tests. This is the case,
for example, for adapter components that combine and integrate different
third-party developments and enable their mutual interactions. Since the user
assumes white box knowledge of these parts of an application they can also
be tested based on typical white box testing criteria.

The following list summarizes the most important problems that people
believe make component-based software testing difficult or challenging [66]:

• Testing of a component in a new context. Components are developed in a
development context by the provider and reused in a different deployment
context by the user. Because the provider can never anticipate every single
usage scenario in which the component will be deployed by a prospective
user, an initial component test can only assess the component according to
a particular usage profile, and that is the one that the provider can think
of. Components are often reused in contexts that the provider could have
never imagined before, thus leading to entirely different testing criteria
for the two stakeholders [175, 176]. I believe this is the primary challenge
in component-based software testing, and the most important subject of
Chap. 4, “Built-in Contract Testing”, and the entire book is more or less
devoted to this problem.

• Lack of access to the internal workings of a component [86, 175], which
reduces controllability and testability. Low visibility of something that will
be tested is a problem. Testing always assumes information additional to
what a pure user of an entity is expecting. For most components, com-
mercial ones in particular, we will not get any insight except for what the
component’s interface is providing. One part of the technology that I intro-
duce in this book is devoted to increasing controllability and observability
and, as a consequence, testability of components. This is the second most
important subject of Chap. 4, “Built-In Contract Testing.”

• Adequate component testing [142]. This is concerned with the questions
of which type of testing, and how much testing a component provider
should perform, and which type of and how much testing a component user
must perform to be confident that a component will work. Unfortunately,
I have no answer to this, and this book concentrates only on which testing
criteria may be applied in a model-based development approach. This is
the subject of Chap. 3, “Model-Based Testing with the UML.” Defining
adequate test sets (in particular), and adequate testing (in general) are
still challenging subjects, and this represents one of the most significant
problems in testing. There is not much empirical evidence of which testing
criterion should be applied under which circumstances.

I believe the most fundamental difference between traditional testing and the
testing of component-based systems lies in the different view points of the
stakeholders of a software component, the provider and the user. This identi-

14 1 Introduction

fies the fundamental difference in the validation of traditional software systems
and component-based developments. While in traditional system development
all parts are integrated only according to a single usage profile, in component-
based development they are integrated according to differing usage profiles
that depend on their integrating contexts. In the first instance, system devel-
opers can integrate two parts of a system according to a single well-defined and
known interface. Even if the two parts do not match, they can be adapted to
their respective contexts and fully validated in their particular predetermined
association. In the second instance however, this is not feasible. Neither the
client nor the server role in an association can be changed, or will be changed,
under the component paradigm. Here, component adaptation according to a
different context is restricted to inserting an adapter between the two roles.
But even if the adapter translates the interactions between client and server
correctly, there is no guarantee that the semantic interaction between the two
will be meaningful. The two deployed and integrated components have been
initially developed in complete mutual ignorance for each other, so although
a component is alright in one deployment context, e.g., at the component
vendor’s site, it may completely fail in another deployment context, e.g., in
the component user’s application. And this is not a problem of the individual
components, because they may be individually perfect, but of their interac-
tion, or their interaction within a new context. Even if such components have
been developed by the same organization, and the development teams have
full access to all software artifacts, something can go horribly wrong, as the
ARIANE 5 crash 1996 illustrates.

1.2.2 The ARIANE 5 Failure

The first launch of the new European ARIANE 5 rocket on June 4th, 1996,
ended in failure, and, consequently, in the rocket’s destruction about 40 sec-
onds after it had taken off. This is probably the most prominent real-world
example to illustrate the fundamental problem in testing component-based
systems. What had caused the failure was later identified through an ex-
tensive investigation which was published in a report by the inquiry board
commissioned through the European Space Agency (ESA) [104]. In addition,
the failure was analyzed by Jézéquel and Meyer [97].

The inquiry board found out that the on-board computer had interpreted
diagnostic bit pattern from the inertial reference system as flight data, and
wrongly adjusted the flight angle of the rocket. This had caused the rocket
to veer off its intended flight path and disintegrate in increased aerodynamic
loads. The inertial reference system did not send correct attitude data to the
on-board computer due to a software exception which was caused through
a conversion of a 64-bit floating point value into a 16-bit integer value. The
floating point value was greater than what could be represented by the integer
variable which created an operand error in the software. The error occurred
in a component that was taken from the ARIANE 4 system and reused within

1.2 Component-Based Software Testing 15

the ARIANE 5 system, and that performed meaningful operations only be-
fore lift-off. According to ARIANE 4 specifications, the component continued
its operation for approximately 40 seconds after lift-off and provided data
representing the horizontal velocity of the rocket in order to perform some
alignments. However, this was not a requirement of ARIANE 5. The excep-
tionally high values that caused the operand error were due to the considerably
higher horizontal velocity values of the much more powerful ARIANE 5. The
requirement for having the inertial reference component continue its operation
for some time after lift-off came from the particular preparation sequence of
ARIANE 4, which did not apply to the newer ARIANE 5.

1.2.3 The Lessons Learned

We can now have a closer look at why this is the typical failure scenario in
component-based software construction. The reused component coming from
the ARIANE 4 was obviously alright, and compliant with its specification.
The ESA had used that component successfully and without any trouble for
years in the ARIANE 4 program. So they could claim reasonably that this
was a highly dependable piece of software that may also be used successfully
in the new ARIANE 5 program. Or could they not?

Apparently, something went wrong because the importance of the context
in component-based development was not considered. In this case the context
is the integrating system (the new ARIANE 5) that exhibits an entirely differ-
ent usage profile of the component from the original system (the old ARIANE
4). The much higher velocity of the new rocket generated values in the origi-
nal inertial reference component that the designers of that component had not
anticipated or considered at the time. At the time of its initial development,
the ARIANE 4 engineers did not anticipate a new rocket that would require
such velocity numbers. In other words, the new system exhibited a usage pro-
file of the component that its original development team did not take into
consideration at the time. The developers implemented the component in a
way that provided more than enough margin for the failure of the application
under consideration.

It is unlikely that contemporary component-based software testing tech-
nologies, some of which will be introduced in this book, could have prevented
the crash. At that time, ESA’s quality assurance program was aimed only at
hardware failures, so that they would not have identified the software problem.
Well, they could have, if they had considered software failures as a problem at
the time, and in fact they do that now, and tested the system properly. But it
clearly illustrates the effect that the integration of a correct and dependable
component into a new context may have on the overall application. The fact
that components may be facing entirely different usage scenarios, and that
they have to be tested according to every new usage scenario into which they
will be brought, is the most fundamental issue in testing component-based
systems.

16 1 Introduction

1.3 Model-Based Development and Testing

Modeling and the application of graphical notations in software development
have been receiving increasing attention from the software engineering com-
munity over the past ten years or so. The most prominent and well known
representative of graphical modeling notations is the Unified Modeling Lan-
guage (UML) [118]. This has actually become a de-facto industry standard;
it is readily supported by quite a number of software engineering tools, and
the amount of published literature is overwhelming. The UML is fostered and
standardized by the Object Management Group (OMG), a large consortium
of partners from industry and the public sector (e.g. universities and research
organizations) worldwide. The OMG’s mission is to define agreed-upon stan-
dards in the area of component-based software development that are techni-
cally sound, commercially viable, and vendor independent. The UML, among
other standards that the OMG has released over the years, is one of their ear-
liest products, with its initial roots in the object-oriented analysis and design
methods from the late 1980s and early 1990s [60]. It is a graphical notation, or
a language, and not a method. I will introduce a method, the KobrA method
[6], that is based on the UML, in Chap. 2. The UML can be used for speci-
fying and visualizing any software development artifact throughout an entire
software development project. The initial overall goals of the UML are stated
as follows [44], and the language addresses these topics sufficiently:

• Model systems with object-oriented concepts.
• Establish an explicit coupling between conceptual as well as executable

artifacts.
• Address the problems of scalability and complexity.
• Create a notation that can be used by humans as well as by machines.

In particular, the last item is being tackled more and more by researchers in
the domain of generative programming that is based on, or follows the fun-
damental concepts of, Model-Driven Architectures (MDA) [22, 79]. The basic
idea is to develop a system graphically in the form of UML models, pretty
much according to the ideas of computer-aided design in mechanical engineer-
ing, and then translate these models into an executable format. The correlative
technology for this second step in mechanical engineering is computer-aided
manufacturing. Generative programming is not as simple as it may sound,
and I will present some of the challenges of this subject in Chap. 2, but only
marginally. I will give an overview on the primary concepts of the UML in
Chaps. 2 and 3, and I will use the UML to specify the examples throughout
the book.

1.3.1 UML and Testing

Testing activities that are based on models, or use models, are becoming
increasingly popular. We can see this in the number of publications that have

1.3 Model-Based Development and Testing 17

been emerging over the last few years, for example [1, 87, 88, 100, 119], to name
only a few. UML models represent specification documents which provide the
ideal bases for deriving tests and developing testing environments. A test
always requires some specification, or at least a description or documentation
of what the tested entity should be, or how it should behave. Testing that
is not based on a specification is entirely meaningless. Even code-based, or
so-called white box testing techniques, that initially only concentrate on the
structure of the code, are based on some specification. The code is used only as
a basis to define input parameter settings that lead to the coverage of distinct
code artifacts. In Chap. 3, “Model-Based Testing with the UML,” I will give
a more extensive overview of these topics. Models are even more valuable if
UML tools that support automatic test case generation are used. In general,
we can discriminate between two ways of how to use the UML in tandem with
testing activities; this is further elaborated upon in the following subsections,
and in Chaps. 3 and 4:

• Model-based testing – this is concerned with deriving test information out
of UML models.

• Test modeling – this concentrates on how to model testing structure and
test behavior with the UML.

Operation

Parameter

State

Output
Parameter

Input
Parameter

Precondition Post Condition

definesdefines

constrains constrains
1

*

1

1 1

1

1

*

Test Case

Fig. 1.4. UML-style representation of the concepts of a test case

18 1 Introduction

1.3.2 Model-Based Testing

The UML represents a specification notation, and testing is the using or the
applying of the concepts of a specification. A test case for a tested component,
for example, comprises one or more operations that will be called on the tested
object, a precondition that defines constraints on the input parameters for the
test and determines the initial state of the object, and a postcondition that
constrains the output of the tested operation, and defines the final state of
the object after test execution. These concepts are depicted in Fig. 1.4, and it
becomes apparent that this maps exactly to the lower part of the component
meta-model depicted in Fig. 1.3 on page 8. So, we can map the concepts of a
component exactly to the concepts of a test case for a component. Although,
for a test we will need these concepts twice, once for the specification of what
should happen in a test and once for the observation of what really happens.
A validation action can then be performed to determine whether the test
has failed or passed, and this is called the verdict of a test. The concepts of
a test case are therefore a bit more complex, but the UML Testing Profile
defines them sufficiently [120]. Hence, the UML readily provides everything
that is necessary to derive tests and test cases for a component, and it even
provides sufficient information to define entire application test suites. This will
be described in Chap. 4,“Built-in Contract Testing,” and Chap. 5, “Built-In
Contract Testing and Implementation Technologies.”

1.3.3 Test Modeling

Test cases or a test suite represent software. Any software, whether it performs
any “normal functionality” or whether it is especially crafted to assess some
other software, should be based on a specification. The UML is a graphical
specification notation, and therefore it is also adequate for the specification
of the test software for an application. Why should we apply a notation for
testing that is different from the one we use for developing the rest of a system?

In general, the UML provides everything that is required to devise a testing
framework for components or entire applications. However, there are some
very special concepts that are important for testing, as I have stated in the
previous subsection. These very special concepts are provided by the UML
Testing Profile that extends the meta-model of the core UML with testing
artifacts and testing concepts [120]. Chapters 3 and 5 concentrate on this
topic, among other things.

1.4 Summary and Outline of This Book

This book addresses two of the three primary challenges in testing component-
based software systems that I have identified in Sect. 1.2:

1.4 Summary and Outline of This Book 19

• Lack of access to a component’s internal implementation, and as a conse-
quence low observability, low controllability, and, thus, low testability of
components.

• Testing of a component in a new context for which it had not been initially
developed.

This book focuses on built-in testing for component-based software develop-
ment in general, and built-in contract testing and related technologies for
component-based development in particular. These technologies can, if they
are applied wisely and organized intelligently, provide feasible solutions to
these typical challenges. The fundamental idea of built-in testing is to have
the testing for a software system directly incorporated into the system, al-
though this may not always be the case, as we will see later on. Because
testing, if it is viewed in that way, will be an essential part of an applica-
tion, it must be integrated seamlessly into the overall development process of
an organization. After all, testing in this respect is just another development
effort that extends a component, or an assembly of components.

Since component-based system development and the UML go so well to-
gether, it is logical to set up the testing activities on this notation as well,
and, additionally, to have it supplement an existing mainstream component-
based development method, such as the KobrA method [6]. UML and testing
are a perfect fit, and the component-based development method provides the
common framework for putting the three main subjects of this book together:
components, modeling, and testing.

The next chapter, Chap. 2 on “Component-Based and Model-Driven De-
velopment with the UML,” introduces the KobrA method as the adhesive
framework that incorporates all the other technologies. The chapter gives an
overview on the KobrA method. It explains its phases, core development activ-
ities, and describes its artifacts that are mainly UML models. The chapter will
also introduce an example that is more or less used consistently throughout
the entire book to illustrate all the essential concepts and technologies.

The next chapter, Chap. 3 on “Model-Based Testing with the UML,” de-
scribes why and how the UML and testing are a perfect fit. It briefly compares
the more recent model-based testing techniques with the more traditional
testing criteria, and then covers the two main areas extensively: model-based
testing and test modeling. Under the first topic, I will introduce the diagram
types of the UML (version 2) and investigate how these can be good for de-
riving testing artifacts. Under the second topic, I will introduce the recently
published UML Testing Profile and investigate how this may be used to specify
testing artifacts with the UML.

In Chap. 4 , “Built-in Contract Testing,” which represents the main tech-
nological part of the book, we will have a look at what built-in testing means,
and where it is historically coming from. Here, we will have a closer look at the
two primary challenges in component-based software testing that this book
addresses, and I will show why and how built-in contract testing presents

20 1 Introduction

a solution for tackling these. I will introduce the model of built-in contract
testing, and describe extensively how testing architectures can be built and
how modeling fits under this topic. This chapter concentrates on how built-in
contract testing should be treated at the abstract, modeling level. The chap-
ter also comprises the description of the built-in contract testing development
process that can be seen as part of, or as supplementing, the development
process of the KobrA method.

Chapter 5, on “Built-in Contract Testing and Implementation Technolo-
gies,” looks at how the abstract models that have been defined in Chap. 4 and
represent the built-in contract testing artifacts can be instantiated and turned
into concrete representations at the implementation level. Here, we will have a
look at how built-in contract testing can be implemented in typical program-
ming languages such as C, C++, or Java, how contemporary component tech-
nologies, including Web services, affect built-in contract testing. An additional
section is concerned with how built-in testing can be realized through existing
testing implementation technologies such as XUnit and TTCN-3 [63, 69].

Chapter 6, on “Reuse and Related Technologies,” concentrates on how
built-in testing technologies support and affect software reuse as the most
fundamental principle of, or as the main motivation for, applying component-
based software development. It illustrates how the built-in contract testing ar-
tifacts can be used and reused under various circumstances, how they support
earlier phases of component-based development, in particular component pro-
curement, and how they can be applied to testing product families as generic
representatives for software reuse at the architectural level.

Chapters 2 to 6 concentrate only on testing functional and behavioral as-
pects of component-based software engineering. Additional requirements that
have to be assessed in component-based development belong to the group of
quality-of-service (QoS) attributes, and Chap. 7, “Assessing Quality-of-Service
Contracts,” focuses on these. It gives an overview on typical QoS attributes
in component contracts in general and characterizes timing requirements in
component interactions, so-called timing contracts, in particular. It concen-
trates primarily on development-time testing for component-based real-time
systems.

Additionally, I give an outline of an orthogonal built-in testing technology,
built-in quality-of-service testing, that is typically used to assess QoS require-
ments permanently during the runtime of a component-based application.

2

Component-Based and Model-Driven
Development with UML

Traditional, non-component-based software development in its purest form is
typically performed in a top-down fashion in which the whole system is bro-
ken down into consecutively smaller parts that are individually tackled and
implemented. Each part of such a system is specified, designed, and coded ex-
actly according to the specification of the superordinate part that subsumes
it. Hence, all the modules and procedures in such a custom development are
crafted exactly to fit the overall application, but only that. In contrast, the
main idea in component-based development is the reuse of existing building
blocks that are usually quite generic, and that have been initially developed
with no particular application context in mind, or with an entirely different
application context of an earlier development. So, component-based develop-
ment in its purest form is typically performed in a bottom-up fashion. In fact,
it is a composition activity in which the whole system is put together out of
more or less suitable parts that are already available in a component repos-
itory in a form that should somehow map to the requirements of the overall
application.

In practice, the two approaches are intermingled. On the one hand, tra-
ditional development also applies component principles when it uses already
existing functionality from system libraries or domain-specific modules. The
lowest level of reuse is achieved when the system is implemented in source
code. In theory, source code instructions and library calls may be regarded
as the most basic generic building blocks that may be reused in a traditional
development effort. On the other hand, component-based development is also
contingent on typical top-down approaches, since merely assembling readily
available parts into a configured application will quite likely lead to a system
that is not consistent with its original requirements. Going from top down, as
in traditional development, ensures that we get the system we are after.

A typical state-of-the-practice software development will therefore decom-
pose the entire system into finer-grained parts that will be mapped somehow
to existing functionality. If no such functionality is found that can be reused,
the system will be separated further into smaller and smaller units, until

22 2 Component-Based and Model-Driven Development with UML

the lowest desirable level of decomposition is achieved. These units will be
implemented in source code, or reused if already existing component imple-
mentations may be found, and then integrated to compose the final product.

Software development methods and processes provide the support for all
these aspects during all life cycles of a software project. A good method will
guide the entire development team through all phases. It will support the
developers in what they have to do, when they have to do it, and how they will
be doing it. The method will give support on which steps to follow throughout
the development process and on how these individual steps add to the overall
product. A development method is like a recipe that identifies all the necessary
ingredients and tells you how to put these together.

This chapter focuses on how component-based systems are ideally devel-
oped with UML by following a distinct model-based analysis and design pro-
cess that is supported through a standard approach to constructing software,
known as the KobrA method [6]. It gives an overview on the development
principles according to a three-dimensional model that the KobrA method
suggests (Sect. 2.1). Sections 2.2 to 2.4 concentrate on the main component
modeling activities within the KobrA method that are associated with the
first dimension of KobrA’s development model, and how these are applied to
come up with the primary KobrA UML artifacts, context realization, compo-
nent specification, and component realization. The sections give an overview
of the created UML models and how they can be used to define parts of an
example application. Section 2.5 focuses in the second dimension of KobrA’s
three-dimensional development model, embodiment, that deals with how ab-
stract representations in the form of UML models can be turned into concrete
executable representations or physical components. It also explains the fun-
damental principles of how component reuse is addressed and how COTS
components are treated by the method which can be seen as two additional
aspects of component embodiment. The next section (Sect. 2.6) outlines how
product family concepts may be treated within an overall development pro-
cess, and it represents the third dimension of KobrA’s development model. It
also introduces the primary activities in product family development, frame-
work engineering and application engineering. Section 2.7 introduces KobrA’s
mechanisms for dealing with documentation and quality assurance, but since
this entire volume is on testing, the remaining chapters of the book will dis-
cuss the quality assurance issues. Section 2.8 summarizes and concludes this
chapter.

2.1 Principles of the KobrA Method

Every serious attempt at developing software professionally should be based
on a sound development method and process. Its role is to accompany the
development with guidelines and heuristics describing where, when, and how
advanced development technologies such as object-oriented design or model-

2.1 Principles of the KobrA Method 23

ing should be used. A method acts as a framework and a process in which
the development effort will be carried out. Additionally, it defines the inter-
mediate development artifacts, and provides guidelines on how these should
be used as input to subsequent development cycles. It also ideally supports
their verification and validation in some way. Applying a development method
leads to all the necessary software documents that collectively make up the
entire software project.

One example for a sound development method is the KobrA method [6]
that has been developed primarily by the Fraunhofer Institute for Experimen-
tal Software Engineering in Kaiserslautern, Germany. It draws its ideas from
many contemporary object-oriented and component-based methods, although
it aims at combining their advantages while trying to iron out their disadvan-
tages or shortcomings. The most influential methods that lend their concepts
to the KobrA method are OMT [143], Fusion [33], ROOM [152], HOOD [140],
OORAM [132], Catalysis [42], Select Perspective [2], UML Components [28],
FODA [99], FAST [174], PuLSE [8], Rational Unified Process [96, 101], OPEN
[70], and Cleanroom [116].

The KobrA method uses the UML as primary model-based notation for
all analysis and design activities. In other words, most software documents
that are created during the development with this method are UML models.
There are other artifacts in natural language or in tabular form that will be
introduced together with the models throughout this chapter, but KobrA fol-
lows the fundamental ideas of model-driven development approaches such as
OMG’s Model-Driven Architectures (MDA) [79] which propagate the separa-
tion of business or application logic from any underlying concrete implemen-
tation or platform technology. Hence, the essential structure and behavior of
an application is captured in an abstract form, so that it can be mapped to
various available concrete implementation technologies. Fully platform inde-
pendent models (PIM) of this kind do not only allow a system architecture to
exploit the most appropriate implementation technology available at the time,
but additionally it endows the system with the capacity to endure inevitable
technology evolution [6, 79].

The KobrA method only applies a limited number of concepts, and it fol-
lows strictly the principle of “separation of concerns” throughout an entire
project. Separation of concerns is a time-honored strategy for handling com-
plex problems in science and engineering. KobrA is also a method that follows
the fundamental ideas of model-based development and component technol-
ogy. It supports the first item, in that it guides the developer on how to use
models, and provides a starting point for development and a process to fol-
low throughout the development. Additionally, it supports the second item,
in that it promotes component reuse, and follows typical object technology
principles. These are the principles of modularity, encapsulation and infor-
mation hiding, unified functions and data, unique identities, and incremental
development.

24 2 Component-Based and Model-Driven Development with UML

Since KobrA’s core principle is separation of concerns, it associates its
main development effort with two basic dimensions that map to the following
four basic activities in these dimensions, illustrated in Fig. 2.1:

• Composition/decomposition dimension. Decomposition follows the well es-
tablished “divide-and-conquer” paradigm, and is performed to subdivide
the system into smaller parts that are easier to understand and control.
Composition represents the opposite activity, which is performed when the
individual components have been implemented, or some others reused, and
the system is put together.

• Abstraction/concretization dimension. This is concerned with the imple-
mentation of the system and a move toward more and more executable
representations. It is also called embodiment, and it turns the abstract
system represented by models that humans can understand into represen-
tations that are more suitable for execution on a computer.

KobrA defines an additional Genericity/specialization dimension that be-
comes important in a product family development context. Activities that
are performed in this dimension are concerned with instantiating a generic
framework architecture, a so-called product line or product family, into a
specific product. I am leaving this dimension out of consideration for the
moment since it only complicates the overall development process. I will in-
troduce these concepts in Sect. 2.6 of this chapter. The following paragraphs
describe in more detail the activities that are performed in each of the two
main dimensions.

2.1.1 Decomposition

A development project always starts with the box on the top left hand side
of the diagram in Fig. 2.1. This box represents the system that we would
like to have, for example a vending machine. If we find a vending machine
that fully satisfies the specification of that box, we are done, given that we
are the customer of a vending machine provider. If we are the provider and
make a living out of producing vending machines, we have to look at the
individual parts that make up this system. Maybe we identify a box that
accepts coins, one that dispenses change, one that issues the item that we
would like to buy, some button-box for selecting it, and, additionally, some
control logic that draws all these items together. By doing that we move down
the composition/decomposition dimension and identify finer-grained logical or
abstract components that we can add to our model. Eventually we might end
up with a picture, like that in Fig. 2.2, that shows the organization of the
boxes for our vending machine.

During the decomposition activity we always attempt to map newly iden-
tified logical components to existing components that we may be able to reuse.
This requires a good understanding of the vending machine domain and, addi-
tionally, a sound knowledge of the available components for that particular do-

2.1 Principles of the KobrA Method 25

Decomposition

Composition

Abstraction

ConcretizationModel

Hardware

Source/Binary

Code

Embodim
ent

C
o

m
p

o
si

ti
o

n

D
ec

o
m

p
o

si
ti

o
n

Validation

Genericity

Specialization

Fig. 2.1. The two main development dimensions of the KobrA method. An addi-
tional dimension that is used for domain and product line engineering is only slightly
indicated

main. In fact, decomposition should always be directed toward identifiable and
reusable existing components. Otherwise we end up decomposing our system
into something odd, for which we will never find any suitable existing parts.
This means that we entirely miss the fundamental goal of component-based
system construction, and we end up developing everything from scratch. And
this is indeed a problem for which all existing component-based development
methods only provide very limited support. Mapping functional properties
into suitable components still requires considerable human intelligence and
experience of the domain expert.

26 2 Component-Based and Model-Driven Development with UML

Vending Machine

Change Dispenser

Dispenser Coin Checker Button Panel D
ec

o
m

p
o

si
ti

o
n

Fig. 2.2. Decomposition of a vending machine into finer-grained components

2.1.2 Embodiment

During decomposition, we identify and fully specify each box. This comprises
a specification and a realization. Essentially, the specification defines the pro-
vided and required interfaces of the box. This is the connection to the super-
ordinate and subordinate boxes. The realization defines how these interfaces
are implemented. This comprises the implementation of the interactions with
its subordinate boxes plus the algorithms by which it realizes its functional-
ity. We will have a closer look at specifications and realizations in subsequent
sections.

When we have specified a box entirely in an abstract way, for example
through UML models, we can start to implement it by moving toward more
concrete representations that are eventually executable by a computer. This
activity is termed embodiment and it will typically involve some coding effort
and, since we would like to increase component reuse, some component selec-
tion and validation effort. By performing an embodiment step we move down
the concretization dimension displayed in Fig. 2.1. For our vending machine,
it involves not only the development of some source code, but, since it is an
embedded control system, also a decision of which parts of the abstract model
will be implemented in software, in hardware, and in a combination of both.
For example, at the abstract level of the UML model, we will call the oper-
ation dispense(Item) on the dispenser component of our vending machine.
Since we are accessing a hardware component, at a more concrete level this
call has to be translated into some electrical signal that runs through a cable
and connects to the dispenser hardware.

2.1 Principles of the KobrA Method 27

2.1.3 Composition

After we have implemented some of the boxes, and reused some other existing
boxes, we can start to put them together according to our abstract model so
that we finally get the system running. This activity is termed composition,
and it represents a move up in the composition/decomposition dimension. By
doing this we connect the subordinate boxes with the superordinate boxes
through some containment rules. For example, in code, it maps to a creation
operation for the contained box or, if we reuse existing components, it maps
to some message translation between the two boxes.

2.1.4 Validation

A final activity is the validation of the implemented boxes against their ab-
stract models. This represents a move back in the abstraction/concretization
dimension in Fig. 2.1. Validation is not necessarily the last activity in this
cycle. We do not have to fully decompose the system in order to implement
a box, and if we have implemented it, we can immediately validate it against
its specification. However, if we have not implemented the subordinate boxes
on which the current box relies, we will have to develop test stubs to simulate
this missing behavior. If we decompose the system into the lowest desirable
level and perform the embodiment by starting from the bottom, we will not
have any missing links for performing the validation. Hence, we will not have
to develop test stubs. But this, of course, is an idealized scenario, and typi-
cally we will do a combination of both, the integration of existing subordinate
components and the development of test stubs for missing component imple-
mentations. For example, in embedded system development in particular, it
is quite common for the software system to be developed at the same time
or even before the hardware system. In this case, validation of the software
system is dependent upon a hardware environment that is simulated through
test stubs.

2.1.5 Spiral Model vs. Waterfall Model

Any development effort can always be attributed to one of the two dimensions,
and the activities do not necessarily have to be performed in exactly that
order. For example, whenever we have decomposed the system and identified
some new boxes, we can have an embodiment step, a decomposition step,
a composition step, and a validation step. At least we can do embodiment,
and perform composition and validation at a more abstract level, i.e., in the
UML model. In other words, we can integrate an existing component model
into our hierarchy and define how we will test this integration. This is the
beauty of working with abstract representations and applying models. Such a
development model is called spiral model, because the development is spiraling
between the different activities that may be performed at the same time [124].

28 2 Component-Based and Model-Driven Development with UML

This model is quite in contrast with the traditional waterfall model or the V-
model as corresponding product model that imposes a much stricter sequence
of the development activities [41, 124]. The waterfall model is suitable for
more traditional development in which most software artifacts are developed
from scratch, while the spiral model is more suitable for component-based
development.

For our vending machine example, we may come up with a box structure
as displayed in Fig. 2.3. This represents the component nesting of the vending
machine system. Every UML package symbol in the diagram defines a set of
model elements, for example, UML diagrams, that collectively and completely
describe each component. The anchor symbol in the diagram represents the
scoping semantics that is associated with the nesting of components [6].

<<variant>>
<<Komponent>>

CoolingUnit

<<subject>>
<<Komponent>>
VendingMachine

<<Komponent>>
DispenserUnit

<<Komponent>>
Display

<<Mechatronics>>
KeyPad

<<Mechatronics>>
CashUnit

Fig. 2.3. Development-time containment tree for the vending machine example

Because we assume knowledge of the vending machine domain, we can de-
compose our vending machine system, represented by the shaded box in Fig.
2.3, into subcomponents for which we are quite likely to find reusable third-
party developments. For example, we can define a CashUnit that will accept
and pay back change, a KeyPad component from which the user can choose
the item to buy, a Display component, and a Dispenser unit that issues
the item. We may also decide that this component will have a CoolingUnit.
The stereotype �Komponent� indicates that the UML package symbol rep-

2.2 Context Realization 29

resents a KobrA Component, so that it abides by certain rules which are fully
described in [6].

The stereotype �variant� indicates that the component is part of a prod-
uct family development. Each �variant� component indicates that we may
have differing component implementations according to which final product
we would like to instantiate. I introduce that for the vending machine be-
cause I would like to be able to change it or extend it later on. Through the
�variant� stereotype we plan for possible future amendments of our product.

2.2 Context Realization

The initial starting point for a software development project is always a sys-
tem or application specification derived and decomposed from the system
requirements. User-level requirements are collected from the customer of the
software, for example, in the form of use case diagrams and use case descrip-
tions. They are decomposed in order to remove their genericity in the same
way as system designs are decomposed to obtain finer-grained parts that are
individually controllable.

<<Context>>
VendingMachine

Context

<<Subject>>
<<Mechatronics>>
VendingMachine

Context Realization Component.
This is the existing evironment that
integrates the entire system Vending
Machine.

KobrA-style Containment Relation.
It maps what we expect from the
system to what the system provides.

The Subject. The toplevel
component of the entire system that
we are going to built.

Fig. 2.4. Excerpt from the containment tree: vending machine context realization
and vending machine component

The system or application specification is supposed to reflect the expecta-
tions of the environment into which the system will be integrated. This may
be the user of the system, associated other systems that have an effect on
our system, and the processes by which all these stakeholders interact. The
collection of all descriptive artifacts that define the environment of the system
is termed the context realization, and the KobrA method defines that in the

30 2 Component-Based and Model-Driven Development with UML

same way as a normal superordinate component that integrates the subject
system. It is represented as if it were a component in its own right, and under
the KobrA method it is therefore treated almost in the same way as any other
component in the containment hierarchy. It happens to integrate the top-level
component as displayed in Fig. 2.4.

The vending machine context realization defines the existing environment
into which our vending machine will be integrated. In effect it defines the
expected interface of the vending machine component. If we find a third-
party component whose specification exactly satisfies the context we may get
that and use it. Typically, this is quite unlikely, so we have to develop the
vending machine according to the requirements of the context. The vending
machine specification will therefore exactly reflect the context realization.
This, in effect, is the same as custom development with no reuse taking place.
The stereotype �Mechatronics� in Fig. 2.4 indicates that the system will be
a combination of software, electronic, and mechanical parts. This is a concept
from an extension of the KobrA method, the so-called Marmot method, that
is specifically geared toward embedded system development [3].

The definition of the context represents the initial phase in any develop-
ment project, and it is typically performed to gather information about

• which user tasks will be supported by the new system,
• which documents will serve as input to the system,
• which other systems will interact with our system, and
• which objects will be needed from the system to perform other activities

in the context.

A usage model that is represented by use case diagrams is particularly suitable
for performing this initial activity. Other models that may be used in the
definition of the context are the enterprise or business process model, the
structural model, and the activity and interaction models. Figure 2.5 shows
the individual artifacts that make up a context realization.

2.2.1 Usage Model

Usage models specify high-level user interactions with a system. This includes
the users or actors as subjects of the system, and the objects of the system
with which the users interact. Thus, use case models may be applied to define
the coarsest-grained logical system modules. Use cases mainly concentrate on
the interactions between the stakeholders of a system and the system at its
boundaries. A use case diagram shows the actors of the system, or the stake-
holders, either in the form of real (human) user roles, or in the form of other
associated systems that are using the system under development as server.
Additionally, use case diagrams show the actual use cases and the associa-
tions between the actors and the use cases. Each use case represents some
abstract activity that the user of the system may perform and for which the
system provides the support. Overall, use case modeling is applied at initial

2.2 Context Realization 31

Enterprise or
Business
Process

Model

Usage
Model

Structural
Model

Interaction or
Behavioral

Model

Use Case
Diagram or Use

Case
Description

UML Class
Diagram or

Object Diagram

UML Activity
Diagram or
Interaction

Diagram

<<subject>>
Context

Realization

Organization
of the enterprise that

is affecting the
system, or that the

system affects.

Fig. 2.5. UML-style definition of a generic context realization

requirements engineering phases in the software life cycle to specify the differ-
ent roles that are using the individual pieces of functionality of the system, the
use cases. Use case diagrams are often defined in terms of the actual business
processes that will be supported by a system. Figure 2.6 shows the use case
model for the vending machine. It comprises two primary actors, the main
user who buys items from the machine, and the operator who performs the
maintenance on the vending machine. The externally visible functionality of
a vending machine is pretty simple, so that we can only identify a single use
case, PurchaseItem, for the user.

Use case diagrams obviously do not give away much information, so they
are typically extended by use case descriptions or use case definitions. A sole
use case diagram is quite useless for the concrete specification of what a sys-
tem is supposed to do. Each use case in a use case diagram is additionally
individually specified and described according to a use case template. Table
2.1 shows an example use case template with the individual topic definitions
taken from [19] and [31, 32]. It represents typical items of a use case that
might be important for expressing interaction with a system from a user’s
perspective. Use case templates may be different according to the applying
organization and the software domain in which they are applied. Table 2.1
represents an example of how to describe a use case in general terms.

Table 2.2 displays the description of the use case PurchaseItem from the
usage model of the vending machine. The most important entries are the pre
and postconditions and the description of the basic and alternative courses

32 2 Component-Based and Model-Driven Development with UML

Table 2.1. Use case template

Use Case No. Short name of the use case indicating its goal (from the
model)

Goal in Context Longer description of the use case in the context.

Scope & Level Scope and level of the considered system, e.g. black box
under design, summary, primary task, sub-function, etc.

Primary/Secondary
Actors

Role name or description of the primary and secondary
actors for the use case, people, or other associated sys-
tems.

Trigger Which action of the primary/secondary actors initiate
the use case.

Stakeholder &
Interest

Name of the stakeholder and interest of the stakeholder
in the use case.

Preconditions Expected state of the system or its environment before
the use case may be applied.

Postconditions
on success

Expected state of the system or its environment after
successful completion of the use case.

Postconditions
on failure

Expected state of the system or its environment after
unsuccessful completion of the use case.

Description
Basic Course

Flow of events that are normally performed in the use
case (numbered).

Description
Alternative Courses

Flow of events that are performed in alternative scenarios
(numbered).

Exceptions Failure modes or deviations from the normal course.

NF-Requirements Description of non-functional requirements (e.g. tim-
ing) according to the numbers of the basic/alternative
courses.

Extensions Associated use cases that extend the current use case
(�extends� relation).

Concurrent Uses Use cases that can be applied concurrently to the current
use case.

Revisions Trace of the modifications of the current use case speci-
fication.

2.2 Context Realization 33

VendingMachine

User

Operator

Purchase
Item

Define
Cooling

Define
ItemPrices

Fig. 2.6. Use case diagram for the vending machine

of the use case scenario. They present the basis for the derivation of the
vending machine specification and its externally visible behavior in the next
development step.

2.2.2 Enterprise or Business Process Model

The other context realization models view the environment of the system that
we would like to build more from the perspective of a computer system, while
the enterprise and business process models describe more the nature of the
business itself for which the system is built, and represent the environment
of the built system [6]. This becomes more apparent in typical business type
applications, for example, in banking systems, and it is not so important for
embedded systems. The functionality of our vending machine, for example, is
not really dependent upon any organizational processes that we would have
to describe and model, because they will change when we install the vending
machine. In contrast, for a banking application, the business process is more
important. Here, the enterprise model would represent the concepts that are
relevant for the banking domain and the banking software system, for example,
accounts, bills, exchange rates, and forms that bank customers have to fill out,
that are processed through the system. The enterprise and business process
models concentrate on how these existing concepts affect the computer system
and how the computer system is going to change the processes in the bank’s
organization when it is installed.

2.2.3 Structural Model

The structural model in the context realization defines the structural orga-
nization of the entities that are outside the scope of the developed system

34 2 Component-Based and Model-Driven Development with UML

Table 2.2. Definition of the use case Purchase Item from the vending machine usage
model

Use Case 1 Purchase Item

Goal in Context Main scenario for purchasing an item from the vending
machine.

Actors User.

Trigger User inserts coins into slot, or selects item on button
panel.

Preconditions Vending machine is operational.

Postconditions
on Success

Item is provided.

Postconditions
on Failure

Item is not provided.

Description
Basic Course

1. User inserts sufficient amount of money.
2. User selects item on panel.
3. Selected item and return money are dispensed.
4. User takes item and returned money, if applicable.

Description
Alternative
Courses

1. User selects item.
2. Vending machine displays price.
3. <basic course>

Exceptions 1. [insufficient amount] user inserts more cash, or aborts.
2. [selected item not available] user selects different item,
or aborts.

NF-Requirements 1. Item should be dispensed not more than 3 seconds
after selection.
2. After 3 sec of no user selection use case is aborted and
inserted cash returned.

Extensions <left open>

Concurrent Uses <left open>

Revisions <left open>

but have yet an effect on the system. This comprises objects that the system
requires as input, or produces as output, items that are somehow further pro-
cessed, and other associated systems with which the subject system needs to
interact to achieve its task.

Our vending machine in its simplest form will not have any external struc-
ture that we have to take into account in our context realization models.
However, if we plan to develop a bit more advanced variants of our vending
machine, for example, one that accepts credit cards, or another to be placed
in hotel lobbies that accepts door key cards, so that items bought are booked

2.2 Context Realization 35

<<subject>>
VendingMachine

insertCoins
selectItem
abort
<<variant>> insertCard (RoomCard)
<<variant>> insertCard (CreditCard)

<<variant>>
<<Komponent>>

CreditCardBooking

<<variant>>
<<Komponent>>

HotelRoomBooking

{xor}

<<variant>>
assoc:RoomBilling

<<variant>>
assoc:CCBilling

Fig. 2.7. Context realization structural model for the vending machine context

directly on the room account, we might have to indicate it in the context
realization. Figure 2.7 displays the context realization structural model for
such vending machine variations. Here, we have two systems with which the
vending machine has to interact, and this affects the interface of the vending
machine. We can have a connection either to the hotel booking system or to a
credit card billing system, or neither connection. In the first case the vending
machine will send a room identification record that includes the price and the
room number. This is indicated through the �variant� RoomBilling asso-
ciation class in the diagram. In the second case we will have some credit card
checking and billing indicated through the �variant� CCBilling association
class in the diagram. In the third case we won’t have any such connections.
Currently, at such a high level of abstraction, we are not interested in how
this will be implemented in detail. We include it in the context realization to
indicate some additional features that we would like to have, so that we will
not forget it later when we come to realizing the vending machine.

2.2.4 Activity and Interaction Model

Activity models in the context realization can be used to describe the pro-
cedures that the actors of the system may perform at its boundary. UML
activity diagrams are very similar to traditional control flow graphs, although
they are used on a much higher level of abstraction. Each rounded box in
the activity diagram does not represent a block of source code statements as
in a control flow graph, but an activity that the actor, for instance, a user,
performs with the system. Figure 2.8 shows the context realization activity
diagram that may be derived from the use case description in Table 2.2.

36 2 Component-Based and Model-Driven Development with UML

InsertCoins

SelectItem

 {xor}

[amount < item.Price
OR

item not available]

takeItem takeChange

[else]

[abort]

[amount =
item.Price]

[else]

[coins
inserted]

[else]

Purchase Item

Fig. 2.8. Context realization activity model for the vending machine context ac-
cording to the use case description for Purchase Item

We have two alternatives at the beginning of the diagram, either select an
item and have its price displayed, or immediately insert coins and then choose
an item to buy. This corresponds to the first entry of the basic course and
the alternative course in the use case description. On the main path in the
activity diagram, which relates to the basic course after the selection in the
use case description, the user can take the item and the change if applicable.
These two activities are concurrent because their sequence does not matter.
The other paths in the activity diagram represent the different exceptional
courses described in the use case definition.

We should always try to map the consecutive diagrams to previously cre-
ated models. That way, we can identify and trace the items that we are talking
about through the modeling process from higher-level to lower-level abstrac-
tions. For example, the use case description is very good for discussing things
with the customer of our system, or with the business people in our own orga-
nization. In contrast, activity diagrams are already moving the subject toward

2.2 Context Realization 37

more technical abstractions that may be more difficult for non-technical stake-
holders to understand. But an activity model like the one displayed in Fig.
2.8 is much closer to subsequent modeling activities. We have only to refine
this a little bit, and to add some artifacts, and we have a design diagram for
our vending machine.

This strategy of small steps helps to keep the semantic gaps between the
different abstraction levels at a minimum. And this is in fact why models are
so useful for system development. We have only to add little bits and pieces,
one after the other, and thus evolve the system recursively until we reach
the point where we can implement it. The opposite strategy (and this sounds
very familiar to me because it is common practice) is to take the use case
descriptions and somehow cast them into source code.

Another model that may be used in a context realization is the interaction
model. An interaction model can be useful to present a different view on the
subject under consideration. The interaction model for the main user activity
with the vending machine is displayed in Fig. 2.9.

The next step in the development cycle, after we have described the con-
text of our system, is to define the top-level component that will be integrated
in the context. This top-level component is in fact the entire system that we
are going to build: the vending machine. Since component and system are in-
terchangeable terms in component-based development, we cannot really draw
the border between the two concepts. Somebody’s component will almost al-
ways be somebody else’s system, and somebody’s system will almost always
be somebody else’s component. It depends on the point of view. Every com-
ponent is described through a number of artifacts as represented in Fig. 1.3
in the Introduction.

The two most prominent items in the KobrA method that contain the
other descriptive parts are the component specification and the component
realization. Every KobrA component, except the context realization consists
of these two items. The context realization, as the name implies, only com-
prises a very special component realization. The component realization of a
superordinate component must always map exactly to the component spec-
ification of the subordinate component that the superordinate component
contains. Otherwise they cannot have any meaningful interaction. In tradi-
tional system development, the modules are all custom designed to fulfill this
requirement. With component reuse in place we will be quite unlikely to sat-
isfy this requirement, because it will be difficult, if not impossible, to find a
third-party component that exactly matches the required interface of the in-
tegrating component. We will be able to find existing components that match
the requirements of an integrating component only to a certain extent. How
existing components are reused is described in more detail in Subsec. 2.5.3.

38 2 Component-Based and Model-Driven Development with UML

:User

<<Komponent>>
<<Subject>>

:VendingMachine

loop

insertCoins

alt

loop

selectItem

alt

dispense Change

dispense Item

dispense Coins

[abort]

[Item available &
amount >= Item.Price
OR abort]

[! abort]

[abort & Coins
Inserted]

sd Purchase Item

Fig. 2.9. Context realization interaction model for the vending machine context
according to the use case description for Purchase Item

2.3 Component Specification

A component specification is a collection of descriptive documents that define
what a component can do. Typically, each individual document represents
a distinct view on the subject, and thus only concentrates on a particular
aspect of what a component can do. A component specification may be repre-
sented by natural language, or through graphical representations, such as the
UML, and formal languages, such as the Object Constraint Language (OCL)
defined in the UML standard [118], or the QoS Modeling Language for speci-
fying quality-of-service criteria [64]. Whatever notation is used, a specification
should contain everything that is necessary to fully use the component and
understand its behavior. As such, the specification can be seen as defining the

2.3 Component Specification 39

provided and required interface of the component. Therefore, the specification
of a component comprises everything that is externally knowable

• about its structure in the form of a structural model, and this comprises
the other associated components, at its provided interface as well as at its
required interface,

• about its function in the form of a functional model, and this comprises
its provided and required operations,

• about its behavior in the form of a behavioral model, and this comprises
its pre and postconditions.

Figure 2.10 illustrates these parts. Not all of them are mandatory, and they
may change from project to project or from component to component; the
picture in Fig. 2.10 represents rather a complete framework for a component
specification. These artifacts are described in detail in the following. Addi-
tionally, a specification should comprise non-functional requirements; these
represent the quality attributes stated in the component definition in Fig.
1.3. They are part of the quality assurance plan of the overall development
project or the specific component. The quality assurance plan is summarized
in Sect. 2.7, but this book is essentially about a sound quality assurance plan
for the KobrA method that focuses on testing as a dynamic quality assurance
technique. A complete documentation for the component is also desirable, and
a decision model that captures the built-in variabilities that the component
may provide. Such variabilities may be supported through configuration inter-
faces, but they are not considered here. The specification of a new component
always represents a step down in the decomposition dimension in Fig. 2.2.

2.3.1 Structural Specification

The structural specification defines operations and attributes of the considered
subject component, and the components that are associated with the subject
(e.g., its clients and servers), as well as constraints on these associations. This
is important for defining the different views that clients can have on the sub-
ject. A structural specification is traditionally not used in software projects.
Only the advent of model-driven development approaches has increased its
importance as specification artifact. As a UML class or object model, the
structural specification provides a powerful means for the definition of the na-
ture of the classes and the relationships by which a component interacts with
its environment. It is also used to describe any structure that may be visible
at its interface [6]. Figure 2.11 displays the specification structural model for
the vending machine component. It is different from the context realization
structural model since the focus is here on the system itself rather than its
environment. The diagram is very similar to the containment hierarchy in Fig.
2.11 because the externally visible structure of the vending machine reflects
the way in which the system may be ideally decomposed. The definitions of

40 2 Component-Based and Model-Driven Development with UML

Functional
Model

Behavioral
Model

Structural
Model

<<subject>>
Component

Specification

Quality
Assurance

Plan

Project
Quality

Assurance
Plan

Decision
Model

Documentation

Operation
Specification

UML
State

Diagram

UML
Class

Diagram

UML
Object

Diagram

Fig. 2.10. Main descriptive artifacts in a component specification

the operations of the vending machine differ slightly from the original con-
text realization structural model, in that we can now be more concrete about
the component implementation. The specified operation Abort in the con-
text realization will be implemented through the operation SelectItem with
Item=Abort as input parameter. We can indicate that through the comment
in the class VendingMachine. In order to maintain consistency between the
two models, we may either change the context realization model after this de-
cision, and indicate the implementation through a comment in the model, or
amend the vending machine realization model that describes the implemen-
tation of this interface. This would map the operation Abort to the operation
call SelectItem(SelectionType Item=Abort) where Abort represents a pre-
defined key for this command. In any case, we have to go back to the other
models and change them according to our recent design decisions.

2.3 Component Specification 41

<<subject>>
VendingMachine

insertCoins (CoinType Coin)
selectItem (SelectionType Item)
<<variant>> insertCard (CardType Card)

<<variant>>
<<Komponent>>

CardReader

readCard

CardType

<<Komponent>>
Display

<<Komponent>>
Keypad

Price

Selection
Type

<<Komponent>>
DispenserUnit

<<Komponent>>
CashUnit

CoinType

dispenseCash

dispenseItem

Realization of Abort:
SelectItem

(SelectionType Item =
Abort)

Fig. 2.11. Specification structural model for the vending machine component

2.3.2 Functional Specification

The purpose of the functional specification is to describe the externally visible
effects of the operations supplied by the component. The collection of these
operations is its provided interface. A template for a complete functional spec-
ification for one single operation of a component is depicted in Table 2.3. This
template is used by the KobrA method, and has been initially proposed by
the Fusion method [33]. The most important items on the list in Table 2.3 are
the Assumes and Result clauses, which represent the pre and postconditions
for the operation. These are essential for testing its correctness. The Assumes
clause, or the precondition, defines what must be true for the operation to
guarantee correct expected execution, and the Result clause, or the postcon-
dition, describes what is expected to become true as a result of the operation
if it executes correctly. It is possible to execute the operation if its Assumes
clause is false, but then the effects of the operation are not certain to satisfy
the postcondition. This corresponds to Meyer’s design-by-contract principles
[112]. The basic goal of the Result clause is the provision of a declarative de-
scription of the operation in terms of its effects. This means, it describes what
the operation does, and not how it does it. Pre and postconditions typically
comprise constraints on the inputs provided, the outputs provided, the state
before the operation invocation (or its initial state), and the state after the
operation invocation (or its final state) [6, 111]. Any notation for expressing
pre and postconditions may be used depending on the intended purpose and

42 2 Component-Based and Model-Driven Development with UML

domain of the system. A natural choice for expressing them may be the OCL.
In the KobrA method, the functional specification is represented by a collec-
tion of all operation specifications that are defined by the template depicted
in Table 2.3.

Table 2.3. Operation specification template according to the KobrA method and
Fusion

Name Name of the operation

Description Identification of the purpose of the operation, followed
by an informal description of the normal and exceptional
effects.

Constraints Properties that constrain the realization of and imple-
mentation of the operation.

Receives Information input to the operation by the invoker.

Returns Information returned to the invoker of the operation.

Sends Signals that the operation sends to imported components
(can be events or operation invocations).

Reads Externally visible information accessed by the operation.

Changes Externally visible information changed by the operation.

Rules Rules governing the computation of the result.

Assumes Weakest precondition on the externally visible states of
the component and on the inputs (in receives clause) that
must be true for the component to guarantee the post-
condition (in the result clause).

Result Strongest postcondition on the externally visible proper-
ties of the component and the returned entities (returns
clause) that becomes true after execution of the opera-
tion with a valid assumes clause.

2.3.3 Behavioral Specification

The object paradigm advocates the encapsulation of data and functionality in
one single entity, the object. This is one of the most fundamental principles of
object technology. It leads to the notion of states, and the transitions between
states, that typically occur in objects when they are operational. The com-
ponent paradigm subsumes the principles of object technology as discussed
before, and therefore it is based on exactly these principles as well.

2.3 Component Specification 43

Table 2.4. Example operation specification for VendingMachine::SelectItem

Name SelectItem

Description User selects an item to buy.

Constraints <none>

Receives SelectedItem.

Returns SelectedItem.Price OR SelectedItem.

Sends SelectedItem.Price to the Display OR/AND
DispenseItem to the Dispenser.

Reads Amount from the CashUnit.

Changes Number of items in the DispenserUnit.

Rules If [CoinsInserted] AND
SelectedItem = Abort dispenseChange;
If [Item.Empty] display empty;
If ([Idle]OR[Amount < Item.Price]) AND
[!ItemEmpty] display SelectedItem.Price;
If [CoinsInserted] and [Amount >= Item.Price]
dispenseItem();

Assumes Vending machine is Idle OR CoinsInserted.

Result Item AND/OR Change (if applicable) dispensed; OR
Item Empty/Item.Price displayed.

Components may have states. If a component does not have states, it is
referred to as functional object or functional component, meaning it has no
internal attributes that may be exhibited through its provided interface. In
other words, a pure functional component does not exhibit externally visi-
ble states and transitions. It may, however, have internal states that are not
externally visible, for example, states that could be exhibited by subsequent
contained components.

The purpose of the behavioral specification (or the behavioral model) is
to show how the component behaves in response to external stimuli [6]. It
concentrates on the Assumes and Result clauses of the functional specifica-
tion that define the pre and postconditions of an operation. If the component
has no states, then the pre and postconditions do not define an initial state
for which an operation invocation is valid, or a final state in which an opera-
tion invocation results. In this case, we are only concerned with distinct input
with which the operation may be called that results in a distinct output of
the operation call. For this, we do not necessarily need a behavioral model.
The cohesiveness of functional objects is entirely arbitrary, because in object
technology cohesion is defined through the data that the operations mutually

44 2 Component-Based and Model-Driven Development with UML

access and change. Object technology is therefore focused on data cohesion
while in traditional development we may refer to functional cohesion, mean-
ing functions that have a similar purpose are grouped into components or
modules. In any case, if the component is based on states, and most compo-
nents are, the behavioral model expresses a great deal of the complexity in
the pre and postconditions that are inherently defined through the collection
or combination of all operation specifications.

The behavioral specification (or behavioral model) describes the behavior
of the objects or instances of a component in terms of their observable states,
and how these states change as a result of external events that affect the
component instance [16, 111]. A state is a particular configuration of the data
values of a component’s internal attributes. A state itself is not visible. What
is visible, or externally observable, is a difference in behavior of the component
from one state to another when operations are invoked. In other words, if the
same message is sent to a component instance twice, the instance may behave
differently, depending on its original state before the message is received. A
transition, or change from one state into another, is triggered by an event,
which is typically a message arrival. A guard is a condition that must be true
before a transition can be made. Guards are used for separating transitions
to various states that are based on the same event [111]. Guards in state
models are similar to decisions in traditional control flow graphs. They define
input parameter domains for which the component behaves differently, i.e.,
switches into a different state, or performs different operations. The behavioral
specification in KobrA is represented by one or more UML state diagrams or
state tables. Figure 2.12 displays the specification behavioral model for the
vending machine component, and Table 2.5 displays the corresponding state
table. Both forms contain more or less the same information. The first form
is easier to read and understand, and the second form is better for automatic
processing and deriving test cases.

2.4 Component Realization

A component realization is an accumulation of descriptive documents that
collectively define how a component is realized. A realization should con-
tain everything that is necessary to implement the specification of a compo-
nent. A higher-level component is typically realized through a combination
of lower-level components (through composition) that are contained within
it and act as servers to the higher-level component. Additionally, the real-
ization describes the items that are inherent in the implementation of the
higher-level component. This is the part of the functionality that will be local
to the subject component, and not implemented through subcomponents. In
other words, the realization defines the specification of the subcomponents,
this is the expected interface of the component, and it contains additionally
its own implementation. Its own implementation corresponds to its private

2.4 Component Realization 45

Idle

entry / amount = 0
Display amount

CoinsInserted

entry /
amount +=
coin.value

T1.setTimer (3 sec)
do/

Display amount

InsertCoin

Select Abort on
Keypad

/ Return Inserted
Coins

InsertCoin

Select Item on Keypad
[Amount < Item.Price]

T1.Timeout
/ Dispense

Inserted
Coins

Select Item
[! EmptyItem]
Display Item.Price
Delay for 1 sec
[else]
Display Empty
Delay for 1 sec

Select Item on Keypad
[Amount = Item.Price]
Dispense Item

Select Item on Keypad
[Amount > Item.Price]
Dispense Item
Dispense Change

Select Item on Keypad
[Empty Item]
Display Empty
Dispense Change

Tmax < 3 sec

sm VendingMachine

Fig. 2.12. Behavioral specification of the vending machine in the form of a state-
chart diagram

design that the user of the component does not see. Hence, a component
realization describes everything that is necessary to develop the implementa-
tion of the specified component. This comprises the specifications of the other
server components on which the subject component relies, in other words how
its required interface is implemented, as well as its internal structure, and
the algorithms by which it performs its specified functionality. Therefore, the
realization comprises documents for specifying a component’s

• internal structure through a structural model in the form of UML class
and object diagrams,

• the algorithms by which it calculates its results through an algorithmic
model in the form of UML activity diagrams, and

• its interactions with other components through an interaction model in
the form of UML sequence and collaboration diagrams.

After we have specified a component’s expected interfaces with other subordi-
nate components can we start implementing it internally. I have summarized

46 2 Component-Based and Model-Driven Development with UML

Table 2.5. Behavioral specification of the vending machine in the form of a state
transition table

Initial State
& Precond (Guard)

Operation,
Transition

Result Final State &
Postcond

Idle AND
[!EmptyItem]

SelectItem (Item) Display Price Idle

Idle AND
[EmptyItem]

SelectItem (Item) Display Empty Idle

Idle InsertCoin (Coin) Display Amount CoinsInserted

CoinsInserted InsertCoin (Coin) Display Amount CoinsInserted

CoinsInserted AND
[Amount <
Item.Price]

SelectItem (Item) CoinsInserted

CoinsInserted AND
[Amount ==
Item.Price]

SelectItem (Item) dispense Item Idle

CoinsInserted AND
[Amount >
Item.Price]

SelectItem (Item) dispense Item
dispense Change

Idle

CoinsInserted
[EmptyItem]

SelectItem (Item) Display Empty
Dispense Change

Idle

CoinsInserted
[Item == Abort]

SelectItem (Item) Dispense Cash Idle

the artifacts in a component realization in Fig. 2.13, and explain them in more
detail in the next subsections.

2.4.1 Realization Structural Specification

The purpose of the realization structural model is to describe the nature of
the classes, and their relationships, of which the component is made (i.e., its
subcomponents), and the internal architecture of the component. In general,
the structural model consists of a number of class and object diagrams [6].
Realization class diagrams describe the classes, attributes, and relationships
between the classes of which a component is made. The component that is the
focal point of the diagram is augmented with the stereotype �subject�. Fig-
ure 2.14 displays the UML class diagram representing the internal structure of
the VendingMachine component. The realization structural model is typically
a refinement of the specification structural model, so it contains a superset of
the information represented in the component specification; all elements that

2.4 Component Realization 47

Interaction
Model

Behavioral or
Algorithmic

Model

Structural
Model

UML
Class

Diagram

<<subject>>
Component
Realization

Quality
Assurance

Plan

Project
Quality

Assurance
Plan

Decision
Model

Documentation

UML
Object

Diagram

UML
Activity

Diagram

UML
State

Diagram

UML
Sequence
Diagram

UML
Collaboration

Diagram

Fig. 2.13. Main descriptive artifacts in a component realization

are displayed there are also relevant to the realization, but are described here
in more detail. Additionally, the realization comprises elements that are not
visible at the specification level, since they are not important for using the
component properly.

Figure 2.14 also displays the subordinate components of the subject in-
dicated by the stereotype �Komponent�, but there are additionally some
classes that make up the internal implementation of the VendingMachine.
Komponent stands for KobrA component [6]. We have a timer that triggers
the return of change after some time in which the user shows no activity. We
need a list to keep track of the items that have been sold and that are still
available in the dispenser. This can be seen as an internal representation of the

48 2 Component-Based and Model-Driven Development with UML

externally implemented real world, so important for embedded systems. The
size of the list depends on the size of the dispenser, so we have a dependency
association with the dispenser. We also need a list of possible coins that may
be accepted by the CashUnit. And this is dependent upon the type of the
CashUnit that we are going to buy from an external provider. For some of the
subsequent components we can also begin already to define the expected in-
terface. But this is a highly iterative process, and it depends heavily on which
third-party component implementations we will find. According to their spec-
ifications, we have to change the required interface definition of the subject.
For some component interactions we can be more concrete, in particular for
those that invoke operations on the subject component; for others we can
be only less specific. The definitions will be refined in subsequent modeling
iterations when we have a clearer idea of how we will implement them.

2.4.2 Realization Algorithmic Specification

The algorithmic specification comprises a number of activity specifications
that describe the algorithms by which the operations of a component are im-
plemented. Figures 2.15 and 2.16 show the UML activity diagrams for the
operations insertCoin and selectItem of the VendingMachine component.
Some of the activities will have to be refined during later modeling phases, as
soon as the collaborations with other components are determined more con-
cretely. For example, we have specified that some signals are going to invoke
operations, but we have still not specified how the signals will be handled
and processed. Therefore, some of the activities in the diagram will map to
additional private procedures. We will then have to include these procedures
in the other models, for instance, in the realization structural model of the
VendingMachine. The next step would be to define these procedures in the
same way, as part of the realization algorithmic model. Activities that are not
operations of a component may also be refined and specified through activity
specifications that take the form and shape of operation specifications given in
the template in Table 2.3. We could also define the operations in a program-
ming language such as Java. In this case, we would come up with the most
concrete representation of an operation, and we would have essentially com-
pleted the embodiment step for this particular item. But it would constrain
us with respect to how we will have to implement the other components, and
this is not really desirable in such early modeling phases.

2.4.3 Realization Interaction Specification

Activity diagrams provide a flowchart-like picture of the algorithm for an
operation, and thus emphasize flow of control. Interaction models display
similar information, but from the perspective of instance interactions rather
than control flow [6]. Interaction diagrams describe how a group of in-
stances collaborates to realize an operation, or a sub-activity of an oper-
ation. Figure 2.17 displays a UML collaboration diagram for the activity

2.4 Component Realization 49

<<Subject>>
Vending Machine

Amount : Currency

selectItem (Item)
selectItem (Item = Abort)
insertCoin (Coin)
<<variant>> insertCard (Cardtype
Card)

Item

ID : Integer
Price : Currency
Volume : Integer
<<variant>> lowVolume : Integer

1

1.. maxNoOfItems

<<Komponent>>
Keypad

<<Komponent>>
Display

<<variant>>
<<Komponent>>

CardReader

<<variant>>
<<signal>>

CardInserted

insert
Card

<<Komponent>>
DispenserUnit

dispense
(Item.ID)

<<constrains>> <<Komponent>>
CashUnit

controls

insertCoin

<<signal>>
CoinInserted

Coin : Integer

Timer

Timeout : Seconds

setTime (Timeout)

setTime

notifies
<<signal>>

Timeout

Coin

ID : Integer
Value : Currency
Volume : Integer

1

1.. maxNoOfCoins

<<constrains>>

<<uses>><<uses>>

<<uses>>

<<uses>>

Fig. 2.14. Realization structural model of the VendingMachine component

VendingMachine.insertCoin and Figure 2.18 displays a UML collaboration
diagram for the activity VendingMachine.selectItem. For small activities
it is typically not necessary to create both, activity diagram and interaction
diagram, because the algorithm may be quite clear. For larger activities it is
often helpful to have both views available.

We have now created the first design models of our top-level component
VendingMachine. For some of the subordinate components we have more con-
crete ideas of what they are supposed to look like; for others we are less
concrete. The next step is to search for existing components that fulfill the
relevant requirements of the expected interfaces of the VendingMachine com-
ponent described in the realization models. Since we play the role of a vending

50 2 Component-Based and Model-Driven Development with UML

Add
Coin.Value to

Amount

Display
Amount

insertCoin (Coin)

Fig. 2.15. Realization algorithmic model for the operation insertCoin of the Vend-
ingMachine component

machine provider, we assume some knowledge of our domain, and we expect
to find the components that we have specified in the containment tree (Fig.
2.3). Typically, the next step is to integrate the components found into our
existing model. This corresponds to an embodiment step, and additionally, a
composition step as described in Sect. 2.1. Later, we will have a look at how
real systems are devised from abstract models. Now, I will present only a brief
overview. We will have a closer look at the embodiment activity in Chap. 5,
which deals with implementation technologies.

2.5 Component Embodiment

Embodiment refers to all activities that aim at turning an abstract represen-
tation of our system, for example, a model of a component, into more con-
crete representations of that model, for example, an executable and deployable
physical component. This corresponds more to the implementation activities
and products of the traditional waterfall and V-model, while the more ab-
stract component modeling activities along the other dimensions correspond
more to the analysis and design products and activities that the waterfall and
V-model define [41, 124]. Under the KobrA method, the entire system that
will be developed is represented as a single component at the highest possible
level of decomposition, and as a single component model at the highest possi-

2.5 Component Embodiment 51

Dispense
Change

Display
Amount

Display
Empty

Dispense
Item

[Item.ID = abort] [else]

Amount = 0

[Item.
Volume = 0]

[Item.Price >
Amount]

Calculate
Change

Calculate Coins
from Change

Dispense
Coins

[else]

[Item.Price <
Amount]

Dispense Coins
Accept Amount

selectItem

Item

Fig. 2.16. Realization algorithmic model for the operation selectItem of the Vend-
ingMachine component

ble level of abstraction. So, before any software can be deployed and run, this
high-level component must be transferred into lower-level components along
the decomposition dimension as well as along the concretization dimension.
Finally, the system can be brought into a binary form. These steps are il-
lustrated in Fig. 2.19, and they involve modeling activities on lower levels of
abstraction, as well as writing or generating code, invoking compilers, and em-
ploying configuration tools that, for example, essentially distribute the system
over a number of nodes. The transition from the source code into a binary
format is usually performed automatically through some translators, genera-
tors, compilers, linkers, etc. However, the transition from the model into the
source code is much more difficult, and typically involves a quite extensive
manual development effort. This transition is typically performed in a single

52 2 Component-Based and Model-Driven Development with UML

<<Komponent>>
:Display

<<Subject>>
:VendingMachine

1: insertCoin (Coin)

2: Display (Amount)

User

sd insertCoin (Coin)

Fig. 2.17. Realization interaction model for the operation insertCoin of the Vend-
ingMachine component

step [26], as illustrated in Fig. 2.20, although it is not simply done by pressing
a button and invoking a compiler.

The transition between model and code creates a semantic gap because
it represents a change in the notation used. On one side we have the con-
cepts of the UML, on the other side we have the concepts of the programming
language used. In order to cross this gap, we have to translate the meaning
of the concepts of the model into the appropriate concepts of the program-
ming language. Initially, this does not seem to create any difficulties, because
most object-oriented programming languages directly provide or at least sup-
port most of the UML’s concepts. But the semantic gap becomes much more
apparent if traditional procedural programming languages are used as the
implementation technology. These support hardly any of the UML’s primary
concepts directly, because the UML is a notation that is heavily based on
object technology. Even most object-oriented languages are quite diverse, and
it is often difficult to exchange or even compare their concepts.

Performing the manual transformation directly from the model into the
code, as suggested in Fig. 2.20, often requires implicit design decisions on the
programming language level that may considerably deviate from what the
model is actually defining. So, it is often difficult for different stakeholders
of a system to understand that some source code is actually implementing
a particular model. And this directly undermines the very principles of us-
ing and applying model-based approaches. The reason for this is that the
modeling activities are typically performed only for high-level architectural
specifications that provide a coarse-grained view of an entire system, and

2.5 Component Embodiment 53

Text

<<Komponent>>
:Display

<<Subject>>
:VendingMachine

1: selectItem (Item)

3: [Item.Price > Amount] display (Amount)
4: [Item.Volume = 0] display (Empty)

User

<<Komponent>>
:CashUnit

<<Komponent>>
:Dispenser

2: [Item.Id = Abort] dispense (Coins)
5.1: [Item.Price < Amount] dispense (Coins)

5: [! 2-4]
dispense
(Item)

sd selectItem (Item)

Fig. 2.18. Realization interaction model for the operation selectItem of the Vend-
ingMachine component

that the implementation is immediately based on such high-level design or
analysis models [170]. Essential design decisions are therefore implicitly taken
in the final source code but never documented in the models. This is because
developers tend to intermingle the two separate and orthogonal activities, re-
finement and translation, and then have to deal with different representation
formats and different levels of detail at the same time. In the next subsection
I will briefly explain how the semantic gap between model and code may be
bridged by separating these two concerns.

2.5.1 Refinement and Translation

In general, refinement is defined as a relation between two descriptions of
the same thing or in the same notation. In other words, it is the description
of the same thing at a level of greater detail [25]. Translation represents a
relation between two different descriptions or notations usually at the same
level of detail. Mixing these two different approaches in a software development
project will quite likely lead to complex representations that are difficult to

54 2 Component-Based and Model-Driven Development with UML

Composition

Concretization
Abstraction

Decomposition
Many Components -
Concrete Representation

One Component -
Abstract Representation

Analysis/Design
Activities in the
V-Model

Implementation
Activities in the

V-Model

Spiral Approach
of the KobrA

Method

Fig. 2.19. Spiral approach of the KobrA method vs. approach of the waterfall/V-
model

Abstraction

Composition

Concretization

Decomposition

Component
Realization

Component
Source
Code

Component
Source
Code

Component
Source
Code

Component
Source
Code

Physical
Component

Component
Implementation

Level

Component
Modeling

Manual
Transformation Automatic

Transformation

Component
Embodiment

UML
Models

Source
Code

Binary
Code

Fig. 2.20. Refinement and translation (Manual Transformation) in a single step

2.5 Component Embodiment 55

understand. In the worst case it will lead to a final system that does not
implement its specification according to the models. Consequently, refinement
and translation should be separated and performed as individual activities,
as illustrated in Fig. 2.21. Here, the idea is to refine the existing models to a

Abstraction

Composition

Concretization

Decomposition

Component
Realization

Component
Source
Code

Component
Source
Code

Component
Source
Code

Component
Source
Code

Physical
Component

Component
Implementation

Level

Component
Modeling

Automatic
Transformation

Component
Embodiment

UML
Models

Source
Code

Binary
Code

Implementation-
Specific
Model

Refinement

Translation

Fig. 2.21. Refinement and translation in two separated steps

predefined level of detail in a first step that can then be easily translated into
code in a second step. This leads to the problem of defining the appropriate
levels of detail that are suitable for translation into a particular programming
language. This problem can be solved through implementation patterns such
as the Normal Object Form that is introduced in the next subsection.

2.5.2 The Normal Object Form

UML profiles can be defined according to a number of different motivations,
for example, a testing profile that adds testing concepts to the UML (this
is described in more detail in Chap. 3). Implementation profiles are used to
support the mapping of UML constructs into concepts of a programming lan-
guage. A profile adds concepts to the core UML, together with associated
constraints on these concepts, to define a set of modeling artifacts that are

56 2 Component-Based and Model-Driven Development with UML

tailored specifically to support implementation in a particular programming
language. For example, a Java implementation profile could be defined to cap-
ture Java’s standard concepts in the UML, or a more exotic C implementation
profile could be created to map UML concepts to C.

The Normal Object Form (NOF) [25, 27] represents such an implemen-
tation profile that maps the UML to the core concepts of object oriented-
programming languages. It can be seen as a minimal set of artifacts for map-
ping the UML to any object-oriented programming language, and it should be
refined to capture the more specific concepts of a particular object-oriented
programming language, for example, Eiffel. As a UML profile, the NOF spec-
ification consists of [6]:

• a UML subset that contains modeling elements closely related to the im-
plementation level,

• new model elements based on UML stereotypes,
• constraints on the use of existing and new modeling artifacts.

NOF models are valid UML models, with the difference that the UML comes
only close to object-oriented programming language concepts, while NOF per-
mits the UML to be used to write model-based programs in object-oriented
languages. NOF models represent an object-oriented program in graphical
form as if it would be written in source code. In fact, it represents a notation
that, given the right tools, can be transformed automatically into the corre-
sponding appropriate programming language. In this respect, it supports well
the ideas of the Object Management Group’s Model-Driven Architecture [79].

2.5.3 Component Reuse

Component reuse represents activities in both dimensions, composition/de-
composition and abstraction/concretization. The normal case in reality is that
the reused component will not be entirely fit for our expected interfaces, so
component reuse typically involves

• changing our existing model to accommodate the deviating properties,
• changing the reused component in order to suit the integrating model, or
• coming up with an adapter that accommodates both views, that of our

component and that of the reused component.

In the first instance we have to develop the required interface of our reusing
component according to the provided interface of our reused component. But
this really is bad practice, and it directly goes against the very ideas of
component-based development. We would have to amend the VendingMachine
component whenever we choose to integrate and deploy it with slightly differ-
ing other component implementations. In the second case, we would have to
do the same for the reused component. Although in theory feasible, because
we would have to amend the model of the reused component, this is normally

2.5 Component Embodiment 57

much more difficult because, in particular for third-party components, we
will not get any implementation-level representations but only binary code.
In this case, we will fail in the embodiment dimension, so this is also not a
solution. In the third case we have to insert another so-called adapter com-
ponent that performs the mapping between the two deviating interfaces. For
simple integrations this may only require a syntactic mapping of the interface
operations, and the connection will work. Many of the contemporary com-
ponent technologies provide such a syntactic mapping mechanism, but this is
described in Chap. 5, where we will take a closer look at implementation tech-
nologies. For more complicated mappings, and this is by far the most common
case, we will have to also build a semantic mapping between the two inter-
acting entities. This translates what one component “means” into something
that the other component can “understand.” Such a wrapper component, that
essentially encapsulates the server component is also called “glue code.”

<<Komponent>>
VendingMachine

<<subject>>
<<Komponent>>

CashUnit

<<Mechatronics>>
CoinSafe

<<Mechatronics>>
CoinChecker

<<Mechatronics>>
CoinDispenser

<<Mechatronics>>
TemporaryCoin

Store

Fig. 2.22. Containment hierarchy for the CashUnit

If we do not find existing components, we have to realize them ourselves.
In this case we have to decompose the missing components further until we
find some matching implementations. Then, we can go back and try again to
integrate them. For example, assume that for our VendingMachine we cannot
find an appropriate commercial component that could act as our CashUnit.
We have to see which other parts may be available on the market that could
implement our specification of the CashUnit. If we have a look at the Web
pages of relevant companies, we may come up with four subcomponents that

58 2 Component-Based and Model-Driven Development with UML

are typically used for such a module. We can then refine the containment
hierarchy to accommodate these components. This process is displayed in
Fig. 2.22. Finally, we go through the same cycle of development steps for
the CashUnit component that we have performed for the VendingMachine
component. We start with the context of the CashUnit. In this case it is the
component realization for the VendingMachine that we have already defined.
When we have identified suitable third-party candidates that come close to
our specification, we have to integrate the most suitable one into our overall
component model. This activity is described in the next paragraph.

2.5.4 COTS Component Integration

The simplest way of reusing an existing component is possible if the spec-
ification of both the reusing and reused component are equivalent. This is
the general case for any custom development where every contained subordi-
nate component is crafted exactly according to the needs of the containing
superordinate component. This scenario is displayed on the left hand side of
Fig. 2.23. In contrast, the integration of third-party components usually deals
with additional differences, syntactic as well semantic, in the required and the
provided interfaces. This scenario is displayed on the right hand side of Fig.
2.23.

subordinate

superordinate

Agreed Interface

Custom Development
Third Party Component

Based Development

Reused
Component

Reusing
Component

Provided
Interface

Required
Interface

Reused
Component

Reusing
Component

superordinate

subordinate

Fig. 2.23. Custom-designed component integration vs. third-party component in-
tegration

2.5 Component Embodiment 59

Component integration needs to take place at all abstraction levels of a
development process. In other words, the description of the component needs
to be adapted according to the description used throughout the development
process. In our case, the descriptions are based on UML models. Consequently,
in order to fully map what a third-party component offers to what our own
integrating component requires, and to be able to compare both, we need to
create a UML-compliant specification of the reused building block. This rep-
resents an integration effort at the abstract model level, and it is facilitated
through a so-called conformance map [6]. The conformance map describes
a COTS component’s externally visible features in terms of a mapping be-
tween the notation of the reused component and the notation of our own
development process. And it can only perform this mapping if the informa-
tion provided by the documentation of the reused component is complete and
correct with respect to its structural, behavioral, and functional information.
For many COTS components this information may be present and usable, but
it may well be distributed and organized in an odd way, so that it becomes
difficult to perform the mapping. In general, the conformance map can be
seen as a description of the COTS component according to our own prevail-
ing notation, and it will comprise a component specification with its provided
and required interfaces, and offer all relevant models that are needed to fully
describe the COTS component and understand its behavior. We can only de-
cide whether a component is fit for our purpose with full confidence if we have
created the conformance map, and the required and provided interfaces for
both components become directly comparable.

If we decide to use a component according to a positive evaluation of
the conformance map, the next step is to devise a so-called semantic map.
This concentrates on the similarities and differences of the two component
specifications, and attempts to model a mapping between the two deviating
interfaces. Basically, it describes how transactions from the reusing superordi-
nate component must be translated into a form so that the reused subordinate
component can understand it, and vice versa, so that both units will perform
meaningful interaction in tandem. In reality, this amounts to the specification
of a wrapper component that wraps around the original COTS component
and encapsulates it. More generally, we may speak of a component adapter,
that will be integrated between the two components, as providing an inter-
face that is compliant with the superordinate component and requiring an
interface that is compliant with the subordinate component. This adapter is
a component in its own right and it is defined exactly according to the KobrA
development principles that have been introduced in this chapter. Ideally, it
will not be accommodated at the same level of abstraction as the two other
functional components within the component containment hierarchy. It must
be regarded more as belonging to a lower-level model further down in the
concretization dimension, and it merely realizes the connection between two
higher-level components; other than that it represents important functional-

60 2 Component-Based and Model-Driven Development with UML

ity of the overall application. This process of COTS component integration is
illustrated in Fig. 2.24.

subordinate

Reused
Component

superordinate

Reusing
Component

Provided
Interface

Required
Interface

Conformance
Map

subordinate

Reused
Component

superordinate

Reusing
Component

Semantic
Map

Required
Interface

Provided
Interface

Conformance
Map

subordinate

Reused
Component

superordinate

Reusing
Component

Provided
Interface

Required
Interface

superordinate

Component
Adapter

Fig. 2.24. Third-party component integration with adapter

2.5.5 System Construction and Deployment

There are two important steps missing to come up with a final system while
moving down toward the end of the dimension that is associated with the
embodiment activity: construction of the physical components and their de-
ployment on the actual target platform. In the previous subsection, I have
addressed the problems that are inherent in reusing and integrating existing
components at a higher level of abstraction. There, we were still dealing with
the model level, because with a COTS component we already have a physical
deployable component. Here, I will give some details on how custom designed
components are turned into physical executable artifacts if no appropriate
third-party building blocks can be found. Development methods always fol-
low the “divide and conquer” principle and encourage a logically organized
architecture of a system. This is because development methods are centered
around human needs, and the apparent lack of human capability of dealing
with large and complex entities. There are many different ways of breaking
a large system into smaller logical units that are individually more manage-
able. For deployment, any such logic organization is entirely meaningless. If a
system will be a stand-alone package that runs on a single computer, it will
quite likely be deployed as a single executable file. Logic components may be
turned one-to-one into corresponding physical components, but usually there

2.6 Product Family Concepts 61

is no obvious reason for why physical components should follow this organiza-
tion. If we deploy a typical component containment hierarchy on a component
platform, such as Microsoft’s DCOM, the platform will actually organize all
components at the same level. It will ignore the nesting rules that the devel-
opment method has applied. Although implicitly, if we execute such a system,
it will abide by these nesting rules, because the top-level component will call
services on lower-level components. But the hierarchy of these components on
the deployment platform will be flat.

The construction of the final system and its deployment follows different
rules, and so this activity is ideally separated from the implementation activi-
ties. Implementation effectively represents a flattening activity that results in
a number of source files that may be compiled individually, and then linked
with other compiled files. As a consequence, we can have different deployment
scenarios:

• One or several logical components are transformed into one physical com-
ponent. This would be a stand-alone executable deployed on a single com-
puter, probably connected with other components on other computers.

• One logical component is transformed into several physical components.
This means that functionality is distributed between nodes. The vending
machine’s RoomBilling component is an example of that. It will be sepa-
rated into one physical component that will run on the physical vending
machine and into another physical component that will run on the hotel’s
billing computer.

• Several logical components are transformed into several physical compo-
nents. This is a combination of the previous two scenarios, and it represents
the organization of typical distributed systems.

How logical components are organized in a physical system and how they are
deployed on a platform is heavily dependent on the type of the system and the
underlying deployment technologies used. I cannot give concrete guidelines on
how a system should finally be constructed and deployed. UML deployment
diagrams represent a suitable way of expressing and defining how logical com-
ponents from KobrA’s containment hierarchy should be distributed over real
platforms, but this is not considered any further.

2.6 Product Family Concepts

Up to now, we have treated component-based system engineering as the ulti-
mate way of realizing reuse. Here, components are seen as the primary reusable
assets. We can either deal with components that have been developed to be
used in a particular system (i.e., custom developments), and are found later to
be suitable also for another system, or we can deal with generic components
that have been developed with the idea of being used in a number of different
applications from the beginning. Components of the first kind are assets that

62 2 Component-Based and Model-Driven Development with UML

have been developed in an organization and maintained over some time, and
that are used over and over again in different contexts. This is probably the
most commonly understood way of software reuse to date. Components of the
second kind usually have a much broader range of deployment, and they have
been specifically purchased to be reused in a single application, or in a number
of different applications. COTS components are typical representatives of this
second kind.

In contrast, a product family elevates the principles of reuse to a much
coarser-grained and more abstract level. Devising a product family is also
termed product line engineering, and this in fact represents reuse on an ar-
chitectural level. A product line or a product family is a generic system or a
generic component framework that can be extended or adapted to instantiate
a suite of similar final products. Product line engineering deals with exploiting
the commonalities of similar systems and managing their differences, and it is
separated into two distinct activities, framework engineering and application
engineering.

Product line engineering is actually a way of organizing reuse for custom
designed components. Most software organizations will operate only in a spe-
cific domain. So, most software components will be similar in most of their
final products. For example, in the vending machine domain we will always
have to deal with dispensers, checkers, and button panels that will reappear
in all vending machine products, maybe organized in a different way or with
slightly different functionality. Product line engineering organizes the common
features of a vending machine in terms of a common core and supports the
development of specific vending machine variants out of that common core in
a certain way. This is illustrated in Fig. 2.25.

The following subsections introduce the two main activities of product line
engineering, framework and application engineering, in more detail. But ini-
tially we will have a look at the mechanisms by which decisions are managed,
and through which we can instantiate a concrete application from a generic
framework.

2.6.1 Decision Models

Product line engineering concepts only make sense if an organization devel-
ops a number of similar products that are belonging to the same domain.
This implies that all products have at least some features in common [6]; oth-
erwise it would be difficult to say how these products may be similar. The
domain of the products is consequently defined through these commonalities.
Variabilities are features that may change from product to product. Simply
defining what is common and what will be variable in a product line is not
enough, because it does not state which variable features will be associated
with which concrete product. Establishing this association is the role of the
decision model. For each decision, it defines

2.6 Product Family Concepts 63

Product 1 Product 2 Product 3 Product 4

Pro
duct

 1
Product 2

Product 3

P
ro

d
u

ct 4

Product
Line

Engineering

Common Core,
Product Line,

Product Family

Fig. 2.25. Product line as intersection of different but similar individual products

• a textual question that is related to the domain and represents the decision
to be made,

• a set of possible answers to that question where each answer maps to a
specific instance of the product line (i.e. final concrete product), and

• the location where this decision is incorporated.

Additionally, it may comprise references to other decisions that have an effect
on, or are affected by, the decision, and a set of effects from or on these other
decisions. Table 2.6 shows a decision model in tabular form according to the
context realization structural model in Fig. 2.7 on page 35.

64 2 Component-Based and Model-Driven Development with UML

Table 2.6. Decision model according to the context realization structural model of
the VendingMachine

No. Question Variation Point Resolution Effect

1.a CCBilling
supported?

VendingMachine no (default) remove Component
CCBilling

yes remove stereotype
�variant�

1.b RoomBilling
supported?

VendingMachine no (default) remove Component
RoomBilling

yes remove stereotype
�variant�

1.a and 1.b are alternatives according to the �xor� stereotype

The decision model supports the instantiation of the product line into a
particular final product. In order to achieve this, we will have to devise a
decision model for each original model that is defined in the development
process, such as the context realization models and the models for component
specifications and realizations. Each model type, such as structural model,
behavioral model, and interaction model will have its own decision model.
The application engineer will have to give the right answers to the questions
in each decision model to come up with a particular instance. Other answers
to these questions in the decision models will lead to different final products.
All the other development activities, such as decomposition, embodiment,
composition, and validation, can be performed in the same way as described in
the earlier sections. The product line engineering concepts do not affect these
activities. They are only seen as a new development dimension as indicated
in Fig. 2.26. This clearly separates the two main activities in that dimension,
framework engineering, which relates to the development of the common core,
and application engineering, which relates to the instantiation of the common
core into a final application. These activities are described in the following
subsection.

2.6.2 Framework Engineering

Framework engineering is concerned with the commonalities of a domain and
the development of the common core for a product line. A framework can
be devised by using essentially the same development principles that I have
introduced in the earlier sections where I explained the principles behind the
KobrA method. A framework is basically an incomplete assembly of com-
ponents that provides a number of loose ends which have to be filled with
additional artifacts. A single system represents a very special case of a prod-

2.6 Product Family Concepts 65

Decomposition

Composition

Specialization

Instantiation

Genericity

Component
Framework

Application

Resolve
 Decisions

Adapt to
 Implementation
 Technologies

FrameworkEngineering

ApplicationEngineering

Embodim
ent

Fig. 2.26. Instantiation of a final application out of a component framework of a
product line

uct family. In fact, a single system is the only representative or instance of
the generic product family.

Any component in a component containment hierarchy stands for an entire
system in its own right. It can represent either a specific system, in the case
where no product line engineering concepts are applied, or it can represent a
family of systems. In the first case, we may refer to it as an application or
a final product. In the second case, the component represents a generic sys-
tem that is made up of generic artifacts, and all its features refer initially to
prospective final products that can be instantiated from the generic system.
Any feature that is referring only to a single final product in the generic com-
ponent may be indicated through the stereotype �variant�. Variant features
are those features that make a product different from the other products in
the family. We require a model for the additional features that turn a generic
system into a concrete system. This is provided by the decision model that
associates the variabilities in the product family that the generic component

66 2 Component-Based and Model-Driven Development with UML

represents to the specific artifacts of a particular product. In other words, all
artifacts in a component specification or realization without the �variant�
stereotype are common to all specific instances of a product line, and all the
artifacts that are augmented with the �variant� stereotype represent lo-
cations where the individual products of a product family are different. The
shaded intersection in Fig. 2.25 represents the set of features that are common
to the four products in the same product line. These features will be modeled
and developed in a normal way, as introduced in the previous sections of this
chapter. Everything else, outside the shaded area, corresponds to variable fea-
tures that do not belong to all members of the product family, but only to
one member, or to some of the members. The differences between individual
products may be quite substantial, including the presence or absence of com-
ponents, or even entire component containment trees [6]. For example, Fig. 2.7
on page 35 shows two �variant� components, CCBilling and RoomBilling,
which do not belong to the generic model of the VendingMachine. These
variants represent very specific instances of VendingMachine, either one that
offers credit card billing, or another one that offers hotel room billing. For
example, a vending machine that provides room billing may be deployed in a
hotel. If we remove the �xor� stereotype in the structural model, we may
instantiate a system that provides both terms of payment at the same time.

Variabilities may appear on any level of abstraction or decomposition of
a system. We can have variant subsystems, variant components, variant at-
tributes and operations of components, and even variant activities within
component operations if we look at the decomposition dimension. In addition,
we will have a distribution of variable features through all levels of abstrac-
tion, so variabilities will be defined in the models and eventually penetrate
into the source code where concrete code artifacts have to be added or re-
moved accordingly. Any variability of a system will be initially defined in
the models, i.e., variant use cases in the usage model, variant components
and classes in the structural model, and variant functionality in the behav-
ioral and functional models. A variant use case in the context realization,
e.g., in Fig. 2.27, penetrates into all other models that deal with this part
of the system’s functionality. In this case, it leads to a variant use case de-
scription �variant�DefineCooling, and eventually to a variant component
�variant�Cooling, depending on how the system architecture is derived
from the usage model. At least we will have a variant operation specification
�variant�DefineCooling that specifies an operation for a final product that
permits a service technician to set the cooling at the vending machine’s local
user interface. Another instance of the product may not permit the cooling
to be adjusted, because it is predefined. The dependencies between variant
features through all models of a product line may easily become quite com-
plex, and it is a difficult task to manage them during a development project.
Here, the primary difficulty is that the relationships between variant features
often become apparent only through the decision model. The framework only
indicates variant features; it cannot relate variant features to individual com-

2.6 Product Family Concepts 67

ponents according to the instance of a system. For example, a distinct variant
operation in the class diagram requires a distinct class attribute. Both variant
features will appear in the framework model, but there will be no indicator
for whether these two variant features are related in some way.

VendingMachine

User

Operator

Purchase
Item

<<variant>>
Define Cooling

Define Item
Prices

Maintain
Cash Unit

Maintain
Dispenser

Fig. 2.27. Example of a usage model with a variable use case

Framework engineering represents a generalization of the component mod-
eling or decomposition and of the embodiment activities, and it is enhanced
to create generic frameworks rather than concrete products. In the remainder
of this section I will summarize the activities that are affected by framework
engineering [6].

Variability Identification

Variability identification is carried out throughout the entire product line
engineering process. Whatever artifact is created within a single development,
the developers have to decide whether it should be a persistent feature, an
optional feature, or a feature that represents alternatives.

Decision Modeling

Decision modeling is carried out in two steps. The first step is to model variable
features at the specification or realization model level and relate the artifacts
to a distinct incarnation of the product line. The second step is to incorpo-
rate these features into the component containment hierarchy. It deals with
how to relate variable component features with the other variable features at
other levels in the composition hierarchy. These are the variable features of
components above or below the component currently considered.

68 2 Component-Based and Model-Driven Development with UML

Component Identification

Component identification is concerned with defining good and sensible reusable
building blocks for the domain in question. For example, factoring out and
encapsulating the variabilities in individual components is a sensible way of
identifying components. This elevates the product line engineering effort to
the component level, so that ideally only complete components are added or
replaced to instantiate a concrete product out of a product line.

Embodiment

Component embodiment in product line engineering can be performed in dif-
ferent ways. We can have either all various implementations for all products
ready for deployment, and decide at start-up or runtime which incarnation
of the system should be used, or we can have only those parts incorporated
that are actually required for a particular system, so that the source code
comprises only a minimal set of features. The following locations throughout
the project life cycle represent feasible solutions for instantiating a component
framework into a final product [6]:

• Implementation time. Certain variable features can be included in or ex-
cluded from the source code.

• Build time. The compiler and the linker can be controlled to include or
exclude certain features. This can be done through simple preprocessor
instructions, i.e., <include> in C.

• Installation time. When the system is finally installed on the target plat-
form, we may select the modules that should be included or excluded. This
must be supported through an installation tool.

• Start-up and runtime. Some of the features of a system can be selected by
the user when it is starting up or running.

However, there is no standard way of approaching the organization of a prod-
uct line-based system during embodiment. All the previously summarized
techniques for dealing with variability can be used depending on the imple-
mentation technology used, the context, and the scope of a system develop-
ment [40]. They are also often subject to strategic decisions of the project
management.

2.6.3 Application Engineering

Application engineering is concerned with the generation of the specific ar-
tifacts that lead to the implementation of a final product. In a product line
engineering project, it does this by instantiating the common core of a prod-
uct line, and this is based on resolving the decisions that have to be made
according to the decision models of the framework. The outcomes of this ac-
tivity are a decision resolution model, the instance of a decision model, and

2.7 Documentation and Quality Assurance Plan 69

a specific component framework with all variable features determined. Fig.
2.26 illustrates this move along the genericity/specialization dimension of the
three-dimensional development model.

The decision resolution model records the steps that have been taken to
come up with the final application, and it contains information about which
set of choices led to the set of features that characterize a component. The
resolution model is essential for recording the transition from a generic frame-
work into a specific application, and it documents the application engineering
activity in a traceable way. A decision resolution model is represented by a
table similar to the decision model that associates a final decision with a
decision of the decision model. The fundamental difference between the two
models is that the decision model provides a range of decisions for each ques-
tion to choose from, while the decision resolution model only represents a
single decision that is associated with a question in the decision model.

Application engineering is typically performed in two steps. In the first
step we have to instantiate the generic or variable features according to the
decision model, and in the second step we have to adapt these features accord-
ing to the development technologies used [6]. Hence, there is a clear temporal
order between the modeling activities that are performed during decompo-
sition of a product line-based system and the embodiment activities in the
abstraction/concretization dimension. Application engineering must therefore
be more closely related with the embodiment activity.

2.7 Documentation and Quality Assurance Plan

An essential part of a component specification, and a complete application
specification, is the quality requirement that must be fulfilled to have an
acceptable product. The specification cannot merely state that the product
should exhibit high quality, or low failure rates, or the like. Such a terminology
is too unspecific, and we can never assess that. Validation always implies a
degree of goodness of an expected property; therefore, the property must be
measurable. Additionally, the properties that define the expected degree of
quality must in the first place be determined. Quality may be defined through
the many differing attributes that a software product is expected to embody.
In order to accommodate the various interpretations and requirements for the
term quality, and to identify concrete practices and techniques from these
abstract ideas, an effective quality assurance plan requires the following items
[6]:

70 2 Component-Based and Model-Driven Development with UML

• A precise definition of what quality means for the development project
considered, and how it manifests itself in different kinds of products.

• A precise description of what quality aspects are important for different
kinds of products, and what quality levels are required.

• A systematic approach for judging the quality and improving it to the
required levels.

• A plan and process to put the previous items together.

One part of a quality assurance plan determines the set of quality assurance
techniques that should be applied in the software project, another part deter-
mines a set of test case selection techniques or test adequacy criteria. These
two are fundamentally different. The former is concerned with theoretical
background, models, and processes that will be applied and followed when a
system is assessed qualitatively (e.g. stress testing, mutation testing, quality
of service testing, contract testing). The latter is concerned with defining the
concrete values for the input and the pre and postconditions of individual
test cases according to some testing criteria (test coverage criteria, random
testing, equivalence partitioning).

There are many standard test case selection techniques that may be ap-
plied within a component-based development project. Which techniques will
be used in a project is subject to careful consideration, and this is typically
part of defining the quality assurance plan. I cannot provide guidelines on
which test case selection technique is the best for a particular purpose. This
is clearly out of the scope of this volume, and it may be the subject of a book
in its own right. I do, however, provide a proposition on how the models that
collectively make up a system specification may be used to generate test suites
for component-based software testing. The next chapter is devoted entirely to
that.

2.8 Summary

Every serious software development project should be based on a sound de-
velopment method. This represents the framework for all activities that a
development team is supposed to perform and, ideally, it gives concrete guide-
lines on which activities must be carried out, how they should be carried out,
when they should be carried out, and by whom they should be carried out.
The KobrA method that I have briefly introduced in this chapter is one such
framework. It is inherently based on the UML, because this is its primary and
native notation, and it supports the concepts of the OMG’s Model-Driven
Architecture. But it provides a lot more.

One of the most important characteristics of this method is the provi-
sion of concrete guidelines for how the UML should be used in a component-
based software development project. The core UML does not offer this. The

2.8 Summary 71

method provides a well-defined way of approaching component-based devel-
opments through the identification of three development dimensions, composi-
tion/decomposition, abstraction/concretization, and genericity/specialization,
with each of which each development activity can be associated. KobrA pro-
vides a number of concepts for dealing with specification artifacts at the sys-
tem level as well as at the individual component level, and these are organized
in component specification and realization. The way in which the method or-
ganizes component assemblies as containment trees realizes a recursive ap-
proach to component modeling that is based always on the same fundamental
descriptive documents.

The remainder of this book can be regarded as devising a supplement to
the KobrA method, which adds an entire UML-based testing framework for
component-based developments. The initial step toward this target is to look
at how the UML can support and realize testing, and this is the subject of
the next chapter: “Model-Based Testing with UML.”

3

Model-Based Testing with UML

Software testing is a widely used and accepted approach for verification and
validation of a software system, and it can be regarded as the ultimate review
of its specification, design, and implementation. Testing is applied to generate
modes of operation on the final product that show whether it is conforming
to its original requirements specification, and to support the confidence in its
safe and correct operation [71, 91]. Appropriate testing should be primarily
centered on requirements and specification not on code, which means that
testing should always aim to show conformance or non-conformance of the
final software product with some requirements or specification documents.
Source code provides a great deal of information to guide the testing efforts
according to testing criteria [11], but it cannot replace specification documents
as a basis for testing. This is because code is a concrete representation of
abstract requirements and design documents, and testing is supposed to show
conformance of the concrete implementation with the abstract specifications.
Testing based merely on source code documents shows that the tested program
does what it does, but not what it is supposed to do.

The Unified Modeling Language (UML) has received much attention from
academic software engineering research and professional software development
organizations. It has almost become a de-facto industry standard in recent
years for the specification and the design of software systems, and it is readily
supported by many commercial and open tools such as Rational’s Rose, Ver-
imag’s Tau, and VisualThought. The UML is a notation for specifying system
artifacts including architecture, components and finer-grained structural prop-
erties, functionality and behavior of and collaboration between entities, and,
at a higher level of abstraction, usage of a system. The UML may therefore
be used to model and specify a computer system completely and sufficiently
in a graphical and textual form, and to drive its realization. It provides most
of the concepts of lower-level implementation notations. The combination of
both, modeling and testing, is represented by the following two orthogonal
dimensions that we have to consider:

74 3 Model-Based Testing with UML

• Model-based testing, which is the development of testing artifacts on the
basis of UML models. In other words, the models provide the primary
information for developing the test cases and test suites, and for checking
the final implementation of a system. This is briefly introduced and related
to traditional testing, in Sect. 3.2, “Model-Based Testing.”

• Test modeling, which is the development of the test artifacts with the
UML. In other words, the development of test software is based on the
same fundamental principles as any other software development activity.
So, in addition to using the UML to derive testing artifacts and guide the
testing process, we can apply UML to specify the structural and behavioral
aspects of the testing software. This is further elaborated in Sect. 3.3, “Test
Modeling.”

The subject of this chapter is driven mainly by the discussions of the Testing
Panel held at the 5th International Conference on the Unified Modeling Lan-
guage (UML 2002) in Dresden, Germany, that was initiated under the topic of
whether the UML and testing may be a perfect fit. In the next section (Sect.
3.1), we will have a look at what makes model-based testing so different from
traditional testing methods. Sections 3.2 and 3.3 describe the two primary
activities that relate testing to model-driven development approaches, as I
have stated above. Section 3.4 summarizes and concludes this chapter.

3.1 Model-Based vs. Traditional Software Testing

Traditional testing concepts (and it is really arguable whether we may refer
to any testing technique as being traditional, as I will explain later) can be
separated roughly into the following categories:

• Error classification. This aims at grouping different types of defects ac-
cording to criteria such as nature, duration, extent, cost and consequences
of a defect, and the classes that are used to assign a testing technique to
address specific types of errors that can occur often.

• Testing artifacts. This comprises the test case with its individual features
such as pre and postconditions, expected and observed outcome, input
parameters, the test driver, test suite or test component that contains and
executes the test cases, and the test bed or test stub that provides the
simulation of the underlying software or hardware modules [124].

• Testing techniques and test case selection techniques. These are the typ-
ical black and white-box testing approaches with their numerous ways of
defining test cases, most of which are described by Beizer [11].

• Testing phases and testing processes. These are the typical testing phases
defined by the V-model, for example, unit test, integration test, system
test, acceptance test, regression test, etc.

3.1 Model-Based vs. Traditional Software Testing 75

There may be other important testing concepts available which are well
known, or some that are not so commonly known or applied, such as lin-
ear code sequence and jump testing (LCSAJ testing) [11], or there may be
other relevant classes of testing concepts, for example, test adequacy criteria
[142]. They all have in common that they are very fundamental testing con-
cepts, and they are also equally valid for more modern object-oriented and
component-based systems, or model-based testing. The target of testing does
not change because of these modern development technologies; only the view
on the different concepts may shift, or, in the case of models, the basis of test-
ing changes. The most fundamental difference between traditional and more
modern model-based approaches is probably the type of notations upon which
testing is based. Traditionally, we used to derive testing from very abstract
specifications, based on natural language at one extreme of the notations spec-
trum, and from the source code at the other extreme of this spectrum. Natural
language is not very suitable as a basis for testing since it is not formal enough
to derive all required testing artifacts. Source code is not really valuable any
more if we consider component-based development where we will not be able
to look at the implementations of most components. Models on the other
hand are extremely useful for deriving all kinds of test artifacts at all levels of
decomposition and abstraction, and they support all test development phases
well. This entire chapter is devoted to that. In the following subsections I will
give a number of examples on how we have to view and apply existing testing
technologies differently when we deal with typical model-based concepts in
object-oriented and component-based software engineering.

3.1.1 White Box Testing Criteria

Coverage is an old and fundamental concept in software testing. Coverage cri-
teria [11] in testing are used based on the assumption that only the execution
of a faulty piece of code may exhibit the fault in terms of a malfunction or
a deviation from what is expected. If the faulty section is never executed in
a test, it is unlikely to be identified through testing, so program path testing
techniques, for example, are among the oldest software testing and test case
generation concepts in software development projects [169]. This idea of cov-
erage has led to quite a number of structural testing techniques over the years
that are primarily based on program flow graphs [11] such as branch coverage,
predicate coverage, or definition-use-(DU-)path-coverage [109], to name a few.
These traditional coverage criteria all have in common that they are based on
documents (i.e., flow graphs, source code) very close to the implementation
level. Traditionally, these coverage criteria are applied only at the unit level,
which sees the tested module as a white box for which its implementation
is known and available to the tester. At a higher level of composition, in an
integration test, the individual modules are treated only as black boxes for
which no internal knowledge is assumed. An integration test is traditionally
performed on the outermost subsystem that incorporates all the individu-

76 3 Model-Based Testing with UML

ally tested units, so that we assume white box knowledge of that outermost
subcomponent but not of the integrated individual units. Traditional devel-
opments only separate between these two levels:

• white box test in unit testing, and
• black box test in integration testing.

Additionally, there may be an acceptance test of the entire system driven
by the highest-level requirements. The more modern recursive and component-
based development approaches do not advocate this strict separation, since
individual units may be regarded as subsystems in their own right, i.e., com-
ponents for which no internal knowledge is available, or integrating subsys-
tems, i.e., components for which internal knowledge may be readily available.
This duality that a component is always a system, and a system is always
a component, and that white and black box knowledge may be assumed de-
pending on the developer’s point of view is part of the principles behind the
composition/decomposition activity described in the context of the KobrA
method in Chap. 2. For individual reused third-party components in a con-
tainment hierarchy we typically assume only black box knowledge. However,
since we integrate these components to compose a coarser-grained system, we
can assume white box knowledge of this system and, more specifically, white
box knowledge of the interactions between the encapsulated components. In
component-based developments we cannot strictly separate the term compo-
nent from the term system; both testing approaches may be readily applied
in parallel according to whether only black box information, e.g., external vis-
ible functionality and behavior, or, additionally, white box information, e.g.,
internal functionality and behavior, is available. In the first case we look at
the component specification documents, its external specification, and check
whether a component instance satisfies this. In the second case we look at
the interactions between the components that collectively implement some
higher-level functionality, and check these.

Typical white box strategies comprise statement coverage or node cover-
age at the lowest level of abstraction. In this instance, test cases may only be
developed when the concrete implementation is available (i.e., for statement
coverage), or if at least the implementing algorithm is known in the form of a
flowchart (i.e., for node coverage). Statement coverage is not typically feasible
or practical with the UML, unless we produce a model that directly maps
to source code statements, but node coverage may be practical if it is based
on a low-level UML activity diagram. Activity diagrams are very similar to
traditional flowcharts, although activity diagrams may also represent collab-
oration between entities (i.e., through so-called swimlanes). Other coverage
criteria such as decision coverage, condition coverage, and path coverage, may
also be applicable under the UML, but this always depends on the type and
level of information that we can extract from the model.

Testing that is based on the UML has many concepts in common with
traditional code-based testing techniques as described in [11]. Source code

3.1 Model-Based vs. Traditional Software Testing 77

can be seen as a concrete representation of a system, or its parts thereof,
and UML models are more abstract representations of the same system. They
are both located in the abstraction/concretization dimension discussed in the
previous chapter. More concrete representations contain more detailed infor-
mation about the workings of a system. They can be compared with zooming
in on the artifacts considered, generating finer-grained representations but
gradually losing the perspective on the entire system. Less concrete, or more
abstract, representations contain less information about details but show more
of the entire system. This can be compared with zooming out to a coarser-
grained level of representation, making it easier to view the entire system but
losing detail. The advantage of using model-based development techniques
and the UML for development and testing is that a system may be repre-
sented entirely by one single notation over all levels of detail that range from
very high-level and abstract representations of the system, showing only its
main parts and most fundamental functions, to the most concrete possible
levels of abstraction, similar and very close to source code representations.
This means that in a development project we are only concerned with re-
moving the genericity in our descriptive documents without having to move
between and ensure consistency among different notations. The same is true
when testing is considered. Code-based testing is concerned with identifying
test scenarios that satisfy given code coverage criteria, and exactly the same
concepts can be applied to more abstract representations of that code, i.e.,
the UML models. In that respect we can have model coverage criteria also
for testing. In other words, more abstract representations of a system lead to
more abstract test artifacts, and more concrete representations lead to more
concrete test artifacts. Therefore, in the same way in which we are removing
the genericity of our representations to receive finer-grained levels of detail
and, eventually, our final source code representation of the system, we have to
in parallel remove the genericity of the testing artifacts for that system and
move progressively toward finer-grained levels of testing detail.

3.1.2 Black Box Testing Criteria

Most functional test-case generation techniques are based on domain analy-
sis and partitioning. Domain analysis replaces or supplements the common
heuristic method for checking extreme values and limit values of inputs [12].
A domain is defined as a subset of the input space that somehow affects the
processing of the tested component. Domains are determined through bound-
ary inequalities, algebraic expressions that define which locations of the input
space belong to the domain of interest [12]. A domain may map to equivalent
functionality or behavior, for instance. Domain analysis is used for and some-
times also referred to as partitioning testing, and most functional test case
generation techniques are based on that. Equivalence partitioning, for exam-
ple, is one technique out of this group that divides the set of all possible inputs
into equivalence classes. Each equivalence relation defines the properties for

78 3 Model-Based Testing with UML

which input sets belong to the same partition. Traditionally, this technique
has been concerned only with input value domains, but with the advent of ob-
ject technology it can be extended to the behavioral equivalence classes that
we find in behavioral models. UML behavioral models such as statecharts, for
example, provide a good basis for such a behavioral equivalence analysis, i.e.,
the test case design concentrates on differences or similarities in externally
visible behavior that is defined through the state model.

Functional testing completely ignores the internal mechanism, of a system
or a component (its internal implementation) and focuses solely on the out-
come generated in response to selected inputs and execution conditions [91].
It is also referred to as black box testing, or specification-based testing, a term
which is more meaningful and unambiguous. Binder [16] calls these techniques
responsibility-based testing. This comes from the notion of a contract [112] be-
tween two entities that determines their mutual responsibilities. For example,
meeting the contracted precondition assertion is the client’s responsibility and
meeting the postcondition is the server’s responsibility, because this is what
it promises to provide after completing a request [16]. Functional testing is
primarily concerned with how test cases are derived from functional specifi-
cations, and there are several standard techniques that are briefly introduced
in the following exposition.

Domain Analysis and Partition Testing

Domain analysis may be used as an input selection technique for all other sub-
sequently introduced test case generation techniques. Domain analysis tech-
niques are mainly applied in typical numerical software applications. A domain
is defined as a subset of the input space that somehow affects the processing
of the tested component [12]. Domain analysis is used for and sometimes also
referred to as partition testing.

Equivalence Partitioning

Most functional test case generation techniques are based on partition test-
ing. Equivalence partitioning is a strategy that divides the set of all possible
inputs into equivalence classes. The equivalence relation defines the properties
for which input sets belong to the same partition, for example, equivalent be-
havior (state transitions). Proportional equivalence partitioning, for example,
allocates test cases according to the probability of their occurrence in each
sub-domain [16, 124].

Category Partitioning

Category partitioning is traditionally used in the industry to transform a
design specification into a test specification. It is based on the identification
of the smallest independent test units and their respective input domains.
Categories that may be considered in category partitioning are, for example,

3.1 Model-Based vs. Traditional Software Testing 79

operand values, operand exceptions, memory access exceptions, and the like
[16, 124].

State-Based Testing

State-based testing concentrates on checking the correct implementation of the
component’s state model. Test case design is based on the individual states and
the transitions between these states. In object-oriented or component-based
testing, any type of testing is effectively state-based as soon as the object or
component exhibits states, even if the tests are not obtained from the state
model. In this scenario, there is no test case without the notion of a state
or state transition. In other words, pre and postconditions of each test case
must consider states and behavior. The major test case design strategies for
state-based testing are piecewise coverage, transition coverage, and round-trip
path coverage, and they are described in more detail in Sect. 3.2.7.

Method Sequence-Based Testing

Method sequence-based testing concentrates on the correct implementation
of a component’s combinations, or sequences of operations provided. For
component-based testing this is the most important test-case generation tech-
nique, since it concentrates on how individual component operations are work-
ing in combination and in sequences. These sequences represent distinct ways
of using a component by a third party, i.e., the client of the component. Here,
test case design is based on the behavioral model, such as a UML statechart
diagram. The paths through the state model are checked. This may also in-
clude multiple invocations of the same operation according to a usage profile.
Essentially, this applies all state-based testing coverage criteria that have al-
ready been introduced in the previous subsection.

Message Sequence-Based Testing

Message sequence-based testing checks the collaborations between different
objects. Test case design is based on interaction models, such as the UML se-
quence or interaction diagrams. Message sequence-based testing is particularly
important and advantageous for checking real-time applications [29].

The examples that I have put forward in this section and the discussions
on some of the testing techniques make the similarities between what I have
so far called traditional testing concepts and the more modern model-based
concepts apparent. In my opinion, there is no fundamental difference. All these
“traditional” concepts re-appear in model-based testing, and, in fact, they are
essentially the same. The only two differences that I can observe are that we
are now dealing with a somewhat novel notation, the UML, and that we have
to consider testing techniques at a higher level of abstraction that have been

80 3 Model-Based Testing with UML

devised for a much lower abstraction level, the implementation level. In the
following section, we will look at the individual UML diagrams, and I will
introduce their concepts and semantics and discuss how they may be used to
extract black box as well as white box testing information.

3.2 Model-Based Testing

The UML provides diagrams according to the different views that we can have
on a system. These views can be separated into user view and architectural
view, which may be further subdivided into structural view and behavioral
view, implementation view, and environmental view. These views can be asso-
ciated with the different diagram types of the UML. The user view is typically
represented by the use case diagram, and the structural view by class and ob-
ject diagrams. Sequence, collaboration, statechart, and activity diagrams can
be associated with the functional and behavioral views on a system, and com-
ponent and deployment diagrams specify the coarse-grained structure and
organization of the system in the environment in which it will be deployed.
In essence, UML diagrams specify what a system should do, how it should
behave, and how it will be realized. The entirety of all UML models therefore
specifies the system completely and sufficiently. The fundamental question
here is, what information can we extract from a UML model for driving the
testing of the system, or what testing activities can we base on a UML model?

3.2.1 Usage Modeling

The initial phase of a development project is typically performed to gather
information about which user tasks will be supported by a prospective system.
This activity in the overall development process is termed usage modeling, and
its outcome is the specification of the system’s high-level usage scenarios. The
main artifact in the UML that is concerned with this type of high level usage
modeling is the use case diagram. Use case diagrams depict user communi-
cation with the system where the user represents a role that is not directly
involved in the software development process, or represents other associated
systems that use the system under development.

Use Case Diagram Concepts

Use case diagrams specify high-level user interactions with a system. This
includes the users or actors as subjects of the system and the objects of the
system with which the users interact. Thus, use case models may be applied
to define the coarsest-grained logical system modules. Use cases mainly con-
centrate on the interactions between the stakeholders of a system and the
system at its boundaries. A use case diagram shows the actors of the system

3.2 Model-Based Testing 81

(the stakeholders), either in the form of real (human) user roles, or in the form
of other associated systems which are using the system under development.
Additionally, use case diagrams show the actual use cases and the associations
between the actors and the use cases. Each use case represents some abstract
activity that the user of the system may perform and for which the system
provides the support. Overall, use case modeling is applied at initial require-
ments engineering phases in the software life cycle to specify the different
roles that are using the individual pieces of functionality of the system, the
use cases. Use case diagrams are often defined in terms of the actual business
processes that will be supported by a system. Figure 3.1 displays the use case
diagram from Chap. 2. I have extended the model to concentrate on the op-
erator’s usage scenarios. I have added scenarios for maintaining the CashUnit
and the Dispenser, i.e., take the cash off the safe, refill the dispensers, define
the cooling of the machine, and determine the prices of the items sold by the
machine.

User
Operator

Define
Cooling

Define
ItemPrices

Maintain
Dispenser

Maintain
CashUnit

Purchase
Item

VendingMachine

Fig. 3.1. Concepts of a use case diagram, specification of the vending machine

3.2.2 Use Case Diagram-Based Testing

Use cases are mainly applied for requirements-based testing and high-level test
design. Testing with use cases can be separated into two groups according to
the source of information that will be used for test development:

82 3 Model-Based Testing with UML

• Testing that is based on the use case diagram, which is mainly suitable for
test target definition.

• Testing that is based on the information of the use case template, which
is similar to typical black box testing, although at a much higher level of
abstraction.

How a use case diagram can guide the testing and define the test target is
described in the following paragraphs. The use case diagram does not permit
typical test case design with pre and postconditions, input domains, and re-
turn values because it does not go into such a level of detail. However, we can
define the following elements in a use case diagram, and their relations that
may be suitable for the purpose of testing [16]:

• An actor can participate in one or several use cases: This will result in
an acceptance test suite for each individual actor and for each individual
use case, and the tests will reflect the typical usage of the system by that
actor.

• A use case involves one or several actors: Each test suite will comprise
tests that simulate the user’s interactions at the defined interaction point
that is the use case functionality. If several actors are associated with
the same use case, we may additionally have concurrent usage of some
functionality by different roles. For testing it means that we will have to
investigate whether multiple concurrent usage is supported by the system
as expected. We might therefore have to define a test suite that takes such
a simulation into consideration.

• A use case may be a variation of some other use case (�extends�): If
our test criterion is use case coverage, we will have to produce test suites
that comprise all feasible usage permutations of the base use case and its
extension. This is very similar to checking correct inheritance relations in
object-oriented testing [16].

• A use case may incorporate one or more use cases (�uses�). For testing,
this is essentially the same as the previous item.

A use case diagram can additionally indicate high-level components. This is
specifically supported through use case descriptions. All the objects that are
mentioned in a use case diagram or use case description are feasible candi-
dates for high-level components at a system architectural level. Therefore, use
cases and structural diagrams (class and component diagrams) are associated
through the following relations, and this is actually how the semantic gap
between use cases and the system architecture is bridged in a model-based
development project:

3.2 Model-Based Testing 83

• A use case is implemented through one or several nested and interact-
ing components. Requirements-based testing should attempt to cover all
components that are participating in the implementation of a use case.
This is particularly important if requirements are changed. In that case,
we will have to trace the changes to the underlying component architec-
ture and amend the individual components accordingly. A regression test
should then be applied to validate the correctness of these amendments.
Traceability of requirements down to components is therefore an essen-
tial property. This can be done through a predefined stereotype �trace�
Component that relates a use case to a component, or it can be written
down in the use case description through an additional entry in the table
in the form “realized through Component,“ for example.

• A component supports one or more use cases. Here, the component archi-
tecture is not functionally cohesive. In other words, individual components
are responsible for implementing non-related functionality, leading to low
cohesion in the components. This may be regarded bad practice but it
surely happens, and often it is a requirement, or third-party components
are organized in that way. In such an instance, use cases represent dif-
ferent and probably concurrent usage of the same component, and that
must be reflected in the validation. We might therefore have to define a
test suite that takes the concurrency situation into consideration as said
before. With respect to traceability to the use case that a component
supports, it would also be desirable to have a tracing mechanism, for ex-
ample, in the same form as mentioned above. This could be done through
a stereotype or through a UML comment. Following these suggestions, we
can easily incorporate a two-way tracing mechanism in our models.

A use case diagram is mainly used for test target identification, and to achieve
test coverage at a very high level of abstraction. For example, Binder defines a
number of distinct coverage criteria that can be applied to use case diagrams
to come up with a system-level acceptance test suite [16]:

• Test or coverage of at least every use case.
• Test or coverage of at least every actor’s use case.
• Test or coverage of at least every fully expanded �includes�, �extends�,

and �uses� combination.

These correspond to coverage of all nodes and arrows in a use case diagram,
and are typical testing criteria, similar to the traditional test coverage mea-
sures that are based on program flow graphs as discussed in Sect. 3.1. Each of
these criteria represents a test of high-level user interaction. Because there is
only limited information, we can determine only which user functionality we
will have to test, but not how to test it. Each test target can be augmented
with information from the more concrete use case definitions to identify more
concrete test artifacts. Therefore, each test target will map to a test suite and,
eventually, when more information is added, to a number of more concrete

84 3 Model-Based Testing with UML

test cases. The collection of all user-level tests which are developed in that
way may be used for system acceptance testing.

Based on the previously described items, we can derive the test targets
or tester components for the use case diagram depicted in Fig. 3.1. They are
displayed in Table 3.1. We do not have �uses� or �extends� relations in our
example, so the specification of the tester components for a system acceptance
test suite are quite simple. These tests also represent full coverage of the use
case diagram. We can model the organization of the tester components in the
same way as we have modeled the rest of the system. For example, Fig. 3.2
shows the containment hierarchy of the tester components. This is an example
only of how we can use models to define and describe the organization of the
test for a system that is also model-driven. I will explain how the testing
infrastructure is modeled in more detail in Sect. 3.3.

Table 3.1. Identification of external tester components for the VendingMachine
from the use case diagram

Actor Use Case

Usage Profile Tester Component

User Purchase Item

Operator Define Cooling

Operator Define ItemPrices

Operator Maintain Dispenser

Operator Maintain CashUnit

3.2.3 Use Case and Operation Specification-Based Testing

A use case diagram is quite useless for the concrete specification of what a
system is supposed to do. Use case diagrams display only very limited infor-
mation, so they are extended by use case specifications or use case definitions
as introduced in Chap. 2. Each specification of a use case according to the use
case template introduced in Chap. 2 corresponds to a component’s operation
specification according to the operation description template from Chap. 2. I
have included both templates in this chapter again for convenience in Table
3.2 and Table 3.3. An operation specification comprises the full description of
a piece of functionality that an object or component provides. For example, a
class method may be regarded as such an operation.

In contrast, a use case represents a piece of functionality that is not at-
tributed to a particular object in the system but to the entire system at its

3.2 Model-Based Testing 85

Table 3.2. Use case template

Use Case No. Short name of the use case indicating its goal (from the
model)

Goal in Context Longer description of the use case in the context.

Scope & Level Scope and level of the considered system, e.g. black box
under design, summary, primary task, sub-function, etc.

Primary/Secondary
Actors

Role name or description of the primary and secondary
actors for the use case, people, or other associated sys-
tems.

Trigger Which action of the primary/secondary actors initiate
the use case.

Stakeholder & In-
terest

Name of the stakeholder and interest of the stakeholder
in the use case.

Preconditions Expected state of the system or its environment before
the use case may be applied.

Postconditions
on success

Expected state of the system or its environment after
successful completion of the use case.

Postconditions
on failure

Expected state of the system or its environment after
unsuccessful completion of the use case.

Description
Basic Course

Flow of events that are normally performed in the use
case (numbered).

Description
Alternative
Courses

Flow of events that are performed in alternative scenarios
(numbered).

Exceptions Failure modes or deviations from the normal course.

NF-Requirements Description of non-functional requirements (e.g. tim-
ing) according to the numbers of the basic/alternative
courses.

Extensions Associated use cases that extend the current use case
(�extends� relation).

Concurrent Uses Use cases that can be applied concurrently to the current
use case.

Realized through Component(s) in the component architecture that imple-
ment this use case.

Revisions Trace of the modifications of the current use case speci-
fication.

86 3 Model-Based Testing with UML

<<Context>>
VendingMachine

Context

<<Komponent>>
VendingMachine

<<Testing>>
<<Komponent>>
PurchaseItem

Tester

<<Testing>>
<<Komponent>>

DefineCooling
Tester

<<Testing>>
<<Komponent>>
DefineItemPrices

Tester

<<Testing>>
<<Komponent>>

MaintainDispenser
Tester

<<Testing>>
<<Komponent>>
VendingMachine

Tester

<<acquires>>

<<Testing>>
<<Komponent>>

MaintainCashUnit
Tester

Fig. 3.2. Containment hierarchy of the test organization

boundary. If we consider an individual component to be a system in its own
right, as is the case in the KobrA method, then the operation specifications
of that component and its corresponding system-level use case specifications
are essentially the same. The entries in the two templates in Table 3.2 and
in Table 3.3 indicate this conceptual similarity. Both templates define name
and description, pre and postconditions, and exceptions that can be related
to constraints. The fundamental difference between the two models lies in the
fact that use case descriptions in contrast with operation specifications define
no concrete input and output types that easily map to input and output value
domains, and that the pre and postconditions are not attributable to distinct
objects in the system. In other words, use case descriptions represent similar
information as operation specifications although at a much higher level of ab-
straction or decomposition and from a different point of view, according to the
stakeholders to which we are referring. While use case specifications are used
mainly for communication outside the development team, i.e., with the cus-
tomer of the software, operation specifications are more suitable for commu-
nication between the roles within the development team, for example, system
designers, developers, and testers. In any case, use case template-based testing
and operation specification-based testing represent both functional or black
box testing approaches, because both representations concentrate on external
expected behavior. In other words, use case descriptions specify functionality
at the system level, while operation specifications describe functionality at
the object or component level.

3.2 Model-Based Testing 87

Table 3.3. Operation specification template according to the KobrA method and
Fusion

Name Name of the operation

Description Identification of the purpose of the operation, followed
by an informal description of the normal and exceptional
effects.

Constraints Properties that constrain the realization and implemen-
tation of the operation.

Receives Information input to the operation by the invoker.

Returns Information returned to the invoker of the operation.

Sends Signals that the operation sends to imported components
(can be events or operation invocations).

Reads Externally visible information that is accessed by the op-
eration.

Changes Externally visible information that is changed by the op-
eration.

Rules Rules governing the computation of the result.

Assumes Weakest precondition on the externally visible states of
the component and on the inputs (in receives clause) that
must be true for the component to guarantee the post-
condition (in the result clause).

Result Strongest postcondition on the externally visible proper-
ties of the component and the returned entities (returns
clause) that becomes true after execution of the opera-
tion with a valid assumes clause.

More abstract representations, such as use case models and use case de-
scriptions, were not initially taken into account as bases for typical functional
testing approaches such as the ones mentioned in Sect. 3.1 because traditional
testing always used to be, and probably still is, focused on more low-level
abstractions and concrete representations of a system such as code. There-
fore, these functional testing techniques appear to be used more optimally in
tandem with typical operation specification-type documents as the primary
source for test development. However, since the two models, use case descrip-
tions, and operation specifications are concerned with essentially the same
information but at different levels of abstraction, all the functional testing
techniques that I have introduced and discussed earlier can also be based on
use case descriptions, although at a much more abstract level.

88 3 Model-Based Testing with UML

The use case template (Table 3.2) already contains a number of items
that are suitable for the definition of system-level tests. The pre and postcon-
ditions (on success) in the template and the description of the basic course
map to abstract test cases. For the first use case of the vending machine
(PurchaseItem), these abstract test cases are displayed in Table 3.5. The
tests are abstract because they do not indicate concrete values for the used
variables, e.g., Item, Item.price, InsertedCoins, etc. Each of the abstract
scenarios in the table may map to a number of concrete test cases that repre-
sent different distinct and concrete test scenarios that we can apply to check
a functionality of the vending machine. The tests that we instantiate from
Table 3.5 will be implemented in the PurchaseItemTester component in the
testing structural model in Fig. 3.2. I have included the definition of the use
case PurchaseItem in Table 3.4 below to demonstrate the mapping between
the use case description and the derived tests more clearly.

The abstract tests displayed in Table 3.5 are all based on fundamental
testing techniques that are summarized as follows [95]:

• Test of basic courses, testing the expected flow of events of a use case.
• Test of odd courses, testing the other, unexpected flow of events of a use

case.
• Test of any line item requirements that are traceable to each use case.
• Test of features described in user documentation that are traceable to each

use case.

The last two items in this list refer to global information that is not necessarily
contained in the individual use case specifications. The line Concurrent Uses
in the use case definition template indicates that the use case itself may be
invoked concurrently, and that other use cases may be applied at the same
time.

Additional testing techniques that may be used in tandem with use case
modeling and the specification of use cases are scenario-based techniques, as
described in the SCENT Method, but they require some additional modeling
effort with dependency charts [144, 145, 146]. There are also distinct cover-
age criteria with these techniques, such as scenario-path coverage, event-flow
coverage, exception coverage, that may be applied in use case based testing,
or we can apply statistical usage-based testing techniques [133, 134].

3.2.4 Structural Modeling

High-level structural modeling is typically the next development step after
use case modeling. Use case descriptions loosely associate system functionality
with components at a high system architectural level. In other words, we can
already define the very fundamental parts of the system in a typical divide-
and-conquer manner when we develop the use case descriptions. All objects in
the use case model have a good chance of becoming individually identifiable
parts, such as components or classes, objects, modules, or subsystems, during

3.2 Model-Based Testing 89

Table 3.4. Definition of the use case Purchase Item from the vending machine usage
model

Use Case 1 Purchase Item

Goal in Context Main scenario for purchasing an item from the vending
machine.

Actors User.

Trigger User inserts coins into slot, or selects item on button
panel.

Preconditions Vending machine is operational.

Postconditions
on success

Item is provided.

Postconditions
on failure

Item is not provided.

Description
Basic Course

1. User inserts sufficient amount of money.
2. User selects item on panel.
3. Selected item and return money are dispensed.
4. User takes item and returned money, if applicable.

Description
Alternative
Courses

1. User selects item.
2. Vending machine displays price.
3. <basic course>

Exceptions 1. [insufficient amount] user inserts more cash, or aborts.
2. [selected item not available] user selects different item,
or aborts.

NF-Requirements 1. Item should be dispensed not more than 3 seconds
after selection.
2. After 3 sec of no user selection use case is aborted and
inserted cash returned.

Extensions <left open>

Concurrent Uses <left open>

Revisions <left open>

design. Under the KobrA method they are all termed “Komponent” which
stands for KobrA Component [6]. If we have defined the first components, we
will typically decompose the system into smaller more manageable parts that
are not immediately related to the high-level usage of the system; the models of
these parts concentrate more on internal functional aspects of the system. This
decomposition activity typically comes under the umbrella of system design
and is normally detached from the usage modeling activity. The design activity

90 3 Model-Based Testing with UML

Table 3.5. Abstract tests, derived from the use case description for purchaseItem

No. Pre-
condition

Event Postcondition Result

1.1 operational user inserts coin
money

1.2 money =
item.price

user selects item
on panel

operational AND
item provided

user takes item

2.1 operational user inserts coin
money

2.2 money <
item.price

user selects item
on panel

item not provided

2.3 money =
item.price

user selects item
on panel

operational AND
item provided

user takes item

3.1 operational user inserts coin
money

3.2 money >
item.price

user selects item
on panel

operational AND
item, change pro-
vided

user takes item
AND change

4.1 operational user selects item
on panel

operational AND
item not provided

price displayed

is more centered around technical requirements of the implementation, e.g.,
available components, safety or timing aspects, etc., rather than functional
user requirements. Structural diagrams specify the architectural relationships
between components as the most fundamental building blocks of the system.

Component Containment Diagram Concepts

Components are the basic construction entities in component-based devel-
opment. A system’s primary components are typically identified in the re-
quirements engineering phase of a project through use case modeling and the
definition of use case descriptions as outlined in the previous sections. We can
identify good candidates for components because we apply domain knowledge
that determines the architecture, or through naturally available system parts.
In the first case, we can identify the components because in the past they used
to be more or less the same, and we found that suitable. In the second case,
we have existing components that are domain-specific. The fact that there are
distinct prefabricated components on the market for our domain has mainly
historic reasons. Because our domain has evolved in a certain way, we have
certain ways of doing and organizing things, and this is reflected through

3.2 Model-Based Testing 91

the components on the market. Now, if we have identified some typical high-
level components, they may be brought into a hierarchy that represents the
coarsest-grained structural organization of the entire system. For example,
Fig. 3.3 displays the containment hierarchy for the vending machine.

<<variant>>
<<Komponent>>

CoolingUnit

<<subject>>
<<Komponent>>
VendingMachine

<<Komponent>>
DispenserUnit

<<Komponent>>
Display

<<Mechatronics>>
KeyPad

<<Mechatronics>>
CashUnit

Fig. 3.3. Development-time containment tree for the vending machine

The KobrA method proposes to use the UML package symbol for repre-
senting components since a component is a collection or package of a number of
different specification and documentation artifacts, e.g., a collection of UML
models and tabular representations such as use case definitions and opera-
tion specifications. The symbol indicates the scoping of all these descriptive
artifacts.

Each component in the hierarchy is described through a specification that
comprises everything externally knowable about the component in terms of
structure, function, and behavior, and a realization that encompasses every-
thing internally knowable about these items. The specification describes what
a component is and can do, and the realization how it does it. The subject
component indicated through the stereotype �subject� represents the entire
system under consideration. In our case it is the VendingMachine component.
The context realization, in this case the component VendingMachineContext,
describes the existing environment into which the subject will be integrated.
It contains typical realization description artifacts as introduced in the spec-
ification of the vending machine in Chap. 2. The anchor symbol represents

92 3 Model-Based Testing with UML

containment relations, or, in other words, the development-time nesting of
a system’s components. Component nesting always leads to a tree-shaped
structure, and it also represents client/server relationship.

• A nested component is typically the server for the component that contains
it, and

• a nesting component is typically the client of the components which it
contains.

This is the case at least for creating a new instance of a contained component.
The superordinate component is the context for the subordinate component,
and it calls the constructor of the subordinate component. This can be seen as
the weakest form of a client/server relationship. Containment trees can also
indicate client/server relationships between components that are not nested.
This is indicated through an �acquires� relationship between two compo-
nents in which one component acquires the services of another component,
as indicated between the component VendingMachineTester, and the com-
ponent VendingMachine in Fig. 3.5. This type of an explicit client/server
relationship leads to an arbitrary graph in the containment hierarchy.

A coarser-grained component at a higher level of decomposition is always
composed of finer-grained components residing at a lower level of decomposi-
tion, and the first one “contains” or is comprised of the second ones. The nest-
ing relations between these entities are determined through so-called compo-
nent contracts. KobrA’s development process represents an iterative approach
to subsequently decomposing coarser-grained components into finer-grained
components until a suitable third-party component is found, or the system
is decomposed into the lowest desirable level of composition that is suitable
for implementation. This was outlined with the vending machine example in
Chap. 2.

Class and Object Diagram Concepts

Class diagrams and object diagrams are made up of classes or objects (class
instances) and their associations. The associations define the peer-to-peer re-
lations between the classes (and objects), so these diagrams are used primarily
for specifying the static, logical structure of a system, a subsystem, or a com-
ponent, or parts of these items. Associations come in different shapes with
different meanings:

• A normal association defines any arbitrary relationship between two
classes. It means they are somehow interconnected. It is indicated through
a simple solid line between the classes.

• An aggregation is a special association that indicates that a class, i.e., the
aggregate, is comprised of another class, i.e., the part. This is also referred
to as “whole-part association” or class nesting. This is in fact similar to
the containment model, and is not specific about who creates and owns the

3.2 Model-Based Testing 93

subordinate classes. An aggregation is indicated through an open diamond
at the aggregate side of the association line.

• Ownership between classes is indicated through the composition aggrega-
tion. This is a much stronger form of aggregation in which the parts are
created and destroyed only together with the whole. This is indicated with
a solid diamond at the aggregate end of the association.

• Generalization is a form of association that indicates a taxonomic relation-
ship between two classes, that is, a relationship between a more general
class and a more specific class. In object technology terminology this is
also referred to as an inheritance relationship. It is indicated through an
open triangle at the end of the association of the more general class.

• A refinement association indicates a relationship between two descriptions
of the same thing, typically at two distinct abstraction levels. It is similar
to the generalization association, although the focus here is not on taxon-
omy but at different levels of granularity or abstraction. This is indicated
through a generalization with a dashed line.

• Dependency is another form of association that expresses a semantic con-
nection between two model elements (e.g., classes) in which one element is
dependent upon another element. In other words, if the independent class
is changed, it typically leads to a change in the dependent class. This is
indicated with a dashed arrow.

Multiplicity parameters at associations indicate how many instances of two in-
terconnected classes will participate in the relation. Class symbols have syntax
too. They consist of a name compartment, an attribute compartment, and an
operation compartment. The last two define the externally visible attributes
and operations that the class or object is providing at its interface, and which
may be used by external clients of the class to control and access its func-
tionality and behavior. For example, Fig. 3.4 shows the amended specification
structural model of the VendingMachine component with the additional op-
erations for the operator of the vending machine.

Package Diagram Concepts

A package diagram can comprise classes or objects, components, and pack-
ages. A package is only a grouping mechanism that can be linked to all types
of other modeling elements, and that can be used to organize semantically
similar or related items into a single entity. Subsystems, components, and
containment hierarchies of classes may also be referred to as packages, since
all these concepts encapsulate various elements within a single item in the
same way as a package. For example, the KobrA development method uses
the package symbol for specifying a Komponent (KobrA Component) since
it represents a grouping of all descriptive documents and models that collec-
tively define a component in terms of functionality, behavior, structure, and
external and internal quality attributes.

94 3 Model-Based Testing with UML

<<Subject>>
VendingMachine

<<user operations>>
insertCoins (CoinType Coin)
selectItem (SelectionType Item)
<<variant>> insertCard (CardType Card)

<<operator operations>>
defineCooling (Temperature Temp)
defineItemPrices (SelectionType Item, Currency Price)
maintainCashUnit ()
maintainDispenser ()

<<Komponent>>
Display

Price

<<Komponent>>
Display

SelectionType

<<Komponent>>
DispenserUnit

Dispense
Item

<<Komponent>>
CashUnit

CoinType

Read
Card

<<variant>>
<<Komponent>>

CardReader

Dispense
Cash

Card
Type

Fig. 3.4. VendingMachine amended specification structural model

Component Diagram Concepts

A component diagram organizes the logical classes and packages into physical
components when the system is executed. It represents a mapping from the
logical organization of a system to the physical organization of individually
executable units. Its main focus is on the dependency between the physical
components in a system. Components can define interfaces that are visible to
other components in the same way as classes, so that dependencies between
components can also be expressed as access to interfaces. Class and component
diagrams are similar with respect to this property since they can both specify
associations between modeling elements.

Deployment Diagram Concepts

A deployment diagram shows the actual physical software/hardware architec-
ture of a deployed system including, computer nodes and types and hardware
devices, along with their relations to other such entities. Important specifica-
tions in a deployment diagram, for example, are executable components which

3.2 Model-Based Testing 95

will be assigned to physical nodes in a network, and on underlying component
platforms, runtime support systems, etc.

3.2.5 Structural Diagram-Based Testing

Intuitively it might seem odd to combine structural issues with testing ac-
tivities because testing is always based on function or behavior rather than
structure; so the value of structural diagrams for testing appears to be very
limited at a glance. However, this is the case only for deriving concrete test
cases from structural models, something that is clearly not feasible, since
structural diagrams do not provide enough information for the definition of
test cases, i.e., pre and postconditions, and behavior. Test case design can
be done only in tandem with functional descriptions and behavioral models.
What we can identify from structural models is what should be tested in a
system that consists of many interacting entities. In other words, we can use
structural models for test target definition in a way similar to that for use
case models.

Structure represents the logical organization of a system, or the pairwise
relations between the individual components. These pairwise relations are
described through contracts that specify the rights and responsibilities of the
parties that participate in a contract. When two components establish such a
mutual relationship, we have to check the contract on which this relationship
is founded. So, when we go through the structural models of a development
project, we can identify a list of contracts for each of which we can formulate
a test target that maps to a test suite or a tester component. Traditionally
this testing activity belongs to integration testing.

Component Containment Diagrams and Testing

KobrA’s component containment hierarchies can be seen as the most gen-
eral and most abstract logical structural models. They display component
nesting and client/server relations between a superordinate component and
its contained subordinate components, represented by the anchor symbol, as
well as client/server relations between components at the same or neighbor-
ing hierarchic levels, represented by arbitrary �acquires� relations. Both
concepts indicate that one component requires the services of another com-
ponent, so there must be an interface definition between the two parties in
that client/server relationship. In object terminology, containment is equiva-
lent to a class attribute that refers to a subordinate class. Each connection
in a containment hierarchy relates to a test target and consequently to a test
suite or to an additional tester component that specifically concentrates on
testing that connection. This is illustrated in Fig. 3.5. A test of the system
VendingMachine requires that the communication between all integrated com-
ponents is tested in combination. The VendingMachine component expects to
get some features from its subordinate components Dispenser and CashUnit,

96 3 Model-Based Testing with UML

and in return these components expect to be used by VendingMachine in a
certain way. These are mutually accepted contracts between the parties. These
mutual expectations can be represented by test suites that can be executed
as unit tests on the individual components before the components are finally
integrated. Each test suite will contain only tests that simulate the access of
the respective client component on the server. The DispenserUnitTester in
Fig. 3.5 will comprise only tests that simulate the vending machine’s usage
of the tested subcomponent. Other tests are meaningless for the integration
because such cases will never appear when the two components are interact-
ing. If all the tests in all the test suites pass, we expect that the integration of
all components was successful, and that the VendingMachine component will
expose no more such errors that are related to the component interactions,
given that we have applied adequate test sets.

The services that are exchanged through the connections of a containment
hierarchy are more specifically defined in class/object diagrams and behav-
ioral models, so that the actual test case definitions can only be carried out
together with the other models that specify functionality and behavior. Here,
we are concerned only with test target identification and test component spec-
ification.

<<Komponent>>
DispenserUnit

<<Testing>>
<<Komponent>>
VendingMachine

Tester

<<Testing>>
<<Komponent>>
DispenserUnit

Tester

<<Testing>>
<<Komponent>>

CashUnit
Tester

<<Komponent>>
Display

<<Komponent>>
KeyPad

<<Komponent>>
CashUnit

<<acquires>>

<<Subject>>
<<Mechatronics>>
VendingMachine

<<acquires>>

<<Komponent>>
DispenserUnit

<<public>>

<<acquires>>

Fig. 3.5. Tester components for the vending machine derived from the containment
model

3.2 Model-Based Testing 97

Class, Package, Component, and Deployment Diagrams and
Testing

All the other structural diagrams in the UML such as class, package, com-
ponent, and deployment diagrams are used to express the implementation
and deployment of components. For example, class diagrams are mainly used
in component specifications and realizations, but they can also express the
distribution of logical software components over hardware nodes. Packages,
components, and classes are very similar concepts, and the component term
combines their individual particularities, i.e., the component provides a scop-
ing mechanism to package a variety of concepts and artifacts such as classes
and modules. Components provide interfaces as classes and, maybe, packages
do, and they have states. In fact, a component’s class properties are provided
through the classes that the component contains. All testing concepts of the
previous paragraphs are therefore applicable to classes and packages, that is,
test target definition and identification of client/server contracts that need
to be checked. The different diagrams merely represent slight variations of
the modeled subjects. The fundamental difference between classes and com-
ponents, for example, is that class interactions are likely to stay fixed for a
longer period of time. Components may be seen as the fundamental building
blocks of applications in component-based development, and they are often
reused and integrated in different contexts. Classes, on the other hand, can
be seen as the fundamental building blocks of components, so they are not so
readily reused, because the classes in components are not subjected so much
to constant change. The difference in the diagrams with respect to testing is
not so much a concern for extracting different testing information from the
models, but for the strategy of when tests will be ideally executed. The fun-
damental idea for identifying interesting locations in a system or a component
for performing integration tests is the same in all diagram types. But we can
extract more information on when these tests have to be performed. For ex-
ample, a class diagram shows interaction between the fundamental building
blocks of a component. They are likely to stay as they are during the lifetime
of the component. So we integrate and test that integration once and for all.

Components are the building blocks of component-based systems. When-
ever we put components together to come up with a new application, we have
to check the validity of this integration through a test. Some components will
be assigned dynamically, others will stay as they are. Component diagrams
show this type of organization so that we can identify fixed contracts and loose
contracts that are likely to change and will need retesting in a new context.
Deployment diagrams represent a different view of the same problem. Here
we assign components to nodes in a distributed environment. Some nodes will
stay the same throughout the life span of a system and only need an initial
check, but others might undergo constant change, so we will have to perform
an integration test whenever a node is changed. The fundamental idea of test

98 3 Model-Based Testing with UML

target definition with structural diagrams remains. We can see from a struc-
tural diagram which interactions should be tested under what circumstances.

Structural diagrams, in particular containment trees, play a seminal role
in the development of the testing architecture for built-in contract testing in
component-based application engineering. The concepts behind built-in con-
tract testing and all the aspects of applying it in a component-based develop-
ment project are subject of Chap. 4.

3.2.6 Behavioral Modeling with Statecharts

Structural modeling is part of system decomposition, and it identifies the sub-
parts of the system that will be individually tackled in separate development
efforts. Each part can be subdivided further into even smaller units. If such
a part or component has been identified, its behavior must be described; this
comprises its externally visible behavior at its provided interface, as well as
the externally visible behavior at its required interface. The UML supports
behavioral modeling through statechart diagrams and activity diagrams. Stat-
echart diagrams represent the behavior of an object by specifying its responses
to the receipt of events. Statecharts are typically used to describe the behav-
ior of class or component instances, but they can also be used to describe the
behavior of use cases, actors, or operations. Related to statechart diagrams
are activity diagrams that concentrate on internal behavior of an instance, or,
in other words, the control flow within its operations. Both diagram types are
essentially based on the same fundamental concepts.

Statechart Diagram Concepts

Statechart diagrams are made up of states, events, transitions, guards, and
actions. A state is a condition of an instance over the course of its life, in which
it satisfies some condition, performs some action, or waits for some event. A
state may comprise other encapsulated substates. In such a case, a state is
called a composite state. A special state, the starting state, indicates the first
condition throughout the life cycle of an instance. Another special state, the
end state, indicates the last condition throughout the life cycle of an instance.

An event is a noteworthy occurrence of something that triggers a state
transition. Events can come in different shapes and from different sources:

• A designated condition that becomes true. The event occurs whenever the
value of an expression changes from false to true.

• The receipt of an explicit signal from somewhere.
• The receipt of a call of an operation.
• The passage of a designated period of time.

Events trigger transitions. If an event does not trigger a transition, it is dis-
carded. In this case it has no meaning for the behavioral model. Events are

3.2 Model-Based Testing 99

therefore only associated with transitions. A simple transition is a relation-
ship between two states indicating that an instance that is residing in the
first state will enter a second state provided that certain specified conditions
are satisfied. The trigger for a transition is an event. A concurrent transition
may have multiple source states and multiple target states. It indicates a syn-
chronization or splitting of control into concurrent threads without concurrent
substates. A transition into the boundary of a composite state is equivalent to
a transition to the starting state of the composite substate model. A transition
may be labeled by a transition string to the following format:

event_name (parameter_list)
[guard_condition] / action_expression

Here, a guard represents a conditional expression that lets an event trigger a
transition only if the conditional expression is valid. It is a boolean expression
written in terms of the parameters of the triggering event, plus attributes
and links of the object that owns the state model. An action expression is a
procedural expression that will be executed if the transition is performed.

3.2.7 Statechart Diagram-Based Testing

State-based testing concentrates on checking the correct implementation of the
component’s state model. The test case design is based on the individual states
and the transitions between these states. In object-oriented or component-
based testing, any type of testing is effectively state-based as soon as the object
or component exhibits states, even if the tests are not obtained from the state
model. In that instance, there is no test case without the notion of a state or
state transition. In other words, pre and postconditions of every single test case
must consider states and behavior. Binder [16] presents a thorough overview
of state-based test case generation, and he also proposes to use so-called state
reporter methods that effectively access and report internal state information
whenever invoked. These are essentially the same as the state information
operations that are defined by the built-in contract testing technology (state
checking operations) that is the subject of Chap. 4. The following paragraphs
describe the main test case design strategies or testing criteria for state-based
testing:

Piecewise Coverage

Piecewise coverage concentrates on exercising distinct specification pieces, for
example, coverage of all states, all events, or all actions. These techniques
are not directly related to the structure of the underlying state machine that
implements the behavior, so it is only incidentally effective at finding behavior
faults. It is possible to visit all states and miss some events or actions, or
produce all actions without visiting all states or accepting all events. Binder
discusses this in greater detail [16].

100 3 Model-Based Testing with UML

Transition Coverage

Full transition coverage is achieved through a test suite if every specified
transition in the state model is exercised at least once. As a consequence,
it covers all states, all events, and all actions. Transition coverage may be
improved if every specified transition sequence is exercised at least once; this
is referred to as n-transition coverage [16], and it is also a method sequence-
based testing technique.

Round-trip Path Coverage

Round-trip path coverage is defined through the coverage of at least every
defined sequence of specified transitions that begin and end in the same state.
The shortest round-trip path is a transition that loops back on the same state.
A test suite that achieves full round-trip path coverage will reveal all incorrect
or missing event/action pairs. Binder discusses this in greater detail [16].

Figure 3.6 shows the statechart diagram of the VendingMachine compo-
nent specification. Each circled number in the statechart diagram refers to
a single transition, specified in the state table for this diagram in Table 3.6.
The state table is an alternative representation of the statechart diagram that
focuses on the transitions rather than on the states. The state table contains
no detailed calculations that are specified inside the state symbols of the stat-
echart diagram. A state table is a great tool for representing many transitions
between only a few states, and is additionally extremely useful for test case
definition.

A test case comprises a precondition, a conditional expression that should
be true before the test event is executed, an event, or a sequence of events, and
a postcondition that should be true after the events have been executed. The
pre and postconditions are made up of a number of conditional expressions
that refer to the input parameter values of the event as well as to the internal
attributes of an object before and after event execution. Sometimes they also
include the actions that are performed on other associated objects, that is, if
they effectively change the state of these other objects. We may also call this
the outcome of an event. The combination of the object’s internal attributes is
its internal state. An internal state is any arbitrary combination of an object’s
attributes. Sometimes this is also referred to as state machine or physical state.
In system development we are usually only concerned with value domains of
attribute combinations that cause an object to exhibit different behavior. Such
a value domain represents an externally visible or logical state.

A state table shows the logical states from the corresponding statechart
diagram as part of the precondition that must be fulfilled before a state tran-
sition can take place. It shows the final states as part of the postcondition that
should hold after the transition, and the event that triggers the transition. All
these items come in a form that we can easily transfer into test cases. In fact
all the entries in Table 3.6 represent tests that lead to full transition coverage

3.2 Model-Based Testing 101

Idle

entry / amount = 0
Display amount

CoinsInserted

entry /
amount +=
coin.value

T1.setTimer (3 sec)
do/

Display amount

InsertCoin

Select Abort on
Keypad

/ Return Inserted
Coins

InsertCoin

Select Item on Keypad
[Amount < Item.Price]

T1.Timeout
/ Dispense

Inserted
Coins

Select Item
[! EmptyItem]
Display Item.Price
Delay for 1 sec
[else]
Display Empty
Delay for 1 sec

Select Item on Keypad
[Amount = Item.Price]
Dispense Item

Select Item on Keypad
[Amount > Item.Price]
Dispense Item
Dispense Change

Select Item on Keypad
[Empty Item]
Display Empty
Dispense Change

Tmax < 3 sec

1

2

3

4

5

6

7

8

9

10

sm VendingMachine

Fig. 3.6. Component specification statechart diagram for the VendingMachine com-
ponent

of the state model. The tests, however are all abstract, because they do not
define explicit values for the variables in the state table. When we have more
information about the number of items that the vending machine is going
to sell, their prices, and the currency that will be accepted by the machine,
we can instantiate each abstract test and replace it by a number of differ-
ent concrete test cases with real input values. Each of the abstract test cases
in Table 3.6 can be instantiated according to these decisions. For example,
Table 3.7 shows some instantiated test cases from Table 3.6. These tests are
still abstract, since we cannot execute them. But they are a lot more concrete
than the abstract tests in Table 3.6. We still have to add more specific infor-
mation to come up with a concrete implementation of these test cases. For

102 3 Model-Based Testing with UML

Table 3.6. State transition table derived from the specification statechart diagram
of the VendingMachine component

No Initial
State

Precondition Transition Postcondition Final
State

1 Idle [!EmptyItem] SelectItem
(Item)

Display(Item.Price) Idle

2 Idle [EmptyItem] SelectItem
(Item)

Display(Empty) Idle

3 Idle InsertCoin
(Coin)

Display(Amount) Coins
Inserted

4 Coins
Inserted

abort Return Inserted
Coins

Idle

5 Coins
Inserted

Timeout Dispense Inserted
Coins

Idle

6 Coins
Inserted

InsertCoin
(Coin)

Display(Amount) Coins
Inserted

7 Coins
Inserted

[Amount <
Item.Price]

SelectItem
(Item)

Display(Amount) Coins
Inserted

8 Coins
Inserted

[EmptyItem] SelectItem
(Item)

Display Empty;
Dispense Change

Idle

9 Coins
Inserted

[Amount >
Item.Price]

SelectItem
(Item)

Dispense Item;
Dispense Change

Idle

10 Coins
Inserted

[Amount =
Item.Price]

SelectItem
(Item)

Dispense Item Idle

example, we have not stated any prices of the items yet, or we are not specific
about the time that we have to wait before the timeout occurs in test case
5.2. These are specification pieces that are eventually determined during the
specification and development of the vending machine. So, in the same way in
that we remove the abstraction of our system, we can in parallel remove the
abstraction of our testing system and move toward more concrete representa-
tions of the testing software. The activities that we have to perform along the
abstraction/concretization dimension of the development process introduced
in Chap. 2 are exactly the same for the development of the vending machine
system and for the development of its testing system.

3.2.8 Behavioral Modeling with Activity Diagrams

Activity diagrams can be regarded as variations of statechart diagrams in
which the states represent the performance of activities in a procedure and

3.2 Model-Based Testing 103

Table 3.7. Instantiated concrete tests from the state table

No. Initial
State

Precondition Transition Postcondition Final
State

1.1 Idle Item1
==Empty

SelectItem
(Item1)

Display (Empty) Idle

1.2 Idle Item2
==Empty

SelectItem
(Item2)

Display (Empty) Idle

1.3 Idle Item3
==Empty

SelectItem
(Item3)

Display (Empty) Idle

1.4 Idle Item4
==Empty

SelectItem
(Item4)

Display (Empty) Idle

1.5 Idle Item5
==Empty

SelectItem
(Item5)

Display (Empty) Idle

...

2.1 Idle Item1
!=Empty

SelectItem
(Item1)

Display
(Item1.Price)

Idle

2.2 Idle Item2
!=Empty

SelectItem
(Item2)

Display
(Item2.Price)

Idle

2.3 Idle Item3
!=Empty

SelectItem
(Item3)

Display
(Item3.Price)

Idle

2.4 Idle Item4
!=Empty

SelectItem
(Item4)

Display
(Item4.Price)

Idle

2.5 Idle Item5
!=Empty

SelectItem
(Item5)

Display
(Item5.Price)

Idle

...

3.1 Idle InsertCoin
(10ct)

Display (0.10) Coins
Inserted

3.2 Idle InsertCoin
(20ct)

Display (0.20) Coins
Inserted

3.3 Idle InsertCoin
(50ct)

Display (0.50) Coins
Inserted

3.4 Idle InsertCoin
(1EUR)

Display (1.00) Coins
Inserted

3.5 Idle InsertCoin
(2EUR)

Display (2.00) Coins
Inserted

4.1 Perform tests 6.1 to 6.3
4.2 Coins

Inserted
abort () CashUnit.dispense

() == 0.80EUR
Idle

5.1 Perform tests 6.1 to 6.3 and wait for some time
5.2 Coins

Inserted
Timeout
()

CashUnit.dispense
() == 0.80EUR

Idle

6.1 Perform test 3.1
6.2 Coins

Inserted
InsertCoin
(20ct)

Display(0.30) Coins
Inserted

6.3 Coins
Inserted

InsertCoin
(50ct)

Display(0.80) Coins
Inserted

7.1 Perform test 3.1
7.2 Coins

Inserted
0.10 <
Item1.Price

SelectItem
(Item1)

Display(0.10) Coins
Inserted

...

104 3 Model-Based Testing with UML

the transitions are triggered by the completion of these activities. Activity
diagrams depict flow of control through a procedure, so they are very sim-
ilar to traditional control flow graphs, although activity diagrams are more
flexible in that they may additionally define control flow through multiple
instances. In general this is a procedural collaboration between objects. This
is achieved through so-called swimlanes that group activities with respect
to which instance is responsible for performing an activity. Essentially, an
activity diagram describes flow of control between instances, that is, their in-
teractions, and control flow within a single instance. Activity diagrams can
therefore be used to model procedures at all levels of granularity, even at the
business process level.

Activity Diagram Concepts

An activity diagram is comprised of actions and results. An action is per-
formed to produce a result. Transitions between actions may have attached
guard conditions, send clauses, and action expressions. Guard conditions have
the same purpose as in statechart diagrams, and send clauses are used to indi-
cate transitions that affect other instances. Transitions may also be subdivided
into several concurrent transitions. This is useful for specifying parallel actions
that may be performed in different objects at the same time.

While the statechart diagram displays an overview of all activities that
can be performed with a component, the activity diagram shows how these
activities are implemented in detail, and with which other objects or compo-
nents they interact. This is the reason for why statechart diagrams are the
better choice for component specifications and activity diagrams are the bet-
ter choice for component realizations. Statechart diagrams concentrate more
on “what” will be implemented and activity diagrams more on “how” it will
be implemented.

3.2.9 Activity Diagram-Based Testing

UML activity diagrams are mainly used for typical structural testing activi-
ties; it means they provide similar information as source code or control flow
graphs in traditional white box testing, although at a much higher level of
abstraction if necessary. Developing activity diagrams may be seen in most
cases as programming without a specific programming language.

Testing of Control Flow Within a Single Instance

Control flow testing within an instance corresponds to a typical white box
unit test, though it is only valuable in component development and testing.
Component-based testing is concerned more with the integration of objects

3.2 Model-Based Testing 105

and their mutual interactions rather than with their individual internal work-
ings. For unit testing, activity diagrams provide typical traditional code cov-
erage measures, although at a higher level of abstraction. An activity may be
a single low-level statement, a block of such statements, or even a full proce-
dure with loops and decisions. Typical code coverage criteria can be adapted
easily to cope with activity diagram concepts. Traditional control flow graphs
and UML activity diagrams are essentially the same. Beizer treats control
flow-based testing thoroughly [11]. We can identify flows of control within
an instance of an activity diagram that we can map to traditional coverage
criteria:

• Testing the control flow graph through traditional coverage criteria.
• Control flow coverage of each activity in the activity diagram (solid arrow).

Testing of Control Flow Between Instances

Much more interesting for component-based testing with the UML is activity
that is spread over a number of different objects. This reflects the collabora-
tions of objects, their mutual effort toward a single goal. In this case it is the
procedure of the activity. Such higher-level procedures cross component or
object boundaries. At a boundary between two objects any flow of control is
translated into some operation invocation or some signal invocation between
the objects. The client object calls the methods of the server object. Here we
have a typical contract at the particular connection between the two objects,
so for testing we have to go back to the structural model and the behavioral
model of each entity and derive appropriate test cases for assessing this inter-
action point. We can identify flows of control between instances of an activity
diagram that we can map to traditional coverage criteria:

• Message flow coverage in the activity diagram (dashed arrow).
• Signal flow coverage in the activity diagram (dashed arrow).

High-level transactions are typically composed of lower-level transactions of
many different objects. The decomposition activity is responsible for creat-
ing these calling hierarchies between transactions. If we base our testing on
higher-level transactions, for example, on transactions in a use case model,
activity diagrams display which objects are participating in a transaction.
Each modeled transaction defines all its associated objects. So, when we start
testing our system, we know which objects we will have to assemble and cre-
ate, or for which objects in a transaction chain we will have to devise test
stubs. Figure 3.7 shows the activity diagram for the VendingMachine opera-
tion SelectItem. It shows the internal flow of control of the operation and the
other objects that participate in this activity. The other objects are invoked
through signals in this particular instance. The circled numbers indicate the
different paths through the diagram. They can be used to facilitate test case
identification. Table 3.8 shows the corresponding test scenarios that can be de-

106 3 Model-Based Testing with UML

:Display :VendingMachine :Dispenser :CashUnit

Show
Empty

[Item.
Volume
== 0]

Dispense
Amount

[Abort]

[else]

Show
Empty

[Amount
< Item.
Price]

[else]

Dispense
ItemItem.Volume =

Item.Volume
-1

Change =
Amount -
Item.Price

Dispense
Change

[Change > 0]

1

2

3

4

5

6

7

Item

selectItem

Fig. 3.7. Component realization activity model for the VendingMachine component
operation selectItem

rived from the activity model. Each test scenario follows a distinct path along
the control flow. The test cases represent full path coverage of the model. The
conditions for each test case define the parameter settings that lead to the
coverage of the defined path. After we have derived the test scenarios from
the model, the next step is to define concrete test cases in the same way as in
Table 3.7. In fact, we have already defined these test cases in Table 3.7.

3.2.10 Interaction Modeling

Interaction modeling represents a combination of dynamic and structural
modeling. It concentrates mainly on the dynamic interactions between in-
stances. The UML provides two diagram types for modeling dynamic inter-

3.2 Model-Based Testing 107

Table 3.8. Test scenario identification from the activity model

No. Covered Path Conditions for the test case

1 1-2-3 [Item.Volume > 0]
[! Abort]
[Amount == Item.Price]

2 1-2-7 [Item.Volume > 0]
[! Abort]
[Amount > Item.Price]

3 4 [Item.Volume == 0]

4 5 [Abort]

5 1-6 [Item.Volume > 0]
[! Abort]
[Amount < Item.Price]

action: sequence diagrams and collaboration diagrams. Their concepts are
introduced in the next paragraphs.

Sequence diagrams and collaboration diagrams define the interactions on
the basis of which objects communicate. This includes also how higher-level
functionality, or a scenario, is spread over multiple objects, and how such a
scenario is implemented through sequences of lower-level method invocations.
Sequence and collaboration diagrams essentially show the same information
content, but with a different focus, and they are both quite similar to activity
diagrams.

Sequence Diagram

A sequence diagram shows interactions in terms of temporally ordered method
invocations with their respective input and return parameters. The vertical
axis shows the passage of time, and the horizontal axis the objects that partic-
ipate in an interaction sequence. Through its focus on time passage, sequence
diagrams also illustrate the life time of objects; that means through which
occurrences they are created and destroyed. Labels can indicate timing prop-
erties for individual occurrences, so sequence diagrams are valuable for mod-
eling and specifying real-time requirements. Messages that are sent between
the instances can be synchronous, meaning that a sub-activity is completed
before the caller resumes execution, or asynchronous, meaning that the caller
resumes execution immediately without waiting for the sub-activity to finish.
In the second case, the calling object and the called object execute concur-
rently. This is important for embedded system development. Messages in se-
quence diagrams can take the same format as transition labels in statechart
diagrams, although they do not have the action expression. In other words, a

108 3 Model-Based Testing with UML

message can also be made conditional through a guard expression. The format
of a message is defined as follows:

[guard_condition] message_name (parameter_list)

A sequence diagram starts with a single interaction; this is the considered
scenario that triggers the whole sequence of messages which are spread over
the participating objects. Figure 3.8 displays the sequence diagram for the
operation VendingMachine::SelectItem according to the activity diagram
in Fig. 3.7.

<<Subject>>
VendingMachine

<<Komponent>>
Display

<<Komponent>>
Dispenser

<<Komponent>>
CashUnit

display (Empty) [Item.Volume == 0]

dispense (Amount) [Abort]

display (Amount)
[Amount < Item.Price]

[else]

alt

dispense (Change)

Item.Volume - 1

change = Amount -
Item.Price

dispense (Item)

alt

selectItem (Item)

[Amount >= Item.Price]

[Change > 0]

sd selectItem

Fig. 3.8. Component realization sequence model for the VendingMachine compo-
nent, operation selectItem

3.2 Model-Based Testing 109

Collaboration Diagram

A collaboration diagram focuses more on structure and how it relates to dy-
namic interactions. It is similar to a class or object diagram, since it may
also show internal realization of an object, that is, its subordinate objects.
Essentially, a collaboration diagram shows the same interactions as the cor-
responding sequence diagram. However, in collaboration diagrams messages
are numerically ordered, and associated with a single interaction between two
objects rather than sequentially associated with a lifeline, as in the case of
sequence diagrams. An interaction is a call path within the scope of a collabo-
ration [16]. Interactions in a collaboration diagram have the following format:

sequence_number : [guard_condition]
message_name (parameter_list)

sequence_number : * [iteration_condition]
message_name (parameter_list)

The sequence number is an integer or sequence of integers which indicates
the nesting level of a transaction sequence: 1 always starts the sequence, 1.1
represents the first sub-transaction on the first nesting level, 1.2 represents the
second sub-transaction on the first nesting level, etc. 1.2a and 1.2b represent
two concurrent messages which are sent in parallel. An asterisk indicates re-
peated execution of a message. The iteration is defined more specifically in the
iteration condition. This is an expression that specifies the number of repet-
itive message executions. Figure 3.9 displays the sequence diagram for the
operation VendingMachine::SelectItem according to the activity diagram
in Fig. 3.7 and the sequence diagram in Fig. 3.8.

3.2.11 Interaction Diagram-Based Testing

Sequence and collaboration diagrams are typical control flow diagrams, al-
though with slightly different foci. As the term interaction diagram implies,
they concentrate on control flow through multiple interacting instances. For
testing, the two diagram types may be represented as abstract control flow
graphs that span multiple entities. With that respect we can apply all typical
traditional control flow graph-based test coverage criteria as outlined in [11].
This includes path and branch coverage criteria as well as more exotic test
case selection techniques such as round-trip scenario coverage [16]. Since UML
diagrams are always also more abstract than traditional control flow graphs,
the test targets may be more abstract. Binder identifies some typical problems
that may be discovered through sequence diagram-based testing [16]:

• Incorrect or missing output.
• Action missing on external interface.
• Missing function/feature (interface) in a participating object.
• Correct message passed to the wrong object.

110 3 Model-Based Testing with UML

<<Subject>>
:VendingMachine

<<Komponent>>
:CashUnit

<<Komponent>>
:Display

<<Komponent>>
:Dispenser

User

1: selectItem (Item)

2: [Item.ID == Abort] dispense (Amount)
5.1: [Item.Price < Amount] dispense (Change)

5: [! 2 - 4]
dispense (Item)

3: [Item.Volume == 0] display (Empty)
4: [Item.Price > Amount] display (Amount)

sd selectItem

Fig. 3.9. Component realization collaboration model for the VendingMachine com-
ponent operation selectItem

• Incorrect message passed to the right object.
• Message sent to destroyed object.
• Correct exception raised, but caught by the wrong object.
• Incorrect exception raised to the right object.
• Deadlock.
• Performance.

The items in the list make the nature of interaction diagrams and their value
for testing apparent. In addition to typical control flow issues these diagrams
put considerable weight on collaboration and how that may be checked. From
the sequence diagram in Fig. 3.8 we may derive the test sequence displayed in
Table 3.9, and from the collaboration diagram in Fig. 3.9 we may derive the
test sequence displayed in Table 3.10.

In this section we have looked at how UML models may be used to derive
abstract test cases and test targets for a component-based system. It means
we can use the model of the system for devising the testing model of the same
system, and, eventually, the testing code, in an embodiment step. I call this
model-based testing since the specification of the test software is derived from
UML models.

3.2 Model-Based Testing 111

Table 3.9. Test scenario identification from the sequence model

No. Test Sequence Collaboration

1 [Item.Volume == 0] Display.Show (Empty)

2 [Item.Volume > 0]
[Abort]

CashUnit.Dispense (Amount)

3 [Item.Volume > 0]
[! Abort]
[Amount < Item.Price]

Display.Show (Item.Price)

4 [Item.Volume > 0]
[! Abort]
[Amount >= Item.Price]

Dispenser.Dispense (Item)

5 [Item.Volume > 0]
[! Abort]
[Amount >= Item.Price]
[Amount > Item.Price]

Dispenser.Dispense (Item)
CashUnit.Dispense (Change)

Table 3.10. Test scenario identification from the collaboration model

No. Collaboration Condition for Collaboration

1 CashUnit.Dispense (Amount) [Abort]

2 Display.Show (Empty) [Item.Volume == 0]

3 Display.Show (Amount) [Item.Price > Amount]

4 Dispenser.Dispense (Item) [! Abort]
[Item.Volume > 0]
[Item.Price <= Amount]

5 CashUnit.Dispense (Change) [Item.Price < Amount]

In the next section I give a brief overview on OMG’s UML Testing Profile
[120]. This is a specially defined way of using the UML for the design and
implementation of the test software for a component-based system. It provides
UML concepts that are specifically geared toward using this notation for the
development of testing artifacts. I call this test modeling because based on
this profile we can define how we are going to test a system in an abstract
form.

112 3 Model-Based Testing with UML

3.3 Test Modeling

The OMG’s Unified Modeling Language is initially concentrating only on
architectural and functional aspects of software systems. This manifests itself
in the following different UML diagram types:

• Use case diagrams describe the high-level user view on a system and its
externally visible overall functionality.

• Structural diagrams are used for describing the architectural organization
of a system or its parts thereof.

• Behavioral diagrams are used to model the functional properties of these
parts and their interactions.

• Implementation diagrams can be used to describe the organization of a
system during runtime, and how the logical organization of an application
is implemented physically.

The modeling and development of the testing infrastructure also involves the
description and definition of testing architectures, testing behavior, and physi-
cal testing implementation including the individual test cases. So, test develop-
ment essentially comprises the same fundamental concepts and procedures as
any other normal software development that concentrates on function rather
than on testing. The testing infrastructure for a system is also software af-
ter all. Out of this motivation, the OMG has initiated the development of
a UML testing profile that is specifically addressing typical testing concepts
in model-based development [120]. The UML testing profile is an extension
of the core UML, and it is also based on the UML meta-model. The testing
profile supports particularly the specification and modeling of software testing
infrastructures. It follows the same fundamental principles of the core UML in
that it provides concepts for the structural aspects of testing such as the def-
inition of test components, test contexts, and test system interfaces, and for
the behavioral aspects of testing such as the definition of test procedures and
test setup, execution, and evaluation. The core UML may be used to model
and describe testing functionality since test software development can be seen
as development for functional software properties. However, software testing
is based on a number of very special additional concepts that are introduced
in the following subsections and defined through the testing profile.

3.3.1 Structural Aspects of Testing

The UML testing profile defines the test architecture that copes with all struc-
tural aspects of testing in the UML. The test architecture contains test com-
ponents and test contexts and defines how they are related to the specified
system under test (SUT), the subsystem, or the component under test (i.e.,
the tested software). A test context represents a collection of test cases, as-
sociated with a test configuration that defines how the test cases are applied
to the SUT. A test configuration may comprise a number of test components

3.3 Test Modeling 113

and describes how they are associated with the tested component, the system
under test. A very special test component is the arbiter. It evaluates the test
results and assigns an overall verdict to a test case. Feasible verdicts for a
test result are pass, inconclusive, fail, and error. Figure 3.10 summarizes the
structural concepts of the testing profile.

<<Subject>>
Test

Architecture

Test
Context

Test
Configuration

Test
Component

Test
Case

SUT Arbiter

1..*

1..* 1..*

Fig. 3.10. Structural concepts of the testing profile

3.3.2 Behavioral Aspects of Testing

The test behavior is defined through a number of different concepts in the
testing profile. The most important concept is undoubtedly the test case. It
specifies what will be tested, with which inputs and under which conditions.
Each test case is associated with a general description of its purpose. This is
termed test objective and it essentially defines the test case. Each execution
of a test case may result in a test trace. This represents the different messages
that have been exchanged between a test component and the SUT. Finally, a
test case also comprises its verdict. This indicates whether the test passed or
failed. Figure 3.11 summarizes the concepts that are related to a test case.

The behavior of a test case comprises a test stimulus that sends the test
data to the SUT to control it, and the test observation that represents the re-
actions of the SUT to the sent stimulus. The assessment of the SUT’s reactions
to a stimulus is performed by a validation action. Its outcome is the verdict
for the test case. A pass verdict indicates that the SUT adheres to its ex-
pectations, a fail verdict indicates that the SUT differs from its expectations,
an inconclusive verdict means that neither pass nor fail can be assigned, and
the error verdict indicates an error in the testing system. The test behavior
is summarized in Fig. 3.12.

114 3 Model-Based Testing with UML

<<enumeration>>
Verdict

pass
fail
error
inconclusive

<<Subject>>
Test Case

Test Trace

Test Objective Test Behavior<<defines>>

Fig. 3.11. Concepts of a test case in the testing profile

Test Stimulus Validation
Action

Test
Observation

<<Subject>>
Test Behavior

<<enumeration>>
Verdict

pass
fail
error
inconclusive

Fig. 3.12. Concepts of the behavior of a test case in the testing profile

Stimuli that are sent to an SUT and observations that are received from
an SUT represent the test data of a test case. They are referred to as test
parameter. A test parameter may comprise any combination of arguments,
data partitions, or coding rules. An argument is a concrete physical value of
a test parameter and a data partition is a logical value of a test parameter,
such as an equivalence class of valid arguments. Coding rules are required if
the interface of the SUT is based on distinct encodings, e.g., XML, that must
be respected by the testing system. Figure 3.13 gives an overview of the test
data associations in the testing profile.

3.3 Test Modeling 115

<<Subject>>
Test Parameter

Coding Rule

Argument Data Partition

Test Stimulus Test Observation

Fig. 3.13. Test data concepts in the testing profile

3.3.3 UML Testing Profile Mapping

The previous paragraphs have introduced the fundamental concepts of the
UML Testing Profile. Its full specification may be found at the OMG’s Web
site [81]. Since in model-based testing all testing concepts are derived from
UML models, and in test modeling they are expressed through the UML,
they should be somehow related. In other words, we should be able to map
the concepts of the core UML to the concepts of the UML Testing Profile.
Basically, such a mapping provides some advice on how to apply the concepts
of the profile in a model-driven development project. This is laid out in the
following paragraphs.

Structural Concepts of the Testing Profile

Figure 3.10 identifies the structural concepts of the testing profile. These are
the test architecture, made up of the test context with the test configuration
that defines the test component. The test configuration is associated with the
system under test (SUT). Additionally, we have the test case and the arbiter.

Test Architecture

The test architecture comprises everything that is related to the test of an
application. It provides the framework for all testing models. On one side we
will produce a system model whose structure is represented by the system
architecture, and on the other side, for testing, we will devise a system that
is represented by the test architecture. Both architectures are represented by
UML structural diagrams. They can be developed independently from each

116 3 Model-Based Testing with UML

other, in which case we will probably put them into separate models. So, we
will have a system architecture model, e.g., the containment hierarchy of the
VendingMachine and, additionally, a testing system architecture model, e.g.,
the containment hierarchy of the VendingMachineTester. This will comprise
the entire testing system for the VendingMachine. Alternatively, we can de-
velop both architectures in tandem so that they appear in the same model.
The second approach is realized mainly through built-in contract testing that
will be the subject of Chap. 4.

Both approaches have advantages and disadvantages, and they can be
readily supported through typical product family concepts which I have in-
troduced in Chap. 2. Both architectures should be somehow identifiable, oth-
erwise it is difficult to separate testing functionality from original functional-
ity. For example, this can be done through the special stereotype �testing�
that indicates a model element as belonging to the test architecture. With the
testing stereotype, we can then indicate a variant of the product family that
specifically addresses testing issues, or that represents a testing system. How
this can be done is laid out in Chap. 5.

Test Context

The test context represents a scoping concept that incorporates test cases, test
components, and test configurations. It can be regarded as a superordinate test
component in the spirit of a KobrA context realization. It can also be indicated
through the stereotype �context� with an additional �testing� stereotype
that separates it from the normal context of a component (in the system archi-
tecture). For example, we can have the context of the vending machine repre-
sented by the component �context�VendingMachineContext and in parallel
we can have �testing context�VendingMachineTesterContext. With this
organization we would define two entirely separate systems, the system of the
vending machine, and the testing system for the vending machine.

Test Configuration

The test configuration represents an assembly of test components with test
cases, and it defines how these are related to the tested system (SUT). Essen-
tially this comes down to a sub-tree of a containment hierarchy that represents
all testing for a system. It defines which test components are associated with
which SUTs. We can use the full range of structural diagrams to express a
test configuration. Here, the focus is on how the test architecture is associated
with the system architecture and which test components are responsible for
which functional components. I will give more details on how test configura-
tions may be defined and used in model-based development in Chaps. 4 and
5.

Test Component

The test component is really a component in its conventional sense. It encap-
sulates everything that is necessary to organize and invoke test cases, so it

3.3 Test Modeling 117

encapsulates test data and test behavior, and it is associated with a tested
component, i.e., SUT. I will give more details on how to design and use test
components or tester components in Chap. 4.

System Under Test (SUT)

The system under test is usually also a component within a containment tree.
So, the SUT can be represented by any of the UML’s structural models. But it
can also appear as an object in a sequence, collaboration, or activity diagram.
In fact, the SUT is always the receiver of an event that is invoked from a test
case in a test component. In Chap. 4, I will use the terms tested component
or testable component for the SUT.

Test Case

The test case is the most fundamental concept in testing and it represents mul-
tiple associations between the UML concepts and the testing profile concepts.
The specification of a test case requires pre and postconditions, expected and
observed result, an event or an event sequence, input parameters, some sort
of validation that compares expected and observed result, and a verdict as a
result of this validation. Pre and postconditions are defined through behav-
ioral models in the original system. We can derive these from the statechart
diagram or from the functional model, i.e., operation specification or use case
description. A precondition typically defines an initial state that is required
for the test event to be invoked. This is represented by a sequence of opera-
tion invocations that set a tested component into an initial state according to
the state model. A postcondition represents an expected final state after the
execution of the event according to the state model. Usually, this is difficult
to check unless a tested component provides explicit support through addi-
tional state checking operations, i.e., additional testing interface in Chap. 4.
The specification of a test case has several sources in the UML model. The
most important ones are the behavioral models, but structural models may
also provide essential information, especially if a test case concentrates on
message sequences. A test case as such is primarily defined through an activ-
ity diagram that defines the component interactions and the control flow for
initializing the test case (precondition), finalizing the test case (postcondition
and result), and executing the event. Each test case can be specified through
an individual activity diagram if the test behavior is complex, or several test
cases can be represented by a single activity diagram if the test behavior is
simple.

Arbiter

The arbiter is a special test component that is responsible for assessing the
observed outcome of a test case against the specification of the expected out-
come. As a procedure, for example, as part of a test case or as part of an

118 3 Model-Based Testing with UML

entire test component, it performs the validation. The arbiter will contain all
attributes and methods that are required for checking the results of the test
cases and assigning verdicts. Depending on the organization of the testing sys-
tem, we can have an arbiter for each test case, for a number of test cases, or
for an entire test component, and they are typically related or communicate
through some attributes.

Behavioral Concepts of the Testing Profile

Figure 3.12 identifies the behavioral concepts of the testing profile. The test
behavior is mainly related to the test case. But we can also have test behavior
that draws a number of test cases together, and executes them as a sequence,
for example. So we can also have test behavior at the test component level.
The validation action is part of the arbiter, and it will be designed mainly in
terms of a procedure in an activity diagram. It is responsible for evaluating
the test result that the test observation is producing. The test stimulus is the
actual event that is invoked on the tested component. All behavioral models
can be used to define the test behavior, but the activity diagram is probably
the primary model for describing testing behavior. Complex state models are
not so common for testing.

Test Objective

The test objective is a general description of what should be tested. In the
most general sense, the test objective that can be derived from a behavioral
model is clearly the test of behavior. Since this is too broad a terminology,
and a test objective may also be associated with a test case in the testing
profile, we can be more specific and identify a number of test objectives, each
of which maps to one or more test cases. Typical test objectives are coverage
criteria, for example, model artifact coverage, i.e., state model coverage, and
the like. A sensible approach would be to define a test component for each
test objective.

Chapters 4 and 5 give some examples of how the concepts of the testing
profile may be applied in real projects. Some of the structural concepts are
readily applied in built-in contract testing, because this technology is based
on a specific testing architecture. The behavioral concepts are more implicitly
applied, and that is mainly within the test components. At higher levels of
abstractions the structural concepts are clearly more important for the defini-
tion of the testing architecture and the abstract tests. At the implementation
level the behavior becomes also more important and apparent. Chapter 5 gives
some more details on the implementation-level activities. But I have to say
that the focus of this volume is more on the abstract testing concepts.

3.3.4 Extension of the Testing Profile

In general, a profile is a predefined way of using or applying the UML with a
particular focus. The focus of the testing profile is clearly to support the design

3.4 Summary 119

and implementation of testing architectures. Other profiles may be domain-
or company-specific. These support modeling and design with domain-specific
concepts and artifacts, or with concepts and artifacts that are used only within
a company. Hence, a profile represents a highly flexible collection of items
that can be used for a particular purpose, in this instance the purpose of
testing. But it must really be regarded as a core set of things that can be
easily extended however developers or organizations see fit. In Chap. 4, I
will introduce a number of concepts and modeling elements that are in fact
extending the original testing profile of the UML. The testing interface is
such a concept, for example. Or I will use special stereotypes, e.g., �testing�.
Stereotypes can be defined and their semantics described easily. I am not going
to introduce these concepts formally, or present a formal extension model
of the testing profile, but I am rather going to use them informally where
necessary and explain their meanings.

3.4 Summary

UML and testing are a perfect fit. The UML can be used to specify any
arbitrary aspect of a computer system, and testing is based specification doc-
uments in the same way as functionality. Specifications describe in a semi-
formal way how a system is supposed to look, and what it is supposed to do.
Testing validates whether the executable implementation of a system exactly
conforms to what the specification defines. The UML can additionally be used
to model and specify the testing framework for a computer system.

Model-based testing, or testing that is based on the UML, is not so dif-
ferent from the traditional testing criteria that have been around for years.
In general, we will find the same concepts that code-based testing techniques
propagate in model-based testing. This is the fact, because models are abstract
representations of code, and whatever we apply at the concrete code level can
be applied at a more abstract level, the model. The only difference is that more
concrete representations of a specification will lead to more concrete testing
artifacts, and more abstract representations of a specification will inevitably
lead to more abstract testing artifacts. The model-based testing criteria and
the testing artifacts that we can derive from a UML diagram clearly illustrate
that. High-level diagrams lead to high-level testing artifacts, e.g., the use case
diagram maps to testing targets, and lower-level diagrams lead to lower-level
testing artifacts, e.g., the behavioral model leads to test cases, albeit abstract
ones, according to the level of abstraction. This observation suggests that we
can exploit almost anything in a model for testing. And in the near future
we will be able to extract the testing artifacts automatically from the models,
given that future tools will incorporate such capabilities.

The test software for a computer system is a software system in its own
right, and this can and should be specified according to the same rules and
with the same means applicable to the original tested system. Model-based

120 3 Model-Based Testing with UML

testing and test modeling are in fact orthogonal activities that complement
each other. After all, testing is only software development and execution. The
recently specified testing profile of the UML supports test modeling elegantly
in that it provides the right concepts for specifically addressing testing issues
that the core UML does not incorporate.

Chapters 2 and 3 have looked at component-based development and model-
based testing in isolation. They are now brought together and integrated in
the built-in contract testing approach, and this is the subject of the next
chapter.

4

Built-in Contract Testing

Component-based development is widely expected to revolutionize the way in
which we develop, deploy, and maintain software [157]. The idea of component-
based development is that we can generate new applications comparatively
quickly, by assembling prefabricated parts, instead of continually custom de-
signing and developing all our software from scratch, as is largely the case
under the traditional development paradigm. A more important incentive for
using component-based development techniques is that we are not limited only
to our own prefabricated parts, but can buy high quality parts from profes-
sional component vendors. This way we can purchase other people’s domain
knowledge through their components, and we can eventually develop systems
for which we are lacking actual experience. For example, we can buy and use
third party networking components to integrate our system into a networked
environment, and we can do that wireless now, because we can find the right
components. One main outcome of component-based development is that we
can develop larger and more complicated systems, and can do so much more
quickly than before.

The vision of component-based development is to bring software engi-
neering more in line with other engineering disciplines where assembling new
products from standard prefabricated parts is the norm, and, at the same
time, to save effort and improve quality. This vision of software development
presents some challenges, however. With traditional development approaches,
the bulk of the integration work is performed in the development environment,
giving engineers the opportunity to pre-check the compatibility of the vari-
ous parts of the system before it is integrated, and to ensure that the overall
deployed application is working correctly. The fact that in a custom design
all software is owned by the development team, and it can readily access all
software documents, greatly facilitates testing and debugging.

In contrast, component assembly suggests that components have not been
designed specifically for any particular purpose, or have been designed for an
entirely different purpose. Furthermore, the component infrastructure that in-
tegrates a new component will have characteristics that are completely differ-

122 4 Built-in Contract Testing

ent from the component’s original infrastructure for which it had been initially
developed. In other words, it is likely that a component’s original deployment
environment, and thus its intended usage profile, will significantly differ from
its new deployment environment into which it is going to be integrated when
it is reused. The Ariane 5 accident was caused through a typical integration
error of this kind. An additional difficulty is the late integration implied by
component assembly, so that there is often little opportunity to verify the
correct operation of applications before deployment time. In summary, we
can say that although component-based development provides an attractive
alternative to traditional custom software design, it inhibits validation. Even
if component developers may adopt rigorous test methodologies and overall
quality assurance techniques for their individual reusable units, this is not
much use if such a unit is integrated into an environment for which it has not
been specifically designed. This other environment may use the component
in such a different way that the component developer may never have antici-
pated in advance, thus making the original tests obsolete. In component-based
development most components are reused in a way as if they had never been
tested at all, making an entirely new assessment of the component necessary
[176].

The expectation that we put toward component-based software develop-
ment is founded on the implicit assumption that the effort we have to put
into component identification, acquisition, integration, and acceptance test-
ing is significantly lower than the effort that we have to invest in traditional
custom development where we produce and test all parts of the software and
have access to all artifacts. The arguments that are put forward in favor of
component-based development have substantial intuitive appeal but there is
little empirical evidence to validate them [176]. In component-based devel-
opment we do not have most of the artifacts that are typically required for
testing, so we may be forced to perform more black box integration and ac-
ceptance testing at the system level to attain the same degree of confidence in
the system’s reliability. And this may offset the savings that we expect to get
from component-based development entirely or at least to a large extent. In
short, although we can apply rigorous testing strategies in the development
of individual components, this helps little to assure the quality of entire ap-
plications that are assembled from them. The argument that the quality of
an assembly of components is at least as good as the quality of its individual
parts does not hold.

Built-in contract testing promises a way out of this quality assurance pit-
fall in component-based development. It is based on the notion of equipping
individual components with the ability to check their execution environment,
and their ability to be checked by their execution environment at runtime.
When deployed in a new system, built-in contract test components check the
contract compliance of all other associated components, including the run-
time system [73]. This automatically validates whether a component will be

4.1 Concepts of Built-in Testing 123

“happy” within its new environment and whether the new environment will
be “happy” with the newly deployed component.

This chapter concentrates on all aspects of built-in contract testing that
are related to the design of a system. The next chapter (Chap. 5) will look
at how built-in contract testing can be implemented on real component plat-
forms. In the next section (Sect. 4.1), I will briefly describe the fundamental
technologies behind built-in contract testing, assertions, and built-in testing.
In Sect. 4.2, I will describe the motivation for applying built-in contract test-
ing in component-based developments and its objective, and explain how the
fundamental concept of a component contract affects testing. Section 4.3 in-
troduces the two primary artifacts in built-in contract testing, the testing
interface and the tester component, and how they should be ideally designed.
Section 4.4 describes the development process that can be followed to come
up with the built-in contract testing artifacts. Section 4.5 summarizes and
concludes this chapter.

4.1 Concepts of Built-in Testing

In the literature, built-in testing typically refers to all concepts that are added
to a component’s code for facilitating testing or checking assertions and condi-
tions at runtime. Built-in testing is usually not part of the original functional
requirements of a component, and it does not stay incorporated in the code
beyond the release of a component. But the main argument of this book is
about exactly that: the development of components with permanent built-in
testing, seen as an integral part of the components right from the beginning of
their construction. There are some disadvantages under certain circumstances
of leaving testing artifacts built-in permanently; but we will initially concen-
trate only on how we can apply built-in testing techniques in component
engineering and component-based software testing, and will later on discuss
how to organize them so that we may get rid of them again easily if we find
them troublesome.

In the following, I will describe the two primary technologies of built-in
contract testing, assertions and built-in testing, in more detail.

4.1.1 Assertions

Built-in testing is not a new concept. Among the first built-in testing concepts
in software engineering were assertions, although we cannot really call them
built-in testing. An assertion is a boolean expression that defines necessary
conditions for the correct execution of an object or a component [16, 141].
Assertions in software follow the same principles as the self-checking facilities
that are readily built into hardware components. Whenever the boolean ex-
pression of an assertion is executed, the assertion checks whether the value of
some monitored variable is within its expected domain. In theory, assertions

124 4 Built-in Contract Testing

can be implemented at any arbitrary location in a component, but there are
distinct places where they are more useful. For example, we can have an as-
sertion before the entry into a procedure that checks all preconditions that
must be true before we can call that procedure, or we can add an assertion
at the exit from a procedure that assesses whether all postconditions of the
procedure after its execution are fulfilled. Other assertions may also have to
be true at all times, for instance an object invariant [16]. This is more difficult
to validate because we have to add code that checks the assertion periodically.
An assertion consists typically of three parts:

• a predicate expression that may be coded as a simple if statement,
• an action expression that in its simplest form points out the problem, i.e.,

a print statement, and
• an enable/disable mechanism that controls the execution of the assertions.

Assertions are typically programmed during development in the same way as
any other functionality, and enabled or disabled during translation. During
execution, an assertion may be either true, in which case it has not found
any errors, or false. This second case is called an assertion violation that
triggers the action expression to be performed. The action expression may be
as simple as writing a message to the screen, a method that is quite readily
applied in first year programming classes, or as complicated as invoking an
entire recovery mechanism [16].

Assertions represent a valuable tool for catching many typical errors that
can be made explicit through assumptions and conditions, such as responsi-
bilities, i.e., pre and postconditions, or boundary conditions of input, output,
and internal variables. Moreover, assertions address the single most impor-
tant inhibiting factors of testing object-oriented systems: encapsulation and
information hiding. Assertions enable us to readily check the validity of an ob-
ject’s internal states throughout its lifetime, through a continuous assessment
of the object’s internal state attributes that are changed through external
events. Binder discusses assertions exhaustively [16].

4.1.2 Built-in Testing

In the literature, assertions and built-in testing are often used as synonyms,
e.g., [16]. But I believe they are fundamentally different concepts. In my opin-
ion, assertions are lacking one important ingredient for representing built-in
testing, that is, the notion of a test or a test case. Assertions can be used in
a test and provide valuable information for error detection during test execu-
tion, but we cannot say an assertion or its execution represents testing. A test
is an experiment under controlled conditions that applies a set of test cases
in a test procedure or test framework [91], so I believe we can only talk about
built-in testing if we have built-in test cases. I have included assertions un-
der the topic of built-in testing because they represent the most fundamental

4.1 Concepts of Built-in Testing 125

idea behind built-in contract testing in component-based development, that
is, building the testing directly into components.

Built-in testing strategies comprise the built-in self-test metaphor whose
idea is derived from the self-test capabilities commonly built into hardware
components. Built-in self-test components are software modules that contain
their own test cases. In sloppy terms, we could say that these are software
components with their own tests for checking their own implementation.

One motivation for building self-tests into a software component is to
check differing variations of component implementations that are all based
on a single component specification [98, 103]. In other words, a component
is not merely viewed as its implementation, or the physical thing that we
will deploy in our system, but it is viewed as the collection of all descriptive
documents that fully describe the component’s interfaces, structure, and be-
havior, plus an arbitrary implementation of this model. This view is fully in
line with KobrA’s approach to define a component, which I have introduced
in Chap. 2. Assume that we have a number of component realizations with
a variety of different quality properties that are all consistent with the single
component model. This could well comprise a number of different realizations
in one programming language, or different implementations for different plat-
forms. Each implementation consists of two distinct parts, the component’s
functional implementation and its test implementation. The definition of the
test cases is the same for all different implementations, and so is the definition
of the component’s functionality. The implementation self-test strategy is a
typical component development-time testing approach. It means it is a way to
test individual units. It is not so suitable for checking component interactions
in an assembly of individual units.

Object technology provides the right tools for the implementation of this
type of object testing. We can have a base class in Java, for instance, that
includes the implementation of the functionality , and then extend that with
testing code through inheritance. The testing code of the extended class pro-
vides the test cases that will check the implementation of the base class. In
Java that may be achieved through the following source code lines:

class Component {
// functional interface and attributes
...

};

class testableComponent extends Component {
// testing interface and test cases
...

};

The extension will also provide some interface that can be used to invoke the
test. If we test such a component, we can instantiate its testable version, and
start the tests through the additional testing interface. If we integrate the

126 4 Built-in Contract Testing

class in an existing component infrastructure, we may instantiate the original
version, the base class. During the test, the extended class can access the
original functionality through the inheritance mechanism as long as the class
does not define any private items that are not inherited. The advantage of
this type of built-in self-test is that we can break the encapsulation boundary
of the tested object, but yet keep functionality and testing entirely separate
in different classes. The fact that we can break the encapsulation boundary
for testing can be seen both as a cure and curse. It is a cure because we can
apply highly implementation-specific test cases. After all, we can access all
internal attributes, and this results in high observability and controllability
of the tested object. At a first glance this is very good for testing. However,
breaking the encapsulation boundary in this way is also a curse, because if we
apply such highly implementation-dependent test cases we will never be able
to reuse the tests in a different implementation. For instance, we might access
distinct attributes in a test which do not exist in another implementation, so
that we can actually scrap the test.

Another similar approach proposed by Wang et al. with a slightly different
motivation is to add component self-tests and leave them permanently in an
object or component implementation for reuse [165, 166, 167, 168]. The main
idea behind this strategy is to exploit the inheritance mechanism of typical
object technologies to transmit not only the functionality of a class to its sub-
classes but, additionally, also its testing functionality in the form of readily
built-in test cases. The test cases are invoked through an additional testing
interface that the object provides. Users of an object may access its normal
interface and get its specified functional behavior in normal mode, but they
can also access the object’s testing interface and execute its built-in test cases
in test mode. At first sight, it might seem the same as the previous approach,
but there is a subtle difference. In the previous instance, the approach was
merely to have unit tests attached to and detached from a component im-
plementation in a convenient way. Here, we have the tests always built into
an object, and they are inherited from the base class by all extended classes.
So, we have the same built-in testing facilities that the base class provides in
all inherited classes. The main motivation of this approach is that software
components or objects will get the same self-test capability that can be re-
garded as standard in most hardware components. Additionally, in contrast
with hardware components, software components may inherit their features
and thus provide the same self-test capabilities in subsequent versions.

This strategy might seem appealing at a glance, but software components
differ from hardware components in one important respect. While hardware
components are built from materials that can physically degrade over time,
software components are not. Software components are encoded in digital
formats which can easily be checked (and if necessary corrected) to ensure
that there is no change over time. Thus, the concept of a self-test in software
that is similar to the hardware approach [166, 168] is not directly applicable or
useful in component-based software testing. This type of built-in testing is only

4.2 Motivation for Built-in Contract Testing 127

useful in component evolution and maintenance because only such activities
will in fact change the code of the component and make a regression test
necessary. There is no point in a component rerunning previously executed
tests on itself, because by definition the component itself does not change.
What can and usually does change, however, is the environment in which
a component finds itself. The objective of built-in testing should therefore
not be a test of a component’s own functionality, because we can check that
through typical unit regression testing, but an assessment of the component’s
environment and how well it interacts with that. In other words, we have to
assess that the component’s environment into which it will be deployed does
not deviate from what the component was developed to expect, and that the
component does not deviate from what its new environment was developed
to expect. This more obvious motivation is not clearly stated in the built-
in testing approach of Wang et al. In the following sections I will state the
motivation for built-in contract testing more concisely, and then introduce the
methodology behind built-in contract testing that specifically addresses this
testing problem.

4.2 Motivation for Built-in Contract Testing

The philosophy behind all built-in testing concepts is that an upfront in-
vestment on verification and validation infrastructure pays off during reuse.
In component-based development, this follows the same fundamental ideas
of gaining return on testing investment through reuse of the built-in testing
artifacts. The more often a component will be reused, the higher is its rate
of return, and this applies to its functionality as well as its testing. This is
the case only if the testing artifacts are permanently built-in, and are always
deployed, or at least purchased, together with the component.

4.2.1 Objective of Built-in Contract Testing

The objective of built-in contract testing is to ascertain that the environment
of a component meets the component’s expectations, and that the component
meets the environment’s expectations. These two views are the only things
that can change in component integration. This is illustrated in Fig. 4.1.
Typically, if we bring components together to form a new application, we will
find a number of individual units that are nearly good enough for the purpose.
It is extremely unlikely that we will find all components in forms that exactly
match all other components that we are going to reuse. Normally, we will have
to perform some syntactic and semantic mapping at the boundary between the
deployed component and the component infrastructure in Fig. 4.1. In Chap.
2, I explained how this is typically done in a development method. In order to
achieve this mapping we cannot usually change the individual units and make
them work with one another. This is because we do not own amenable versions,

128 4 Built-in Contract Testing

<<artifact>>
C

<<artifact>>
A

<<artifact>>
B

<<artifact>>
D

<<artifact>>
E

<<artifact>>
Deployed

Component
F

<<Component Infrastructure>>
Deployment Environment

Fig. 4.1. Deployment of a component into an existing component infrastructure

i.e., we have bought COTS, or we are reluctant to change any of them. This is
quite typical because although we perhaps own their source code, i.e., we use
in-house development, we do not understand it well enough, and we do not
want to mess it up. Attempting to change any of the components is anyway
not a good idea in component-based software development. After all, we have
decided to apply the component paradigm because we wanted to avoid this
way of custom designing our software.

The only solution that remains is to add some so-called glue code be-
tween the components at their interfaces. This is an additional program that
takes what one component “means” and transforms it into what the other
component will “understand.” So, for each interface between the deployed
component and the component infrastructure in Fig. 4.1 we have to add such
a transformation facility. At this point, the deployed component is integrated
in the infrastructure, and the components may perform some meaningful in-
teractions. I say “may” because we do not yet know for sure.

Before we can release this application we have to check the newly es-
tablished component integration, and this is exactly where built-in contract
testing comes into play. The idea of built-in contract testing is that every com-
ponent in an infrastructure come equipped with its own built-in test cases.
These tests are designed specifically to check the component’s runtime envi-
ronment, not its own implementation as in the previously described built-in
testing approaches. Every component “knows” best what support it is expect-
ing from its associated partners. The built-in test cases of the component rep-
resent this expectation. So, whenever a component interaction is established,
the two parties in that interaction can automatically invoke their built-in tests
and assess whether the interaction is sufficient.

4.2 Motivation for Built-in Contract Testing 129

This way of organizing component testing adds considerable value to the
reuse paradigm of component-based software development because a compo-
nent can complain if it is mounted into an unsuitable environment, and the
environment can complain if it is given an unsuitable component. The benefit
of built-in contract testing follows the principle which is common to all reuse
methodologies: the additional effort of building the test software directly into
the functional software results in an increased return on investment according
to how often such a component will be reused. The component will be reused
more frequently according to how easy it is to reuse, and built-in contract
testing greatly simplifies the reuse of components. In the following section we
will have a look at how built-in contract testing is designed and organized,
but prior to that we look at the concepts that typically govern component
interactions, component contracts.

4.2.2 Component Contracts

A prerequisite for the correct functioning of a system containing many compo-
nents is the correct interaction of individual pairs of components according to
the client/server model. Component-based development can be viewed as an
extension of the object paradigm in which independent, self-contained units
of behavior, i.e., objects or components, interact by sending messages to each
other. The interaction of components is based on the client/server model. In
a given interaction, one party plays the role of the client, and the other plays
the role of the server. The client is the party that needs a service, and sends a
request for this service to the server. The server then performs the requested
service and returns the results without knowing the identity of the client.
Client and server refer to roles that a component can play in an interaction.
In different interactions a given component can play either the role of a server
or a client, but in any particular interaction one of the parties involved plays
the role of a server and the other the role of a client.

The correct functioning of a system of components at runtime is contingent
on the correct interaction of individual pairs of components according to this
client/server model. Component-based development can be viewed as an ex-
tension of the object paradigm in which, following Meyer [112], the set of rules
governing the interaction of a pair of objects is typically referred to as a con-
tract. This characterizes the relationship between a server object and its client
object as a formal agreement, expressing each party’s rights and obligations.
This notion of a contract is extended to components, where different reuse
and deployment contexts are so much more important, by parameterizing the
pre and postconditions of components’ contracts to address the configuration
of components adequately that are deployed in new contexts. This extension
is proposed by Reussner and others, and termed parameterized contract ac-
cording to the “architecture-by-contract” principles. [135, 136, 137].

Testing the correct functioning of individual client/server interactions
against the specified contracts goes along way toward verifying that a sys-

130 4 Built-in Contract Testing

tem of components as a whole will behave correctly; and this is fully in line
with the notion of a parameterized contract and the architecture-by-contract
principles mentioned above. The use of a software component is always based
on a two-way contract:

• the component should operate according to its specification, and this is
the server’s contract,

• the system in which the component is integrated should meet the compo-
nent’s expectations, and this is the client’s contract.

Built-in contract testing investigates whether a component deployed within
a new runtime environment is likely to be able to deliver the services it is
contracted to deliver; hence the name. Contracts are the most fundamen-
tal relations in component-based development. We typically have ownership
and containment in a component-based application which leads to component
nesting. And all these concepts inevitably lead to component contracts.

4.3 Model and Architecture of Built-in Contract Testing

As explained in the previous section, a component interacts with its envi-
ronment, the other components in the infrastructure, at runtime by means of
client/server interactions. One of the parties in an interaction plays the role of
a client, the other that of the server. When an otherwise fault-free component
is deployed in a new environment, there are only two basic things that could
go wrong during its execution:

• either the component itself is used incorrectly by others,
• or one or more components that it uses and is depending on malfunction.

Both of these scenarios can be characterized in terms of the client/server rela-
tionship: the former implies that one or more of a component’s clients behave
incorrectly, while the latter implies that one or more of a component’s servers
behave inappropriately. Checking that these errors do not arise, therefore, can
be characterized as checking that the contract between components is adhered
to. The two situations identified above are highlighted in the generic deploy-
ment scenario illustrated in Fig. 4.1. In terms of this diagram, there are two
things that should ideally be checked at runtime to ensure that a deployed
component’s contracts are adhered to:

• The deployed component (with the thickened border in Fig. 4.1) must
check that it receives the required support from its servers. This includes
the explicitly acquired servers, in this particular instance components C
and E, and the implicitly acquired servers. The implicit servers are the
components that the runtime support system provides, for example, a
middleware platform or the operating system. They are servers in the
same respect as any other explicit server component in the component

4.3 Model and Architecture of Built-in Contract Testing 131

infrastructure of an application is a server. The only difference is that
the components of the application implicitly assume their existence and
use their services. This first scenario considers contract testing from the
viewpoint of the deployed component.

• Clients of the deployed component must check that the component cor-
rectly implements the services that it is contracted to provide. In other
words, clients of the deployed component must ensure that it meets its
contract. This scenario considers contract testing from the viewpoint of
the clients of the deployed component, in this particular instance the com-
ponents A and C.

Every component in the infrastructure should therefore have its own test cases
built in that reflect the component’s expectation toward its environment. If a
component F is a client of two other components E and C as displayed in Fig.
4.1, the purpose of the test cases built into F is to check E and C by invoking
their methods, and to verify that they behave individually and collectively
as expected. The same is true for components A and C that acquire the
services of the deployed component F. The built-in test cases in components
A and C will therefore invoke F’s methods to check that F fulfills its contract
in the way that A and C are expecting. Components A and C are quite
likely to use F differently, so they have different built-in test suites. Each of
the components’ test suites will be designed according to each component’s
specific usage profile of F. Since the tests built into a client check the behavior
of a server, they essentially check the semantic compliance of the server to the
client relationship contract.

While most contemporary component technologies enforce the syntactic
conformance of a component to an interface, they do nothing to enforce the
semantic conformance. This means that a component claiming to be a stack,
for example, will be accepted as a stack as long as it exports methods with
the required signatures, i.e., push and pop. However, there is no guarantee
that the methods do what they claim to do. Built-in tests offer a feasible
and practical approach for validating the semantics of components, and this
is in fact the main argument for built-in contract testing. In essence, this
follows the same fundamental ideas of the previously introduced built-in self-
tests. However, the built-in test cases here are not designed for checking a
component’s own implementation as in the previous cases, but for checking
the new environment in which the component is deployed.

In general, testing a component involves testing state transitions as well
as returned values. To support the two scenarios identified above (i.e., client
viewpoint and server viewpoint), additional software artifacts must be pro-
vided in both the server and the client. This is illustrated in more detail in
Fig. 4.2 and described as follows:

• In general, the client will contain built-in tests which are dedicated ex-
clusively to checking the component’s own deployment environment (its
servers). This comprises explicit servers in the component infrastructure,

132 4 Built-in Contract Testing

Functional Interface

Testing Interface

Testing Component

Functional Interface

Testing Interface

Tested Component

Implicit
Server
Tester

Explicit
Server
Tester

Implicit
Server
Tester

Explicit
Server
Tester

<<acquires>>

Runtime Support System
(Implicit Server)

Fig. 4.2. Model of built-in contract testing

i.e., units of the application, and implicit servers that are provided through
the middleware. The test cases are carefully designed to comply with trade-
off requirements, and they are organized and contained in tester compo-
nents. A client that contains built-in tests in that way is called a testing
component. The tester component is a separate component and includes
the test cases for another associated server component.

• The server will contain a contract testing interface. This adds to the client’s
normal functional interface and serves contract testing purposes. The con-
tract testing interface consists of public methods for state setup and state
validation. This enables access to the internal states of a component similar
to what assertions provide, leaving the actual tests outside the encapsu-
lation boundary. The clients of the component use the contract testing
interface to verify whether the component abides by its contract. In this
way, each individual client can apply its own test suite according to the
client’s intended use of the component, this means according to its own
usage profile of the server. A server that provides such a testing interface
is called a testable component.

The tester accesses the server’s normal interface for executing the test cases,
and the server’s testing interface for state setup and state validation. The exe-
cution of the tester represents a full server test with which the client validates
that the server provides its services correctly.

A component that plays both roles, that of the client and that of the server,
will have both the built-in contract testing interface to support the testing
that is performed by its own clients, and a number of tester components one

4.3 Model and Architecture of Built-in Contract Testing 133

for checking each of its associated servers. Such a component is called a testing
and testable component.

4.3.1 Explicit vs. Implicit Servers

In general, two kinds of server components can be distinguished. The first kind,
known as explicit servers, correspond to the server components defined explic-
itly as part of the development or implementation. These represent server com-
ponents as typically understood. The second kind, known as implicit servers,
correspond to services supplied by the runtime system. This kind of server is
discussed further in this section.

When a computer program written in a particular language is executed,
the computer must usually also include some additional software, known as
the runtime system, which provides runtime support for some of the features
of the used language. Typical examples are I/O operations and introspection
operations that allow the program to find out some details (e.g., record size)
about how objects are implemented. This runtime support software is invari-
ably written by the vendor of the compiler technology used to develop the
program, and is included in the final running system invisibly to the appli-
cation program developer. The developers of such runtime support software
naturally test it in the normal way to ensure that it satisfies the specified re-
quirements. With the advent of object-oriented and component technologies,
the trend has been to implement more of the features which were traditionally
embedded within the runtime support software in predefined library classes.
Java provides a good example of this trend, with many of the I/O and intro-
spective facilities defined within the class library rather than invisibly in the
runtime support. The difference between these library features and explicit
server components of the first kind is that they are supplied implicitly. For
example, the “in,” “out,” and “err” objects provide the standard I/O capabil-
ities, and they are automatically visible to any Java object, but do not have
to be explicitly acquired [37]. Therefore, in addition to tester components for
testing the explicit servers of the kind described above, tester components are
also needed for the

• implicit servers which are automatically provided as part of the standard
setup,

• the invisible runtime support (RTS) software which provides support for
any other features of the languages not handled by the previous item.

• support that is provided through typical component platforms, the so-
called middleware.

In all the three cases the approach for handling implicit server components is
the same as for explicit server components. In principle, therefore, a heavy-
weight runtime test of the runtime support software could include the man-
ufacturer’s acceptance tests to ensure that all the required features are prop-
erly supported. However, this would be extreme. In practice, a more carefully

134 4 Built-in Contract Testing

selected, lighter subset of these tests could be included in a component to
provide a test of the runtime support software. In the next section we will
have a closer look at testing interfaces in built-in contract testing and how
they are designed, and, following that, we will see how they can be used in
tandem with tester components.

4.3.2 The Testing Interface

Like objects, components are state machines and require state transition test-
ing. Before a test can be executed, the tested component must be brought
into the initial state that is required for a particular test. After test case exe-
cution, the test must validate that the outcome (if generated) is as expected,
and that the tested component resides in the expected final state. By defini-
tion, however, the internal states of a component are hidden to outside entities
by application of the principles of information hiding and encapsulation. In
general, it is not possible for a system integrator to look inside a component.
Components are black boxes whose functions can only be understood through
the specifications of their interfaces. In fact, many components may be avail-
able only as binary images in the form of DLLs or some equivalent technology,
making it impossible for an integrator to know what is inside the box. Even
in the case of components where the source code is available, detailed design
documentation may not be available, hence making it difficult to find faults
in the component. A software component is a black box with an explicit set
of provided and required interfaces. Each provided interface is a set of oper-
ations that the component provides, while each required interface is a set of
operations that the component requires to perform its operations. Apart from
this we have no further insight into a component. Typical components have
low testability.

An external test software cannot usually set or get internal states except
through the normal functional interface of the component. A specific sequence
of operation invocations through the normal functional interface is usually re-
quired to set a distinct state for a test execution. Since the tests are performed
to validate whether the functional interface behaves as it is expected to, it is
unwise to use the functional interface to set and verify the internal states of a
component and check the outcome of the tests. This means we should not use
something for performing a test that is actually the subject of that test. Ad-
ditionally, typical components will not readily provide output states in which
the output of the component can be analyzed in order to draw conclusions on
its current state. In other words, objects or components are often organized
in a way that they accumulate data over some period of time and perform
some internal calculations. Only eventually will they output a result that may
give some hints on internally stored state information. In the meantime we
could have had a number of faults that would never have emerged as fail-
ures because the component will never have exhibited these in any observable

4.3 Model and Architecture of Built-in Contract Testing 135

form. Any internal workings of a component are hidden; so are the faults that
accumulate inside the component.

Consequently the test architecture needs to allow system integrators to use
some internal information about the component that is essential for testing,
without having direct access to the internal workings of the component. This
problem can be circumvented by using an additional testing interface which
contains special purpose operations for setting and retrieving the internal state
of a component. In a general sense, a component can be viewed as a state
machine. Every time a client invokes an operation on a component, its state
changes. In addition, while a component performs some function its state will
also change. Not all states will be significant to a system integrator. Certain
key states will be of interest, for example, at the end of an operation, when
something should have completed successfully. It might also be of interest to
know of the progress of an operation.

The built-in contract testing architecture makes these states that are es-
sential to operate a component visible to external clients. I call such externally
visible states logical states, in contrast with the real internal states of a com-
ponent, the so-called physical states. Logical states are essential for a client or
user of a component in order to use the component correctly and understand
its behavior. We may define a logical state as a domain or a set of physical
states for which a component’s operation invocations will exhibit the same
abstract behavior. For example, the physical state of a stack is any arbitrary
combination of its internal attributes. This comprises the number of stack en-
tries and the value of each entry. If the value of an entry changes, the physical
state of the stack changes. However, for using a stack and understanding its
behavior, the value that is stored in a stack entry is completely irrelevant. It is
only relevant in terms of whether I retrieve the same value from the stack that
I have previously put into it. More important for understanding the behavior
of a stack is the fact that I cannot retrieve a value from an empty stack, or
I cannot store any more items in a full stack. “Empty and “full” are logical
states that are externally visible to the user, because the stack operations pop
and push will behave differently according to these states, that is, a push on
a full stack and a pop on an empty stack will result in some error handling if
the stack’s contract defines such a handling mechanism.

Built-in contract testing represents a method and a process for making log-
ical states of a component accessible to its external clients, and consequently
to their built-in tester components. This part of the built-in contract testing
architecture is concerned with component development. In other words, com-
ponent providers have to add the testing interfaces to their products before
they are released, so that component consumers can make use of this testa-
bility feature when they integrate such components into their applications.
The state setup and state validation methods for a component can be de-
rived from its own specification behavioral model. The behavioral model, i.e.,
a UML statechart diagram, shows a component’s externally visible, feasible
states through which it can proceed throughout its lifetime.

136 4 Built-in Contract Testing

Idle

entry / amount = 0
Display amount

CoinsInserted

entry /
amount +=
coin.value

T1.setTimer (3 sec)
do/

Display amount

InsertCoin

Select Abort on
Keypad

/ Return Inserted
Coins

InsertCoin

Select Item on Keypad
[Amount < Item.Price]

T1.Timeout
/ Dispense

Inserted
Coins

Select Item
[! EmptyItem]
Display Item.Price
Delay for 1 sec
[else]
Display Empty
Delay for 1 sec

Select Item on Keypad
[Amount = Item.Price]
Dispense Item

Select Item on Keypad
[Amount > Item.Price]
Dispense Item
Dispense Change

Select Item on Keypad
[Empty Item]
Display Empty
Dispense Change

Tmax < 3 sec

1

2

3
4

5

6

7

8

9

10

sm VendingMachine

Fig. 4.3. Statechart diagram of the VendingMachine component

Figure 4.3 shows the specification behavioral model of the VendingMachine
component from Chap. 3 again, and Fig. 4.4 shows the respective testing in-
terface variants that we can derive from the behavioral model.

Every state symbol in the statechart diagram represents a starting point
for a test execution and an end point. A test case can represent a single state
transition between two such points, or a sequence of transitions through a
number of states. We have discussed this in Chap. 3, where we have derived
a state table from a statechart diagram and used it as the basis for testing.
Table 3.6 on page 102 shows the abstract test cases for this example (Chap.
3). The fundamental concept here is that we can always identify an initial
state before a test and a final expected state after a test, and both are derived
from the specification statechart diagram. The testing interface will provide

4.3 Model and Architecture of Built-in Contract Testing 137

• a state setting operation, e.g., setToStateX():void, and
• a state checking operation, e.g., isInStateX():boolean,

for each state symbol, with X representing the name of a particular state. These
operations may be used by an external client of the component to bring the
component into the desired state before a test is executed, or to check whether
the component is residing in the expected state after the execution of a test.

<<Subject>>
Testable

VendingMachine

Item <<from Item>>
Timer <<from Timer>>
Coin <<from Coin>>
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)
<<variant>> + insertCard
 (Cardtype Card)

<<Testing Interface>>

<<State Checking>>
+ is-In-Idle (...)
+ is-In-InsertCoins (...)

<<State Setting>>
set-To-Idle (...)
set-To-InsertCoins (...)

<<Subject>>
Testable

VendingMachine

Item <<from Item>>
Timer <<from Timer>>
Coin <<from Coin>>
- Amount : Currency

<<Testing Interface>>
+ State Idle
+ State InsertCoins

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)
<<variant>> + insertCard
 (Cardtype Card)

<<Testing Interface>>

+ is-In-State (State, ...)
+ set-To-State (State, ...)

<<Subject>>
VendingMachine

Item <<from Item>>
Timer <<from Timer>>
Coin <<from Coin>>
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)
<<variant>> + insertCard
 (Cardtype Card)

<<Testing>>
Testable

VendingMachine

<<State Checking>>
+ is-In-Idle (...)
+ is-In-InsertCoins (...)

<<State Setting>>
set-To-Idle (...)
set-To-InsertCoins (...)

<<Subject>>
VendingMachine

Item <<from Item>>
Timer <<from Timer>>
Coin <<from Coin>>
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)
<<variant>> + insertCard
 (Cardtype Card)

<<Testing>>
Testable

VendingMachine

+ State Idle
+ State InsertCoins

+ is-In-State (State, ...)
+ set-To-State (State, ...)

<<extends>> <<extends>>

1 2 3 4

Fig. 4.4. Alternative UML class diagram representations for the testing interface
of the VendingMachine component

Figure 4.4 displays four alternative implementations for such a state setting
and state checking mechanism in the form of a UML class diagram:

1. The first class symbol of the TestableVendingMachine component on the
left hand side in Fig. 4.4 represents the simplest way of implementing a
component with a testing interface. It defines two testing interface oper-
ations for each state that are directly implemented in the original class.

2. A more advanced method is to have only two testing interface operations
altogether, which take the names of the states as input parameters. The
states are defined as public constants that internally switch to their re-
spective implementations.

The internal code for setting and retrieving state information is essentially
the same for both strategies. The advantage of the second way of doing this
is that we have only to define two testing interface operations that always
have the same signature for all components. Only the definitions of the states

138 4 Built-in Contract Testing

are different. This second method greatly facilitates and formalizes the code
for the testing interface. For example, we could devise a predefined library
that we could use as a testing interface development framework. This would
provide an enumeration type for the states and a case statement-like construct
for switching to the respective code sections for setting and retrieving state
information. In fact, such a library does already exist, and we will have a
closer look at it in Chap. 5.

The problem with the two architectural approaches on the left hand side of
Fig. 4.4 for implementing testing interfaces is that the testing code is always
permanently built into the component. In other words, after we have inte-
grated such a component into its new environment and checked its contract
compliance against its new component infrastructure, the testing code will
always stay in the new application, although we will never need that again
in this particular context. The two alternative architectural organizations on
the right hand side of Fig. 4.4 solve this problem:

3. In the third instance we can have the implementation of the original com-
ponent, in this case the VendingMachine, and extend it with a testing
interface that comes as a separate implementation.

4. In addition, according to the second incarnation in Fig. 4.4, we can have
only two operations that can be parameterized through state variables.

This way of organizing testing interfaces we can use a testable version of our
component for integration and deployment by instantiating the extension, e.g.,
TestableVendingMachine. And, later on if we are confident that the appli-
cation will work after we have applied some contract tests, we can instantiate
and run the original, non-testable version of our application. The testing in-
terface operations that we have discussed in the previous sections will provide
the core testing functionality of a testable component. Their signatures will
change from component to component according to the component’s logical
states. We will have either two testing interface operations per logical state
or two operations in total, plus a public state variable that controls the states
for the second alternative. Additionally, we can have a number of support op-
erations that facilitate the access to the core testing interface. This comprises
an operation that determines the type of built-in testing that the component
provides, and an operation that can be used to set and invoke a component’s
own built-in tester components. The following list summarizes the operations
of a typical testing interface:

• IBITQuery. Query operation that every component should provide as a
default. This determines whether the component provides a testing inter-
face according to the built-in contract testing philosophy. BIT stands for
“Built-In Testing;” the signature IBITQuery indicates that the operation
belongs to a special built-in testing interface that can be used to query the
component on supported built-in test technology. I will introduce an ad-
ditional built-in testing technology, built-in quality-of-service testing that
uses also these conventions (Chap. 7).

4.3 Model and Architecture of Built-in Contract Testing 139

Table 4.1. State-based unit testing of the testableVendingMachine component with
access to its testing interface

No Set To Initial
State

Precondition Transition Postcondition Check Fi-
nal State

1 setTo (idle) [Item.Empty] SelectItem
(Item)

Display
(Empty)

isIn (idle)

2 setTo (idle) [!Item.Empty] SelectItem
(Item)

Display
(Item.Price)

isIn (idle)

3 setTo (idle) InsertCoin
(Coin)

Display
(Amount)

isIn
(insert
Coins)

4 setTo (insert-
Coins, ...)

SelectItem
(abort)

CashUnit.
dispense ()

isIn (idle)

5 setTo (insert-
Coins, ...)

Timeout
()

CashUnit.
dispense ()

isIn (idle)

6 setTo (insert-
Coins, ...)

InsertCoin
(Coin)

Display
(Amount)

isIn
(insert
Coins)

7 setTo (insert-
Coins, ...)

[Amount <
Item.Price]

SelectItem
(Item)

Display
(Amount)

isIn
(insert
Coins)

8 setTo (insert-
Coins, ...)

[Item.Empty] SelectItem
(Item)

Display
(Empty) &
CashUnit.
dispense
(Change)

isIn (idle)

9 setTo (insert-
Coins, ...)

[Amount >
Item.Price]

SelectItem
(Item)

Dispenser.
dispense
(Item) &
CashUnit.
dispense
(Change)

isIn (idle)

10 setTo (insert-
Coins, ...)

[Amount =
Item.Price]

SelectItem
(Item)

Dispenser.
dispense
(Item)

isIn (idle)

140 4 Built-in Contract Testing

• IBITSetToStateX. An operation that brings the component into one of
the predefined states, according to a public state variable.

• IBITIsInStateX. An operation that checks whether the component is re-
siding in a pre-defined state.

• IBITSetTester. An operation that assigns a dynamic tester component
to a testing component. Dynamic tester components represent a special
kind of tester components that make built-in contract testing much more
flexible. This is explained later on, in Sect. 4.3.4.

• IBITInvokeTester. An operation that invokes the component’s tester. It
represents an external hook that the component provides through which
external entities can start executing the built-in tests.

These proposed interface operations for testable components are fully in
line with the initial built-in testing architecture and interface descriptions
that have been developed as part of the Component+ project [34, 35]. In
the following subsection, I will concentrate only on the two IBIT signatures
SetToStateX and IsInStateX that represent the core testing interface op-
erations for built-in contract testing. The other operations represent desirable
features of a testing interface that are of a more general and organizational
nature.

4.3.3 Optimal Design of the Testing Interface

The testing interface is not critical to the application of built-in contract
testing, but it can simplify testing considerably. We have always tested com-
ponents without the alternative access mechanism that the testing interface
provides. Although, I have to say that the idea of a testing interface is quite
natural in software development, and many components do in fact provide
something like that. For example, most classes of the standard Java libraries
provide many more features than one could possibly hope for, and many of
these can be readily used in the same way as testing interface operations.
Many of these operations provide simple “setter” and “getter” functionalities
which effectively implement something that is quite similar to a testing inter-
face as defined in built-in contract testing. Without a testing interface, testing
is limited to the access mechanism that the component provides through its
normal functional interface. If we decide that our components should have
testing interfaces, we should design and implement them carefully to draw
the greatest possible benefits from this additional development investment.
The design and implementation of a good and useful testing interface provides
some challenges, and it always demands considerable balancing our effort with
the tradeoff for the users of our component.

Figure 4.5 shows the three alternatives that we may have with built-in
contract testing.

• Sequence 1 represents a client testing the VendingMachine component
without a supporting testing interface. We use the normal functional in-

4.3 Model and Architecture of Built-in Contract Testing 141

terface operations to bring the component into the required state for a test.
We call the operation in that we are interested for this test. Hopefully, the
test succeeds.

• Sequence 2 represents a fully testable server VendingMachine that sup-
ports the testing by its clients through a built-in contract testing inter-
face. We can bring the component into the required state through the state
setting operation. We call the operation that we would like to test, and
we assess the correctness of the resulting state through the state checking
operation.

• In sequence 3 the testable component only provides the state checking
mechanism. This is a combination of the first and second testing sequence.
We use the normal functional interface for setting up the state for a test;
we check the state through the testing interface, so that we are sure that
the component performed these operations correctly. Then, we execute
the operations under test and check the resulting state again through the
testing interface and what the tested operations have returned.

In the following paragraphs we discuss how testing interfaces are ideally de-
signed and developed.

Set-To-State Operations

In the previous example I have defined state setting and state checking oper-
ations that can take a state as input parameter (Table 4.1). A logical state is
an abstract representation of concrete parameter or attribute settings inside
a component. It is a value domain similar to an input parameter domain for
which a procedure follows distinct paths through its internal structure. The
only difference is that the input parameters are internally stored attributes,
and that the control flow is typically limited not only to one single proce-
dure, but expands to a combination of method invocations that collectively
represent the code of a component. Any logical state therefore requires a con-
crete physical state that belongs to the domain of the logical state. In other
words, in order to bring a component into a distinct logical state, we have
to tell the component which concrete values it should take for that state.
Otherwise we cannot perform any meaningful testing with the component.
This becomes apparent when we have to insert coins for testing our vending
machine. The logical state insertCoins represents all feasible combinations
of inserted coins. A test case, however, always embraces concrete values, for
example, one 50 cent coin, 20 cent coin, and 10 cent coin for purchasing a
muesli bar that will cost 80 Eurocents. We can achieve this particular state
with the vending machine through the following invocation history (in Java):

insertCoin (0.50);
insertCoin (0.20);
insertCoin (0.10);

142 4 Built-in Contract Testing

:VendingMachine
Client

:VendingMachine

insertCoins (0.50)

insertCoins (0.20)

insertCoins (0.10)

selectItem (Item_1)

:VendingMachine
Client

:TestableVending
Machine

setToState (
INSERTCOINS,
0.50, 0.20, 0.10)

isInState (INSERTCOINS) :
true

selectItem (Item_1)

isInState (IDLE) : true

:VendingMachine
Client

:TestableVending
Machine

insertCoins (0.50)

insertCoins (0.20)

insertCoins (0.10)

isInState (
INSERTCOINS) : true

isInState (IDLE) : true

selectItem (Item_1)

setToState ()
corresponds to

the original
invocation history

sd Sequence 1 (Operation) sd Sequence 2 (Test)

sd Sequence 3 (Test)

Fig. 4.5. Alternative invocation sequences for a test case according to the provided
testing interface

The corresponding testing interface operation may look like this:

setTo (insertCoins, 0.50, 0.20, 0.10);

But this would restrain our state setting operation to exactly three coin values
that it can handle, and this is not really what I would expect to get from a
testing interface. A more flexible approach would be to pass a list of coin
values as input parameter in this particular instance:

double [] ListOfValues = {0.50, 0.20, 0.10};
setTo (insertCoins, ListOfValues);

But this makes the implementation of the testing interface operation more
complex. The type of the input to the state setting operation will be constant,

4.3 Model and Architecture of Built-in Contract Testing 143

since we are always concerned with setting the same attributes in a component.
But in this particular instance we have to accommodate the fact that we could
get an arbitrary number of values. The setting operation will therefore have
to provide the ability to process such input types, for example:

public class VendingMachine {
...
// testing interface
// logical states
public final int IDLE = 0;
public final int INSERTCOINS = 1;
// operations
setTo (int state, double [] values) {

if (state == IDLE) {
for (int i=0; i<values.length; i++) {

... // do something with the values
}

}
else if (state == INSERTCOINS)
... // do something else with the values

else ...
}

}

There may be much better ways to implement the state constants in Java,
for example, through the typesafe enumeration pattern [17], but the intention
is merely to showcase the principles of a testing interface. I have included
these little code examples to illustrate what we have to take into account
when we design the state setting operations as part of the testing interface
for a component. Sometimes we will find that the testing interface repeats
a considerable part of the original functionality. In this case it is arguable
whether the state setting mechanism provides any advantage over the normal
functional interface. After all, it is heavily dependent upon the component
for which we have to devise a testing interface. As I said before, we have to
consider the tradeoffs carefully.

The following two issues suggest some criteria for which state setting op-
erations are useful:

• States are difficult to reach through the normal functional interface. If the
state model is complex it might be advantageous to have a single state
setting operation that condenses a lengthy method invocation history into
one single statement.

• A state is represented by a simple combination of internal attributes and
the normal functional interface does not permit us to set these attributes
directly.

144 4 Built-in Contract Testing

The next issue describes the criterion for which state setting operations might
be obsolete:

• A state is defined through a distinct data structure. The functional inter-
face is used to build this data structure and the state setting operations
repeat exactly this functionality. This is the case for most data storage
components.

In general, we can observe that state checking operations are more important
for built-in contract testing than state setting operations. This is laid out in
the following paragraphs.

Is-In-State Operations

We can bring the component into any of its defined states by invoking the
right methods of the normal functional interface in a distinct sequence. I call
this the invocation history. Although the functional interface may be faulty,
and we may end up in another state than we are actually expecting, we can
call the state checking operations to assess that. If the component does not
provide state setting operations, we can always use the normal interface to
satisfy the preconditions for a test, call the state checking operations to check
those preconditions, and finally invoke the test. So, in case we are undecided
about whether or not our component should provide a state setting interface,
we can always concentrate on an effective state checking interface.

Most of the is-in-state operations will likely be very similar to traditional
assertions. Maybe the only difference is that assertions are typically assessed
automatically and permanently during the execution of a component, and the
state checking operations of built-in contract testing are usually explicitly in-
voked during a test. There is nothing keeping us from adding constant runtime
assessments to a component in the form of traditional assertions, but their
explicit invocation is probably more in line with the philosophy of built-in
contract testing. If we separate the code for the testing interface from the
component’s normal functionality, as suggested on the right hand side in Fig.
4.4, we are anyway not going to get constant assertion checking through the
testing interface. So, the design of a testing interface should always be driven
by the goal of built-in testing; is it for

• permanent checking or
• integration testing?

State checking operations are usually much easier to design and implement
than their respective state setting operations. If a state checking operation is
supposed to determine whether the component is residing in a distinct state
or not, its implementation is straightforward. In this case, the operation must
check only the expressions for which the logical state is valid. This is most
easily performed through a number of comparisons on the internal attributes
that make up the state. For example, the following source code shows the state

4.3 Model and Architecture of Built-in Contract Testing 145

checking operation for the testing interface of the VendingMachine component
(in Java):

public class VendingMachine {
...
// testing interface
// logical states
public final int IDLE = 0;
public final int INSERTCOINS = 1;
// operations
boolean isIn (int state) {

if (state == IDLE)
return (Amount == 0);

}
else if (state == INSERTCOINS)
return (Amount > 0);

else ...
}

}

The only distinguishing feature between the two logical states is the internal
attribute amount. In the first case it is zero, because no coins have been
inserted, and in the second case it should be greater than zero, because the
method insertCoins should have changed that.

Apart from the attributes that represent the state, we can certainly check
any defined invariant of the component. Invariants are conditions that must
be true at all times during execution. Assertions perform such assessments,
and they are typically implemented in a way in which they can permanently
check the invariants, or at least at distinct points during execution. In built-in
contract testing, these distinct points can be made either explicit or implicit.
In the first case we can design additional operations for each of the invariants
for which we would like to have an assertion check during testing. In the second
case we can attach the assertions to any of the state checking operations, and
whenever a state checking operation is invoked through a test case, we can go
through all assertions that we have additionally specified for a component. A
third option is to group the checking of all internal invariants into one single
operation that we may call the assertAll-operation of the testing interface, or
if we define it according to the IBIT format: IBITassertAll(). Through this
additional testing interface operation, we can separate state-related interface
operations from the more traditional assertion checking mechanisms more
clearly.

When we embrace several assertion checks with a single operation such
as the IBITassertAll, and use boolean return values for the state checking
operations, we get one single outcome, i.e., true or false, because we com-
bine a number of different assertions into one answer. Such a combination
will certainly impede error identification in the case of a failure, because it

146 4 Built-in Contract Testing

is not initially clear which assertion has actually caused it. This is a problem
of reduced error observability and traceability with combined assertions. Ide-
ally, we have to include a return mechanism that separates between several
feasible causes of a failure, so that the tester knows whether it was an inter-
nal state that caused the failure, or whether it was a violation of any of the
other invariants. How such a mechanism is realized clearly depends on the
used underlying implementation platform and programming language. A con-
venient way of doing this is through exceptions and exception handling, but
not all platforms support that. Another way may be through the traditional
C language-style returned integer, where each integer represents a different
cause of failure and zero represents success. However, I am not sure whether
this would be my favorite approach. In Chap. 5 we will take a closer look at
how built-in contract testing can be implemented in typical component tech-
nologies and programming languages. The following subsection describes how
tester components are ideally developed.

4.3.4 Tester Components

Component integration, and therefore the establishment of a component in-
teraction, usually requires some form of configuration. Configuration will in
general involve the creation of all components in an application and, in par-
ticular, the creation of the client and server instances in a specific component
interaction. This is usually done by an outside “third party,” which I call the
context of the components according to the KobrA method. This was outlined
in Chap. 2. The context creates the instances of the client and the server, and
passes the reference of the server to the client, thereby establishing the connec-
tion between them. This act of connecting clients and servers is represented
by the KobrA style �acquires� stereotype. The context that establishes this
connection may be the container in a contemporary component technology, or
it may be the parent object. The two steps that are necessary to configure the
pairwise relationships between components in an application are illustrated in
Fig. 4.6. In the first step, the context creates the client and then the server,
and in the second step it passes the reference of the server to the client. This
must be done through invoking the operation in the client’s configuration
interface, for example, the operation setServer(Server), in which Server
represents a reference of the acquired server object.

In order to fulfill its obligations toward its clients, a component that ac-
quires a new server must verify the server’s semantic compliance to its con-
tract. This means the client must check that the server provides the semantic
service that the client has been developed to expect. The client is therefore
augmented with built-in test software in the form of a tester component as
shown in Fig. 4.7. The server tester component is executed when the client is
configured to use the server. To achieve this, the client will pass on the server’s
reference to its own built-in server tester component, again through some sort
of a setServer(Server) operation. The establishment of this relation is rep-

4.3 Model and Architecture of Built-in Contract Testing 147

Context

Client

<<creates>>

Context

Client

<<creates>>

Server

1

Context

Client
<<acquires>>

Server

2

Fig. 4.6. Configuration of a pairwise component relationship

resented by an �acquires� association between the server tester component
and the server in Fig. 4.7. The next step is that the server calls the testing
sequence either through a separate method invocation, such as startTest(),
or implicitly through the setServer() operation. If the test fails, the tester
component may raise a contract testing exception and point the application
programmer to the location of the failure.

In the previous two subsections I have demonstrated how the specifica-
tion models of the VendingMachine component drive the development of its
testing interface that it provides to its clients. In the next paragraph and
following subsection we have a look at how the VendingMachine realization
models drive the development of its built-in tester components for checking
its associated servers. The two items together, testing interface and tester
components, represent the component’s complete additional built-in contract
testing architecture.

148 4 Built-in Contract Testing

Context

Client Server

<<testing>>
Server Tester

<<creates>>

Context

Client Server

<<testing>>
Server Tester

<<acquires>>

1 2

Fig. 4.7. Configuration of the tester component

The component realization fully describes a component’s expectation to-
ward its associated servers. This was outlined in Chap. 2. It comprises struc-
ture, the server components that the subject expects, and behavior. This is
the behavior that the subject expects from its servers. The client’s realiza-
tion behavioral model defines a statechart diagram for each server compo-
nent that the client acquires. In Chap. 2 I merely defined the structure of
the vending machine’s subcomponents, but no specific behavior. One of these
components in the realization structural model is the CashUnit. Figure 4.8
displays the containment hierarchy of the CashUnit component. The con-
text of the CashUnit is the VendingMachine, and its subcomponents are a
CoinChecker that validates the incoming coins, a TemporaryCoinStore that
holds the incoming coins as long as a user performs a PurchaseItem transac-
tion, a CoinDispenser that pays back the change, and a CoinSafe that finally
accepts and stores the coins. Figure 4.9 shows the realization behavioral model
of the VendingMachine component for the CashUnit. This model represents
the behavioral expectation of the vending machine toward a subordinate cash
unit component. This behavior is what the vending machine requires from
this part of its environment, and this is the basis on which the tests of the
vending machine’s built-in tester component for checking a subordinate cash
unit implementation must be founded.

4.3.5 Optimal Design of a Tester Component

Now that I have explained how a tester component is defined in principle on
the basis of a client’s realization models, we can have a look at how tester

4.3 Model and Architecture of Built-in Contract Testing 149

<<Context>>
VendingMachine

<<Subject>>
CashUnit

<<Mechanics>>
CoinSafe

<<Komponent>>
CoinChecker

<<Komponent>>
CoinDispenser

<<Komponent>>
Temporary
CoinStore

......

Fig. 4.8. Containment hierarchy of the CashUnit component

components are organized internally. In the previous sections I referred to
“tests” or “test software” in an abstract sense, without being specific about
the language construct used to represent them. A test is a normal piece of
functional software, and in an object- or component-oriented context, this
must be represented by one or more methods or method calls. The functional
decomposition of a test into methods, i.e., the break down of the overall test
method into sub-methods, is not of particular significance. However, the as-
signment of these methods to components is important. For the purpose of
this section I will assume that there is a single method, known as the test
method, which is responsible for executing a test.

Since built-in tests are logically performed by the clients of the components
which they test, it might at first seem natural that the test method should
belong there as well. In other words, if C is a component that contains a built
in test of one of its servers S, the test method that executes this test would
be regarded as a method of C. However, although this approach would work,
and at first might seem intuitively appealing, it does not make optimal use of
the reuse advantages offered by component and object technologies. Rather
than associate a logical test with a single method, it is more in the spirit of
component technology to encapsulate a test as a full component in its own
right. This has two main advantages:

• First, it allows the logical tests to be written in tandem with the software
they test by the original vendor of the functional components. Thus, com-
ponent vendors would supply their components with accompanying tester
components that have been written to make optimal use of a component’s
state-setting and checking methods.

150 4 Built-in Contract Testing

Idle Locked

CoinsInserted

Add Coin to
TempStore

TempStoreFull

 entry /
<<Signal>>
VendingMachine.notify
(TempStoreFull)

insertCoin (Coin) /
<<Signal>>

Vending Machine.
CoinInserted (Coin.ID)

insertCoin (Coin) /
<<Signal>>

Vending Machine.
CoinInserted (Coin.ID)

[TempStore == max - 1]
insertCoin (Coin) /

<<Signal>>
Vending Machine.

CoinInserted (Coin.ID)

lock ()

unlock ()

[changeOK]
dispenseChange (Change) : bool

[! changeOK]
dispenseChange (Change) : bool
/ dispense TempStore ()
/ return (false)

cashTempStore ()

dispenseTempStore ()

sm CashUnit

Fig. 4.9. Expected behavior of the CashUnit component in the realization behav-
ioral model of the VendingMachine component

• Second, it provides the optimal level of flexibility with respect to test
weight at both the runtime and development time. We can achieve develop-
ment-time selection of the test weight by choosing which tester component
to include in a given system, while runtime test weight selection can be
performed by choosing which component instance is to perform a test at
a given point in time.

With the concept of contract tester components, the test method is no longer
associated with the client component but rather with the tester components
which the client contains. The client may still provide a method which can
be used to explicitly invoke the test method, but this need not always be the
case. Test methods can also be implicitly invoked when servers are initially
set, for example, within the constructor of a class in Java. Since heavy tests
are usually extensions of lighter tests, i.e., they include all the test cases of
the lighter tests but add more. Heavy tester components will usually contain

4.3 Model and Architecture of Built-in Contract Testing 151

lighter tester components. In other words, the test method for a heavyweight
tester component will include a call to the next lightest tester component as
well as the additional test cases that make it heavier. This is illustrated in
Fig. 4.10. By hierarchically organizing test methods and tester components in
this way, the replication of test cases at runtime can be avoided.

The tester component for state transition testing contains at least the
minimal test set for state transition coverage identified in the state transition
table. I have described that in Chap. 3. Each state transition in the state tran-
sition table maps to an individual test with state setup and provision of the
required preconditions, an event, and the state verification with checking the
expected postconditions. Here, the state transition table represents a minimal
tester for state coverage. Performing any more testing and adding any more
hierarchically organized tester components is a decision which must always be
made according to some of the following criteria:

• Time of the test: How often is the test performed? When, during the
product life cycle, is the test performed?
– development time
– specification-based test
– regression test
– runtime
– deployment time
– reconfiguration time

• Origin of the component: How much do we trust the component?
– in-group
– in-house
– commercial off-the-shelf

• Mission criticality of the component or application: Is the system safety
or mission critical?
– extremely critical
– critical
– not critical

• Availability of resources: Do we have sufficient time and space to perform
a test?
– deeply embedded system
– normally embedded system
– real-time system
– distributed system
– information system

According to these criteria, differently sized tester components are feasible.
For example, a thorough tester would be appropriate if the origin of the com-
ponent is not known, while a very small lightweight tester would be best if
the component is trustworthy and the time or the resources for executing a
full test are sparse. Figure 4.11 summarizes the criteria for these decisions.
In the next subsections we look at how the primary built-in contract testing

152 4 Built-in Contract Testing

artifacts, testing interface and tester component, are related to or associated
with one another.

Client
Component

<<testing>>
Testing Client
Component

<<testing>>
Light-weight

Tester

<<testing>>
Medium-weight

Tester

<<testing>>
Heavy-weight

Tester

<<extends>>

<<extends>>

<<extends>>

<<owns>>

Server
Component

<<testing>>
Testable Server

 Component

<<extends>>

<<acquires>>

<<acquires>>

<<Testing
Interface>>

<<acquires>>

<<acquires>>

<<acquires>>

Fig. 4.10. Tester volumes and tester variations through extension

4.3.6 Component Associations in Built-in Contract Testing

Associations between Components in Built-in Contract Testing

The previous sections have introduced the two primary artifacts that must
be developed for each component if it will provide built-in contract testing
capabilities:

• the tester component, with the test cases for checking a component’s
server, and

• the testing interface that provides state setting and checking operations,
among others, to enhance a component’s testability.

4.3 Model and Architecture of Built-in Contract Testing 153

Heavy-weight Tester

Medium-weight Tester

Light-weight Tester

Number of Test Cases

Full Test

No Test

Development time Runtime Time of Test

Well-known Not known Origin of the Component

Not critical Extremely critical Mission Criticality

Unavailable Highly available Resource Availability

Fig. 4.11. Criteria for the size of the used test set

These represent additional functionality that the component developers have
to add, aimed particularly at testing. The first one extends the client compo-
nent, and it comprises the actual test cases that check the client’s deployment
environment, in other words, its associated server components. The second
extends the interface of the server to enhance the server’s observability and
controllability, and make it more testable. If a server does not provide a testing
interface, e.g., a COTS component that does not apply the principles of built-
in contract testing, it does not mean that contract testing may not be used.
Built-in contract testing is merely limited with respect to controllability and
observability during a test, and the test cases in the client must be designed
differently according to the missing testing interface. This is because the test
suites that we have to develop if no testing interface is available tend to be
much larger than if we have such an interface. The tests have to be designed
in a way that they always end up in an externally observable state. Otherwise
we cannot check anything. Observability is a prerequisite for testability. This
is a well known problem with the testing of object-oriented systems. A test
can only assess a result that becomes visible outside the object’s encapsu-
lation boundary. If an invoked object never returns any values back to the

154 4 Built-in Contract Testing

caller, the caller will never get any feedback on what has actually happened.
Running tests on such an object is entirely meaningless. However, the tester
component may be considered the more important part of built-in contract
testing.

Associations between Client Component and Tester Component

In the client role, a component may own and contain a server tester compo-
nent. This means the test cases, typically organized as components in their
own right, are permanently encapsulated and built into the client. This is
the simplest form of built-in contract testing, and it provides no direct run-
time configurability with respect to the type and amount of testing the client
component will perform when it is connected to its server components. This
association can be expressed through the UML composition association. A
more flexible way of built-in contract testing is realized through a loosely as-
sociated tester component that may be acquired by the testing client in the
same way it acquires any other external source. Here, the component provides
a configuration interface through which any arbitrary tester component that
represents the client’s view on a tested server may be set. This provides flex-
ibility in terms of how much testing will be performed at deployment, and,
additionally, in a product line development project it provides flexibility as to
which type of tester will be applied according to the product line instantiated.
A more loosely coupled association may be represented by a UML aggregation
association, or, more specifically, through the KobrA stereotype �acquires�
which indicates that the tester component is an externally acquired server.
Figure 4.12 shows two alternative ways of attaching a server tester compo-
nent to a testing client. The left hand side diagram shows a server tester
component B tester that is directly built into Testing Component A. This
means that the client of B contains and owns its own B tester. The second
diagram on the right hand side of the figure shows a B tester component
that is created and owned by the context, which creates and contains the
other components also. Testing Component A and B tester are initially not
associated or connected in any way. After creation of all components, the
Client Testing Component A can acquire its B tester in the same way as it
acquires its server component Testable Component B. However, the testing
client has to provide a configuration interface that the context may access to
pass the reference of B tester to client A. The following Java source code
example illustrates how such a configuration facility may be implemented for
the components in Fig. 4.12. The code represents a Java embodiment of the
right hand side diagram in Fig. 4.12.

4.3 Model and Architecture of Built-in Contract Testing 155

class TestingComponentA {

Object serverB;
Object Btester;

// configuration interface for the acquisition of server B
void setServer (Object o) {

serverB = o;
}
// configuration interface for the acquisition of B tester
void setTester (Object o) {

Btester = o;
}

}

The context is responsible for the creation of the three objects and their
connection. This is illustrated in the following Java source code example:

class Context {

TestingComponentA TCA; // address of the client
TestableComponentB TCB; // address of the server
BTester BT; // address of the tester

Context (void) { // constructor
TCA = new TestingComponentA (); // create client
TCB = new TestableComponentB (); // create server
BT = new BTester (); // create tester

TCA.setServer (TCB); // client acquires server
TCA.setTester (BT); // client acquires tester
BT.setServer (TCB); // tester acquires server

}

}

Testing Interface for Nested Components

In a server role, a component must be much more closely connected to its test-
ing interface because the testing interface must be able to access the server’s
internal implementation (i.e., for setting and getting attribute variables). The
testing interface is therefore directly built into the component and extends
its normal functionality with some additional functionality that is intended
for testing purposes. Another approach is to augment the functionality of the

156 4 Built-in Contract Testing

Context

Testing
Component

A

Testable
Component

B

<<testing>>
B Tester

Context

Testing
Component

A

Testable
Component

B
Package
Testable

Component
B

<<testing>>
B Tester

<<acquires>>

<<acquires>>

<<acquires>>

<<acquires>><<acquires>><<acquires>>

Fig. 4.12. Alternative ways of integrating a tester component

server with an additional testing interface by using a typical extension (inher-
itance) mechanism. In the KobrA method this is indicated through the UML
extension symbol plus the �extends� stereotype. In any case, the testing
interface of a component must be visible at its external boundary. For com-
ponents with nested objects it means that each of these objects must be dealt
with individually inside the component in a way that externally visible behav-
ior that is implemented through these subordinate parts will be visible at the
component boundary. This is the responsibility of the component developer.

Associations between Tester Component and Testing Interface

The tester component of the client and the server’s testing interface inter-
operate in the same way as their respective functional counterparts. Since

4.4 Development Process for Built-in Contract Testing 157

the testers and testing infrastructure are built into the system they are only
additional functionality that happens to be executed when components are
interconnected. The tester component must “know” only the reference of the
tested server, and this is passed into the tester component when the test is
invoked by the client. Testing in this context is executing some additional
code that uses some additional interface operations. Therefore, built-in con-
tract testing is initially only a distinct way of implementing functionality that
is executed when components are interconnected during deployment. This
concerns the architecture of a system, i.e., which components will expose ad-
ditional interfaces, which components will comprise tester components. The
actual test cases inside a tester component that are applied during deploy-
ment are arbitrary, and they can be developed according to any of the testing
criteria introduced in Chap. 3.

Extended Component Meta-Model

Figure 4.13 shows how the two primary built-in contract testing artifacts fit
into and extend the original component meta-model I introduced in Chap.
1. The testing interface is an extension of the original functional interface
that is partially defined through the component’s behavior (its states). The
tester extends the component’s required functional interface and adds the
operations of the testing interface required of the associated subcomponent.
The two shaded boxes indicate these two additional concepts. From the figure
it becomes apparent that the impact of the built-in contract testing concepts
on the component meta-model is only marginal.

4.4 Development Process for Built-in Contract Testing

The previous sections have set the foundations for developing and using built-
in contract testing. For the development, this is mainly from the perspective of
the component developer or provider. The subjects of these previous chapters
and sections can be regarded as a required entry criterion, as a prerequisite,
for introducing, implementing, and using the technology, which comprises:

• A sound development method such as the KobrA method that defines the
– required quality criteria in the form of a quality plan, and thus a col-

lection of test selection strategies,
– the specification and realization specification of each component, ide-

ally in the form of models, and operation specifications.
• A well-defined architecture with clear identification of the components and

their associations in terms of
– static component relations that will receive removable built-in contract

testing artifacts, and
– dynamic component relations that will receive permanently built-in

contract testing artifacts.

158 4 Built-in Contract Testing

<<subject>>
Component

<<interface>>
Provided
Interface

<<interface>>
Required
Interface

<<private>>
Implementation

Operation

Parameter

State

Output
Parameter

Input
Parameter

Precondition Post Condition

Specification Realization
Specification

Quality Attributes Quality
Documentation

definesdefines

constrains constrains
1

*

1

1 1

1

1..*

1..*

1..*

1..*

constrains

defines
1 1

11

defines

<<interface>>
Tester

Interface

<<interface>>
Testing

Interface

defines defines

Fig. 4.13. Extended component meta-model with additional built-in contract test-
ing concepts

4.4 Development Process for Built-in Contract Testing 159

We can apply the principles of built-in contract testing in projects that are
lacking all these prerequisites, but they alleviate the design and implemen-
tation of built-in contract testing considerably, especially with respect to the
degree of automatism that we can introduce within such a methodological
framework. Without sound methodological support it is much more difficult
to come up with a sound quality assurance plan, though this is also true for
any development activity in any project.

The next sections provide a step-by-step guide for developing testing in-
terfaces and tester components at a high level of abstraction; lower level ab-
stractions and implementation technologies will be specifically dealt with in
Chap. 5. Typical steps for the development of built-in contract testing that
an application or component development team may follow are:

1. Identification of the tested interactions in the model of the overall appli-
cation.

2. Definition and modeling of the testing architecture.
3. Specification and realization of the testing interfaces for the server role in

the identified associations.
4. Specification and realization of the tester components for the client role

in the identified associations.
5. Integration of the components (actually part of the component user’s

task).

Steps 1, 2, and 5 are not required if we merely consider pure component en-
gineering without having to worry about an integrating application. If we are
developing reusable components, all we need to worry about is the built-in
testing interfaces that our components will provide and their built-in tester
components. However, the first two steps are important if we plan to incor-
porate built-in contract testing within the realizations of our components as
development-time testing infrastructure. Every component may be seen as a
system or application in its own right, and its internal realization is performed
by following exactly the same principles as for an entire component-based ap-
plication. Essentially, there is no difference between the development of an
application which is mainly an activity that comprises component reuse and
integration, and the development of a “pure” component that may be focused
on custom development, although reuse and integration are issues. The only
fundamental difference between the component level and the application level
is that we will quite likely remove the testing artifacts within a component,
while we will probably leave the testing artifacts between the components in
place for deployment. Component engineers and application engineers are in
fact facing the same problems and can apply the same methods for solving
them. So, steps 1, 2, and 5 are always part of the process, both for application
engineering as well as for component engineering.

For a more extensive illustration of the steps introduced, I will refer to
another example that will be used throughout this chapter. The example
system is a Resource Information Network (RIN) from Fraunhofer IGD in

160 4 Built-in Contract Testing

Darmstadt, Germany, that is distributed under General Public License (GPL)
[92, 147]. It is a part of a larger communication system that supports working
floor maintenance staff in their everyday tasks. The larger communication
system, or the context of the RIN, hosts multiple communication devices that
are interconnected through a radio network, and controlled and supported by
a number of desktop working places. This organization is illustrated in the
containment tree in Fig. 4.14.

<<Context>>
Communication

System

<<Subject>>
Resource

Information
Network

<<Komponent>>
Mobile
Device

<<Komponent>>
Working

Place

<<acquires>>

<<acquires>>

Fig. 4.14. Containment hierarchy for the RIN system within its context

The desktop working places help the maintenance staff achieve its tasks,
and provide additional information. They can guide a worker through com-
plex tasks by looking at the video signals from the worker’s video facility,
give advice to the worker through the audio device, and provide additional
assistance, for example, the download of user manuals or video-based repair
guides. Each of the communication devices has capabilities defined that are
made public to all the other devices through the RIN. Every device that is
part of the network will have a RinClient, a RinServer, and a number of
RinSystemPlugins installed. The server controls the resource plug-ins and
communicates with the client of another connected device. The client gets the
information from an associated device’s RinServer. All the devices within the
range of the communication system can, before they communicate, retrieve
information from their associated nodes through the RIN about which things

4.4 Development Process for Built-in Contract Testing 161

they are capable of doing at a given moment in time. This way, the individual
nodes are never overloaded with data that they cannot process as expected.
For example, the video application of a desktop station may determine the
current memory state of a handheld device and decide according to that infor-
mation whether it can send colored frames or frames only in black and white;
it may also reduce the frame rate or request the handheld device to remove
some of its unused applications from its memory. These decisions depend on
the profile of the user and the priority of the applications that use the RIN.

The RIN suite comprises a client component, a server component, and one
or more system plug-in components. The client and server provide the basic
communication between the nodes in a network. Every network node that
will require resource information from other nodes will have a client com-
ponent. Every network node that will provide resource information to other
nodes will have a server component and some plug-in components, each for a
distinct resource. The system plug-in provides the actual business logic capa-
bility, for example, the provision of memory and storage resource information.
Requests from a client node are marshalled through the RinClient compo-
nent, sent through the network and unmarshalled by the server component at
the addressed node. The server communicates this request to the plug-in that
generates the requested information and sends it back to the client the same
way it arrived.

In Fig. 4.14, I described the RIN system as a part that resides within the
context of a larger communication system. But the RIN can also be regarded
as a system in its own right that can be used as a communication vehicle, or it
can be regarded as a generic component that can be used by other applications
that act as clients of the RIN to transfer their internal information to other
such clients. This would move the RIN system into another context. We can
even perceive that we deploy the RIN system in the context of the vending
machine. After all, it is only a component that may be deployed in a number
of different contexts. Under the vending machine scenario the RIN would be
an ideal communication tool to find out about a particular vending machine’s
current resources, even remotely, given the fact that the machine is connected
with some network. Such resources would comprise, for example, the number
of items left in the dispenser unit, or the amount of cash left in the cash
unit, and the like. The RIN system would have only to be provided with the
right system plug-in component at the physical side of the vending machine.
However, in the following subsections we will have a look at the RIN system
in isolation. In other words, we will treat it as a full system. Its high level of
abstraction containment hierarchy is displayed in Fig. 4.15, and a lower level of
abstraction class diagram is displayed in Fig. 4.16. The following subsections
illustrate the built-in contract testing process on the basis of the RIN system
as an example. Each individual step in the development process is represented
by a separate subsection.

162 4 Built-in Contract Testing

RIN
Context

<<Komponent>>
Application

<<Komponent>>
RINClient

<<Komponent>>
RINServer

<<Komponent>>
RINSystem

Plugin

<<acquires>>

<<registers>>

<<acquires>>

<<acquires>>

CLIENT
Communication
through Network SERVER

Fig. 4.15. High-level containment hierarchy of the RIN system

RINClient RINServer RINSystemPlugin

<<interface>>
RINServerAccess

+ RegisterClient ()
+ SubmitRequest ()

<<interface>>
RINSystem

+ ProcessData ()

<<interface>>
RINServerCallback

+ OnDataFromPlugin ()

<<interface>>
RINClientCallback

+ SubmitData ()

<<requires>>

<<requires>>

<<requires>>

<<requires>>

<<provides>>

<<provides>>
<<provides>>

<<provides>>

Data Flow Data Flow

Fig. 4.16. Lower-level, implementation-specific class diagram-type representation
of the RIN system

4.4 Development Process for Built-in Contract Testing 163

4.4.1 Identification of Tested Interactions

In theory, any arbitrary client/server relationship in component and applica-
tion engineering may be checked through built-in test software. This is the
case for both development of individual components as well as assembly of
components into a configuration or final application. Built-in contract testing
is in this respect a multipurpose testing technology that may be applied during
all phases of the decomposition and embodiment dimensions displayed in Fig.
5.1 (Chap. 5). This is because the typical object and component principle of
the client/server relationship is applied at all levels during development, and
built-in contract testing is inherently founded on that. It is even valid under
the non-object paradigm. The fundamental question is not about which parts
of the application we are going to test with it, because we can apply it at all
levels of composition and abstraction, and for all client/server interactions;
but the most fundamental question is where it does make the most sense
to have it built in permanently? In other words, under what circumstances
does built-in testing provide the greatest return on investment with respect
to software reuse in component-based application development? Therefore, as
a development team, we have to answer the following questions:

• Where do we build in testing and have it removed after integration?
• Where do we build in testing and leave it permanently?

In general, any client/server interaction at the component level as well as at
the application level may be augmented with a built-in testing interface and a
built-in tester component. These interactions are represented by any arbitrary
association in a structural diagram, for example, a UML component, class, and
object diagram, as well as a KobrA-style composition, containment, nesting,
and creation tree diagram. Essentially, every nesting association represents a
client/server relationship. This is the case at least for UML because it provides
no representation for creation associations and usage associations, in contrast
with the KobrA method, that provides these, e.g., an instance that is created
by a component but not used as a server by the component.

Associations between classes or objects that are encapsulated in a compo-
nent are likely to stay fixed throughout a component’s life cycle. Such associ-
ations may be augmented with removable built-in contract testing artifacts,
because they can be tested once and for all when the individual parts of the
component are integrated. After release, the component will be used as it is,
and the execution of its own in-built contract tester components will not reveal
any new component failures. Such an internal built-in contract testing infras-
tructure may be implemented through typical development- or compile-time
configuration mechanisms, e.g., #include in C++, or through a runtime con-
figuration interface that dynamically allocates tester components and testable
components with testing interfaces.

Typically, reusable components will have permanent built-in testing inter-
actions at their boundaries. This means that every external association that

164 4 Built-in Contract Testing

requires or imports an interface will be permanently augmented with a built-
in contract tester component, and every external association that provides or
exports an interface will be permanently augmented with a built-in testing
interface. These external associations will change as soon as the component is
reused in the different context of another application. So, the built-in tester
components can be executed to assess the suitability of the new context for
the component.

The diagram in Fig. 4.15 displays a distributed system that comprises
a local part (ApplicationContext) and a remote system and plug-in part
(ServerContext). The application context uses the underlying client/server
interaction to communicate with the plug-in. The application uses the services
from the plug-in. This means that the application “knows” the identity of the
plug-in but the plug-in does not “know” the identity of the application. The
application will be augmented with a plug-in tester component, and the plug-
in will be augmented with a testing interface to support that tester. The
application cannot directly see the plug-in, although it “knows” it is there,
because all messages from the application to the plug-in and back are directed
through the RinClient and the RinServer. In fact, we consider here the two
development dimensions, decomposition and abstraction, at the same time. At
an abstract level, the application acquires the plug-in indicated through the
dashed arrow. At a lower level of abstraction, this access is realized through
the client and server components that together implement the connection over
the network.

Client and server as well as server and plug-in are associated through bidi-
rectional �acquires� relations, meaning that each component plays both
roles in a two-way contract. Each of these �acquires� relations is a feasible
candidate for built-in contract testing, a tester component at the client role
and a testing interface at the server role of the relationship. For the bidi-
rectional associations it means that the client invokes services on the server
component (e.g., ProcessRequest) and the server invokes services on the
client component (e.g., ReceiveDataFromServer). The same is true for the
association between the server and the plug-in.

4.4.2 Definition and Modeling of the Testing Architecture

The locations in the application where built-in contract testing makes the
most sense can be identified through the �acquires� relationships between
the units as said before. The stereotype �acquires� represents dynamic as-
sociations that may be configured at runtime according to the needs of the
application, i.e., components that may be replaced. These are parts of the
overall system that are likely to change over time, and the associations are
therefore augmented with built-in contract testers on the client side and built-
in contract testing interfaces on the server side.

Another indicator of a client/server relationship is the UML anchor sym-
bol that stands for component nesting or containment, and it represents a

4.4 Development Process for Built-in Contract Testing 165

very specific form of client/server relationship. A contained component is al-
most always the server of the containing component; this is the case at least
for construction. The minimal coupling between the components in such a
relationship is represented by the client calling the constructor method of the
contained server component.

A third association type that deals with a client/server relationship is
represented by the invisibly available runtime support system that is always
there for a component to use because the component is executing within the
context of that underlying platform. For the RIN system we can identify all
the previously listed associations. They are summarized in the following and
illustrated in Fig. 4.17:

• Implicit client/server relationship of the components with their respective
runtime support systems. The runtime system is provided by the platform
in which the component is going to be executed (e.g., operating system,
virtual machine, component technology, etc.). This may change from con-
figuration to configuration. Thus, for every new configuration we can have
executed the component’s built-in contract testers that are specifically
designed to check the underlying runtime support system. Typically, the
runtime system is part of the lower-level models and becomes only appar-
ent in the embodiment phase. I have added the runtime support systems as
components in the containment tree in Fig. 4.17 for illustration. The RIN
system was initially developed under C++ for Microsoft’s DCOM platform,
and later transferred to CORBA Components (see Chap. 5).

• Explicit client/server relationship between the components and their cre-
ators indicated through the anchor symbol. These are the containment
relations between Application and RinClient, and between RinContext
and its two subcomponents RinServer and RinSystemPlugin. These re-
lationships are likely to stay fixed in an application. Constructor calls are
usually determined at compile time. Only if a component is integrated
in a new application (i.e., when we bring it into a new context) may we
invoke the built-in component tester of its superordinate component to
assess whether the subordinate component is behaving correctly within its
new hierarchy.

• Explicit client/server relationship between the application-level compo-
nents are indicated through a simple �acquires� relation between the
component symbols. In the RIN system these are bidirectional associations
between RinClient and RinServer, and RinServer and RinSystemPlugin.
For each role that a component is playing, client or server, we can define
a tester component and a testing interface.

The decisions about where in the model we add built-in contract testing ar-
tifacts must somehow be documented in the structure of the system, i.e., in
the model as well. This may be regarded as a simple additional software con-
struction effort in the overall development process that amends the original
functionality of the application or of the individual components within the

166 4 Built-in Contract Testing

RIN
Context

<<Komponent>>
Application

<<acquires>>

<<explicitly
acquires>>

<<Komponent>>
RINClient

<<Komponent>>
RINServer

<<Komponent>>
RINSystem

Plugin

<<explicitly
acquires>>

<<explicitly
acquires>>

<<explicitly acquires>>

<<Komponent>>
Application

RunTimeSystem

<<Komponent>>
Server

RunTimeSystem

<<implicitly
acquires>>

<<implicitly
acquires>>

<<implicitly
acquires>>

Fig. 4.17. Implicit and explicit client/server-relationships in the RIN system. The
dashed line represents a logical association that, as such, will not be implemented

application. Figure 4.18 shows the new containment hierarchy of the RIN sys-
tem with all the additional built-in contract testing artifacts in the shaded
box. The RinSystemPluginTester on the left hand side of the diagram is part
of the Application (through creation and containment), and it provides test
cases which represent the Application’s usage of the RinSystemPlugin. All
additional testing artifacts are indicated through the stereotype �testing�.
It can be seen as a custom extension to the original UML testing profile that
is used to visually separate the original functionality from the built-in testing
functionality. Application will contain a specific RinSystemPluginTester
for each individual system plug-in that it will acquire. This tester represents
an abstract view of the entire RIN system and checks the functionality accord-
ingly. That is, it checks the responses of the server side RIN system plug-in,
and implicitly, the underlying communication mechanisms that RinClient
and RinServer realize. The additional testing interfaces that the three core

4.4 Development Process for Built-in Contract Testing 167

Application Server
Context

<<registers>>

RIN
Client

RIN
Server

<<acquires>>
RIN

Sytem
Plugin

<<acquires>>

<<testing>>
Testable
RIN Client

<<testing>>
Testable

RIN Server

<<testing>>
Testable RIN

System Plugin

<<testing>>
RIN Server
Tester C

<<testing>>
RIN Client

Tester

<<testing>>
RIN Plugin
Tester S

<<testing>>
RIN Server
Tester P

<<acquires>> <<acquires>>

<<testing>>
RIN Plugin
Tester A

<<acquires>>

<<acquires>>

<<acquires>>

<<acquires>>

<<acquires>>

Fig. 4.18. Containment hierarchy of the amended RIN system including the built-in
contract testing artifacts in the shaded area, but without the testing infrastructure
for the implicit associations with the runtime support system

RIN components provide are represented by the three extension components
to the original RinClient, RinServer, and RinSystemPlugin. Between these
three components we have two-way client/server contracts, so we will have
both built-in testing artifacts, testing interface and tester, for each compo-
nent. Figure 4.18 displays the component RinServerTesterC that is con-
tained in the TestableRinClient and represents the client’s usage profile
for the RinServer, and the RinServerTesterP that is contained in the plug-
in and represents the plug-in’s view on the server component. Both tester
components are different because they represent different usage profiles for
the RinServer coming from differing components. Additionally, we have a
RinSystemPluginTester and a RinClientTester that represent the server’s
views on both components, client and plug-in, respectively. In the following
subsection, we will have a look in more detail as how these testing artifacts
are specified.

4.4.3 Specification and Realization of the Testing Interfaces

This step comprises the specification of an individual testing interface for the
server role in an association. I have to add that this may be possible only if
the component is an in-house development and we own its code. There is an

168 4 Built-in Contract Testing

exception with certain embodiment platforms which are considered in Chap.
5, but, in general, adding an interface to a component typically requires that
we own a version of the component that permits such an amendment.

Entry criterion for the specification of the testing interfaces is a full func-
tional specification for each operation of the tested component, for example,
following the operation specification template of the KobrA method, or the
behavioral model. These were introduced in Chaps. 2 and 3. Both models
comprise sufficient information for the development of state setting and state
checking operations that augment the functionality of the original component.
The additional testing interface is used to set and retrieve state information of
the component which is defined through the component’s behavioral model.
Each state in this model represents an item for which the behavior or an oper-
ation is distinctly different from any other item. The individual states that the
behavioral model defines is therefore an ideal basis for specifying state setting
and retrieving operations. Each state in the state model therefore maps to
one state setting and one state checking method, but other state information
can also be made public if required.

notRegistered

Registered

IDCOMRINServerObj:
RegisterCallbackObj ()

IDCOMRINServerObj:
ProcessRequest ()

ICallbackObj:
ReceiveDataFromServer ()

IDCOMRINServerObj:
~IDCOMRINServerObj ()

RINClient

<<Testing>>
TestableRINClient

+ isRegistered () : Boolean
+ MessageinPlugin (Message) : Boolean
+ TestExecute () : void

Derived
Testing Interface

sm RINClient

Fig. 4.19. Implementation-specific UML behavioral model of the RinClient, and
the corresponding testing interface of TestableRinClient

The left hand side of Fig. 4.19 displays the RinClient’s behavioral model
in the form of a UML statechart diagram. It proposes two states that may map
to respective testing interface operations (indicated through the stereotype
�testing�) according to the built-in contract testing method introduced in
the previous sections of this chapter:

<<testing>> isNotRegistered ()
<<testing>> setNotRegistered ()
<<testing>> isRegistered ()
<<testing>> setRegistered ()

4.4 Development Process for Built-in Contract Testing 169

The first two testing operations represent a state in which the object is not
existing yet, because only the RegisterCallbackObj operation crates an in-
stance of the component. If it resides in the state notRegistered, it does
not provide any invocable service. The testing interface may therefore focus
only on the second state in the behavioral model (registered), and only
on the first specified operation, �testing�isRegistered. The implementa-
tion of the setRegistered operation essentially repeats the implementation
of the normal interface operation RegisterCallbackObj. Redundant imple-
mentations are useless, so the �testing�setRegistered operation is omitted
in the testing interface. The final specification of the testing interface is dis-
played through the structural model on the right hand side of Fig. 4.19. It
defines two additional operations

• MessageInPlugin that is used to derive additional state information about
the message that has been sent to the plug-in, and

• TestExecute that is used to invoke the TestableRinClient’s own built-in
tester component, the RinServerTesterC.

The behavioral models and the corresponding testing interfaces for the server
and plug-in components are depicted in Figs. 4.20 and 4.21, respectively. The
testing interface for each tested component will be specified, e.g., according to
the KobrA method, typically through structural models (e.g., class diagram)
that show the signatures for the additional testing operations. The realization
of these operations depends heavily on the realization of the functionality of
the component. This is the main reason for why it is so important that the
internal implementation of a component be available. The testing interfaces
will have to access a component’s internal attributes and manipulate them.
In general, this is only feasible if we have access to the implementation.

4.4.4 Specification and Realization of the Tester Components

The first step has identified the relations between individual components that
will be checked through the built-in contract testing approach. A client com-
ponent in such a relation is referred to as testing component. Each of the
testing components acquires a server, and it may be augmented with one
or more built-in tester components (one for each server). Each of the tester
components is developed according to the realization model of the testing
component. In other words, each testing component owns a description of
what it needs from its environment (its associated servers) to fulfill its own
obligations. For example, in the KobrA method this is called the realization of
the testing component, and it is defined in its realization model. It represents
the expectation of the testing component toward its environment. In contract
testing, the tests are not defined through the specification of the associated
and tested server. In this case it would be merely a unit test of the server.

A tester contains the test cases and performs the tests on behalf of the
testing component. A tester is typically realized as a component in its own

170 4 Built-in Contract Testing

Registered

<<DCOM Signal>>
DCOMQueryInterface

RINServer

<<Testing>>
TestableRINServer

+ isWaiting () : Boolean
+ isRegistered (Plugin) : Boolean
+ MessageinServer
 (TestActive, Message) : Boolean
+ isActivePlugin (Plugin) : Boolean

Derived
Testing Interface

<<DCOM Signal>>
DCOMRelease

CDCOMRINServerObj::
RegisterCallback ()

CRINServerSink::
OnDataFromPlugin ()

Waiting

<<DCOM Signal>>
DCOMRelease

DCOMRinServerObj::
RegisterCallback ()

<<DCOM Signal>>
DCOMRelease
[#ofClients == 1]

sm RINServer

Fig. 4.20. Implementation-specific UML behavioral model of the RinServer, and
the corresponding testing interface of the TestableRinServer

Active

CRINSystem::CRINSystem RINSystemPlugin

<<Testing>>
TestableRINSystemPlugin

+ isActive (Plugin) : Boolean
+ MessageinPlugin (Message) : Boolean
+ TestExecute () : void

Derived
Testing Interface

CRINSystem::~CRINSystem

CRINSystem::
ProcessData ()

sm RINSystemPlugin

Fig. 4.21. Implementation-specific UML behavioral model of the RinServer, and
the corresponding testing interface of the TestableRinSystemPlugin

right that the client acquires or contains. This was illustrated before, e.g., in
Fig. 4.18. The difference between acquisition and containment is determined
through the creating and using instance of the tester component. If the test-
ing component contains its own built-in tester component, it will create it
and keep a reference to it. In contrast, if it acquires its built-in tester com-
ponent, it will need additionally a configuration interface through which the
external context (or its own clients) may set its internal reference to a tester
component. In this case, an instance of the tester component is created by
the context and passed to the acquiring testing component. In essence, such
externally acquired testing components can be seen as any other functional
server components; they happen to comprise only code that runs a simu-

4.4 Development Process for Built-in Contract Testing 171

lation of the transactions that the client typically performs on the server.
The test cases inside the tester components are derived according to typical
test case generation techniques such as domain analysis and partition testing,
state-based testing, or method and message sequence-based testing. Models
represent valuable sources for test case generation, as we have seen in Chap.
3.

Tables 4.2 to 4.6 specify the contents (test cases) of the respective tester
components for the RIN System. The test cases are mainly based on the
component’s behavioral models.

Table 4.2. Specification of the test cases for the RIN client’s RinServerTester com-
ponent

No. Initial State Transition Final State and
Result

1 notRegistered IDCOMRinServer::
RegisterCallbackObj ()

Registered &
Client added

2 Registered IDCOMRinServer::
ProcessRequest ()

Registered &
Request processed

3 Registered IDCOMRinServer::
ĨDCOMRinServer ()

notRegistered &
Client down

Table 4.3. Specification of the test cases for the RIN plug-in’s RinServerTesterP
component

No. Initial State Transition Final State and
Result

1 Registered CRinServerSink::
OnDataFromPlugin ()

Answer to the server
& Registered

Table 4.4. Specification of the test cases for the RIN server’s RinClientTester com-
ponent

No. Initial State Transition Final State and
Result

1 Registered IICallbackObject::
ReceiveDataFromServer ()

Registered &
Answer for Client

172 4 Built-in Contract Testing

Table 4.5. Specification of the test cases for the RIN server’s RinPluginTesterS
component

No. Initial State Transition Final State and Re-
sult

1 Registered IICallbackObject::
ReceiveDataFromServer ()

Registered &
Answer for Client

The realization of the tester components is concerned with how an indi-
vidual tester component will be organized and implemented, and which test
suites it will contain. This may comprise tester subcomponents in the same
way as realizations of normal functional components define subcomponents
whose functionality they will acquire. Any tester component may in fact be
a testing system in its own right, specified through a containment hierarchy.
Testing systems may easily become quite voluminous. We can have a number
of different tester components, each for a different purpose or objective, as the
testing profile defines it. Each tester component specifies its own behavior that
encompasses the various procedures for executing the test cases. Additionally,
each test case is based on complex behavior, including the test stimulus that
controls everything before, and some things during test execution, the test
observation that controls some things during, and everything after test ex-
ecution, and the validation of the outcome that leads to a verdict. All this
testing complexity is supported through the UML Testing Profile. It supports
the design and development of test cases and components with a number of
items to take care of.

The following list summarizes the concepts that have been introduced in
Chap. 3:

• Test objective that essentially defines a test case or a test suite.
• Test case that represents the application or execution of one sample to the

system under test (SUT).
• Test behavior that describes the procedure of the test case.
• Test stimulus that defines what triggers the test; this comprises precondi-

tions.
• Test observation that defines the outcome of the test, and the postcondi-

tions.
• Validation action that compares the observation with the expected out-

come and eventually generates a verdict.

Figure 4.22 illustrates the mapping of the testing profile concepts to the
RINClientTester component. Tables 4.2 to 4.6 define the test components
in a tabular form. For the relatively simple built-in testing of the RIN system
this may be sufficient. The tables define pre and postconditions, or initial and
final state, plus expected outcome. This is enough information for realizing the
tester components in an implementation language. How such testing models

4.4 Development Process for Built-in Contract Testing 173

Table 4.6. Specification of the test cases for the RIN application’s RinPlugin-
TesterA component

No. Initial State Transition Final State and
Result

1 registered
& active

ProcessRequest (“bypass”) registered & active
Req. bypassed

2 registered
& active

ProcessRequest (“repeat”) registered & active
Req. repeated

3 registered
& active

ProcessRequest (“cancel”) registered & active
Req. canceled

4 registered
& active

ProcessRequest
(“abstime” +

registered & active
Req. timed

4.1 registered
& active

“MemoryLoad”) registered & active
total memory usage

4.2 registered
& active

“TotalPhys”) registered & active
phys. mem. usage

4.3 registered
& active

“AvailPhys”) registered & active
free phys. mem.

4.4 registered
& active

“TotalPageFile”) registered & active
page mem. usage

4.5 registered
& active

“AvailPageFile”) registered & active
free page mem.

4.6 registered
& active

“TotalVirtual”) registered & active
virt. mem. usage

4.7 registered
& active

“AvailVirtual”) registered & active
free virt. mem.

5 registered
& active

ProcessRequest
(“asap” +

registered & active
instant Req.

5.1 registered
& active

“TotalPhys”) registered & active
phys. mem. usage

...

174 4 Built-in Contract Testing

are turned into executable testing code in an embodiment step is the subject
of Chap. 5.

Test Component

Test Objective

1

1..n

Test Case

1

1..n

Test
Verdict

Test
Trace

Test
Behavior

1 1 1

111

Validation
Action

Test
Stimulus

Test
Observation

1
1

1

1..n 1..n 1..n

TesterComponent:
RINClientTester

TestObjective:
StateCoverage

TestCase:
TestCase_1

TestBehavior:
TestBehavior 1

TestStimulus:
ReceiveDataFrom

Server

TestObservation:
AnswerForClient

Fig. 4.22. Specification of a tester component through UML testing profile concepts
for the RinClientTester component

4.4.5 Integration of the Components

Once all the functional component artifacts and the built-in contract testing
component artifacts on both sides of a component contract have been prop-
erly defined and implemented, the two components can be integrated (plugged
together). This follows the typical process for component integration, i.e.,
a wrapper is defined and implemented for the client and the server, or an
adapter is designed and implemented that realizes the mapping between the
two roles. In some implementation technologies, e.g., component platforms
such as CORBA or CORBA Components, these mappings are readily sup-
ported through typical interface definition languages (IDLs). These can at
least alleviate the efforts of implementing the syntactical mappings. Getting
the semantics right represents another additional integration effort. This is
part of the embodiment step and is laid out in more detail in Chap. 5.

4.4 Development Process for Built-in Contract Testing 175

Since the testing artifacts, tester component at the client role, and testing
interface at the server role, are integral parts of the individual components
on either sides of the contract, they are not subject to any special treatment.
They are treated like any other normal functionality. Figure 4.23 illustrates
this. Here, client and server have different required and provided interfaces,
so that they must be mapped through an adapter. The adapter takes the
operation calls from the client and transforms them to into a format that
the server can understand syntactically as well as semantically. If the server
produces results, the adapter takes the results and translates them back into
the format of the client. Since the built-in contract testing artifacts are part of
the client’s and server’s contracts, they will be mapped through the adapter
as well.

Testing
Client

Tested
Server

Provided
Interface

Required
Interface

Adapter

<<implements>>
Client’s
Contract

Server’s
Contract

Mapping of the
Functional Interfaces

Adapter
Syntactic & Semantic

Mapping

Mapping of the
Testing Interfaces

Testing
Client

Tested
Server

Server Tester Testing Interface

Fig. 4.23. Component integration through an adapter

176 4 Built-in Contract Testing

Client Adapter Server
<<acquires>> <<acquires>>

Testable
Client

Testable
Adapter

Testable
Server

<<acquires>> <<acquires>>

<<extends>>

Built-in Contract Testing Infrastructure

Fig. 4.24. Separation of an adapter into functional mapping and testing mapping
through extension

I could even perceive the adapter to be designed and implemented fully in
line with the principles of built-in contract testing. For the mapping between
the pure functional components we may define a purely functional adapter,
and for the testing infrastructure this is extended by mappings that addi-
tionally concentrate on the testing functionality. This leads to a structure
that is displayed in Fig. 4.24. Client and Server are interconnected through
Adapter, which mediates between the two differing contracts for the normal
functional case. The testable versions of Client and Server augment both
components with contract testing artifacts. This additional testing contract
will be mapped through the extension of the adapter (TestableAdapter in
Fig. 4.24) so that function and testing are fully separated in the two compo-
nents as well as in the adapter.

In a containment hierarchy, integration is ideally performed bottom-up, so
testing stubs for higher-level components that imitate the behavior of lower-
level components may be omitted. Figure 4.25 displays two typical scenar-
ios. The first one is the traditional top-down testing approach that requires
stubs to replace required functionality that is not yet available for a test.
The component �stub�C represents this additional artifact. Ideally, in a
component-based development project, component integration or composi-
tion is performed bottom-up, as discussed in Chap. 2, and the composition
implementation is typically where the execution of the built-in tester compo-
nents takes place. This means that all required subcomponents are available,
so that the contract between components B and C in Fig. 4.25 can be checked
before the contract between components A and B. The second interaction di-
agram indicates the invocation sequence of the tester components. Initially,
the context calls the startTest operation on the highest-level component:

• First, this startTest operation calls the startTest operations of all sub-
sequently associated components.

4.5 Summary 177

• Second, it calls its own built-in contract tester components for its imme-
diate servers.

The first startTest invocation will essentially trigger the execution of the
startTest of all subsequently nested components until the lowest level of the
testing hierarchy is reached. So, the lowest-level built-in tester component is
executed first. The invocation sequence will then move up hierarchic level by
hierarchic level until the highest level is reached and its built-in tester compo-
nents are executed. This testing approach follows the fundamental principle of
application development that in its purest form is performed in a bottom-up
fashion.

<<Komponent>>
A

<<Komponent>>
B

<<Stub>>
C

Context

<<test>>

Top-Down Composition and Testing

<<Komponent>>
A

<<Komponent>>
B

<<Komponent>>
C

Context

<<test>>

Bottom-Up Composition and Testing

<<test>>

<<Stub>>
:C

:B:AstartTest ()

:A :B <<Cmp>>
:C

test_1 ()

test_2 ()

test_3 ()

startTest ()

startTest ()

test_1 ()

test_2 ()

test_1 ()

test_2 ()

...

...

test_1 ()

Fig. 4.25. Bottom-up vs. top-down composition and testing of components

4.5 Summary

Built-in contract testing addresses two of the three primary challenges in
component-based software testing: low internal visibility of the tested object
and component integration in various alien contexts that have never been
anticipated by the object’s original producer. The first issue is dealt with
by the built-in testing interface that each reusable component is supposed

178 4 Built-in Contract Testing

to provide additionally to its original functional interfaces. Its design can be
based on the externally visible states of the object, but more fundamental
concepts such as assertions are also perceivable. In general, anything that
makes a component more testable through external clients is fully in line with
what built-in contract testing stands for.

The second issue is addressed by the built-in tester that each reusable com-
ponent should readily provide. This contains tests that represent the object’s
expectation toward its associated server components and the underlying run-
time system that in fact also represents a server component, albeit an implicit
one. Built-in tester components are more fundamental to built-in contract
testing because they assure that two components that have been brought
together syntactically will also interact correctly in terms of their semantic
contracts.

Tester component and testing interface will together make sure that a
reusable component that is brought into a new context will behave according
to what the context is expecting, and that the context will behave according
to what the reusable component has been developed to expect. Built-in con-
tract testing greatly alleviates the effort of integrating alien components in a
component-based development project, because the components will readily
provide their own in-built assessment strategies.

This chapter has concentrated mainly on the built-in contract testing ar-
chitecture at higher levels of abstraction, or at the conceptual and modeling
level. The next chapter will focus more on lower levels of abstraction, and
how built-in contract testing may be realized through typical implementation
technologies.

5

Built-in Contract Testing and Implementation
Technologies

During the development of an application, after we have decomposed the
entire system into subcomponents, we will iteratively move these components
toward more concrete representations, starting from high-level UML models,
through lower-level models, to code that is ready to compile and execute. All
the design and development decisions that we take when we move toward more
concrete representations are concerned with the concretization dimension in
an iterative development process, and the activity is termed embodiment [6],
as illustrated in Fig. 5.1.

Embodiment typically involves a last manual step along the abstraction
dimension before the artifacts can be processed automatically. The outcome
of this last step is a representation, some kind of source code (e.g., Java source
code) that translators can understand and transform into a final executable
form. In accordance with the prevailing terminology, this code representation
is called the implementation of a system [6]. Most implementations tradition-
ally exist in the form of code in high-level programming languages such as
Cobol, C, Ada, C++, Java, etc., but recently component platforms such as
COM, CORBA, and EJB are becoming more the implementation representa-
tion of choice when it comes down to modern distributed component-based
systems and service-oriented products.

In the case of component technologies and component-based development,
embodiment takes a very specific form. In component-based application engi-
neering with third-party units, quite in contrast with traditional custom de-
velopment, embodiment is not typically concerned with turning an abstract
representation (i.e., a model) into a more concrete representation (i.e., source
code). Here, it is more about integrating an existing implementation that
is the readily deployable third-party component into the existing framework
that the abstract model is providing. Some of this integration is readily sup-
ported by component platforms, but it also typically involves the creation of
some additional models and code, the so-called “glue code.” This adapts ex-
isting components to the integrating framework (or the other way around) in
terms of syntax and semantics. It does this by transforming something that

180 5 Built-in Contract Testing and Implementation Technologies

Decomposition

Composition

Abstraction

ConcretizationModel

Hardware

Source/Binary

Code

Embodim
ent

C
o

m
p

o
si

ti
o

n

D
ec

o
m

p
o

si
ti

o
n

Validation

Genericity

Specialization

Fig. 5.1. Decomposition and embodiment in an iterative development approach

the framework is “meaning” into something that the component can “under-
stand,” and something that the component is replying into something that
the framework will “understand.”

Figure 5.2 illustrates this additional effort of refining the original model of
the integrating framework and augmenting it with additional infrastructure
to accommodate the existing and reused component. A translation from the
model into some source code turns this infrastructure into its implementa-
tion form that in turn may be compiled and integrated with the existing and
reused component. So, a typical embodiment activity in component-based de-
velopment goes along the decomposition dimension to come up with a refined

5 Built-in Contract Testing and Implementation Technologies 181

component infrastructure plus a single step along the concretization dimen-
sion to integrate existing executable reusable modules. These are steps along
two dimensions, and they may also be supported by specific refinement pat-
tern, in a form that I have introduced in Sect. 2.5 (Chap. 2). In other words,
embodiment in component-based development is mainly a reuse activity plus
a development activity for the actual integration effort, i.e., development of
the “glue code.” Most contemporary component platforms support this in-
tegration effort in some way or another. How they do this and how built-in
contract testing will be embodied is the subject of this chapter.

refinement

Composition

Decomposition

Abstraction

Concretization

Integrating
Framework

Refined
Framework

(Glue Code Model)

Refined
Framework
(Glue Code)

3rd Party
Component

Embodiment

compilationtranslation

Model Implementation Executable Code

reuse
3rd Party

Component

Fig. 5.2. Typical embodiment comprises refinement and translation

The implementation of a component, or in other words its binary exe-
cutable version, is what most software organizations are interested in. Con-
temporary component platforms, or the so-called middleware platforms such
as COM/DCOM, Java/EJB/J2EE, CORBA, and CORBA Components, rep-
resent modern runtime support systems for these binary modules. On the
one hand, they reduce the manual effort of making different components that
have been developed in mutual ignorance interact with each other. This prob-
ably represents the most fundamental feature of component platforms. On
the other hand, and this has probably become much more important now,
they provide typical operating system functionality. This includes containers

182 5 Built-in Contract Testing and Implementation Technologies

that encapsulate components, networking and security infrastructure, hard-
ware management, and the like. Essentially, we could argue that anything
that represents typical operating system infrastructure that has not yet made
it into the operating system can be called middleware. In effect, the middle-
ware provides the link between the high-level user application and the lower-
level operating system service, and the infrastructure for the link between the
different components that are residing on a middleware platform. This is in
fact what programming environments and operating systems can address only
insufficiently. In an operating system we can only deploy and execute com-
ponents that are specifically compiled and linked for that particular system,
because, for example, components rely on specific libraries that the operating
system provides. In a particular programming language we can interconnect
only modules that have been developed in that language. We can possibly
find interchange technologies between objects that reside in different runtime
contexts, but they typically address only bindings between any two particular
languages, and they have to be explicitly coded within the components. So,
traditional component interchange technologies that are working at the op-
erating system or programming language level are extremely restricted with
respect to their flexibility and openness. Middleware platforms on the other
hand mediate between the different restrictions that operating systems and
programming languages pose on a development. They accept components that
may be written in any arbitrary programming language, as long as there is
a binding between the middleware platform and the programming language,
and they accept any operating system, as long as there is a binding between
the operating system and the middleware.

Contemporary middleware platforms represent only an excerpt of the fea-
sible embodiment and implementation technologies. They provide only the
execution framework for multiple diverting component instances. In order to
get to a final representation of a component that can be executed in such a
context, there are a number of additional artifacts and notations that can be
applied and must be considered. They will comprise generators and other tools
that are readily applied during the embodiment phase, and they have to be
considered at all levels of abstraction and decomposition. All these technolo-
gies have an effect on how abstract representations are turned into executable
formats, and how the built-in testing artifacts will be incorporated.

The following section (Sect. 5.1) shows how the embodiment of the built-
in contract testing models is treated in general, in terms of a typical product
line engineering activity. Section 5.2 concentrates on how the built-in contract
testing can be realized through high-level programming languages such as C,
C++, and Java. Additionally, I introduce the J/BIT Library that represents
a Java support library for implementing testing interfaces for testable Java
classes. Section 5.3 introduces the main concepts of the primary contemporary
component technologies and how they may be applied in tandem with the
built-in contract testing technology. A subsequent section (Sect. 5.4) focuses
on how Web services, a similar technology, may be treated during testing,

5.1 Instantiation and Embodiment of Built-in Contract Testing 183

and Section 5.5 describes two solutions for implementing the built-in contract
testing artifacts, the Testing and Test Control Notation and the XUnit testing
framework. Finally, Sect. 5.6 summarizes and concludes this chapter.

5.1 Instantiation and Embodiment of Built-in Contract
Testing

The embodiment activities that we have to perform for the testing function-
ality of our system are not different from those that we have to perform for
the normal functionality of the system. Since contract testing is built-in, its
development represents merely an additional modeling and implementation
effort that follows the same principles and procedures as any other software
development. These principles were introduced in Chap. 2. For each identi-
fied component in our development tree, we can define a testable version that
provides an introspection mechanism, or a testing interface, and a testing ver-
sion that owns or provides a tester component. These two additional artifacts
represent the two views according to the two distinct roles in a client/server
relationship:

• The testing interface is located at the server role in a client/server con-
tract to provide additional access mechanism and facilitate or support the
testing that clients may perform on a server.

• The tester component is directly built into or dynamically acquired by
the client role in a client/server contract to perform an assessment of the
associated server component during deployment.

The built-in contract testing interface enhances the functionality of a server
to make it more testable for other associated client components, while the
built-in contract tester component adds to the behavior of the client to en-
able it to apply tests on its environment. Both testing concepts are modeled
and implemented as additional functionality that components may typically
incorporate and use at any time like any other functionality. As long as the
contract testing concepts are hardwired into the implementation of a compo-
nent, there is no different way of dealing with it.

However, in order to apply a recursive component-based development
method adequately, for example, the KobrA method that propagates a clear
separation of concerns, and to fully use the capabilities of modern object and
component technologies, it is essential to separate between a component’s
functional and testing properties. The two most important benefits from a
clear separation of the two aspects, function and testing, in a system devel-
opment are

1. that we can assign the right expertise and resources according to these
aspects during component development and

2. that we can instantiate a testable and a non-testable version of the system,
according to what is required.

184 5 Built-in Contract Testing and Implementation Technologies

The first one represents another way of applying the successful engineering
strategy, “divide-and-conquer,” in order to break the system down into more
manageable parts and find and assign the right people for dealing with them
individually, for example, developers for the function and testers for the test-
ing. The second one organizes the testing part of a system in a way in which it
cannot easily interfere with its original functionality and can be easily removed
if necessary. This is important for a number of different reasons:

• Systems that are not evolving dynamically during runtime in terms of their
internal architecture as well as their runtime environment need only built-
in contract testing for their initial deployment. This is probably the case for
most systems. As soon as all component interactions have been established
and checked for their semantic compliance with their individual contracts,
there is no reason for the built-in contract testing infrastructure to remain
in place. The execution of any of the built-in contract tester components
will not reveal any new problems.

• Systems with sparse resources (i.e., embedded systems) cannot accommo-
date the built-in contract testing infrastructure in their runtime environ-
ment, and if the tests are never used again they merely consume time and
space.

• Permanently built-in testing code can be invoked by a client anytime dur-
ing runtime, even if it is not intended. The invocation of a test may interfere
with a system’s normal operation.

In general, if we organize and implement built-in contract testing in an intelli-
gent way, we can achieve the previously described variability in a system, and
switch testability on and off according to the requirements at hand. If we view
our system as a product family or product line we can apply all the powerful
product line engineering concepts that I have briefly outlined in Chap. 2 in
order to organize testability and testing. Product line engineering is concerned
with how to organize a group of similar systems to fully exploit their com-
monalities and manage the differences between each of these systems. Here,
the product line or product family represents a system core that is common
to all products in that family. Each individual system in the product fam-
ily represents a distinct variation or extension of that common core. These
are also called variants [6] (see Chap. 2). In Chap. 2, I have introduced how
product lines are dealt with in the scope of a component-based development
method. In Chap. 6, we look at how built-in contract testing deals with the
test of product line developments. In this section we will look only at how the
implementation of built-in contract testing may be seen as a product line de-
velopment and how that can facilitate the management of the built-in testing
infrastructure.

During modeling, from the beginning of a development project, we can al-
ready identify many things that can serve for testing, as we have seen in Chap.
3. So, from the beginning of a project when we identify the coarsest-grained
components we can already define some of the testing for these components.

5.1 Instantiation and Embodiment of Built-in Contract Testing 185

Since in our case testing is built into the components from the beginning, we
can separate the testing model from the functional model of our final product
and view the testing model as a variant of the original functional model.

When we introduce the subject of dealing with variations into our pro-
cess, we have to add a third dimension to our recursive development model
depicted in Fig. 5.1 which is now extended in Fig. 5.3. The extension is the
genericity/specialization dimension along which we can move in a product
line development. The direction of genericity in Fig. 5.3 means that we are
moving to a more generic system that is capable of serving more generic ap-
plications. This direction eventually leads to the product family core which is
also referred to as the framework. The framework is so generic that we can
use it and build from it all the various concrete final products in that product
family. Dealing with the framework and developing it is termed framework
engineering. The direction of specialization in Fig. 5.3 means that we are
moving to a more specific system that is capable of serving a very special pur-
pose only. This direction eventually leads to a single concrete final product.
Dealing with this product is referred to as application engineering. A move
along the genericity/specialization dimension from a more generic framework
to a more specific application is called instantiation of an application out of
a framework [6].

With these concepts in mind we can approach the development and im-
plementation of the built-in contract testing infrastructure. The framework
or the core of the product family represents the functional system; this is a
complete working version of the system without any built-in testing. We can
extend it with the built-in contract testing infrastructure. So, each component
in the containment tree will be augmented with a testing interface and some
tester components. The outcome of this instantiation is a testable version or a
testable variant of the original core system. If we perform an embodiment step
for the framework we will receive an individual workable non-testable version
of our original system. If we perform an embodiment step for the testable vari-
ant we will end up with a fully testable workable version of that very same
system. Instantiation adds all the contract testing artifacts and embodiment
turns the product into a final testable implementation. This process is sum-
marized in Fig. 5.3. The full development process will start at the top-level
box on the left hand side with the decomposition of the system. Then we
can perform an instantiation and add some testing models, or alternatively
decompose the system a bit more. We can also start the embodiment for the
parts that have been fully defined; this works for the original system as well
as for the testable system.

The separation between artifacts that belong to the core and those that
belong to a variant are typically indicated through a stereotype in the model.
In the UML model the stereotype �variant� is placed in front of the vari-
ant features. I have introduced this concept for product line development in
Chap. 2. However, for testing we should use a different stereotype, for exam-
ple, �testing� in front of the testing artifacts in the model, to distinguish

186 5 Built-in Contract Testing and Implementation Technologies

Decomposition

Composition

Specialization

Instantiation

Genericity

System
<<variant>>

Testable
System

Instantiation Embodiment

FrameworkEngineering

ApplicationEngineering

Embodim
ent

Abstraction

Concretization

Fig. 5.3. Instantiation of the testable system from the original system, and embod-
iment of the testable variant

a typical product line development artifact from a typical built-in contract
testing artifact. In a nutshell, product line concepts represent a well under-
stood and standard way of dealing with testing variability, and in tandem
with a recursive development process they can facilitate the organization and
implementation of built-in contract testing considerably.

By following the previously described process, system engineers get a very
clear view according to which aspect of a system they are currently working
on, and how it adds to the overall development. This way of organizing built-
in contract testing strictly follows the paradigm of “separation of concerns”
that is put forward in all engineering disciplines. Now that we have had a
look at how testing embodiment activities can be incorporated into the over-
all iterative development model of the KobrA method, we can now turn to

5.2 Built-in Contract Testing with Programming Languages 187

how embodiment is performed more concretely in common implementation
notations.

5.2 Built-in Contract Testing with Programming
Languages

It is arguable whether artifacts in standard implementation notations such
as Ada, C, C++, Pascal, or Java can be termed components. According to
Szyperski’s component definition [157, 158] that was established at the 1996
European Conference on Object-Oriented Programming (ECOOP’96), they
are not. This defines a component as a unit of composition with contractually
specified interfaces and context dependencies only, something that can be
deployed independently and is subject to composition by a third party. The
term “independently deployable” implies that such components will come in
binary executable form, ideally with their own runtime environments if they
are not supported by a platform. Implementations are not typically directly
executable unless they are interpreted, such as Perl or Python. As said before,
implementations always need this last transformation step to be independently
deployable.

However, in a model-driven approach, as put forward in this book, an
implementation is merely a section or a phase along the abstraction/concre-
tization dimension as displayed in Fig. 5.1. It belongs to a transition between
formats that humans can understand easily into formats that are easier for a
machine to “understand” and process. The term component is related more to
composition of individually solvable and controllable abstractions or building
blocks. This terminology is motivated through a typical divide-and-conquer
approach that splits a large problem into smaller and more manageable parts,
so the term component is related more to the composition/decomposition
dimension in Fig. 5.1. If we follow this philosophy, an abstract model (for
example, one of the boxes in Fig. 5.1) may denote a component, and what
it actually does. We can handle such a component in an abstract way, for
example, we can perform some composition and incorporate it into an ab-
stract component framework that is entirely defined in an abstract notation.
So, whatever we can do with a concrete representation, i.e., at the code level,
can be done in a more abstract representation, i.e., at the model level. Hence,
under a model-driven approach all the properties of concrete executable com-
ponents are meaningless because they are freed from the shackles of their
concrete runtime environments. In my opinion, Szyperski’s component defini-
tion does not explicitly separate between the two dimensions, composition and
abstraction. In this respect, any artifact along the abstraction/concretization
dimension may be regarded as a component as long as it is identified as a
component in the composition/decomposition dimension. Typical implemen-
tation notations may therefore well be seen as complying with the component

188 5 Built-in Contract Testing and Implementation Technologies

philosophy, and we can also include typical non-object-oriented implementa-
tions, because at the abstract level they can be treated as any other object at
that level. In other words, any object technology principle at a high abstrac-
tion level can be transformed into non-object technology artifacts on a lower
level of abstraction. The following two sections look at how built-in contract
testing may be realized through C, C++, and Java implementations.

5.2.1 Procedural Embodiment Under C

The C language belongs to the most widely used implementation technolo-
gies, and not only for very technical contexts or system programming for
which it has been initially developed. C explicitly supports modular program-
ming through the concept of source code files as modules or components and
their separate compilation. It therefore also incorporates everything that is
necessary for implementing information hiding, a basic principle of object
technology [93]. The module concept manifests itself in a number of ways:

• Modules can be organized hierarchically. This adheres to the principles of
composition and explicit dependencies or contracts between the hierarchi-
cally organized modules.

• Modules can be reused. This realizes the most rudimentary reuse principles
and, in fact, follows Booch’s component definition which sees a component
as a logically cohesive, loosely coupled module that denotes a single ab-
straction [20].

• The two previous items lead to the notion of platform independency and
abstraction. The module concept essentially hides and encapsulates under-
lying implementations that are platform-specific, such as system libraries,
and other operations closer to the hardware.

C does not explicitly provide typical object-technology properties for imple-
menting built-in contract testing, but since C++ can, and is usually imple-
mented in C, the ideas behind built-in contract testing can well be adapted to
C implementations. In C everything locally defined, i.e., through “static,” will
be accessible only through the procedures in the same scope or file. These can
be seen as the attributes of an object in an object-oriented language or the
data variables that the module encapsulates. The procedures that are com-
prised in the module can be seen as the methods of an object, or the module’s
external interface. The procedures collectively define the contract that the
module is providing. The only difference with C++ objects is that their cohe-
siveness is determined through the data that the object encapsulates, while
in a C module cohesiveness is determined through the functionality of the
procedures (functional cohesiveness, or functional similarity).

Built-in Testing Interface

For built-in contract testing, we can implement a testing interface for each
server module and a tester component for each client module. A testing inter-

5.2 Built-in Contract Testing with Programming Languages 189

face can be implemented either if a C module encapsulates internal data, such
as static variables, or if it will be used to control a module’s built-in asser-
tion checking mechanisms, which in fact represent internal state information
as well. In C, a testing interface for a module is a collection of additional
procedures that are added to the existing functionality. These additional pro-
cedures are local to the file of the module and provide an additional access
mechanism to that module. Such an organization, internal static variables,
and procedures to access these variables, effectively realize an encapsulated
entity with class-like properties. The only difference with C++ is that in C
we can have only one instance of such a module per process, i.e., per “a.out”
file. This limits the value of a testing interface in C because the procedural
philosophy of the language adheres to the separation of data and functionality
that in effect leads to stateless components. But we can nevertheless easily
implement contract testing interfaces in C. For example, Fig. 5.4 illustrates
the embodiment of the testableVendingMachine component model that is
taken from Fig. 4.4 on page 137 (Chap. 4). Here, all additional �testing�
artifacts are hardcoded as specified in the original model.

#include "defaults.h"

static double Amount = 0.0;
static boolean isInIdle = TRUE; /* <<testing>> */
static boolean isInInsertCoins = FALSE; /* <<testing>> */

void selectItem (Item i) {
 ...
 if (i == ABORT) ...
 ...
};

void insertCoin (Coin c) {
 isInInsertCoins = TRUE; /* <<testing>> */
 isInIdle = FALSE;
 ...
};

boolean isInIdle () { /* <<testing>> */
 return isInIdle;
};

void setToIdle () { /* <<testing>> *
 Amount = 0.0;
 isInIdle = TRUE;
 isInInsertCoins = FALSE;
 ...
};

...

testableVendingMachine.c

<<subject>>
TestableVending

Machine

Item // from Item
Timer // from Timer
Coin // from Coin
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)
<<variant>> insertCard
 (Card : Cardtype)

<<testing interface>>
<<state checking>>
+ isInIdle (...) : boolean
+ isInInsertCoins (...) : boolean

<<state setting>>
+ setToIdle (...) : void
+ setToInsertCoins (...) : void

C - Embodiment

Fig. 5.4. Embodiment of the testableVendingMachine model in C

190 5 Built-in Contract Testing and Implementation Technologies

Built-in Tester Component

The built-in contract tester components at the client’s side comprise test cases
that simulate the client’s access to the server module. There is no difference
to other implementation technologies that are based on object technology.
The value of built-in contract tester components is limited due to the limited
number of feasible different usage profiles that a client can present. Since C
modules do not typically encapsulate states that have an effect on the dif-
ferent operations, they are also not going to have any effect on the sequence
or combination of operation invocations in the modules. All parameters that
are provided to such a module are provided from outside its encapsulation
boundary. It has no memory. Every operation of a module can therefore be
seen as a stand-alone entity without dependencies on any other of the op-
erations, and every operation can be tested in isolation to any other of the
operations. Much of the complexity of testing object-oriented systems can be
attributed to the interdependencies between individual class operations that
are caused through the common data that they access. Under the procedural
development paradigm, a unit test of a C module can therefore be regarded
as a viable option even if the module will be used in a number of different
applications. Other clients will not use such a module much more differently
from the way it was initially intended to be used by the provider.

Built-in contract testing may offer only limited gain for the testing of com-
ponent contracts in an application that is implemented in C. Where it may be
much more successfully applied is at the interface between the C implemen-
tation and the underlying platform. One of the big challenges in C used to
be, and still is, portability, or, in other words, a move of a C implementation
from a development platform into a deployment platform. This particular case
will be greatly supported by built-in contract tester components that are lo-
cated at the transition between the user-level application and the underlying
support platform that comprises not only the hardware but also the required
support libraries and drivers. The built-in contract tester components can be
invoked at deployment after the application has been brought to the new plat-
form for the first time. They will contain tests that simulate the application’s
normal interactions with the underlying support software that is part of and
installed on the platform. In this instance, built-in contract testing will alle-
viate the efforts of assessing whether an application will function properly on
a particular platform, and it additionally points out the location of failure.
This simplifies problem identification.

The C language lacks proper support for typical object technology proper-
ties that are advantageous for the implementation of built-in contract testing,
such as dynamic assignment of components and an extension mechanism. This
lack of basis technology prohibits dynamic assignment of tester components
during runtime as well as dynamic instantiation of testable and non-testable
components. In C most built-in testing artifacts will have to be hardcoded,
so that they are available at all times in binary representation. This is mainly

5.2 Built-in Contract Testing with Programming Languages 191

the case for the built-in testing interface, since C does not provide extension
except through conditional preprocessing at the implementation level. The
built-in tester components can be made dynamic to a certain extent, through
the use of function pointers, though this is quite awkward compared with the
capabilities of modern object-oriented languages and nobody will probably
bother to use that. These limitations therefore require a well planned appli-
cation of built-in contract testing technology in procedural languages such as
C. In the next section we will have a look at how modern object-oriented
languages support the use of built-in testing technology.

5.2.2 Object-Oriented Embodiment Under C++ and Java

C++ and Java are the most commonly and successfully used embodiment tech-
nologies for object-oriented implementations. They both represent success sto-
ries with respect to industrial penetration, though it is quite clear that Java is
much more modern and represents a much cleaner and simpler way of realizing
object-oriented programming than the C successor. C++ is halfway between
traditional procedural programming à la C and object-oriented development
as it is understood by Java. It is a superset of C, so it is still equipped with
the procedural capabilities of its predecessor. Java lacks some of the typical
C/C++ features that some programmers regard as cure and others as curse,
for example, preprocessor instructions, direct memory access, multiple inher-
itance of implementation, implicit type conversion, and typical C legacy such
as “goto,” unions, global variables, and the like. Apart from a number of differ-
ences between the two programming languages that are thoroughly discussed
in the literature (e.g., [110]), they both come equipped with the right means
for implementing built-in contract testing in the way it is described in Chap.
4.

Built-in Testing Interface

Figure 5.5 shows a prototypical C++ implementation of the TestableVending
Machine component. Figure 5.6 shows a prototypical Java implementation of
the TestableVendingMachine component. In these implementation examples
I have suppressed the variant feature that the model specifies, but I will come
to that later on. Both implementations can be derived directly from their
respective UML model, because both languages readily support UML’s class
concept; or, if we look at it the other way, because the programming languages
are much older than the modeling notation, UML provides support for spec-
ifying classes how the two programming languages view it. For such simple
specifications the mapping between model and code is straightforward. Java
provides through the concepts of abstract classes and interfaces a much more
advanced way of defining prototypes than C++. In my opinion, this leads to a
clearer and simpler design in Java, although this is arguable.

192 5 Built-in Contract Testing and Implementation Technologies

class VendingMachine {
 private:
 Currency Amount;

 public:
 VendingMachine ();
 ~VendingMachine ();
 void selectItem (Item i);
 void insertCoin (Coin c);
 #ifdef VARIANT
 void insertCard (Cardtype c);
 #endif
};

class TestableVendingMachine : public VendingMachine {
 public:
 Boolean isInIdle ();
 Boolean isInInsertCoins ();
 void setToIdle ();
 void setToInsertCoins (Coin* ListOfCoins);
};

VendingMachine.h (Prototype)

TestableVendingMachine.h (Prototype)

<<subject>>
VendingMachine

Item // from Item
Timer // from Timer
Coin // from Coin
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)
<<variant>> insertCard
 (Cardtype)

<<testing>>
TestableVendingMachine

<<state checking>>
+ isInIdle (...) : Boolean
+ isInInsertCoins (...) : Boolean
<<state setting>>
+ setToIdle (...)
+ setToInsertCoins (...)

C++ Embodiment

C++ Embodiment

Fig. 5.5. Embodiment of the testableVendingMachine model in C++

interface VendingMachine {
 public void selectItem (Item i);
 public void insertCoin (Coin c);
 public void insertCard (Cardtype c);
};

interface TestableVendingMachine : extends
VendingMachine {
 public State Idle;
 public State InsertCoins
 public boolean isInState (State s);
 public boolean setToState (State s, Object o);
};

VendingMachine.java (Prototype)

TestableVendingMachine.java (Prototype)

<<subject>>
VendingMachine

Item // from Item
Timer // from Timer
Coin // from Coin
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)
<<variant>> insertCard
 (Cardtype)

<<testing>>
TestableVendingMachine

+ State Idle
+ State InsertCoins

+ isInState (State, ...)
+ setToState (State, ...)

Java Embodiment

Java Embodiment

Fig. 5.6. Embodiment of the testableVendingMachine model in Java

5.2 Built-in Contract Testing with Programming Languages 193

In the C example I have incorporated the variation point for dealing with
the optional functionality of a vending machine that also supports credit card
billing. This can be done in the same way for C++, because the language pro-
vides preprocessor instructions. For the Java example it does not work like
that because Java does not provide a preprocessor that incorporates function-
ality according to optional design decisions. If we would like to implement this
in Java, or implement it differently in C++, we have to change the model, and
this represents a refinement and a translation step. Without the two steps we
would implicitly assume design decisions that will never appear anywhere in
the documentation of the system. For such a simple system as that we are
dealing with, this might be okay. For larger systems, however, it is essential
that such design decisions be documented well. I will briefly explain how the
refinement of the models and the translation into Java code can be carried
out.

The existing model in Fig. 5.5 maps only directly to C or C++. For a dif-
ferent Java implementation we will have to refine the model according to the
limitations of Java in the way I have explained in Chap. 2. This refined Java
implementation-specific model is displayed in Fig. 5.7. The variation point is
realized as an extension to the original model, ExtendedVendingMachine,
which can be extended through the testing interface, turning it into a
testableVendingMachine. The translation step for this example is depicted
in Fig. 5.8.

Built-in Tester Component

Table 5.1 repeats the specification of the VendingMachineTester component
from Chap. 3. Initially, this test may be performed at the user interface of the
vending machine, and it would be carried out through a real human tester who
is performing the task described in the table. Alternatively, we can have the
VendingMachineTester component access the VendingMachine component
directly. So, the test will actually be applied like a simulation of a real user
who performs transactions on the vending machine. Embodiment is essentially
concerned with turning the test specification in Table 5.1 into source code, for
example, in Java. This is laid out for the first test case in Table 5.1 in the fol-
lowing Java source code example. A prerequisite for executing this test is that
the precondition, ItemX == Empty or ItemX != Empty, holds. The precondi-
tions can be set through a stub that emulates the Dispenser component, or
they can be set through the testing interface of that component if no stubs are
used. This requires that the dispenser and the display component also provide
testing interfaces according to the built-in contract testing paradigm through
which a client tester can also set and check initial and final states. The orga-
nization of this testing system is represented by the containment hierarchy in
Fig. 5.9.

194 5 Built-in Contract Testing and Implementation Technologies

<<subject>>
VendingMachine

Item // from Item
Timer // from Timer
Coin // from Coin
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)
<<variant>> insertCard
 (Cardtype)

<<testing>>
TestableVendingMachine

+ State Idle
+ State InsertCoins

+ isInState (State, ...)
+ setToState (State, ...)

<<subject>>
VendingMachine

Item // from Item
Timer // from Timer
Coin // from Coin
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)

<<variant>>
ExtendedVendingMachine

+ insertCard (Cardtype Card)

<<testing>>
TestableVendingMachine

+ State Idle
+ State InsertCoins

+ isInState (State, ...)
+ setToState (State, ...)

<<variant>>

<<xor>>

<<variant>>

<<xor>>

Java-specifc
Model

Java Refinement

Fig. 5.7. Refinement of the VendingMachine model for a Java implementation

The following source code example represents a feasible Java implemen-
tation for the VendingMachineTester component specified in Fig. 5.9 and in
Table 5.1. Here, I give only an excerpt of the full tester component:

class VendingMachineTester {

// configuration interface
private object Dispenser; // test bed
private object Display; // test bed
private object TVM; // tested component

public void setDispenser (object testableDispenser) {
Dipenser = testableDispenser;

}

public void setDisplay (object testableDisplay) {
Display = testableDisplay;

}

void setTestableVendingMachine (object tvm) {

5.2 Built-in Contract Testing with Programming Languages 195

<<subject>>
VendingMachine

Item // from Item
Timer // from Timer
Coin // from Coin
- Amount : Currency

+ selectItem (Item)
+ selectItem (Item = Abort)
+ insertCoin (Coin)

<<variant>>
ExtendedVendingMachine

+ insertCard (Cardtype Card)

<<testing>>
TestableVendingMachine

+ State Idle
+ State InsertCoins

+ isInState (State, ...)
+ setToState (State, ...)

Java-specifc
Model

interface VendingMachine {
 public void selectItem (Item i);
 public void insertCoin (Coin c);
};

interface ExtendedVendingMachine
extends VendingMachine {
 public void insertCard (Cardtype Card);
};

interface TestableVendingMachine
extends ExtendedVendingMachine {
 public State Idle;
 public State InsertCoins;
 public isInState (State s);
 public setToState (State s, Object o);
};

VendingMachine.java (Prototype)

ExtendedVendingMachine.java (Prototype)

TestableVendingMachine.java (Prototype)

Java Embodiment

Java Embodiment

Java Embodiment

Fig. 5.8. Translation of the Java-specific model of the testableVendingMachine into
a Java implementation

<<context>>
VendingMachine
TesterContext

<<subject>>
VendingMachine

Tester

<<Komponent>>
Testable

VendingMachine

<<Komponent>>
Testable

Dispenser

<<Komponent>>
Testable
Display

<<acquires>>

<<creates>>

<<acquires>>

<<acquires>>

<<acquires>>

<<acquires>>

Fig. 5.9. Containment hierarchy of a testing system for the VendingMachine com-
ponent

196 5 Built-in Contract Testing and Implementation Technologies

TVM = tvm;
}

// start test

public boolean startTest () {
if (false == startTest11 ()) return false;
if (false == startTest12 ()) return false;
if (false == startTest13 ()) return false;
if (false == startTest14 ()) return false;
if (false == startTest15 ()) return false;
if (false == startTest21 ()) return false;
if (false == startTest22 ()) return false;
if (false == startTest23 ()) return false;
...
return true;

}

// test cases

public boolean startTest11 () { // TEST 1.1
Dispenser.setTo (Item1, empty); // set precondition
TVM.setTo(idle); // set init state
try { // expect exception
SelectItem (Item1); // call transaction

} catch (DispenserItemEmptyException e) {
if (TVM.isIn(idle) && Display.isIn(Empty))

return true; // check final state
else // and postcondition

return false;
}
return false;

}

public boolean startTest12 () { // TEST 1.2
Dispenser.setTo (Item2, empty); // set precondition
TVM.setTo(idle); // set init state
try { // expect exception
SelectItem (Item2); // call transaction

} catch (DispenserItemEmptyException e) {
if (TVM.isIn(idle) && Display.isIn(Empty))

return true; // check final sate
else // and postcondition

return false;
}

5.2 Built-in Contract Testing with Programming Languages 197

return false;
}

public boolean startTest13 () { // TEST 1.3
Dispenser.setTo (Item2, empty); // set precondition
TVM.setTo(idle); // set init state
try { // expect exception
SelectItem (Item2); // call transaction

} catch (DispenserItemEmptyException e) {
if (TVM.isIn(idle) && Display.isIn(Empty))

return true; // check final state
else // and postcondition

return false;
}
return false;

}
...
public boolean startTest31 () { // TEST 3.1

Dispenser.setTo(Item1, notEmpty);// set precondition
TVM.setTo(idle); // set init state
TVM.insertCoin (0.1); // call transaction
if (TVM.isIn(insertCoins) && // check final state

Display.isIn(0.1)) // and postcondition
return true;

else
return false;

}
...

}

If our implementation technology is restricted to a single programming lan-
guage environment, we are actually done with the embodiment step when we
have implemented the testing interface and the tester component according
to each identified component contract in our component framework. The re-
maining work is to then integrate our individual components according to the
mechanisms of the programming language.

Devising a source code implementation is always the first step if our de-
ployment environment is a component platform or some middleware. If we
target a component platform as the final embodiment infrastructure, we have
to add platform-specific code to our source code development that is based on
a single language. The component platform provides a binding to a particular
language. This binding is similar to invoking library operations that the lan-
guage provides. I will give some more details on how built-in contract testing
may be realized on these component platforms in the subsequent sections.

198 5 Built-in Contract Testing and Implementation Technologies

Table 5.1. Behavioral tests for the VendingMachine component

No Initial
State

Precondition Transition Postcondition Final
State

1.1 idle Item1
==Empty

SelectItem
(Item1)

Display (Empty) idle

1.2 idle Item2
==Empty

SelectItem
(Item2)

Display (Empty) idle

1.3 idle Item3
==Empty

SelectItem
(Item3)

Display (Empty) idle

1.4 idle Item4
==Empty

SelectItem
(Item4)

Display (Empty) idle

1.5 idle Item5
==Empty

SelectItem
(Item5)

Display (Empty) idle

...
2.1 idle Item1

!=Empty
SelectItem
(Item1)

Display
(Item1.Price)

idle

2.2 idle Item2
!=Empty

SelectItem
(Item2)

Display
(Item2.Price)

idle

2.3 idle Item3
!=Empty

SelectItem
(Item3)

Display
(Item3.Price)

idle

2.4 idle Item4
!=Empty

SelectItem
(Item4)

Display
(Item4.Price)

idle

2.5 idle Item5
!=Empty

SelectItem
(Item5)

Display
(Item5.Price)

idle

...
3.1 idle InsertCoin

(10ct)
Display (0.10) insert

Coins
3.2 idle InsertCoin

(20ct)
Display (0.20) insert

Coins
3.3 idle InsertCoin

(50ct)
Display (0.50) insert

Coins
3.4 idle InsertCoin

(1EUR)
Display (1.00) insert

Coins
3.5 idle InsertCoin

(2EUR)
Display (2.00) insert

Coins
4.1 Perform tests 6.1 to 6.3
4.2 insertCoins abort () CashUnit.dispense

() == 0.80EUR
idle

5.1 Perform tests 6.1 to 6.3 and wait for some time
5.2 insertCoins Timeout

()
CashUnit.dispense
() == 0.80EUR

idle

6.1 Perform test 3.1
6.2 insertCoins InsertCoin

(20ct)
Display(0.30) insert

Coins
6.3 insertCoins InsertCoin

(50ct)
Display(0.80) insert

Coins
7.1 Perform test 3.1
7.2 insertCoins 0.10 <

Item1.Price
SelectItem
(Item1)

Display(0.10) insert
Coins

...

5.2 Built-in Contract Testing with Programming Languages 199

Before that, we will have a brief look at how third-party components for
which we do not own the source code can be augmented with built-in contract
testing functionality. In the previous paragraphs I have concentrated mainly
on how we can add testability features to our own classes for which the code
is readily available. In the next paragraphs I will introduce a way to augment
existing third-party Java classes with testing interfaces according to the built-
in contract testing philosophy. This can be done through the BIT/J Library.

Basic
BIT

State-based
BIT

Statecharts

Statechart

Statechart
Monitor

BIT State

BIT State
Monitor

BIT Component Component

State
Model

<<interface>>
state-based

BIT testability
contract

state-based
BIT test case

state-based
BIT tester

<<interface>>
BIT testability

contract

state-based
BIT test case

state-based
BIT test case

Fig. 5.10. Structural model of the BIT/J Library from the University of Pau,
Laboratory of Computer Science (LIUPPA). BIT stands for Built-In Testing

BIT/J Library Java Support Framework for Built-in Contract
Testing

Commercial third-party (off-the-shelf) components (COTS) cannot typically
be augmented with additional built-in contract testing interfaces that provide
a client of a server component with introspection capabilities for improved
testability and observability [74]. Unless COTS vendors follow the built-in
contract testing philosophy and incorporate testing interfaces into their prod-
ucts right from the beginning, such components can be tested only through
their normal provided interfaces. Basically, this comes down to the traditional
way of testing objects or components.

However, modern object-oriented implementation technologies such as
Java do provide mechanisms that enable internal access to an encapsulated

200 5 Built-in Contract Testing and Implementation Technologies

third-party component at a binary level. The BIT/J Library and tool suite de-
veloped by members of the Laboratory of Computer Science at the University
of Pau, France (LIUPPA), is one such instance that is capable of implementing
external access to existing third-party Java components. It is a free tool that
has been developed as part of the Component+ project [38], and it is available
through the LIUPPA Web site [13]. The BIT/J Library is based on the idea of
incorporating the behavioral model of a third-party component, as it is defined
through the specification of the component, directly into that component. It
uses mainly the Java reflection mechanism to gain access to and retrieve in-
ternal information from a COTS component. Figure 5.10 displays the struc-
tural model of the BIT/J Library. Contract testing based on this library is
initially concerned only with BIT testability contract, BIT test case,
and BIT tester indicated through the shaded box labeled “Basic BIT” in
Fig. 5.10. These are the three most fundamental extensions that any testing
environment using BIT/J will require. The BIT testability contract rep-
resents the initial testing interface that copes with the assessment of results,
execution environment, and faults. It is fully specified in [7]. The BIT tester
comprises BIT test cases that access this interface for retrieving testability
information from a component. State-based testing according to a compo-
nent’s behavioral model is added through their respective state-based ver-
sions indicated through the shaded box that is labeled “State-based BIT” in
Fig. 5.10. These concepts add state-based testing interfaces as they are re-
quired for state information setup and retrieving according to the definition
of the built-in contract testing technology, and an execution environment for
the specified state model of a component, the BIT state monitor. The state
model implementation is based on Harel’s statecharts formalism [85] that is
also adopted by the OMG in UML state diagrams. The statechart runtime en-
vironment is added through classes in the shaded box called “State Model” in
Fig. 5.10. BIT/J essentially adds an executable state machine plus a number
of access interfaces to a Java component. Such an augmented component is
termed BIT component in Fig. 5.10. A more detailed specification of BIT/J is
available through [7, 13]. So far, this type of built-in contract testing support
library is available only for Java components. Other implementation tech-
nologies do not yet provide the proper support for realizing similar access
mechanisms.

5.3 Component Technologies

Contemporary component technologies provide many modern concepts and
tools to “glue” components together. They are sometimes referred to as ob-
ject request brokerage (ORB) platforms, component brokerage platforms, or
middleware. Szyperski calls these wiring standards [157] because they essen-
tially provide all the connection mechanisms for the diverse modules that
make up an application and that have been written in different programming

5.3 Component Technologies 201

languages and are available in various binary formats. Middleware platforms
can be seen as a mediator between the various components on a single network
node and remote components on a different node. Supporting interoperabil-
ity between components that are physically residing on different networked
computers is also an important service that middleware platforms realize. The
principal organization of a component platform is depicted in Fig. 5.11. These
technologies are called middleware because they have not yet found their way
into the operating system, although they provide typical operating system ser-
vices. They reside somewhere in between the services of the operating system
and the applications that use the middleware services. A middleware platform
may be compared with a traditional Unix command shell that draws together
the components of a platform, the programs in the Unix toolbox, through a
standardized mechanism. On a Unix platform this it is the pipe mechanism,
a very simple yet powerful and effective component wiring standard. And it
even provides ways of accessing remote computers.

Remote procedure calls (RPC) [39] can be regarded as an early attempt of
the late 1980s or early 1990s, to realize such an open communication platform
at a programming language level, and it is the ancestor of all modern com-
ponent platforms. Many component platforms still bear many of the features
from the early days.

The primary component technology standards come from Microsoft with
its COM, OLE, ActiveX, COM+, and .NET technologies, Sun Microsystems
with Java and JavaBeans, and the large industry consortium, the Object Man-
agement Group (OMG) with its CORBA standard. In the following subsec-
tions we will have a look at the features of some of these wiring standards,
and then see how they affect the implementation of built-in contract testing.

5.3.1 JavaBeans and Enterprise JavaBeans

JavaBeans denotes the Sun/JavaSoft basic component model for Java. A Java
component is called a “bean.” Their primary motivation for developing this
component technology was that Java applications, once written, should be
able to be integrated and run, and thus reused, on any arbitrary execution
platform. Additionally, the technology puts a strong emphasis on the fact
that components once released should never be touched again, or, in other
words, there is no required Java code-level programming effort involved in
getting two alien beans from different vendors to interact with each other.
This is probably the most important advantage of the JavaBeans component
technology over pure Java. The JavaBeans specification defines a JavaBean
as a reusable software component that can be manipulated visually through
specific builder tools [115]. The main aspects of JavaBeans are summarized
as follows [158]:

• Properties that a bean provides for customization. These can be accessed
and changed through pairs of so-called setter and getter methods.

202 5 Built-in Contract Testing and Implementation Technologies

Application
Context

...
Component

C++
Component Java

Component

Middleware
Context

Language
Bindings

...
Binding

C++
Binding

Java
Binding

Middleware / Object Broker

Operating System

Fig. 5.11. Coarse-grained organization of a middleware platform

• Introspection with respect to properties, events, attributes, and methods
that a bean provides. This is based on Java’s reflection mechanism.

• Events that beans announce as “sources” and acquire as “sinks.” An as-
sembly tool can connect sources of one component with the respective
sinks of other components, and vice versa.

• Persistence determines how the internal state information of a bean is
stored and retrieved. By default this is controlled by the so-called auto-
matic serialization mechanism of the Java language.

In addition to the main aspects of the JavaBeans component platform there
are a number of advanced specifications:

• The Java containment protocol permits containment and nesting within
the otherwise flat component hierarchy of JavaBeans. This allows an appli-
cation to follow exactly the containment model of a development method.

• The Java service protocol enables top-level beans or containers to extend
services to their contained subcomponents. This is required for handling
the containment protocol.

5.3 Component Technologies 203

• The Java activation framework (JAF) represents a registry for components
that can be used in order to locate, load, and activate components that
provide a particular operation over a particular type of data [158].

• The archiving model or long-term persistence model [158] represents an
alternative to the serialization mechanism that uses XML or proprietary
Java file formats. Archiving is limited to the part of a component’s state
that is accessible through its interface.

• The InfoBus specification represents a generic framework for component
composition in a very particular fashion.

Enterprise JavaBeans (EJB) adds the distribution aspect to the suite of Java
component models (Applets, Servlets, JavaBeans, EJB, Application Client
Component). JavaBeans and the other component models concentrate more
on the individual components and how they can be inspected and made to
work together effectively through a specific wiring. Szyperski calls what Jav-
aBeans provides “connection-oriented programming” [158].

EJB follows an entirely different path. EJB mainly provides an application
server environment (e.g., JBOSS) and defines how components have to be
designed and written by developers to be integrated in an EJB implementation
[43]. Every EJB component comes equipped with a deployment descriptor
that specifies how a component should be deployed in a specific context. This
supports contextual composition that also other more advanced component
platforms, such as COM+ or the CORBA Component Model (CCM), provide.
EJB is concerned mainly with how individual component instances may be
automatically connected to appropriate services and resources, i.e., through a
so-called EJB Container. This container effectively wraps around its contained
component instances and intercepts all communication that is going in and
out. JavaBeans and EJB are fully specified in [114, 115].

5.3.2 COM, DCOM, ActiveX, COM+, and .NET

Microsoft’s Component Object Model (COM) is the company’s initial com-
ponent “wiring” standard. COM is a binary standard that is based entirely
on interfaces, so it does not even specify how a particular programming lan-
guage relates to it. COM interfaces are organized in a subtle way and the
platform provides mechanisms to find out about individual components’ inter-
faces through IUnknown, a default interface that every COM component needs
to provide. This comprises some default methods, such as QueryInterface,
which identifies COM objects according to their provided interface references,
and AddRef and Release, which are used to manage (add and release) inter-
face references during an object’s lifetime.

The Distributed Component Object Model (DCOM), sometimes also re-
ferred to as COM+ in later versions, represents the distributed extension of
Microsoft’s COM architecture. DCOM permits a client application to invoke
a remote DCOM server object. It is designed specifically to perform within a

204 5 Built-in Contract Testing and Implementation Technologies

network infrastructure made up of MS Windows nodes, and is also part of the
Windows 2000 platform. DCOM supports transparent communication across
not only process boundaries but also across platform or machine boundaries
through the creation of client-side proxies and server-side stubs that hide the
underlying networking infrastructure.

ActiveX-controls represent an advancement of Microsoft’s original Object
Linking and Embedding (OLE) standard. Both are inherently based on COM.
In fact, ActiveX-controls are merely COM objects that are supported through
a very special server and provide enhancements that are specifically designed
to facilitate the distribution of components over slow network connections.

COM+ is an extension of COM and its successor. It integrates previously
separate, somewhat colliding support technologies such as transactional pro-
cessing, asynchronous messaging, load balancing, and clustering [158].

.NET aims at bringing the various different Microsoft standards, products,
and services together into a single framework. In addition to other things,
this includes Web services, as well as development and deployment platforms.
The concrete services and facilities that the .NET framework offers are fully
outlined by Szyperski [158].

5.3.3 CORBA, OMA and CCM

The Common Request Broker Architecture (CORBA) represents the OMG’s
initial attempt to make distributed components that are implemented in dif-
ferent languages interact with each other seamlessly. An initial version, 1.0,
released in 1991, provides all the basic ingredients to achieve this goal, such
as the CORBA Object Model, the Interface Definition Language (IDL), a
core set of application programming interfaces (APIs) for dynamic request
management and invocation, and an Interface Repository [78]. The sub-
sequent version, 2.0, adds a number of extensions to the original version,
such as OLE/COM compatibility, security and transaction services, and some
datatype extensions. Other later versions provide programming language map-
pings for C++, Smalltalk, COBOL, Ada, and Java, as well as support for
real-time features, fault tolerance, and common security.

CORBA is carefully standardized to allow for many different implemen-
tations and platforms [158]. A CORBA system essentially consists of three
parts:

• The object request broker (ORB). The broker is responsible for provid-
ing the available object interfaces, receiving requests from clients, finding
object implementations that may be able to process the request, and per-
forming all transformations with the data in the request.

• A set of invocation interfaces. Invocation interfaces are the primary way
through which client objects access the services that the ORB provides.

• A set of object adapters. Adapters are the primary way through which
server object implementations access the services of the ORB.

5.3 Component Technologies 205

An initial requirement for a CORBA system to work is that all object inter-
faces that the ORB provides are specified in a common language, the OMG
interface definition language (OMG IDL) [54, 82]. Additionally, all languages
that use the ORB need to be transferred into the format of OMG IDL. In
other words, every supported language must have a so-called binding to the
OMG IDL. Once an interface is expressed in IDL it can be compiled and
deposited in the interface repository of the ORB. The OMG IDL compiler
can also be used to generate stubs and skeletons for interfaces. A stub will be
instantiated and installed at the client side of an ORB service, and it emulates
the required server object for the local client. In reality, the stub will forward
all invocations of the client through the ORB to the respective real target
object. Stubs are often called client-side proxies [158]. A skeleton is installed
at the side of the real object. It translates invocations coming from the ORB
into a form that the server object can “understand.” Figure 5.12 illustrates
this organization.

<<acquires>>

<<context>>
Application

Client Server

IDL
Stub

IDL
Skeleton

ORB

Association
Realization

D
ec

o
m

p
o

si
ti

o
n

E
m

b
o

d
im

en
t

Fig. 5.12. Realization of a client/server interaction through an ORB

In order to broaden the applicability of CORBA, and to make remote
object invocation more generic, the OMG has extended the CORBA standard

206 5 Built-in Contract Testing and Implementation Technologies

and called it the Object Management Architecture (OMA). It embodies the
OMG’s vision for the entire component software environment. The OMA adds
a number of items to the CORBA standard [80, 158]:

• A set of common object service specifications, the so-called CORBA Ser-
vices. They standardize the life-cycle management of objects and provide
operations for creation and access control of objects and their relation-
ships to other objects. CORBA Services provide the generic environment
in which objects can perform.

• A set of common facility specifications, the so-called CORBA Facilities.
These provide computing solutions for typical business problems in a spe-
cific domain such as healthcare, manufacturing, finance, etc. [80].

• A set of application object specifications. These are application objects
that perform specific tasks for the user. The application objects can be
built relatively easily through modification of existing classes by general-
ization or specialization, e.g. from CORBA Services.

• The CORBA Component Model (CCM), also called CORBA Components.
This represents the main contribution of the latest incarnation of the
CORBA standards, CORBA 3 [158].

The CCM can be seen as the first non-proprietary, language and platform-
independent component architecture [21]. It introduces a number of new fea-
tures into the CORBA standards suite such as the portable object adapter
that mediates between ORB and object implementation [158], and CCM com-
ponents with very special features, CCM containers that contain components,
and it supports EJB compliance. In other words, existing EJB solutions can
be embedded in the CCM.

5.3.4 Component Technologies and Built-in Contract Testing

Component technologies are primarily used to interconnect component imple-
mentations that are written in different languages or are residing on different
nodes of a network. So, each component will have to abide by the protocol
of the component platform according to the binding of the component’s im-
plementation notation. In other words, each component implementation that
will be deployed on a particular platform must be augmented with the right
mechanisms so that the platform can handle the component and connect it
to other such components. The so-called business logic of an application must
thus be augmented with the infrastructure of the middleware platform. This
is similar with what a linker in a typical programming environment does. It
adds the infrastructure of the underlying runtime system to the original ob-
ject code of a program and turns it into an executable representation for this
particular runtime system.

In order to deploy a component on a middleware platform, we first have
to add code artifacts that realize the communication between our compo-
nent and the middleware, and, second, have to add the respective runtime

5.3 Component Technologies 207

system. If we are using a middleware platform, the deployed component is
not entirely detached from the underlying runtime environment, and is not
fully encapsulated by the middleware. Basically, constructing a component for
some middleware can be seen as adding support libraries to an application,
pretty much in the same way as any other support library that a program-
ming language may be providing. The artifacts that we have to add to make
a component implementation middleware compliant is usually some stub and
client code for the client and server side proxies, i.e., defined through some
interface definition language (IDL) and often generated automatically, and
some operations to register with the object request broker and perform some
other administrative tasks such as object construction and destruction. Figure
5.13 illustrates how a client/server association is realized with a Java ORB.

ORB Library
Class

Client Server
<<acquires>>

Specification

Client
Implementation

Virtual Machine

Server
Implementation

Virtual Machine

Client
Proxy

Server
Skeleton

Realization IDL Definition

Fig. 5.13. Client-server association in a Java ORB

Since built-in contract testing is part of the components that are deployed
on a middleware platform, there is no particular way of dealing with the
contract testing artifacts. The testing interface provides an additional access
mechanism to the component, and this is treated in the same fundamental
way as all the other interface operations. The tester component is simply an
add-on to the testing client. Both are realized through some implementation
notation, e.g., in Java, and then augmented with the middleware platform
code.

208 5 Built-in Contract Testing and Implementation Technologies

The only issue that we have to consider is the degree of flexibility of the
contract testing artifacts with respect to the selected middleware platform.
One of the final steps during embodiment is to distinguish between the logical
components according to the containment model and the physical components
that will be deployed on the middleware platform. Contract testing that will
be directly built into the physical components cannot be removed later. Only
built-in contract testing that will be organized at the physical component
level can be allocated and deallocated within the component framework. So,
in order to fully exploit the principles of built-in contract testing that I have
introduced in Chap. 4, we have to look at whether and how component ex-
tension and inheritance, and dynamic component allocation and deallocation,
are realized through a middleware platform. How component features may
be inherited is important for how testing interfaces are implemented on a
particular platform. How components are dynamically allocated and deallo-
cated is important for how tester components are organized on a platform.
We have to distinguish between things that are built-in at the programming
language-level and things that are built-in at the component platform level.
The following list summarizes these considerations:

• Both testing interface and tester component are permanently built-in at
the programming language level. The built-in contract testing artifacts are
hardcoded into the physical components. This form of built-in contract
testing has no effect on the component platform, and it represents the
most fundamental type of built-in contract testing. Additionally, we could
built a configuration interface into the tested object that may be used to
switch contract testing on and off at runtime. For example, this could be
a different object constructor specifically for the testing artifacts.

• The tester component is dynamically allocated and deallocated at the
component platform level. So, in addition to the functional components
we will also have to deploy tester components on the middleware plat-
form. These are treated in exactly the same way as the functional compo-
nents, although the functional components that acquire tester components
will need additional infrastructure to explicitly allocate the tester compo-
nents at the platform level, i.e., explicit external interface definitions for
the tester components. Since dynamic allocation and deallocation is what
component platforms have initially been made for, this organization will
work for all contemporary component platforms, although it will likely
lead to flat component hierarchies at the component platform level. This
is because not all middleware platforms support component hierarchies in
the way in which KobrA containment trees define them.

• Dealing with the testing interface at the component platform level requires
that the middleware supports an implementation extension or inheritance
mechanism that actually works on the binary component, or at least at
the object code level, e.g., a Java class.

5.4 Built-in Contract Testing and Web Services 209

The question that we have to answer in an embodiment step toward a middle-
ware platform is whether the contract testing artifacts will be built directly
into the functional physical components in the sense of built-in contract test-
ing, or whether they will be available as separate components at the middle-
ware platform level. In the first case, built-in testing will be available at all
times during deployment and runtime of a binary component; in the second
case it can be added or removed according to the requirements at hand, so
it will provide the same flexibility at the binary component level that may
be defined in the model or at the programming language level. Interface in-
heritance and dynamic component allocation and deallocation works for most
contemporary component platforms, such as CORBA, CCM, COM, DCOM,
ActiveX, Java Beans, and EJB. CORBA and DCOM do not allow implemen-
tation inheritance, but DCOM can achieve something similar to it through
component aggregation and composition. Inheritance at a binary level on a
readily compiled and linked component is not feasible because the binary level
is lacking the programming language infrastructure that effectively carries out
the inheritance.

So, for pure binary components (most off-the-shelf components will proba-
bly be available only in binary form for a particular middleware platform) we
have to take another route to achieve high flexibility with respect to built-in
contract testing. The easiest way to achieve this flexibility is to have two binary
components ready for deployment: one with all the built-in contract testing
artifacts permanently built-in (and this can be used for initial deployment
and component integration testing) and one without the built-in testing arti-
facts that will be deployed in the final system. The contemporary component
technologies are still some way from realizing flexible component embodiment
in the form in which it was described earlier. We can observe some advances
that aim at solving these problems, for example, as put forward through the
CORBA Component Model. However, having similar mechanism that modern
languages are readily providing in a component platform would really be most
desirable.

In the next section we will take a look at how Web services, another form
of a component broker platform, go together with built-in testing.

5.4 Built-in Contract Testing and Web Services

Web services represent a relatively new technology for the implementation of
distributed component-based applications. They are commercial software ap-
plications that are executed on Internet hosts and provide individual services
which are used to realize distributed component-based systems. These services
are typically specified based on the Extensible Markup Language (XML) and
they communicate with their clients through Internet protocols that also sup-
port the XML [43]. Web services fulfill all the requirements of Szyperski’s
component definition [157], that is, a service is described and used only based

210 5 Built-in Contract Testing and Implementation Technologies

on interface descriptions, and, more importantly, is independently deployable.
This means a Web-Service provides its own runtime environment so that a
component-based application is not bound to a specific platform. Every part
of such an application is entirely independent from any other part, and there is
no overall runtime support system but the underlying network infrastructure.
Web services represent the ultimate means of implementing component-based
systems.

The fundamental idea behind the so-called service-oriented programming
is that individual parts of an application communicate on the basis of a pre-
determined XML contract. This is not different from the way we have so far
treated components. However, here the components of an application are not
bound to a particular host, as in object-oriented programming, but are estab-
lished dynamically throughout entire networks, for example, the Internet. This
way, different implementations of a distinct service may be easily replaced by
registering with a different Web service that provides the same specification of
the required component or, in other words, the same interface. Architectures
for service-oriented programming typically support the following concepts:

• Contract. This is the full specification of one or more interfaces that char-
acterizes the syntax and semantics of a service (functional and behavioral
specification).

• Component. This represents a readily usable and deployable object that
provides functionality and exhibits behavior. This is the realization of the
actual component that implements the functionality of the service.

• Connector, Container, and Context. These concepts realize the networking
and runtime elements of a Web service. This means that they are respon-
sible for establishing the connection between client and server, taking of
the execution of an instance, and controlling its security.

Web services are in fact component platforms that communicate and establish
the component interactions at a higher level of abstraction. They can be seen
as extensions to existing component platforms. Examples of Web service ar-
chitectures are Sun’s Java 2 Enterprise Edition (J2EE) [156] and Microsoft’s
.NET architecture [113]. The core for both these systems is represented by a
Web-based application server that essentially performs the same task as an ob-
ject broker for typical middleware platforms. I am not going to present more
details on how Web service architectures should be realized; that is clearly
outside the scope of this book. In the following subsections, we will look at
typical scenarios in which contract testing can be applied in the context of
Web services.

5.4.1 Checking Web Services Through Contract Testing

Contract testing provides the ideal technique for checking dynamic and dis-
tributed component-based systems that are based on Web services. This is in

5.4 Built-in Contract Testing and Web Services 211

fact the scenario for which built-in contract testing provides the most bene-
fits. The syntactic compatibility between a client and a Web-based server is
ensured through the XML mapping between their interfaces. Their semantic
compatibility can be checked through the built-in server tester components
inside the client that are executed to validate the associated server. These
tests can be performed when the client is registering with a service for the
first time, during configuration, or if the client requests the same specification
of the server from a different Web service provider, during reconfiguration of
the system.

Figure 5.14 displays the containment hierarchy of an example banking sys-
tem that is based on a Web service. Here, I use the bank context as an exam-
ple because embedded systems such as the vending machine and the resource
information network are not typically realized through Web-based services,
although this may be perceivable. Web services are actually more suitable for
typical business domain systems such as systems for banking, insurance, and
general administration and for Internet information applications.

<<context>>
Bank Context

LookUpTable
<<subject>>

Testing
Bank

Teller

<<context>>
Web-Service

Context

Testable
Converter

<<registers with>>

<<remotely acquires>><<acquires>>

<<acquires>>

Fig. 5.14. Containment hierarchy of an example banking application that is based
on Web services

The TestableConverter component on the right hand side of Fig. 5.14
represents the currency exchange rates converter of a distributed banking
application, and it exports currency conversion operations. This component
may be provided by a third party, an external Web service provider who
specializes in selling banking services, and it may be updated on a daily basis
according to the stock market exchange rates. The banking system connects
to a new instance of the converter once a day at a given time, so that it

212 5 Built-in Contract Testing and Implementation Technologies

always keeps the latest currency exchange rates in store for the respective
modules of the banking application. The �remotely acquires� relationship
indicates that the converter, in this case a testable converter, is not locally
available. This means that the relationship will be implemented through some
underlying networking or Web Service infrastructure. This infrastructure is
realized through the connector and the container on the server side (the Web
service) and a Web service-compliant implementation on the client side of
the �remotely acquires� relationship. The stereotype �remotely acquires�
hides the underlying complexity of the network implementation and considers
only the level of abstraction that is important for testing. This representation
format is termed “stratification” [5].

As soon as the connection between the two interacting components is es-
tablished, however this is realized in practice, a normal contract test may be
initiated. The server TestableConverter provides a suitable testing inter-
face that the client’s built-in tests can use. Client and server do not “know”
that they communicate through Web interfaces. This connection is established
through their respective contexts when the context of the TestingBank com-
ponent registers with the context of the TestableConverter.

5.4.2 Testing of Readily Initialized Server Components

Web services typically provide instances that are ready to use. It means that
the server component provided through the Internet service is already config-
ured and set to a distinct required state. A runtime test is therefore likely to
change or destroy the server’s initial configuration, so that it may not be usable
by the client any more. For example, a test suite for the TestableConverter
component that is built into the TestingBank component in Fig. 5.14 may
comprise test cases that change, add, or remove some of the exchange rates
stored in that component, if this is possible. Clearly, for the client such a
changed server is of no use and creates a fundamental dilemma for built-in
contract testing of Web services.

Possible Destruction of the Server through the Testing Client

Under object-oriented runtime systems the client can solve this dilemma by
asking the runtime system to create a clone of the tested component and to
pass the clone’s reference to the test software. This works because client and
server are handled by the same runtime environment. For example, in Java
this duplication is performed through the Object.clone() method. So, any
Java object can be duplicated in that way. In this case the test software may
completely mess up the newly created clone without any effect on the original
instance; it is thrown away after the test, and the original is used as a working
server.

However, in a Web service context, the runtime system of the client is
different from that of the server so that the client cannot construct a new

5.4 Built-in Contract Testing and Web Services 213

instance from an existing one. The client and server are residing within com-
pletely different runtime scopes on completely different network nodes. For
example, the banking application from Fig. 5.14 may be based on Java, and
the Web service component may be based on a Cobol runtime environment.
This sounds a bit odd, but it happens in reality. In other words, only the Web
service context may generate an instance of that Cobol component because
it comprises a Cobol runtime environment. Contract testing can therefore be
applied only in a Web service context if the Web service provides some way for
the client to have a clone created and accessed for testing. Client and server,
or the client’s and the server’s contexts, need to be made aware of this issue
and provide additional access services accordingly to be able to cope with
this. Some contemporary component technologies such as CORBA Compo-
nents (CCM) are capable of doing exactly that. There, the container provides
operations that generate exact copies of existing instances and make them
available to their clients. In practice this will be initiated by the context of
the client that requests the Web service to generate two instances of a server.

Possible Destruction of the Testing Client through the Server

A similar problem appears on non-networked platforms when the test software
discovers a fatal failure that completely hangs the runtime system. During
the integration phase of an application this is not a problem. However, during
a reconfiguration of an operational system, however, this should not happen.
The application should ideally reject an unsafe service and continue to operate
with the existing configuration. The contract test should therefore be executed
within its own thread to rule out any side effects.

A tested server component may acquire and lock a resource and then
fail its test. The testing system that may be relying on this locked resource
will not any more be able to commence its original service. This is a typical
problem in distributed embedded applications, but it can be circumvented by
another built-in testing technology: built-in quality-of-service testing. I will
describe this technique in Chap. 7, where we will have a closer look at how
quality-of-service in component contracts can be addressed.

For Web services, these problems are not an issue since the individual
components are executed in different threads on different nodes. In this case
a contract is always safe, and it will never fail the client application that is
applying it, even if the test fails.

Now that we have discussed the primary implementation platforms, or
wiring standards as Szyperski chooses to call them [158], for component-based
development in general, we will have a look at specific implementation tech-
nologies for testing. These technologies are mainly geared toward the devel-
opment of the client side in-built contract testing, the tester component, and
its built-in test cases.

214 5 Built-in Contract Testing and Implementation Technologies

5.5 Implementation Technologies for Built-in Contract
Testing

Built-in contract testing as I have introduced it thus far can be seen primarily
as a method for facilitating the testing of component-based systems during
development and deployment. The method provides a number of concepts and
artifacts, and guidelines for applying these, and it can supplement and extend
existing development methods such as the KobrA method in a natural way.
How the principles of the technology are implemented in real development
projects depends considerably on the type of a project, such as whether we
are dealing with development for reuse or development with reuse, or, in other
words, whether we take on the role of a component provider or a component
integrator. Most projects will have to deal with both roles, because even if we
are only reusing and integrating existing building blocks, we will inevitably
have to develop the adapters that realize the connection between the diverse
third-party units that we are integrating.

Another important issue in this respect is which implementation tech-
nologies are used; are we dealing with a specific programming language, or
a distinct component platform? In the previous chapters and sections I have
tried to shed some light upon all these aspects. The most basic and funda-
mental implementation technology will typically be a programming language.
On top of that come some component platforms that integrate the binary
implementations of the programming languages and make them interact with
each other. These platforms can be seen as containers that organize the bi-
nary formats and support their execution and interactions. Szyperski calls
this development beyond object-oriented programming [157], because these
technologies are capable of making quite diverse implementations understand
and interact with each other. Some of these technologies will already provide
networking infrastructure to support distributed systems; for others we may
have to add this in a separate development effort.

So, all the tools that we may employ to support built-in contract testing
in one way or another are heavily dependent on the context of a project, or
even on the entire development culture in an organization. Because there are
so many implementation technologies, and they are swiftly changing and new
ones emerging, I can give directions only on how the principles of built-in
testing may be realized. Personally, I am a strong advocate of sound method-
ological support above all technologies, because technologies die quickly. Nev-
ertheless, in the following subsections we will have a look at how well-known
tools and implementation technologies, the XUnit framework above all, and
the Testing and Test Control Notation, an emerging technology from the tele-
com domain, can be used to support built-in contract testing.

5.5 Implementation Technologies for Built-in Contract Testing 215

5.5.1 The XUnit Testing Framework

XUnit represents a framework for writing, applying and repeating unit tests.
A unit test can be seen as the initial validation effort that is carried out to
uncover errors and problems in a single unit in isolation. This means that the
testing is performed according to the specification of the unit [66], and not
according to the specification of its encapsulating context. While built-in con-
tract testing concentrates on assessing a component in its context according
to the specification of that context, a unit test assesses a component in terms
of its own specification, free of any context into which it will be eventually
integrated.

Although it seems initially that a unit testing framework is not suitable
for supporting or implementing built-in contract testing, giving it a second
thought we might well use this tool for our purpose. As I said earlier, the
XUnit framework is a tool for writing and repeating tests. The fact that these
tests may be unit tests, and they are designed as such, is only a question
of the viewpoint or the criteria that we apply for our testing. According to
which testing criteria these tests will be devised is not relevant for the tool
or the framework. The fact that we apply unit tests is accounted for only
through the basis upon which we develop these tests. If we derive the tests
that fill the XUnit framework with life from the specification of the unit, we
will end up with unit tests. If we derive these tests from the specification of
the integrating context of the unit, we will end up with typical contract tests.
The tool as such has no bearing on these criteria.

The XUnit testing framework in general and the JUnit testing framework
in particular are based on the ideas of the Extreme Programming community
[9, 102]. Essentially, these ideas state that before any code is written, the
developer should have defined the test cases for the code, or, in a nutshell:
test first! In my opinion this is a great idea and it probably took me most of
Chaps. 2, 3, and 4 to propagate and communicate that. So, “testing first” is
in line with the fundamental principles of built-in contract testing. However,
I would rather prefer to say “plan the tests, or design the tests first,” because
“testing” still bears a strong focus on test execution, and this is in fact how the
Extreme Programming community sees it, a permanent testing and test exe-
cution effort during unit development. Their proposed development activities
follow a cyclic procedure for developing a basic function, testing that basic
functionality, developing another basic function, testing it, and so on. This
process concentrates more on custom development and component-based de-
velopment from the vendor’s viewpoint, and on “programming in-the-small.”
We are more concerned with integrating existing units and making them in-
teract, which could be more specifically referred to as “programming in-the-
large.”

In general, the JUnit testing framework is for the tester component what
the BIT/J library (Fig. 5.10) is for the testable component. Both are Java
libraries that readily provide testing and testability concepts for Java classes.

216 5 Built-in Contract Testing and Implementation Technologies

Under the XUnit testing framework the test cases can be implemented through
JUnit or one of its derivatives, according to which programming language is
used, and applied to the final code. JUnit was written by Erich Gamma and
Kent Beck [10, 59], and there already exist unit test frameworks for a number
of different programming languages such as JUnit [62] for Java, CUnit or
CppUnit for C and C++ [51, 61], PerlUnit for the Perl language [52], and
many others. A summary can be found in [63]. Here, I will introduce the
concepts of JUnit briefly, and then discuss how this may help support built-in
contract testing. The concepts of JUnit are very similar to what the UML
Testing Profile is actually defining, we have:

• A test case, a Java class that manages a single test case, and from which
test case features can be inherited. Each test is initially separate from
the others (unless a so-called test fixture is used), so it creates all the
required test data for a test through the operation setUp(), and removes
all test data after the test through the operation tearDown(). The test
case defines its own input, event, action, and response in terms of pre and
postconditions and expected results. These are concepts that the UML
Testing Profile is also readily supporting.

• A test suite, a collection of test cases that the UML Testing Profile refers
to as test component.

• A test result, the outcome of a single test or a test suite. The testing
profile calls this test observation. The test observation is checked through
the assertTrue() operation from the class Assert that will return a pass
or a fail according to the result of the assertion.

In the next section we will see how JUnit can be used to implement tester
components according to the principles of built-in contract testing.

5.5.2 JUnit and Built-in Contract Testing

If we use JUnit to implement a tester component, for example, the Vending
MachineTester, the implementation in Java is not really much different from
the Java implementation in Sect. 5.2. The JUnit framework readily provides
support for typical testing concepts, so that many, or at least some, of the test-
ing infrastructural code artifacts may be omitted. JUnit provides simple and
ready-to-use solutions for these. The tester component will likely be smaller
and structured more clearly. JUnit only supports the development of built-in
contract tester components, and not testing interfaces for the testable com-
ponents. So, in order to exploit the full range of built-in testability features,
all the components will have to provide testing interfaces according to the
built-in contract testing philosophy, or alternatively the BIT/J Library may
be used.

The tester components will import the JUnit features and apply them. The
configuration code that realizes the acquisition of the testable components is
the same as for the previous Java implementation of the VendingMachine

5.5 Implementation Technologies for Built-in Contract Testing 217

Tester component in Sect. 5.2. These are in fact typical code segments
for setting up the built-in contract testing infrastructure according to the
model that may be found in Fig. 5.9. The public operations in the following
Java source code example, setTestableDispenser, setTestableDisplay,
and setTestableVendingMachine, realize the tester component’s configu-
ration interface. Its superordinate component can use these to connect the
tester components with their associated server components. In this case, this
superordinate component is the context of the system, because the vending
machine component is the top-level component in our system’s hierarchy. So,
the tester component can be controlled by a superordinate component in any
component hierarchy, and we may see this as performing a built-in contract
test. Otherwise, as the case here, we invoke the tester directly as a stand-
alone program. The JUnit framework provides the optimal support for this
flexibility according to both these approaches. The main method, illustrated
in the following source code example, invokes JUnit’s built-in test runner that
executes all defined test cases. In other words, the VendingMachineTester’s
main method represents the context of the testing system, because this can be
used to realize the associations between all components for a test, and starts
the performance of the test.

Deviations from the defined assertions in each test case will be announced
through thrown exceptions. They are typically caught and processed by JU-
nit’s test runner operations, either in textual form or through a graphical
user interface. If the tester component is invoked by another testing compo-
nent deeper in the containment hierarchy, the exceptions indicate that there is
something wrong with the tested server component. The testing component is
then responsible for test execution and the analysis of the test results to take
appropriate action. So, we can still perform a unit test according to JUnit’s
initial concepts if we devise the tests based on the unit’s specification. But
we can also perform a built-in contract test if the JUnit tester component is
incorporated into the system, and invoked and controlled by a client compo-
nent. These test cases will have been developed based on the specification of
the client that owns the JUnit tester component.

The JUnit framework represents a convenient way for defining and execut-
ing unit tests as well as contract tests. The framework is designed in such an
open way that both approaches can be easily dealt with. The following source
code illustrates the principles of JUnit; it corresponds to the example in Sect.
5.2.

import junit.framework.*;

public class VendingMachineTester {

// configuration interface
private object Dispenser; // test bed
private object Display; // test bed

218 5 Built-in Contract Testing and Implementation Technologies

private object TVM; // tested component

public void setTestableDispenser
(object testableDispenser) {
Dipenser = testableDispenser;

}

public void setTestableDisplay
(object testableDisplay) {
Display = testableDisplay;

}

void setTestableVendingMachine (object tvm) {
TVM = tvm;

}

// start test

public static Test suite () {
TestSuite suite = new TestSuite ();
suite.addTest (Test11.class);
...
suite.addTest (Test31.class);
...

}

// test cases

public class Test11 extends TestCase {
public void test () {
Dispenser.setTo (Item1, empty);
TVM.setTo (idle);
try {

SelectItem(Item1);
} catch (DispenserItemEmptyException e){

assertTrue (TVM.isIn(idle));
assertTrue (Display.isIn(Empty));

}
}

}
...
public class Test31 {

public void test () {
Dispenser.setTo (Item1, notEmpty);
TVM.setTo(idle);

5.5 Implementation Technologies for Built-in Contract Testing 219

TVM.insertCoin (0.1);
assertTrue (TVM.isIn(insertCoins));
assertTrue (Display.isIn(0.1));

}
}
...

}

public static void main (String [] args) {
// set up the test architecture
VendingMachineTester VMT = new VendingMachineTester();
VMT.setTestableDisplay(new testableDisplay());
VMT.setTestableDispenser(new testableDispenser());
VMT.setTestableVendingMachine

(new testableVendingMachine());
// execute the tests
junit.textui.TestRunner.run(suite());

}

The XUnit framework represents a way of implementing built-in contract
testing in a particular language. It represents a language-specific and imple-
mentation platform-dependent form of developing built-in contract tests. In
the following subsection I will introduce a language that is not bound to a
particular programming language, TTCN-3, although it can be translated,
into Java, for example.

5.5.3 The Testing and Test Control Notation – TTCN-3

TTCN-3, the Testing and Test Control Notation version 3, is a standard and
a notation developed and put forward by the European Telecommunication
Standards Institute (ETSI) that is particularly aimed at

• the specification and implementation of
– test components,
– test cases,
– test behavior and execution sequence,

• functional/black box component testing
• distributed testing and testing of distributed systems.

ETSI’s focus is on systems and standards in the telecom domain. So, TTCN-3
is initially targeted specifically at problems in that domain. It has already been
applied in a number of typical telecom projects, such as mobile communication
(GSM, 3G, TETRA), wireless LANs (Hiperlan/2), cordless phones (DECT),
and Broadband technologies (B-ISDN, ATM), but also in areas that are not
specific to the telecom domain, such as CORBA-based platforms and Internet
protocols (IPv6, SIGTRAN, SIP, OSP) [94]. Although TTCN-3 has a strong

220 5 Built-in Contract Testing and Implementation Technologies

telecom background, it is not at all limited to applications in that domain. It
is in fact a multiple-purpose testing technology that can be used in a number
of contexts, such as

• contract testing
– interoperability testing,
– performance testing,
– integration testing

• robustness testing,
• regression testing,
• system testing,
• conformance testing.

The Testing and Test Control Notation is currently in its third incarnation.
The original Tree and Tabular Combined Notation (TTCN) was first issued
by the International Telecommunication Union (ITU) and the International
Organization for Standardization (IS0) in 1992. TTCN is part of the ISO stan-
dard 9646 [53] that has been extended to TTCN-2, an intermediate release,
and to TTCN-3 in its current version. TTCN-3 is a complete rework of the
original TTCN test specification language with the intention to extend its ap-
plicability beyond pure OSI conformance testing utilization. In other words,
TTCN-3 has been crafted specifically as a multiple-purpose testing technol-
ogy. The core of TTCN-3 is based on a textual notation for test specification
in a Java source code-like appearance. Its main characteristics are [150]:

• Dynamic test configurations that support concurrency, scalability, and dis-
tribution.

• Synchronous and asynchronous communication mechanisms for sequence-
based and signal-based transactions.

• Data and signature templates that support rapid specification of the test-
ing artifacts.

• Generic parameterization that allows custom types and behavioral speci-
fications.

TTCN-3 Notation

The individual parts of the entire TTCN-3 suite are defined by ETSI standards
that can be obtained from the ETSI Web site [94], and they are summarized
as follows:

• Core Language [45]. It is separated into basic language elements, types and
values, modules, test configurations, constants and variables, messages and
timers, signatures and templates, operators, functions, and test cases. The
core language looks similar to Java source code.

• Tabular Presentation Format [46]. This defines a graphical format for the
specification of TTCN-3 test artifacts. It is basically an alternative way
of displaying and manipulating the TTCN-3 artifacts. The core language

5.5 Implementation Technologies for Built-in Contract Testing 221

may be used independently of the tabular presentation format, but the
tabular format cannot be used without the core language.

• Graphical Presentation Format [47]. This is the second alternative pre-
sentation format of the core language that is based mainly on message
sequence chart (MSC) concepts [149].

• Operational Semantics [48]. This provides a state-based view of the execu-
tion of a TTCN-3 module. It introduces a number of different states and
assigns meaning to the TTCN-3 constructs of the core language.

• Runtime Interface [49]. This describes the structure of an entire TTCN-
3 test system in terms of Test Management (TM), TTCN-3 Executable
(TE), SUT Adapter (SA), and Platform Adapter, and how these interact.
Additionally, it defines the runtime interface in terms of operations that
may be invoked by the entities in a TTCN-3 test system.

• Control Interface [50]. This presents a standardized way of adapting a
TTCN-3 test system to a particular implementation notation such as ANSI
C, or Java.

Figure 5.15 illustrates some of these individual TTCN-3 components and Fig-
ure 5.16 shows the organization of a TTCN-3 suite. The module is the top-

<<interface>>
Tabular Format

<<interface>>
Graphical Format

<<interface>>
UML Testing

Profile

TTCN-3
Core

Notation

<<types values>>
ASN.1

<<types values>>
Standard

(integer, bool,
string)

<<types values>>
IDL

.

.

.

.

.

.

direct text access format

User /
Tester

Fig. 5.15. Individual parts of the TTCN-3 test suite

level organizational unit of a TTCN-3 system. Each TTCN-3 module com-
prises a definition part and a control part. The first part contains all types
and attributes that will be required during test execution and the second part
acts as the main program that actually executes all the tests and defines their
sequence and conditional branches of execution. Templates describe data in a
generic form, mainly through matching operators and expressions. They can
be used to define data ranges, data sets, constraints, and the like, and they

222 5 Built-in Contract Testing and Implementation Technologies

TTCN-3 Module

Module Definition Part

Data Types, Constants

Data Templates, Signature Templates

Communication Ports, Timers, Test Components

Functions, Defaults, Test Cases

Module Control Part

Execution of Test Cases, Control of Execution

Testing Profile Concepts

Test Architecture

Test Behavior

Test Data

Fig. 5.16. Organization of a TTCN-3 test system

may be applied to check the outcome of a tested component. A test case is a
procedure that represents a sequence of test events, stimuli, and observations,
and it generates a test verdict. The control part puts all defined items together
into a meaningful test configuration.

TTCN Tools

TTCN is readily supported through a number of tools from a number of
vendors or providers. I will give only a few examples.

OpenTTCN Tester

A testing tool suite provided by OpenTTCN [121].

TTthree

This is a TTCN-3 to Java compiler [107, 121]. It provides message-based
and procedure-based communication with the system under test, as well as
typical modularization concepts and for organizing and controlling the test
cases. It realizes a graphical interface through which TTCN-3 can be accessed
(Fig. 5.15), and it can be integrated with and supplement the popular Emacs
development environment.

TTanalyze and OpenTTCN Analyzer

These are analysis tools similar to the parser of a programming language, and
they can be used to verify TTCN-3 syntax and static semantics, declarations
and parameters, and compatibility between tested and testing component
[105, 121].

5.5 Implementation Technologies for Built-in Contract Testing 223

TTspec

This is the graphical user interface for the TTCN-3 tool suite [106]. It is used
to specify the test cases on the basis of a graphical notation.

TTtwo2three

This is a TTCN-2 to TTCN-3 translator [108].

5.5.4 TTCN-3 and Built-in Contract Testing

In the following paragraphs we will have a brief look at how a test case
may be implemented with TTCN-3. For example, the test cases of the RIN
client’s RinServerTester component, defined in Table 4.2, may be expressed
in TTCN-3 notation. Each case can be directly derived from the behavioral
model or from the table which represents an alternative view of the behavioral
model. Additionally, we can specify the execution sequence of the three test
cases through a testing behavior model (e.g., as a UML model) as displayed
in Fig. 5.17. This will be implemented within the control part of the TTCN-3
module. The following TTCN-3 source code shows a simplified test case spec-
ification for the first test case, #1 -- Registering. It omits test types and
data definitions [76].

external function
validClient() return Client;

altstep Default()
runs on RINClient {

[] testPort.getreply {setverdict(fail); stop}
[] catch.timeout {setverdict(fail); stop;}

}

testcase Registering()
runs on RINClient system RINServer
{

activate(Default());
// check the precondition
testPort.call(IsInState(waiting),t) {

[] testPort.getreply(IsInState(-): true)
{setverdict(pass)}

[] testPort.getreply(IsInState(-): false)
{setverdict(inconc); stop}

[] catch.timeout {setverdict(inconc); stop;}
}

224 5 Built-in Contract Testing and Implementation Technologies

// main test body
testPort.call(Register(validClient),t) {

[] testPort.getreply(Register(validClient))
{setverdict(pass)}

}
// check the result
testPort.call(IsRegistered(validClient),t) {

[] testPort.getreply(IsRegistered(-): true)
{setverdict(pass)}

}
// check the postcondition
testPort.call(IsInState(registered),t) {

[] testPort.getreply(IsInState(-): true)
{setverdict(pass)}

}
}

TTCN-3 and the Testing Profile

It is not a coincidence that the concepts of TTCN-3, as introduced in the
previous paragraphs, and the UML Testing Profile (introduced in Chap. 3)
have many things in common (briefly indicated in Fig. 5.16). One source
for the development of the testing profile was in fact the TTCN-3 notation,
although the concepts of TTCN-3’s Graphical Format, which comes closest
to a graphical notation such as the UML, could not be transferred directly
[148]. Table 5.2 gives only a brief overview of the UML testing profile versus
TTCN-3. You will find a more thorough discussion of their similarities and
differences in [148, 149].

TTCN-3 can be regarded as a generic test environment implementation
technology. In the same way as coarser-grained models can be turned into
finer-grained models and eventually into code closer to a typical implementa-
tion language, the TTCN-3 can be regarded as an intermediate generic imple-
mentation notation that will eventually be turned into code. This is illustrated
in Fig. 5.18. The model on the left hand side represents the fundamental de-
sign activities for the testing environment. This is performed according to
the built-in contract testing principles described in Chap. 4. The next step
is to translate these graphical models into TTCN-3 that represents a generic
implementation of the testing environment. The following step, turning the
generic implementation into a concrete one, can be performed automatically
through an available TTCN-3 to Java translator.

5.5 Implementation Technologies for Built-in Contract Testing 225

Verdict
#1 -- Registering

#2 -- Requesting

#2-- Releasing

[Verdict == pass]
[else]

RIN Test
Behavior

Fig. 5.17. Behavior of the RIN client’s RinServerTesterC component from the RIN
system, represented by a UML activity diagram

Table 5.2. Concepts of the UML Testing Profile vs. the concepts of TTCN-3

UML Testing Profile TTCN-3

test architecture TTCN-3 module definition part

test behavior TTCN-3 module control part

tester component test component

test case test case

arbiter test component

verdict verdict

validation action custom external function

test trace test case

226 5 Built-in Contract Testing and Implementation Technologies

Java
Code

TTCN-3
Code

UML Testing Profile
(Model)

Composition

Decomposition

Abstraction Concretization

<<variant>>
Testable
System

Embodiment
Embodiment

Fig. 5.18. Assignment of the UML Testing Profile notation and TTCN-3 notation
to the embodiment dimension of component-based development

5.6 Summary

Embodiment is concerned with transferring abstract representations of a sys-
tem into more and more concrete representations, thereby making decisions
that reflect the particular requirements of the implementation platform used.
The most basic implementation platform is a programming language. Any
developed system will at some point become available as source code. In the
case of model-driven development, the main activity that takes us to that
point is a mapping from the concepts of the model space, the UML, into the
concepts of the programming language. Contract testing is inherently built
into the components that are transferred into code, so the mapping between
the contract testing artifacts and the source code is the same as for any other
functional artifact of the model. However, there are specific tools that we can
apply to implement built-in contract testing, e.g., the XUnit testing frame-
work for programming languages and the Testing and Test Control Notation.
These tools and languages can take away a great deal of the coding effort that
would otherwise be required to come up with an implementation for the built-
in contract testing artifacts. For example TTCN-3, is capable of generating
source code even for some middleware platforms.

The wiring standards, or the so-called middleware, and Web services also
belonging to that group, represent more advanced administrative environ-
ments for reusable components. In general, they have no effect on how built-in
contract testing should be treated. The testing is built-in at the programming

5.6 Summary 227

language level, and the middleware code augments this with auxiliary infras-
tructure needed to build distributed component-based systems.

So, although these are important subjects, and embodiment is an essential
phase in a component-based development project, its influence on the testing
strategy as put forward in this volume is only marginal. This chapter has
illustrated that. In the next chapter we will have a look at how reuse concepts
affect or are affected by this testing technology.

6

Reuse and Related Technologies

In Chaps. 2 and 4, I introduced a development process based on the Ko-
brA method that initially seems to propagate the idea that, once a system
is decomposed into finer-grained parts, these parts should be developed from
scratch. This assumption may be fueled by the strong focus on decomposition
in the method described in which a system is recursively broken down into sub-
sequently smaller and more manageable units, in a top-down fashion, that are
individually turned into more concrete representations during embodiment.
This represents only a single-sided view on a component-based development
process such as is put forward by the KobrA method. The main motivation for
applying a component-based development approach in a software project is
that existing components from either a third party or developments in earlier
projects that reside in a repository can be assembled and integrated relatively
easily to form a new application. Embodiment, in this respect, also represents
the activities that are necessary to integrate an existing reusable component
implementation at the required location in the model. It is not concerned only
with implementing a component from scratch out of the predefined component
specifications.

Component-based development, in its purest form, actually encourages
the opposite of this decomposition approach, which is that existing building
blocks are successively assembled into larger units that eventually make up
the entire system. This bottom-up exercise is represented by the composition
activity described in Chap. 2. The difficulty with composition is in integrat-
ing an existing reusable component or its descriptive artifacts at the right
level of decomposition and at the right level of abstraction within the overall
component framework that the method provides. Another extreme is that a
reusable component will exist only in the form of an executable binary rep-
resentation at the highest possible level of concretization, or, if we look at it
the other way round, at the lowest possible level of abstraction. Integrating
components at higher levels of abstraction turns out to be a lot easier than if
they are available only in executable formats with hardly any description.

230 6 Reuse and Related Technologies

The simplest form of reuse is instantiating an existing component imple-
mentation and using its services according to the defined clientship rules, if
it matches exactly the required component specification. Typically, this sim-
ple form is not feasible because most existing components do not directly
comply with the requirements of the integrating component framework, e.g.,
they provide less or more functionality because they are too specific or too
generic, because they have been intended for a very distinct purpose which is
different from the requirements of the new application, or because they have
been never intended for a particular purpose at all, so that the new appli-
cation requires extensive redesign and adaptation. Even if we decompose our
system extremely carefully, so that we hit exactly all our existing component
implementations, it is very unlikely that all components will fit together just
like that in the end. Hence, a fundamental issue in component-based develop-
ment is concerned with how an existing component can be integrated into the
model of the component framework, and this requires that we determine the
optimal location for this integration in the model. This can be done only if
we decompose the entire application into logical units that may eventually be
mapped to existing component implementations. In other words, on the one
hand we have to find existing reusable components that will likely fit our pre-
determined decomposition hierarchy, but on the other hand we have to align
the application model, the containment hierarchy, with the existing reusable
component implementations that we have purchased. Component-based de-
velopment and composition of concrete component realizations is therefore
always contingent upon the right component decomposition at the logical or
abstract level. So, for each iteration during component decomposition in which
we subdivide our system into finer-grained parts we have to search for feasible
candidates, existing components that may be mapped to the logical compo-
nent specifications identified at the level of detail considered. The degree of
reuse that we can achieve in a project depends heavily on how well we can map
existing functionality to the requirements of the entire application. In Chap.
4, I introduced the concepts of syntactic and semantic mappings between the
notations of the component framework and the reused component, in our case
the UML, and the concept of component adapters where simple mappings are
not enough. This represents reuse at a lower level of abstraction, that is to say
at the level where we have already identified concrete component realizations
that are suitable according to a specified component contract.

In this chapter we will look at reuse at a conceptual level. In other words,
we will concentrate on how reuse is organized at the architectural level, i.e.,
through product families, how third-party components can be identified and
evaluated, and how these activities relate to the model of built-in contract
testing. But initially, in the next section (Sect. 6.1), we will take a closer look
at how the built-in contract testing paradigm deals with software reuse in
general. Then, in Sect. 6.2, I will describe how built-in contract testing may
alleviate and support the earlier steps that are necessary before the actual
reuse can take place, namely component identification and procurement. I will

6.1 Use and Reuse of Contract Testing Artifacts 231

describe how such a testing technology can actually supplement an existing
component brokerage platform, and how both technologies can be used in
tandem to support component self-certification.

In the remainder of the chapter, we will focus on how built-in testing af-
fects product families and product line engineering, which may be seen as the
primary reuse technologies at the architectural level of a component-based
development project. We will have a look at how built-in contract testing can
be used to check product families and applications that are built on these. An-
other perception treats the development of a built-in contract testing architec-
ture as a product line development in its own right, in which the non-testable
original application is treated as the product family and the additional built-in
testing system represents a particular variant of that product line.

6.1 Use and Reuse of Contract Testing Artifacts

Testing takes a big share of the total effort in the development of big or
complex software systems. Guesses on software testing effort typically quote
half the cost of the total development effort as cost for testing, although this
clearly depends on the system and the type of organization. However, so far,
component-based software engineering has mainly focused on cutting devel-
opment time by reusing functional code. If existing reused components cannot
be applied without extensive rework or retesting in the target applications,
the time saved from component-based development becomes questionable [83].
Hence, there is a need to reuse not only functional code but also the tests and
test environments that can be used to ensure that the components work on
the target platform or within their target application. In order to achieve ef-
fective test reuse in software development, there are several aspects that must
be taken into account:

• Increased testability through the use of built-in test mechanisms.
• Standardized testing interfaces.
• Availability of test cases.
• The possibility to customize the tests according to the target domain.

Built-in contract testing provides a flexible architecture that focuses on these
aspects. It is the application of the built-in contract testing architecture that
makes reuse possible. In the initial approach of built-in testing as proposed
by Wang et al. [166], complete test cases are put inside the components and
are therefore automatically reused with the component. While this strategy
seems attractive at first sight, it is not flexible enough to suit the general case.
A component needs different types of tests in different environments and it is
neither feasible nor sensible to have them all built-in permanently.

Built-in contract testing separates the test cases from their respective com-
ponents and places them into separate tester components. The client compo-
nents that incorporate tester components will still have some built-in test

232 6 Reuse and Related Technologies

mechanisms, but only to increase their accessibility for testing, i.e., some sort
of a configuration mechanism that can be used to acquire tester components
dynamically and invoke their execution. The actual testing and test case ex-
ecution is carried out by the tester components, and these are connected to
the tested server components through their respective testing interfaces. In
the developed architecture, an arbitrary number of tester components can be
connected to an arbitrary number of tested server components. This offers
a much more flexible way of reusing test cases because they do not have to
be identical to the ones originally defined by the provider and delivered with
the server component. The tests can be customized to fit the context of the
component at all stages in the component’s life cycle.

Tested components have built-in mechanisms that increase their testabil-
ity. For example, these mechanisms can be error detection mechanisms like
assertions, methods to set and read the state of the component, and methods
that report resource allocations. These mechanisms can be accessed through
a standardized BIT interface, and are automatically reused with the compo-
nent. We will have a closer look at these additional mechanisms in Chap. 7,
which deals with checking quality-of-service contracts.

The overall concept of test reuse in built-in contract testing follows the
fundamental reuse principles that are common to all object and component
technologies. Because testing is inherently built into an application or its
parts thereof (the components), testing will be reused whenever functionality
is reused. In fact, testing code in this respect can be seen as any other normal
functional code. Only the time when this functionality is executed, for exam-
ple, at configuration or deployment, distinguishes it from the other non-testing
functionality. In the following two subsections we will have a look at how built-
in contract testing affects reuse during development-time, deployment-time,
and runtime.

6.1.1 Development-Time Reuse

Individual components will be tested in two stages and according to two dif-
ferent viewpoints. An initial test will be carried out by the component vendor
during its development. This test at the vendor’s site ensures that the com-
ponent’s internal parts have been integrated properly. A second test will be
carried out by the component user, or the application engineer, during its
integration into a new component framework or context. These represent the
two fundamental testing stages of a component. The two viewpoints according
to which components are typically tested are defined by the criteria that both
stakeholders apply during development.

The provider either releases a component that has been tested in isolation
from any context, in this case a generic component that is suitable for a num-
ber of different purposes that may or may not have been explicitly defined by
the component vendor. So the component test will be performed according to
the requirements that the provider has defined for this particular component.

6.1 Use and Reuse of Contract Testing Artifacts 233

In most cases this will comprise a simple unit test that checks each individual
service (or method) against its specification (or model). Another test of the
provider will also consider message and method sequences, but these represent
very specific usage profiles that the vendor has explicitly defined. In this case,
the component has been devised for a very specific purpose in a very specific
context. In fact, the test cases of the provider define this usage profile through
examples.

The customer of the component performs an integration test within the
new deployment environment. This new deployment environment is different
from the provider’s original development environment. So, the component cus-
tomer’s requirements will quite likely differ from the provider’s requirements,
so that the second test at the customer’s or user’s site will be performed ac-
cording to the specification of the customer’s integrating application. Because
both requirements will likely be different, as I noted earlier, the test of the
component provider is useless as a test for the user of the component. At
least this is the case for an integration test within the new deployment en-
vironment. Weyuker has investigated this and found that a component that
had been reused within two different projects was actually being used entirely
differently by the contexts, with entirely different coverage of the component’s
code. The two contexts presented completely different usage patterns [175].

Components are often reused and integrated as if they have never been
tested before [176]. The component provider can only try to perceive as many
different feasible contexts as possible and devise tests accordingly for the re-
leased component. Each distinct context will map to a test suite and thus
to an external tester component. Each tester component can extend previ-
ous tester components for other usage profiles, so that a more extensive and
more general test suite will consist of a number of less extensive and more
concrete test suites for particular usage profiles. Figure 6.1 illustrates this
principle. The component testers on the left hand side of Fig. 6.1 represent
the testing that the vendor or producer of the COTS component has already
developed and performed. Ideally, these are provided openly, together with
the vendor’s original component. Each of these tester components represents
an expected usage profile of the COTS component that the vendor of that
component perceives for this product. In fact, the tester components are not
entirely meaningless for a component user, as we will see.

Platform test

Initially, invoking a component’s tester component, one delivered with the
component, as a unit test is entirely meaningless. It will not discover any new
errors within the component. This is because the provider should have run
these tests on the component prior to its release and addressed any prob-
lems. The provided tester component is only meaningful for the customer if
a typical contract testing scenario is considered. The provider’s tester com-
ponent invokes services on the component, but not in terms of a unit test

234 6 Reuse and Related Technologies

Customer’s Deployment Environment

Component
Tester 1

Component
Tester 2

Component
Tester 3

Component
Tester N

COTS
Component

Testable
COTS

Component<<acquires>>

Associated
Explicit
Server

Components

Underlying Implicit
Runtime Support System

<<acquires>>

<<implicitly
acquires>>

usage
profile 1

usage
profile 2

usage
profile 3

usage
profile N

Fig. 6.1. COTS component with provider’s tester components

as a stand-alone entity, but integrated within its new deployment environ-
ment. The tested component will in turn invoke services on its associated
implicit and explicit servers, as indicated in Fig. 6.1. This represents a plat-
form compliance test of the integrated component. The test cases provided
can be executed to see, in general, whether the integrated component works
in the component framework of the customer or user. These tests will not
be adequate according to the system’s usage of the component, i.e., the cus-
tomer’s client components of that COTS component, but they will identify
at least fundamental problems of a new component in an existing application
framework.

Built-in Documentation

The tester components that come with a COTS component illustrate how
the vendor expects the component to be used, and how the vendor expects
the component to use its own environment. Thus, the testers represent the
vendor’s interpretation of the component’s specification of its provided and

6.1 Use and Reuse of Contract Testing Artifacts 235

required interfaces. And this in fact realizes built-in documentation for the
COTS component, because the test cases show a prospective user of that
component what the component expects to get from its environment in terms
of expected services as well as in terms of expected pre and postconditions.
Additionally, tester components illustrate for which different usage profiles the
component is suitable. This facilitates the decision as to whether the compo-
nent is usable and can possibly be integrated into the intended framework of
the application or not. For this purpose, the tester components can be com-
pared with those that the user of the COTS component has developed to see
whether his or her expectations map to what the COTS component provides.
This is part of the component procurement process that is considered in more
detail in Sect. 6.2 of this chapter.

6.1.2 Runtime Reuse

In the previous subsection, I concentrated on how built-in contract testing
and the provision of testers together with third-party components facilitates
application development. The whole technology has focused mainly on appli-
cation development-time testing so far. But built-in contract testing provides
a lot more. Since it is a built-in testing technology that might well remain
in an application beyond deployment, in theory the tests can be invoked at
any time during runtime. Consequently, built-in contract testing provides the
support for performing and checking live updates of a system in the way that
Web services provide. The entire ITEA project EMPRESS [126] was dedi-
cated to the subject of software evolution in the context of embedded systems
not only for development-time software evolution, but also for runtime evolu-
tion. The fundamental difference between the two evolution steps is that for
development-time evolution the system is stopped, reconfigured, or updated,
and started again. In fact, the new reconfigured system is deployed as if it
were an entirely new application. In contrast, in a runtime evolution step, the
system will remain operational during the reconfiguration and continue as an
updated version without need of its being stopped or rerun.

Server–Client Test

Another scenario, quite common for telecom systems, is that the server com-
ponent, e.g., a telecom service, needs to assess a registering client component,
e.g., a mobile phone application. This scenario is illustrated through the struc-
tural diagram at the bottom of Fig. 6.2. Initially, in a first step, the client
component registers with the server, and then, in a second step, it passes the
reference of its own tester component to the server. This is not its own built-
in tester, the ServerTester, but the tester component that would normally
check the client. In this example, it is the ClientTester on the left hand
side of Fig. 6.2. The first step is represented by the �acquires� relationship
between the client and the server, and the second step by the �acquires�

236 6 Reuse and Related Technologies

<<testing>>
ClientTester Client Server

<<testing>>
ServerTester

<<acquires>> <<acquires>>

<<acquires>>

Client/Server Test

<<testing>>
ClientTester Client Server

<<acquires>> <<acquires>>

Server/Client Test

<<acquires>>

Fig. 6.2. Client–server test vs. server–client test

relationship between server and ClientTester. In reality, this simple model
will probably be realized through the contexts of the two associated compo-
nents. This is because the client needs to “know” the reference of its own
tester to pass it to server, and this is usually not the case.

<<context>>
TelecomSystem

<<testing>>
<<component>>

ClientTester

<<component>>
Client

<<component>>
Server

<<acquires>> <<acquires>>

<<acquires>>

Fig. 6.3. Containment hierarchy for a server–client test

6.1 Use and Reuse of Contract Testing Artifacts 237

:TelecomSystem

:Server

:Client

:Client
Tester

create ()

create ()

create ()

set Server (Server)

set Tester (ClientTester)

invokeTest ()

ref TestExecution

Test Result

Accept / Reject Client

sd TestingSequence

Fig. 6.4. Invocation sequence for setting up a server–client test

Fig. 6.3 shows the containment hierarchy with the context that is respon-
sible for actually creating all components and interconnecting them, and Fig.
6.4 depicts the invocation sequences that the components have to perform
to realize this type of testing. The context creates all component instances
and connects the client with the server, through setServer(Server), and
the server with the ClientTester, through setTester(ClientTester). The
server can now invoke the test sequence that is stored in ClientTester to
call the services of the client. The client is thus exercised with scenarios that
are typical within this context and, as a consequence, the client invokes the
services on the server component that are typical for this scenario. The out-
come of this test is returned to the server because this component currently
owns the ClientTester, and based on that the server can decide whether it
will accept or reject the client, and communicate that to the context. This
is similar to a platform test in the same way I have explained earlier (Fig.
6.1), but here the test is not initiated by the component, or the component

238 6 Reuse and Related Technologies

framework, but by the underlying runtime system, which is represented by
the server.

6.2 Component Certification and Procurement

Component-based software development, although intuitively quite natural
and also economically appealing, has not had the breakthrough in the soft-
ware domain that one could expect by looking at other traditional engineer-
ing disciplines such as mechanical or electronic engineering. Component-based
software development may still be considered in its relative infancy compared
with how systems are developed from readily available prefabricated parts in
these other engineering disciplines [4]. This is not so much the lack of techno-
logical support in the software domain, because there is a sound theoretical
basis, and the implementation technologies and deployment environments are
quite advanced, as we have seen in Chap. 5. The most important reason that
component technology has not had such an impact in the software industry lies
in component procurement. The more traditional industries thrive on mature
component markets in which component providers publish bulky catalogues
of high quality, standardized bits and pieces. Application engineers also know
and apply the standards, and are well aware of the vendors, their reputation,
and their offerings in the market. They live in healthy cooperation. The soft-
ware industry is almost entirely lacking such infrastructural foundations, and
people are only slowly becoming aware of the fact that polished technologies
do not necessarily make the component paradigm more emergent.

The European funded project CLARiFi [125] was a step forward in the
right direction in that respect, as it developed a component broker platform in
which component provider and purchaser find each other. CLARiFi provides
the fundamental support for the certification process but it still poses some
limitations that are related to the domain context. An extension to different
domains is complex and only some guidelines have been provided. Certifica-
tion can be seen as the assurance that a vendor’s claims concerning a product
are justified, and so far it is more or less a matter of trust between provider
and customer, or it inevitably involves a third party. This third party may be
an independent certification organization, the owner of the broker platform,
or a user group that publishes the opinions of its members. However, the first
requires sound, well-defined, and accepted component standards, the second
requires a responsible and well-educated operator of the broker platform, and
the third requires established criteria for component assessment. Even if stan-
dards for software quality, such as the ISO 9126 [56, 57, 58] and the ISO
14598-3 [55] are available, they suffer from limitations related to their cus-
tomization to specific application environments. Without such criteria, every
evaluation through a third party will inevitably lead to subjective verdicts.
The only alternative to avoid this is to strengthen the role of the component
customers and equip them with the right means to carry out their own certifi-

6.2 Component Certification and Procurement 239

cates according to their own criteria. For the component providers this means
they have to publish as much information as possible to enable the customers
to assess a product themselves. There are two feasible ways for the component
producer to provide more information:

1. Apply and provide component reliability principles such as put forward
by Hamlet, Mason, and Woit [84], or by Reussner, Schmidt and Poernomo
[138].

2. Provide testable components and component testers according to the
built-in contract testing paradigm.

Both approaches are orthogonal and can be used in tandem. While the first
ones are more formal and based on algebras for system design, the second
one is more informal and based on what testing artifacts can offer. In the
following subsections I will give a brief overview of how the advantages of
built-in contract testing can be exploited to facilitate component certification
of the second kind.

6.2.1 The CLARiFi Component Broker Platform

The goal of the CLARiFi project was the development of a component broker
that is able to support the integrator in the process of software component
location, evaluation, and selection [153]. This process includes several inter-
active steps that are based on the description of the application that the
integrator is building [123, 155] and on a reliable description of the readily
available components that are published through the CLARiFi platform [30].
Suppliers need to classify the functional and non-functional features of their
components according to a taxonomy provided by the CLARiFi system. The
classification process of components requires a certification to assure the cor-
respondence between the description and the related implementation of the
features. To address the certification problem, the CLARiFi project consor-
tium identified a certification procedure, a set of data to collect and store
inside the CLARiFi repository, and a set of roles that certifiers can play. The
certification process requires that all these elements be provided through a
reliable component broker. The certification process in CLARiFi includes two
aspects of certification standards: quality standards [18] and technical stan-
dards. The first set includes both functional and non-functional qualities; the
second one includes safety, security, and other additional criteria.

One of the goals of CLARiFi is to help integrators find the best set of
components for building a system according to components’ predefined fea-
tures and qualities. To address this purpose, the CLARiFi certification model
is mainly based on the two ISO standards, ISO 9126 and ISO 14598-3. The
ISO 9126 standard provides a general model to specify and evaluate the qual-
ity of a software product from different perspectives such as development,
maintenance, etc. This model addresses primary software quality issues and
it is useful for most quality evaluations. The first part of the standard defines

240 6 Reuse and Related Technologies

both internal and external characteristics, dealing with the software develop-
ment process and with qualities of the final product [56, 57]. The second part
of the standard defines so-called quality-in-use characteristics, which effec-
tively concentrate on product qualities according to the user’s point of view.
Additionally, it defines a framework for performing measurements [58]. ISO
14598-3 defines guidelines or criteria with which quality models can be de-
vised. It divides quality attributes into six categories that comprise specific
subcategories:

• Functionality, which is defined as the ability of the software product to
provide certain functionality. Subcategories are suitability, accuracy, in-
teroperability, and security.

• Reliability, which is defined as the ability of the software product to re-
spond in an appropriate way under specific conditions. Subcategories are
maturity, fault tolerance, and recoverability.

• Usability, which is defined as the ability of the product for ease of use.
Subcategories are understandability, ability to learn, operability, and at-
tractiveness.

• Efficiency, which is defined as the ability of the software product to pro-
vide a certain level of performance through resource management. Subcat-
egories are time behavior and resource utilization.

• Maintainability, which is defined as the ability of the software product to
be modified. Subcategories are analyzability, changeability, stability, and
testability.

• Portability, which is defined as the ability of the software product to be
moved into another environment. Subcategories are adaptability, installa-
bility, coexistence, and replaceability.

Under CLARiFi the accreditation of the certifiers is done according to these
categories, and these criteria represent a good starting point to approach the
problem of certification. The standard provides suitable collection of guide-
lines, though not universally accepted due to the subjectivity involved, but
well suited for customer self-certification.

6.2.2 Customer Self-certification

Certification is typically carried out by an independent authority that assesses
the product according to predefined criteria. In software practice, however, it
is difficult to find such criteria that are generally accepted as standards. Not
only are we lacking standard evaluation criteria in the software industry, but
we do not have standardized components in the first place, as is the case in
other, more mature engineering domains. Moreover, component vendors and
customers may have their own, entirely contrasting criteria for assessing the
“goodness” or “badness” of a software component. For software, it is often
difficult or even irrelevant to specify and certify a set of attributes because
they depend on the environment into which a software component will be

6.2 Component Certification and Procurement 241

integrated, and the provider can never anticipate that. This becomes appar-
ent when we look at performance and interoperability issues. Performance is
highly dependent on the underlying middleware platform and on the hard-
ware, and interoperability can be guaranteed only with respect to how much
information the component vendor has on the other parts with which their
software is supposed to interoperate. For example, a commercial Web browser
plug-in component is integrated into a Web browser that has a weird interpre-
tation of HTML. Obviously, the component is correct, but can we blame the
vendor of the Web browser for not supporting a distinct way of interpreting a
language, because it has been established by a competitor? The problems of
certified and certifiable software cannot be solved simply through new tech-
nologies. They are clearly more fundamental and require all the stakeholders
to go into a huddle and come up with acceptable and well-accepted standards.
In the meantime we have to live with what we have.

One short-term solution for the previously described certification dilemma
is to give the component customers the responsibility of performing the assess-
ments for the components they purchase. Self-certification or self-assessment
always requires that the product be available and accessible. So, the customer
of a component must be given the opportunity to evaluate its function and
behavior as well as all the other quality criteria that he is interested in. This
is pretty much like a test drive with a new car that we intend to purchase.
The customer needs an executable and testable version of the component.
Maybe the vendor can offer a decaying or a trial version that the customer
can play around with and integrate in the existing component infrastructure.
We cannot really call this certification, since we are lacking well-defined and
accepted standards according to which we can apply a certificate. It is more of
a self-assessment, and the criteria and standards that we apply are not gener-
ally accepted by or relevant to other component customers. A self-assessment
is always better than pure trust, although as a customer we will never get full
access to a component in the same extent than a well-respected certification
body. At least the assessment supports us a little bit in evaluating a commer-
cial product. I will illustrate how built-in contract testing principles can help
support and facilitate the self-assessment of commercial components, so that
as customers we can replace trust by control, and belief by knowledge.

A component is a self-contained encapsulated piece of software, or a black
box, that exhibits function and behavior according and in response to exter-
nal stimuli that are invoked at its interface. Apart from what the interface
provides, the testing software of a component, or its external test cases, do not
“see” any internal implementation. This is detrimental to assessing the quality
of a component from the outside, and we will be unlikely to get insight into
a commercial component because the provider is eager to protect its asset.
Built-in contract testing proposes to extend the normal functional interface
of a component with an introspection mechanism, or a testing interface. The
testing interface provides controlled access to the black box component and
increases its controllability and observability during a test, without publishing

242 6 Reuse and Related Technologies

the intellectual property of a commercial vendor that remains protected by
the encapsulating hull of the component. The key idea of a testing interface
is to provide some insight into the black box that is necessary to assess it,
but to yet keep the encapsulation intact. This enables a user of the compo-
nent to set and retrieve state information and assess the correctness of all
performed transitions during a test. Each user of the component can thus
apply scenarios that are typical to their very particular way of using it. The
testing interface that, among other things such as assertions, makes the ex-
ternally visible states accessible is capable of providing a great deal of testing
information. This is especially important during extensive test runs and with
reduced observability of the original component, for example, if the compo-
nent does not naturally provide much output during execution. Both, internal
state information and assertions can easily be implemented by any provider
of commercial components, and they can be incorporated in a testable version
of the component.

The aim of CLARiFi is the collection and management of software compo-
nents to classify and retrieve required components. On the other hand, built-in
contract testing provides a way to analyze the behavior and the functionality
of a component at integration time. The two approaches are complementary
even in terms of the component certification features. In fact, CLARiFi of-
fers a brokerage service that can also provide components that are realized
according to the model of built-in contract testing. Testable components are
components after all, and the testing functionality is only additional func-
tionality that happens to implement component testability and component
testing. Testing and testability features may not be part of the component
search and identification process. CLARiFi’s brokerage system offers a way
to find components according to their specific functional and non-functional
features, and these are definitely the most important aspects for the selec-
tion of any software artifact. This is possible through formulating a query by
choosing from a list of available properties that are offered by the brokerage
system, and by setting the values of these properties according to the specific
need of the customer. Customers can use these properties to specify which
kind of certification aspect they are interested in. These properties are easily
applicable to the customer.

6.3 Product Families and Testing

Product families and product line engineering deal with organizing and ex-
ploiting the commonalities of several similar systems and at the same time
managing their differences. In Sect. 2.6 (Chap. 2), I presented an overview of
product family concepts and how they are treated and applied in the KobrA
method. In this section we will have a look at the challenges in testing product
lines, and how built-in contract testing addresses them.

6.3 Product Families and Testing 243

Product line engineering lies at the heart of component-based develop-
ment. It represents reuse at the architectural level rather than at the single
component level. It can be seen as elevating component-based development
to a meta-level because components can be regarded as systems in their own
right, and product line engineering is really about how to reuse entire systems
or their parts. KobrA’s containment hierarchy model is a good representation
form to illustrate this principle, so product line engineering really spans all
aspects that can be dealt with in this model. It is difficult to draw the line
between what a product family is and what a component framework according
to KobrA’s containment model represents. We could argue they are the same,
and, in fact, I believe they are. Product line engineering takes a different view
on component-based development, and it organizes components more strictly
into components that will always pertain to the common core of the product
family and components that are optional or variable in a model. Product line
engineering is not so much about dealing with how components are modeled,
designed, and, above all, integrated; these can be seen as the primary focus or
the core of component-based development. Product line engineering is more
about how similarities and differences in diverse systems of a single organi-
zation are maintained and organized. So the notion of reuse is directed more
toward how a component assembly can be reused as a whole in different sys-
tems that are somehow similar, and how diverse components can be attached
to or detached from this whole.

Basically, a product line development comprises an assembly of compo-
nents that are likely to stay fixed over a longer period of time. This represents
the common core, the product line, or the product family. Additionally, it en-
compasses some other components that are more likely to vary because they
represent the individual products that may be instantiated out of the product
line. We had these discussions in Chap. 4 (Sect. 4.4.1), where we looked at how
to identify the component contracts in a system that should ideally be aug-
mented with built-in contract testing artifacts. There, I argued that module
interactions that are likely to change over time should be enhanced by per-
manent built-in contract testing artifacts, while interactions that are likely to
stay fixed over some period of time should be only temporarily enhanced by
these artifacts. Ideally, they should be incorporated during development and
deployment, but removed after that. I identified the component peripheral
as an ideal place for permanent contract tests because components are the
basic building blocks in component-based development. The classes inside the
components may be tested once and for all, so that the built-in testing may
be removed after integration into the final deployable component, because
their internal configuration will not change any more. The same is true for
product line developments, although at the “meta-component level”. Here,
we have components that will be configured in a distinct way and likely stay
that way for some time. This configuration, the generic product family core,
may be represented by a superordinate component at a higher level of compo-
sition than that acquired by other components that make up a specific final

244 6 Reuse and Related Technologies

product. Essentially, by looking at it in this way, we are only applying the
powerful recursive development principles of the KobrA method, and in the
next subsection we will have a closer look at how this affects testing.

6.3.1 Testing of Product Families

A test of a product family comprises typical individual component tests in
the same way that a normal component provider does. It checks the integrity
of the component as an individual entity. The second step is to test the core
assets or the component framework in the same way as is done for the integra-
tion of a component assembly. The third step is to check the variant features,
and the interactions between the common core and the variant features. In
this regard, testing a product line is at the architectural level not particu-
larly different from testing a normal component framework or an application.
Additionally, we may apply product-specific testing criteria in order to come
up with adequate test sets [14, 111, 139, 160], but this is not the focus here.
Built-in contract testing can be organized in a way that it greatly facilitates
tests of product families.

A good product line architecture organizes the variant features at the
inter-component level rather than at the intra-component level. This is il-
lustrated in Fig. 6.5. In other words, variant functionality should always be
accommodated in separate components, so that the modeling of these fea-
tures is restricted to the assignment of a particular component. Otherwise, if
variant features are defined inside a component, they are in fact intermingled
with the features of the core framework. This is because most programming
languages do not support dynamic allocation of component features inside
the component, except for extension or preprocessing, such as #<include> in
C. But even extension realizes an inter-component level organization of the
variant features, because inheritance always defines two separate classes, the
“super”-class and the “sub”-class.

The advantage of strictly separating optional and variant features from
the product family core in the models as well as in the code is that only the
points of variability, or the so-called component hooks, have to be defined in
the common core. According to the product that should be instantiated out
of a product line, we have to instantiate the respective variant component
and assign it to the respective component hook in the framework. This is
illustrated in Fig. 6.6. The instantiation of a product out of a product line then
requires only that the respective component references be assigned correctly.

Essentially, the only artifacts in the core framework that deal with vari-
ability are the references of the associated optional and variable components,
though I have to admit that this is not the entire truth. We will require differ-
ent access mechanisms in the component framework or the product line core
according to the concrete product we are instantiating. For example, if we
instantiate a vending machine with credit card billing, it will require not only
an associated credit card billing component, but the vending machine will also

6.3 Product Families and Testing 245

Component
Framework

<<point of variation>>

Variant
A

Component
Framework

<<point of variation>>

Variant
A

Variant
BVariant

C

Common Code of the
Product Core

Variant Code of the
Product Line A

Variant Code of the
Product Line A

Variant Code of the
Product Line A

Common Code of the
Product Core

Variant Code of the
Product Line A

Variant Code of the
Product Line B

Variant Code of the
Product Line C

Variation at the intra-component-level Variation at the inter-component-level

Fig. 6.5. Variation within a component vs. variation between components

have to provide an interface to access this functionality, e.g., the operation
insertCreditCard(). The vending machine is the core system and it must be
augmented with the optional credit card billing functionality that represents a
final product in this product family. So, in order to separate core functionality
from variant functionality we will need another vending machine component
that caters to that additional feature. This is depicted in Fig. 6.7. The class
CCBillingVendingMachine represents an extension to the original core vend-
ing machine and it comprises the artifacts that are necessary to realize this
variable feature. These are the object reference CCBilling, which acquires
the CreditCardBilling component in the form of an additional attribute,
and the operation insertCreditCard(), which will be invoked from the user
interface as an indicator that a customer intends to settle the bill with a credit
card. Through this organization, we entirely separate the variant features at
an individual component level.

This principle will then pervade the entire model or code corresponding
to the abstraction level we are dealing with, e.g., the user interface. So, if
the plan is to develop a vending machine without credit card billing, we have

246 6 Reuse and Related Technologies

Context

Product
Family
Core

Variant A Variant B Variant C

<<xor>>

<<acquires>>

:Product
Family
Core

:Variant A

<<acquires>>

Instantiation

Runtime
Composition Hierarchy

Development Time
Containment Hierarchy

Fig. 6.6. Instantiation of a product out of a product line

to instantiate the core VendingMachine component, and if we aim at de-
veloping a credit card-enabled vending machine we have to instantiate the
variant CCBillingVendingMachine plus the CreditCardBilling component
(Fig. 6.7). If a product line is organized in this way, its pure composition is not
different from any other component-based system. The decision models in the
product line development will assign only different components to the core,
according to the final product that will be instantiated. In other words, prod-
uct line engineering merely represents a mechanism for including or excluding
particular components from a model. For the general case, this is shown in
Fig. 6.8. The common core is instantiated into a particular product by re-
solving decisions according to Application_1 or Application_2, and this is
initially done only at the logical component level in the model. To retrieve

6.3 Product Families and Testing 247

<<subject>>
VendingMachine

<<core attributes>>

<<core functionality>>

<<variant>>
CCBilling

VendingMachine

CCBilling

+ insertCreditCard ()

CreditCardBilling
<<acquires>>

<<extends>>

Common Core

Variant

Fig. 6.7. Product line architecture for the vending machine example

Application_1, we need to add the two components A and B, plus the models
that will realize the hooks for A and B, into the product family core. And to
come up with Application_2, we have to add component C plus the addi-
tional framework within the product family core that is necessary to control
component C. So, in addition to providing the respective variant components,
we have to provide and instantiate the right models in the common core that
are capable of dealing with these variants.

The product family core depicted in Fig. 6.8 is likely to stay the same for
all possible products in the family. Otherwise it would not make any sense to
define such a product family core. At a high level of abstraction we have a
containment hierarchy that organizes the core into a number of nested logical
components. At lower levels of abstraction, when we move down the con-
cretization dimension, we can actually treat the component containment hi-
erarchy that represents the product family core as a single component that
encapsulates the logical component tree. This is indicated in Fig. 6.9. In other
words, the product family core can be treated as a component in its own right
at lower levels of abstractions, i.e., in the UML component model. By treating
the product family in this way, we can apply the known principles of built-in
contract testing and add the testing artifacts. Here, the most important is-
sue is how the tester components are organized. We assume that the variant

248 6 Reuse and Related Technologies

Specialization

Genericity

Product Family
Core <<variant>>

Application_1

Instantiation

FrameworkEngineering

ApplicationEngineering

<<variant>>
Application_2

A

B

C

Instantiation

Fig. 6.8. Instantiation of two alternative applications from a single product family
core at a high abstraction level

components A, B, and C in Fig. 6.9 will provide testing interfaces according to
the rules defined in Chap. 4, thus making them testableA, testableB, and
testableC.

The philosophy behind built-in contract testing is to add contract testing
artifacts at the encapsulating hull of a component so that it can check its
immediate environment. This comprises a testing interface at its provided in-
terface and tester components at its required interface. Now that the product
family core is treated as a component in its own right, we can add these arti-
facts easily. The testing interface of the core component is represented by the
testing interfaces of the individual contained components, as depicted in Fig.
6.10; and at the required interface of the core component, we can add tester
components according to the required interfaces of its contained subcompo-
nents. The tester components are designed according to the client’s usage

6.3 Product Families and Testing 249

Product Family Core

<<variant>>
Application_1

A

B

<<variant>>
<<variant>>

Added component hooks in
the product family core.

Fig. 6.9. Instantiation of a final application out of a product family core at a lower
level of abstraction. The product family core may be treated as a component in its
own right

profile of its associated servers. These servers are the components that repre-
sent the variablity and turn the product family core into a final application.

According to the contract testing philosophy, we will need a tester compo-
nent for each client/server association between the product family core compo-
nent and its extending variant components. Fig. 6.11 shows this architecture
for the generic example depicted in Fig. 6.9. Each point of variation in the
product line core will be associated with a distinct variant component plus a
distinct tester component for this variant component. The tester components
will be designed according to the expectation of the integrating framework,

250 6 Reuse and Related Technologies

Provided Interfaces
Testing Interfaces

Required Interfaces
Tester Components

Fig. 6.10. Provided and required interfaces of the product family core are repre-
sented by the respective interfaces of its contained subcomponents

i.e., the product line core. To instantiate a testableApplication_1, we need
testable components TestableA and TestableB, plus an ATester component
and a BTester component associated with the clients of A and B respectively
(Fig. 6.11), built into the product family core. In order to accommodate built-
in contract testing in the core framework we have to add the respective “tester
component hooks.” These hooks for the built-in contract tester components
are modeled, designed, and implemented in exactly the same way as their
respective functional versions. The entire resulting product line architecture
with the built-in contract testing artifacts is depicted as a containment tree
in Fig. 6.12. This shows the development-time organization of a product line

6.3 Product Families and Testing 251

Testable
B

Testable
A

<<variant>>

<<variant>>

A
Tester

<<testing>>

<<testing>>

B
Tester

Product
Family

Core

Fig. 6.11. Product family architecture with built-in contract testing components

architecture that comprises two products that can be instantiated out of the
common core. If variant 1 will be instantiated, the framework will create the
common core, and the components TestableA and TestableB; furthermore,
because the tester components belong to the common core, the framework
will have to create ATester and BTester. Instantiating variant 2 will then
require the same steps for TestableC and CTester.

In Fig. 6.11, I have modeled the tester components as part of the product
family core. In reality, they are better accommodated outside this encapsu-
lation boundary, because it is unwise to build all tester components for all
product line permutations into the product family core. If we instantiate a
single application, we will need only the testing artifacts that are necessary

252 6 Reuse and Related Technologies

Context

<<variant 1>>
Testable A

<<variant 1>>
Testable B

<<variant 2>>
Testable C

Product
Family
Core

<<testing>>
<<variant 1>>

A Tester

<<testing>>
<<variant 1>>

B Tester

<<testing>>
<<variant 2>>

C Tester

<<acquires>>

<<acquires>>

<<xor>>

<<acquires>><<acquires>><<acquires>>

Fig. 6.12. Containment tree with the built-in contract testing artifacts for the
product family core

for the application, nothing more. Any additional tester components will con-
sume space. Figure 6.13 shows the alternative way of organizing tester com-
ponents outside the encapsulating hull of the core component framework of a
product line. For every variant component we will have a tester component
that can be associated with the client component or the product line family
core in the same way as the variant component. Every variant component is
separated into two components, one that comprises the functionality for the
variant features, and one that represents the testing for these variant features.
The product family core will need two “component hooks” for each variant
component, one for the original functional variant component and one for the
tester of that component. The test cases in the tester components are devel-
oped according to the specification of the required interface of the product line
core. This organization is more in line with the principles of built-in contract
testing and component-based development.

6.3 Product Families and Testing 253

Product Family Core

<<testing>>
A Tester

<<testing>>
B Tester

Testable
A

Testable
B

Application 1

Product Family Core

<<testing>>
C Tester

Testable
C

Application 2

<<variant>

<<variant>

<<variant>

<<variant>

<<variant><<variant>

Fig. 6.13. Organization of the tester components outside the product family core

6.3.2 Testing as a Product Family Development

Built-in contract testing as I have introduced it and put forward throughout
this book represents a typical product line engineering activity. Because the
built-in contract testing artifacts require additional development effort within
the functional system that we are constructing, a testing or testable system
can be seen as a variant of the original functional system. In other words, we
have an original system that provides the required functionality and behavior,
plus an optional add-on to the system which provides testing and testability
infrastructure. I have briefly introduced these principles in Chap. 5, and they
are fully in line with the basics of product family development or product line
engineering according to the KobrA method [6].

254 6 Reuse and Related Technologies

6.4 Summary

Reuse represents the most fundamental idea behind component-based devel-
opment, and in its purest form building applications is solely based on as-
sembling and integrating readily available third-party units. This comprises
functional artifacts as well as built-in testing artifacts that should be read-
ily provided and distributed with the respective components. In this chapter,
we have concentrated on how built-in testing affects reuse and how it can
supplement reuse-related technologies.

An important issue in this respect is that component manufacturers should
readily distribute and openly provide their tester components, even if it seems
redundant to re-test. There are a number of scenarios in which it can be
advantageous to have tester components that the provider has distributed. I
have identified some scenarios for which tester components can help during
development time, in a platform test, and as built-in documentation for the
component, as well as during runtime, in a server–client test.

Another advantage of applying built-in contract testing is that it supports
customers of commercial components in component identification procure-
ment and self-certification. As long as certification standards do not exist,
it can considerably alleviate the earlier phases of component-based software
development, that is, before the components are actually integrated into the
component framework.

Product families realize component reuse at an architectural level, and
they are regarded as providing the ultimate component reuse framework. In
essence, a product family can be seen a normal application in which some
of its parts are readily integrated for various final applications, and other
parts are added or exchanged according to the final application that will
be instantiated. Both represent typical scenarios for which built-in contract
testing is suitable and applicable. Building the product family framework can
be seen as component integration for which built-in testing may be afterwards
removed, and instantiating an application out of the framework represents the
typical contract testing scenario for which built-in testing will remain in place.
In the next chapter we will discuss how quality-of-service requirements can be
assessed under the component-based development paradigm.

7

Assessing Quality-of-Service Contracts

One of the most important motivations in practice for the application of ob-
ject technology and subsequently component-based software engineering tech-
niques is that new applications can be created with significantly less effort than
in traditional approaches by assembling the appropriate prefabricated parts.
However, contemporary object and component technologies are still some way
from realizing the vision of application assembly, in particular when quality-
of-service (QoS) issues are considered. With traditional approaches, the bulk
of system integration work is performed in a distinct environment, the de-
velopment environment, giving engineers the opportunity to pre-check the
compatibility of the various parts of their system. This ensures that the over-
all application is working correctly in terms of functionality, behavior, and
quality-of-service.

In contrast, the late integration implied by the assembly of readily de-
ployable components means there is little opportunity to validate the correct
functional and non-functional properties of the resultant application before de-
ployment in the runtime environment. Although component developers may
adopt rigorous test methodologies for checking component behavior, and de-
liver fault-free units, there is no guarantee that an assembly of such units will
abide by the overall qualitative criteria that are required for the resultant ap-
plication. In fact, even totally fault-free individual components that perfectly
fulfill their individual qualitative measures may cause failures in the overall
system if the platform does not provide the right support, or if the other com-
ponents violate the overall qualitative criteria. The ARIANE 5 disaster is an
example.

Compilers, configuration tools, and behavioral built-in contract testing
can help by validating the syntactic and semantic compatibility of inter-
connected components, but they cannot check that individual components
are functioning correctly in terms of an application’s non-functional require-
ments, or quality-of-service specifications. As a result, component assemblies
that may behave correctly according to expected function and behavior may
not behave so well in terms expected response times, precision of the result,

256 7 Assessing Quality-of-Service Contracts

throughput, or other non-functional criteria. Such criteria are generally re-
ferred to as the overall quality of a service provided, whereby the service
itself is determined by functional and behavioral aspects. How some of these
additional non-functional, or quality-of-service criteria may be assessed in a
component assembly is the subject of this chapter.

In the next section, Sect. 7.1, I will give an overview of quality-of-service
requirements that affect component contracts in general and timing require-
ments in component contracts in particular. Because this chapter focuses pri-
marily on real-time component contracts, in Sect. 7.2 we will have a closer look
at how timing requirements have to be handled in component-based develop-
ment. This includes how timing is specified and distributed over a number of
objects and how these assemblies can be assessed in terms of their timings.
Section 7.3 introduces the extended model of built-in contract testing that
specifically addresses the problems of testing timing contracts between pair-
wise associated components. The extended model amends the basic built-in
contract testing model from Chap. 4 by a special type of testing interface
that provides timing notification, and a very specific tester component. The
extended model addresses only execution time during application develop-
ment, so the next section, Sect. 7.4, discusses the challenges of assessing tim-
ing contracts for dynamic updates that are performed during runtime. The
subsequent section, Sect. 7.5, looks at how quality-of-service requirements can
be carried out permanently, beyond deployment in component-based systems.

7.1 Quality-of-Service Contracts in Component-Based
Development

Component contracts are not restricted to behavioral issues, as it may seem
from the discussions of the previous chapters. They can come in four levels of
increasingly negotiable properties according to Beugnard et al. [15]:

• Basic contract. This includes the signatures that a component provides or
requires in terms of invocable operations, signals that a component sends
or receives, and exceptions that a component throws or catches. This is
also called syntactic contract, and it is specified either at the program-
ming language level or through some interface definition language (IDL)
provided by a component platform. This first level is required to make the
components interact, and it is checked through the compiler of the lan-
guage, the runtime system, or the underlying component platform, e.g.,
type checking that a Java compiler performs.

• Behavioral contract. This defines the overall functionality of a component
in terms of pre and postconditions of operations and externally visible pro-
vided and required state transitions, according to Meyer’s idea of design
by contract [112] and Reussner’s architecture by contract [135, 136, 137].
This second level is also termed semantic contract, and it is required to

7.1 Quality-of-Service Contracts in Component-Based Development 257

achieve some meaningful interaction of two associated components toward
a common goal. Built-in contract testing in the form that has been de-
scribed so far in this book is aimed particularly at checking this type of
contract.

• Synchronization contract. The behavioral contract assumes that services
are atomic or executed as single transactions without specification of their
sequences or interactions. The synchronization contract adds another di-
mension to the behavioral contract, which is the sequence or combination
with which the interdependent operations of a component may be invoked.
This is particularly important if different clients access a component’s ser-
vices at the same time. Throughout this book I have treated the second
and third levels of component contracts as single entity, and referred to
it as behavioral contract. In fact, a test of this additional dimension is
also addressed through built-in contract testing in that we can have a
number of different tester components that emulate the access of different
clients. Method sequence and message sequence-based testing strategies
are particularly useful for this type of contract.

• Quantitative contract or quality-of-service contract. A correct component
integration according to the previously described contracts (levels 1 to
3) results in a system with correct syntactic and semantic component
interactions. In other words, two components can perform some meaningful
tasks together. Additionally, a quality-of-service contract quantifies the
expected behavior or the component interaction in terms of minimum and
maximum response delays, average response, quality of a result, e.g., in
terms of a precision, result throughput in data streams, and the like.

QoS requirements for component assemblies compound the problems of inte-
gration testing in component-based application engineering. In the following
sections we will have a closer look at response time as a QoS requirement and
how it is dealt with during component integration and deployment. Later, in
Sect. 7.5, we will also have a look at how response-time issues may be assessed
permanently after application deployment, and how other quality-of-service
requirements may be treated in a component-based development project.

Real-time requirements are typical for embedded systems, and they are
affected or constrained not only by individual objects, but by all objects and
object interactions that make up an application. This is illustrated through
Fig. 7.1. A response-time requirement typically originates from a user re-
quirement or the context of a system. In an embedded system this context is
usually a natural process into which the software system is embedded, and
which it monitors or controls. Such a high-level or system-level requirement is
represented by ∆TA in Fig. 7.1. Because of decomposition, a user transaction
at the system boundary is usually realized through a number of lower-level
transactions on subsequently nested components as indicated through the se-
quence diagram in the figure. Each client component, or the context at the
highest nesting level, defines a response time bound to the services of its as-

258 7 Assessing Quality-of-Service Contracts

sociated and nested server components. In a simplified form, the high-level
timing requirement in Fig. 7.1 can be expressed as

∆T ≥ ∆TA + ∆TB + ∆TC + ∆TD + ... (7.1)

∆T represents the high-level real-time requirement defined by the context
(equation 7.1). If the server component violates this requirement, the client
component will likely fail to provide its own clients with their required re-
sponse times.

Object A Object B Object C

User
Context

Real Process

UserTransaction

Result (User
Transaction)

TA

Execution Time
(User Transaction)

A_Transaction

Result (A_
Transaction)

TB

B_Transaction

Result (B_
Transaction)

TC
TD

...

sd UserTransaction

Fig. 7.1. Distribution of a high-level response-time requirement over multiple nested
component interactions

Additional to the response-time dependencies between the components,
each individual object or component may have a well-defined timing behav-
ior on a particular runtime support system, or in a particular environment,
for example, the development-time environment. This includes the underlying
hardware platform as well as the operating system and its libraries, plus the
component platforms that will show a different quality-of-service on a differ-
ent hardware platform. Such dependencies are illustrated in the component
diagram in Fig. 7.2. The QoS-contract that the Component in the center of
Fig. 7.2 provides to its associated client depends on the quality-of-service that
its own underlying runtime support platform (ComponentRunTimeSystem) as
implicit server and the quality-of-service that its explicit server (ServerRun-
TimeSystem) provide. These dependencies are recursive. In other words, the

7.1 Quality-of-Service Contracts in Component-Based Development 259

quality-of-service that a component is providing to its clients can be only as
good as the quality-of-service that the component is receiving from its associ-
ated implicit and explicit servers. QoS can never be assessed at the individual
component level, and this makes the difficulty of guaranteed timing and timing
analysis in component-based systems apparent.

Runtime Support System

Client
Component

Client
Runtime
System

Component

Component
Runtime
System

Server
Component

Server
Runtime
System

<<QoS Contract>>

<<QoS Contract>>

<<QoS Contract>>
<<QoS Contract>>

<<QoS Contract>>

<<QoS Contract>>

<<QoS Contract>>

Fig. 7.2. Quality-of-service dependencies in a nested component hierarchy

The execution time of a component is completely changed if it is plugged
to other components that implement functionality of a real-time application
at a customer’s site, for example, or if it is brought on a different platform
with different underlying implicit servers and hardware. For any such changes
in the implicit runtime system or in the associated explicit server compo-
nents, the timing behavior of each possible combination of a component’s
feasible usage profiles with respect to these other components in situ on that
particular platform must therefore be validated when the compliance to the
timing schedule of such a system is assessed. Clearly, this cannot be done a
priori for each component since the developer of that component can never
anticipate its usage in a particular context. Execution-time analysis with an
individual component is entirely meaningless. It can be performed only when
components are assembled and put together into a new configuration on a new

260 7 Assessing Quality-of-Service Contracts

platform, although, the effort involved in plugging components together may
be relatively small; therefore, the effort involved in validating the resulting as-
sembly of components is showing the expected runtime behavior, may be much
greater. This adds another dimension to the problem of component integra-
tion. Even if an entire application with all its component interactions readily
in place, is moved to another platform, it must be completely reassessed in
terms of its timing on that new platform.

7.2 Timing Analysis and Assessment with Components

Timing analysis in real-time system development is typically separated into
two distinct activities that are supplementary:

• A constructive timing analysis is performed during component engineering
to distribute high-level timing requirements over subcomponent function-
ality. This activity is essential for the schedulability analysis that enables
the engineers to assign processing capacity of the scheduler to concurrent
tasks. This can be supported by an adequate quality-of-service specifica-
tion notation such as the QML [64].

• A validation timing analysis is performed to check whether the combina-
tion of all collaborating entities as a whole, including all scheduling issues,
can satisfy its timing requirements. This is a test that verifies whether the
first activity was successful and performed correctly.

Since this is a book on testing, I will concentrate only on the second item,
that is, the assessment of whether a server component with all its included
subcomponents will fulfill a client component’s response-time requirements.
However, the same principles of validation timing analysis can be applied to
constructive timing analysis as well. I will give a brief overview on how timing
issues must be addressed with respect to the first item.

Response-time requirements are derived directly from high-level user re-
quirements, as I have illustrated in Fig. 7.1. The user of a component, or the
customer of a system, is interested only in the response time at the compo-
nent’s or system’s boundary, and whether this will fulfill the user’s or cus-
tomer’s QoS requirements. He or she will not be interested in the timing of its
individual parts or subcomponents. This is because the customer is interested
only in a system’s functionality and the quality of that functionality, e.g., its
timing, and not in how the system or the component is organized internally.
This is the case only if there is no user requirement stating that the system
should be distributed.

The application engineer is responsible for the fulfillment of the applica-
tion’s real-time requirements at its boundary. And this depends on the timings
of the individual components within a nesting hierarchy. In the following sub-
section we will look at typical problems that we have to address when we deal
with timing requirements in component-based development.

7.2 Timing Analysis and Assessment with Components 261

7.2.1 Typical Timing Problems

For system developers or application engineers, the response times of the
individual parts or components are important properties because they collec-
tively define or affect the overall response time of the entire application as we
have seen in Fig. 7.2. In general, the development of component-based real-
time applications is performed in the same way as for applications without
explicit response-time requirements This is the case at least for the decompo-
sition activity in which the system is subdivided into finer-grained parts. An
application cannot be decomposed into “the blue” because we have to con-
sider already existing components that we will have to incorporate and reuse.
In Chap. 2, I have emphasized that component-based development always
represents an activity in two directions, decomposition, which is performed
top-down, and composition, that is performed bottom-up. The first activity
subdivides the system into sensible cohesive parts and the second activity tries
to align the decomposed abstract units with already existing abstract com-
ponent descriptions. Thus, decomposition is always oriented toward a specific
goal, that is, the reuse of as many existing components as possible. This means
that we will always have some existing parts of an application, even in the
form of implementations in concrete programming languages. For dealing with
real time in application development this means that we will not be able to
change the response-time properties of these existing parts. This is even more
difficult if these parts are third-party products. The only thing that we can
do to vary the response times of these components is to select differing im-
plementations that specifically address response-time issues, wherever this is
feasible. For example, we could choose a component that is implemented in
a faster language, or is realized with faster algorithms. However, this fun-
damental problem of response-time distribution between multiple interacting
instances will always remain open.

The fact that we select a distinct component implementation unchange-
ably determines that for all the other remaining components there will be less
leeway and choice in terms of their response time-specifications. This is illus-
trated in Fig. 7.3. If we select object A from a component vendor, its runtime
will restrain the selection of the subsequently selected objects B and C. De-
pending on A’s runtime without the nested components, ∆TA −∆TB , we will
have only ∆TB time units left for the response time of the other components,
B and C. This is valid only for a particular transaction that is realized through
multiple objects. Any other transaction in which each of the components A,
B, and C is participating needs to be assessed in the same way.

In order to achieve correct timing according to an application’s real-time
requirements, it is essential that all component integrations or all pairwise
relationships between components be assessed in combination. This is in fact
a search or optimization problem. What we are looking for is a feasible com-
bination of component implementations that collectively satisfy all timing
requirements. Here, feasible means that the combination of component imple-

262 7 Assessing Quality-of-Service Contracts

mentations satisfy all the functional requirements, and this is a prerequisite
for assessing the timing. It may be the case that a component’s response time
is acceptable if it is invoked as part of one particular user transaction, but it
may not be acceptable in another transaction.

Such a problem is difficult to resolve. We could subdivide the two func-
tionalities into two independent components. In that case we would effectively
change our focus from data cohesion, which a component in fact represents,
to something that we might call “real-time cohesion.” In any case, we would
have to intervene in the development beyond the component level and de-
vise our own implementations, although this is not really what we would like
to do in component-based application engineering. As a conclusion I have to
admit that constructive timing analysis in a component-based development
process is still challenging, and we will need considerably more research in
that field in the future. Validation timing analysis it is a lot easier to perform

Object A Object B Object C

Context

UserTransaction

Result (User
Transaction)

TA

A_Transaction

Result (A_
Transaction)

TB

B_Transaction

Result (B_
Transaction)

TC
TD

...

TA

TB

TB TB TC TC TD

sd UserTransaction

Fig. 7.3. Every additional component implementation restrains the selection of
remaining components

in component-based application development. How this is done is laid out in
the next section, after we have had a look at the different ways of performing
timing analysis, and these are applicable for both, constructive and validation
tasks.

7.2 Timing Analysis and Assessment with Components 263

7.2.2 Timing Analysis Approaches

Timing analysis can be performed in two oppositional ways: static timing anal-
ysis and dynamic timing analysis. I say oppositional not because they cannot
be applied in tandem or cooperatively, but because they approach their sub-
ject, that is identifying a time bound, from two opposing directions. While
static timing analysis estimates a time bound, for example, the worst-case ex-
ecution time (WCET) of a task or transaction, from more pessimistic values,
dynamic timing analysis approaches a time bound from more optimistic val-
ues. In other words, if static analysis is performed correctly, it always yields
an overestimate, and dynamic analysis always yields an underestimate of the
real time bound. This means, a time bound can never be determined exactly
because of the inherent complexity of typical systems. We are able to retrieve
only an estimate through timing analysis. This is illustrated in Fig. 7.4, and
explained in the following paragraphs.

Pessimistic
Timing
Values

Pessimistic
Timing
Values

Optimistic
Timing
Values

Time Bound
(e.g. worst-case
execution time,

WCET)

Effort for
Analysis

Static
Analysis

Dynamic
Analysis

Over estimate

Under estimate

incorrectly
performed

Fig. 7.4. Different ways of approaching a time bound in static and dynamic timing
analysis

Static timing analysis refers to the traditional technique for analytically
determining the best-, worst-, and average-case execution times of a task [71].
It follows a procedure that initially determines the required time for executing

264 7 Assessing Quality-of-Service Contracts

each basic block, that is, a segment of straight-line assembly code or a high-
level language instruction, and then combines these into a cumulative total
that represents the execution time for an entire task [117]. It is called static
timing analysis, since it statically analyzes the code of a task for possible
execution paths, and models the time of the code on the target hardware
without executing the task or considering input parameter values [130]. In
contrast with the static approaches, dynamic timing analysis only concentrates
on the execution of a real-time task in its real environment on real hardware.
In other words, the task or transaction is executed as a test and its response
time is measured. Hence, dynamic timing analysis represents an experimental
approach.

Neither approach is ideal, but there are no other ways to assess timing
behavior. Static analysis, e.g. [127, 128, 129, 131], is difficult to perform, re-
quires extensive human interaction, and is therefore also prone to error. For
example, it requires a number of prerequisites such as knowledge about maxi-
mal iterations in the code, absence of recursion and function variables (which
in fact restricts some object technology features), feasible sequences during
execution, and path information. These items should be readily available and
complete to guarantee correct static analysis [117, 122, 131]. An advantage
of static analysis is that it always overestimates a time bound if the analysis
is carried out correctly. As a consequence, it is suitable for safety-critical ap-
plications or so-called hard real-time applications in which the violation of a
timing requirement will inevitably lead to a hazard, e.g., loss of life, or dam-
age to the environment. The dynamic analysis approach is quite the opposite.
Since it always underestimates the true time bound, it can never guarantee
worst-case timing according to the specification of a safety-critical system. In
general it must be considered unsafe for hard real-time system construction,
and it is typically better suited for the so-called soft real-time systems for
which the violation of some deadlines is acceptable.

Due to the fact that static solutions are so difficult, and adequate tools
are still lacking, dynamic approaches are penetrating the real-time system do-
main. Dynamic timing analysis is easy to apply because it represents black
box-style test case execution with time measurement. Additionally and more
importantly, dynamic timing analysis does not come with any of the inhibiting
factors of static analysis that defeat its application in modern object-oriented
and component-based real-time application development. Dynamic execution
does not require any internal, or implementation-specific information of the
object under scrutiny. This is probably the single most important inhibiting
factor for the application of static analysis in modern development technolo-
gies, such as component-based application engineering. On the other hand,
dynamic timing analysis requires that the real application be readily avail-
able, including hardware and software components. In other words, before we
can start with dynamic timing analysis, we have to have the implementation
of the software system in an executable form and the real underlying hardware
components, or at least simulators for them. This is often difficult in the real

7.3 Extended Model of Built-in Contract Testing 265

world because hardware and software are developed at the same time, or the
software is even developed earlier. So far, to my best knowledge, there is no
suitable generic methodology available for tackling these hardware/software
integration and co-design issues. Since this is a book on testing, I concen-
trate only on dynamic timing analysis and how this can be applied to built-in
contract testing. In the following section, I describe how the basic model of
built-in contract testing may be extended to accommodate the capability to
assess timing contracts in a way similar to that for behavioral contracts.

7.3 Extended Model of Built-in Contract Testing

The problems of component integration testing are compounded if QoS-
requirements are considered, as we have seen earlier. Each individual object
or component shows a very specific timing behavior in any arbitrary deploy-
ment environment. This environment includes other associated components as
well as the underlying hardware platform. This very specific timing behavior
is completely changed if the component is deployed in another environment
with other associated client and server components or a different underlying
hardware. Any other client component will apply a different usage profile and
thus change the timing of the component considered, and any other server
component (including an implicit server) will change the timing of its clients.
A timing validation of a component can therefore never be done a priori. The
producer or vendor of a component can never anticipate its usage in any ar-
bitrary feasible deployment environment of any customer of that component.
In the same way that isolated component tests are meaningless for behavioral
contracts, they are even more so for QoS contracts in general and timing con-
tracts in particular. Timing assessment can only be performed in situ, when
the components are assembled and put together in a new configuration [75].
The basic model of built-in contract testing offers a feasible approach for as-
sessing the correctness of behavioral contracts between pairwise associated
components, and it may also provide a solution for addressing the assessment
of real-time contracts between two such entities.

The essential difference in testing between the traditional procedural
paradigm and the recent object-oriented development paradigm lies in how
data and functionality are treated. We have discussed this in Chap. 4. While
the procedural approach propagates a strict separation of data and function-
ality, the object or component paradigms encourage the opposite, that is, the
combination and encapsulation of data and functionality in a single entity.
This creates a fundamental difference in how modules of the two kinds are
treated during testing. In object-oriented development, testing comprises the
notion of an object state, so that a typical test for an object encompasses:

266 7 Assessing Quality-of-Service Contracts

• an initial state defined through the combination of the object’s internal
attributes,

• an event with some input parameters,
• some output and behavior,
• some expected output and behavior, and a final state.

These items are part of any test case, for behavioral contract testing as well
as for dynamic timing contract testing. Additionally, for timing assessment,
we need to introduce the notion of execution time for an event, or a sequence
of events, e.g., a transaction. The test case as such does not change much if
we consider the test of a behavioral contract and a timing contract. What
changes is the validation action of the test that will comprise some execution
time measurement, and the event will have an auxiliary response-time specifi-
cation. As a consequence, for the assessment of timing contracts between two
associated components, we can have in principle exactly the same setup as for
the basic built-in contract testing model. We can have a testing interface for
the server role, for state setting and state checking, and a tester component
at the client role of the association that contains and applies the test cases.
Fig. 7.5 shows the extended model of built-in contract testing that is aimed
at checking timing contracts. In the following subsection we will have a more

Functional Interface

Testing Interface : Behavior

Testing Component

Implicit
QoS

Server
Tester

<<acquires>>

Runtime Support System
(Implicit Server)

Testing Interface : QoS

Explicit
QoS

Server
Tester

Functional Interface

Testing Interface : Behavior

Tested Component

Implicit
QoS

Server
Tester

Testing Interface : QoS

Explicit
QoS

Server
Tester<<notification>>

Fig. 7.5. Extended model of built-in contract testing

detailed look at how the two artifacts, testing interface and tester component,
need to be organized, and how they differ from the basic contract testing
model.

7.3 Extended Model of Built-in Contract Testing 267

7.3.1 Testing Interface for the Extended Model

In the initial model of built-in contract testing, I introduced the concept of
“abstract states” that users of a component need to know to use it properly.
These abstract state specifications can be used to derive a testing interface
for the behavioral built-in contract testing according to the built-in contract
testing development process described in Chap. 4. An abstract state is a do-
main of internal attribute settings for which an operation invocation shows
the same external behavior (i.e., state transition). The response time of a
component, or its timing behavior, is defined through its current concrete
or physical state, which also includes the state of the underlying hardware
and the input parameters of the timed event at the time before the event
is invoked. So, for timing assessment, knowledge of or access to the concrete
values that determine the internal states are essential. We have to deal with
the physical state values in contrast with the behavioral contract test where
the abstract state is often sufficient at least for checking the postcondition.
The testing interface of a component according to the basic model of built-in
contract testing must permit the setting of concrete state values to be useful
for the assessment of the component’s response time. Otherwise we have to
fall back to the component’s normal functional interface and set its internal
state, as required for a particular test, through a sequence of normal operation
invocations. In this case we have to carry out a distinct history of operation
invocations with concrete input values to set the timed component to a par-
ticular physical state. Then, we have to invoke the operation or the sequence
of operations for which we would like to assess the response time. For the
second case we do not need the testing interface of the basic built-in contract
testing approach.

Timing Measurement

The additional testing interface according to the extended model for QoS
testing comprises timing measurement facilities. The additional QoS testing
interface depicted in Fig. 7.5 provides operations that control, set, and read
timers that the underlying runtime environment of the tested component im-
plements. In theory, timing could well be measured inside the tester compo-
nent at the client side because invoking and evaluating the timer is a typical
process of the test software. However, if the tested and timed component is
residing on a different network node than the tester component that provides
the test scenarios for the tested component through some network, in addi-
tion, to the response time of the component’s operations, we also measure
the response time of the underlying networking infrastructure. Fig. 7.6 illus-
trates this. The timing testing interface thus enables remote testing. This is
important in two particular cases:

• The tested component is running on an embedded controller that provides
real-time features, and the platform of the testing system does not support

268 7 Assessing Quality-of-Service Contracts

NetworkLayer
Client

NetworkLayer
Server

Tested
Server

Testing
Client TimedOperation

(Parameter)

Result (Timed
Operation)

Measured
Response

Time

Start Timing

Stop Timing

Network

Actual
Response

Time

Testing Infrastructure

sd TimedOperation

Fig. 7.6. Problem of timing measurement at the client role

real time. We are interested only in the timing of the component that runs
on the embedded controller, so we have to measure that timing. If we
measure the timing in the tester component, we assess the response time
of the embedded component, the response time of the network connection,
the runtime of the tester component, and some operating system activities
of the tester component. This is clearly not what we are aiming for.

• The tested component is running on an embedded controller that does not
provide the space for the tester component and the testing infrastructure.

Figure 7.7 shows the structural models for the extended testing interfaces of
the Resource Information Network client and server components. The test-
ing interface of the extended model for timing assessment can be realized as
implementable interfaces (e.g., in Java), indicated by the �interface� stereo-
type. The good thing here, compared with behavioral contract testing, is that
this additional interface may be the same for all components.

7.3.2 Tester Component for the Extended Model

The tester component at the client role is responsible for applying the test
cases that are used to assess the timing of the server. This is the same prin-
ciple as that for the basic model of built-in contract testing and checking the

7.3 Extended Model of Built-in Contract Testing 269

RIN Client RIN Server

+ isRegistered () : Bool
+ messageInPlugin (Message) : Bool
+ testExecute ()

Testable
RIN Client

+ isWaiting () : Boolean
+ isRegistered (Client) : Bool
+ messageInServer (TestActive, Message) : Bool
+ isActive (Plugin) : Bool

Testable
RIN Server

<<interface>>
Extended Testable RIN Client

<<interface>>
Extended Testable RIN Server

+ startTiming () : time
+ stopTiming () : time

+ startTiming () : time
+ stopTiming () : time

Fig. 7.7. Timing testing interface for the RIN system client and server components

behavioral contract between the two roles. Initially, these behavioral tests may
also well be used for assessing the timing contract. They need to be somehow
amended with the calls to the timing measurement operations at the server
side that I introduced in the previous section.

We can implement the test cases in a way that they will always call the
timing measurement operations, regardless of whether execution-time analysis
is needed or not. Alternatively, the test cases in the built-in contract tester
component may be organized in a way that the calls to the server’s timing
measurement interface can be turned on and off during runtime, according
to which tests are required. This would imply that the testing interface of
the client component whose tester performs the timing test on the server
provides some way of engaging and disengaging a particular testing mode.
The execution time for each transaction between a client and a server can
thus be assessed relatively easily, by reading a timer before and after the
transaction is invoked. Additionally, the tester component needs to provide a
notification interface through which the tested (server) component can notify
the tester component that the timed operation has been performed. This
is important mainly for asynchronous interaction between client and server.
Both interfaces, required for both roles in the extended model of contract
testing, are depicted in Fig. 7.8.

Although this simple solution of measuring the execution time of the ex-
isting behavioral test cases might be appealing at a first glance, it is not
sufficient to assess the execution times that are important in embedded real-
time application engineering. Each component will have a number of timing

270 7 Assessing Quality-of-Service Contracts

Tester
Component

Tested
Component

<<testing interface>>

<<notification interface>>

Fig. 7.8. Timing notification interface of the tester component and testing interfaces
of the tested component in the extended BICT model

requirements that will have to be assessed in a test. These typical execution-
time bounds are laid out in the following:

• Average case execution time (ACET). This time bound represents the
average response time of a transaction between two roles. ACET is not a
typical real-time requirement. It is actually more important for assessing
the throughput of a system and for performance bottleneck analysis.

• Worst-case execution time (WCET). This is the most typical time bound
for real-time systems. A violation of this timing requirement through a
server means that the provided service is too late or the execution of a
transaction is too slow to be useful for the client. A violation of this bound
in a hard real-time system leads inevitably to a hazardous situation.

• Best-case execution time. This is another not so well-known time bound
whose violation through a server means that the provided service is too
early, or the execution of a transaction is too fast to be useful to the client.
This will also lead to a hazardous situation in a hard real-time system.

While the role of the WCET is quite clear, it is often not so clear for the
BCET. Executing too fast for a real-time system initially seems to be al-
right, but in many cases it is not. This becomes apparent if early results are
buffered for later use by another process. If the process that produces a result
is too fast, say twice as fast as the process that consumes the value, we will
lose every second result, and it depends on the specification whether this is
acceptable or not. So, synchronization is a key issue in real-time systems de-
velopment. BCET and WCET determine the range in which response times
of a component transaction are acceptable. This clearly emphasizes that real-
time systems engineering has nothing to do with attaining fast execution, but
with attaining the right response at the right time, not too early and not too
late.

If we look at these time bounds, it becomes apparent that we gain nothing
by measuring the execution times for the original samples of the behavioral
contract tests in the way that I have described earlier. Each of these behavioral

7.3 Extended Model of Built-in Contract Testing 271

tests will yield only one execution time value for one particular sample, or for
one particular input parameter combination. This is only one single sample
out of a huge number of samples that are feasible for each test case. Because
the input parameter values of a transaction determine its execution time, we
have to execute a number of different parameter settings for each test and
compare them. From the individual transaction executions we can determine
the average time and pick the largest and smallest values.

The easiest way to generate a massive number of input parameter values
is to use a random generator. In a loop, this will generate a set of parameter
values for a transaction, apply them, and measure the time for a single execu-
tion of the transaction. The best-, worst- and average case-timing values can
be permanently updated through simple comparisons and calculations. The
following pseudocode illustrates such a test case.

begin test case
timing sum = 0
best case time = max
worst case time = min
<<set optional state>>
for number iterations

randomize parameter list
start timing
invoke transaction (parameter list)
stop timing
execution time = stop timing - start timing
timing sum = timing sum + execution time
best case time = min (best case time, execution time)
worst case time = max (best case time, execution time)

end for
average case time = timing sum / number iterations

end test case

Each original test case for behavioral contract testing thus maps to a vol-
ume of randomly generated test cases for which the execution time will be
assessed. The original tests still represent a very valuable source for dynamic
timing analysis because they will ideally define a complete usage profile for
the tested component. The pseudocode above illustrates only a test case that
does not consider any state-based testing. If we are dealing with states, and
state transition testing, we have to take into account any operation prior to
the transaction call, or the so-called invocation history, that is used to bring
the tested component into its initial state for the test under scrutiny. I wrote
earlier that the execution time of a component’s transaction is determined
through its own input parameter values and the component’s internal state
variables, and these are determined through the operations that have been
invoked prior to the transaction. In this case, we have to replace the following

272 7 Assessing Quality-of-Service Contracts

pseudocode, for the stereotype �set optional state� in the pseudocode for
the test case.

begin set optional state
randomize parameter list 1
invoke history transaction 1 (parameter list 1)
randomize parameter list 2
invoke history transaction 2 (parameter list 2)
...
randomize parameter list n
invoke history transaction n (parameter list n)

end set optional state

Each history transaction in the pseudocode represents one operation invoca-
tion on the tested component that is adequate to bring the component into
the desired state. It is quite common that many transactions according to the
history need to be invoked before we can apply the actual tested and timed
operation.

Although random testing is the most commonly used test case generation
technique for assessing timing behavior today, it is not particularly good at it.
In the following subsection we will have a look at a more advanced and effec-
tive technique for dynamic timing analysis and assessment, an evolutionary
algorithm.

7.3.3 Optimization-Based Timing Analysis

Dynamic timing analysis and assessment can actually be regarded as a search
or optimization problem. The goal of the optimization is to determine test
cases that satisfy a specific test criterion. For timing analysis the test criteria
are WCET and BCET. In other words, the task is to find and identify the
parameter settings that represent the worst-case or best-case execution time
of a component’s transaction. Random testing belongs also to this group of
search or optimization techniques, although it is merely a very simple one.
More powerful representatives of this group are genetic algorithms (GA) [68],
evolution strategies (ES) [151], and simulated annealing (SA) [164]. These
belong to the group of evolutionary algorithms, and they are all character-
ized by the fact that the generation of new prospective solutions is based on
the properties of old solutions for the optimization under consideration. The
application of evolutionary algorithms to typical testing problems is termed
evolutionary testing [171], which is boosted by a relatively new and vivid
community and reflected by a number of publications in this area such as
[72, 75, 130, 172, 173].

The ideas of evolutionary algorithms are loosely related to the mecha-
nisms of natural evolution, which is founded on selection and reproduction,
hence the name. They operate on populations of binary strings (GA) or real

7.3 Extended Model of Built-in Contract Testing 273

numbers (ES) that represent possible solutions to the search problem. Evolu-
tionary algorithms recombine and mutate these strings, which are also called
individuals, according to predefined operators, and the new individuals result-
ing are selected as a new generation according to a so-called fitness function.
The operation of an evolutionary algorithm is characterized by three steps,
reproduction, mutation, and selection that are carried out with a population.
During reproduction, pairs of individuals are selected for recombination ac-
cording to a selection strategy, and some parts of their strings form new indi-
viduals. This is termed crossover, and is controlled by the crossover operator.
Some positions in the new individual are mutated according to a mutation
operator. As an effect, recombination retains the information that is inherent
in the entire population, and thus exploits the search volume that the pop-
ulation occupies. In contrast, mutation introduces new information into the
population, and thus explores new locations of the search volume. Recombi-
nation and mutation yield new individuals which are tested and their fitness
evaluated through the fitness function. This function assesses how well each
individual solves the original search or optimization problem. Usually fitter
individuals have a higher chance of being selected and recombined. The fittest
individuals remain in the population and build the basis for the next itera-
tion in a new generation. This procedure can be represented by the following
pseudocode, with P, P1, P2, and P3 representing sets of feasible solutions or,
in other words, populations:

begin ea
initialize (P);
while not breakCondition do

P1 = selection (P);
P2 = recombination (P1);
P3 = mutation (P2);
P = fittest (P3, P);

end while
end ea

The iteration in this procedure is repeated for a predetermined number of
times or until the stopping criterion is met, for example, after a number of
generations without improvement. This evolutionary process generates new
solutions based on information of existing solutions, so that later generations
are likely to consist of fitter individuals that represent better solutions to the
original optimization problem [71]. The evolutionary operators control the
performance of the algorithm. A population can be regarded as a mapping of
the problem space with each individual occupying a distinct location in this
multidimensional volume. The number of optimized parameters determines
the size of the search space. The crossover and mutation operators control the
degree of exploitation and exploration of the search space by a population.
The selection operator determines the individuals that are selected for recom-

274 7 Assessing Quality-of-Service Contracts

bination. Greater fitness of an individual represents a greater chance of being
selected.

In order to realize dynamic timing analysis with an evolutionary algo-
rithm, the optimization procedure can be used as a test case generator in the
same way as the random generator. The optimization process generates input
parameter values which determine the dynamic behavior of a component’s
transaction, and thus its response time. Each individual of the evolutionary
algorithm corresponds to one set of input parameter values for one single in-
vocation of the tested transaction. This also comprises the input parameter
values for the invocation history that needs to be called to set the component
to the initial state required for the test. The fitness function executes the test
case with the set of inputs that is provided by the individual, and measures the
execution time. This time is the only value that drives the optimization pro-
cess. Individuals that produce longer execution times for WCET, or shorter
times for BCET, are favored by the selection operator of the evolutionary al-
gorithm. The recombination of highly fit individuals tends to produce highly
fit offspring; this has been proven many times, e.g., [90]; this offspring is al-
lowed to “spread through the population.” Subsequent generations therefore
consist of “fitter” individuals which produce longer execution times or shorter
execution times, depending on the test target. Figure 7.9 illustrates the devel-
opment of a typical evolutionary test for BCET and WCET compared with
random testing. While the random test oscillates within a certain range and
never reaches the values of the more sophisticated evolutionary algorithm, the
evolutionary test approaches the extreme execution times noticeably, quickly
and steep at the beginning, and flattened toward later generations. This pic-
ture is typical for most evolutionary tests [72].

7.3.4 Application to the RIN System

In the following paragraphs, I give a brief overview of how evolutionary testing
can be applied to check the runtime behavior of the Resource Information
Network (RIN) that I introduced in Chap. 4. I will concentrate only on one
transaction that a user of the RIN system may invoke to illustrate how an
individual for the evolutionary algorithm needs to be encoded for this type of
testing.

The application, the user of the RIN system, defines a maximal or mini-
mal expected response time, or a so-called latency requirement for an entire
transaction that reads information about the state of an associated network
device’s physical memory. The application is the client of the RIN system.
It has no knowledge of the RIN system’s implementation and how it would
possibly satisfy the client’s response time requirement. The RIN system per-
forms its own internal processing and interactions with other entities, so that
the execution time is distributed among all entities that are participating in
providing the requested service. This corresponds to schedulability analysis
though the client is interested only in getting the requested service within

7.3 Extended Model of Built-in Contract Testing 275

0 100 200 300 400 500 600 700 800
Iterations /

Time of Test

Execution
Time

actual
WCET

actual
BCET

typical evolutionary
test (WCET)

typical evolutionary
test (BCET)

typical random
test (BCET/WCET)

Fig. 7.9. Typical development of evolutionary testing compared with random test-
ing

the expected and specified time bound of the latency requirement. The fol-
lowing list shows typical usage scenarios for the RIN system that the client
application might want to invoke [72].

• The client creates a RIN server instance on the remote RIN host.
• The RIN server adds the available plug-ins to the RIN server’s plug-in

database.
• The RIN client instantiates a RIN server processing object in the server

instance and a callback object in the client instance.
• The RIN client calls RegisterCallback() on the RIN server processing

object and associates the callback object with that particular processing
object. The registration comprises user name, application name, and host
name. The RegisterCallback() operation will also cause the RIN server
to add the client with its registration data to its internal connected client
database.

• The client calls ProcessRequest() on the server processing object to en-
queue the requested transaction to be further processed by the server and
consequently the plug-in. This is the actual transaction that the applica-
tion is interested in.

• The server performs a syntax check on the request sent by the client.
• The server calls ProcessData(Message) on the respective server plug-in

component.
• The plug-in performs a syntax check on the plug-in request sent by the

server.

276 7 Assessing Quality-of-Service Contracts

• The plug-in performs the memory request on the local host’s physical
memory.

• The plug-in calls OnDataFromPlugin(Message) on the server component
and notifies the server that the request has been processed.

• The server checks the syntax of the message received by the plug-in.
• The server calls ReceiveDataFromServer(Message) on the client’s call-

back object.
• The client sends a signal to the application and notifies it of the message

arrival.
• The application reads the message contents from the callback object. This

is the end of the transaction that the application is interested in.
• The client closes the connection to the server and removes its own callback

object.

The task of the search algorithm is to find the combination of operation in-
vocations, with their respective input sets, that represents the worst-case or
best-case execution time of a specified transaction or transaction sequence.
This is one test case for WCET and one for BCET, out of a large number
of possible test cases. In order to apply a genetic algorithm to this task we
have to find a way of representing a test case in the form of a binary string,
which is the basic item on which a genetic algorithm operates. Let us assume
that the usage profile of the RIN system’s client comprises a sequence of five
different operation calls that the client calls on the RIN system by using the
provided method ProcessRequest(Plugin,Message). These five operations
may be called by the client in any arbitrary sequence. The UML sequence di-
agram for the operation ProcessRequest is depicted in Fig. 7.10. The client
of the operation is interested only in getting the response time for the entire
execution of this operation, although it is separated into a number of differ-
ent internal operation calls on a number of underlying objects. Each of the
five operation invocations that the client of the RIN system performs has the
following format:

ProcessRequest (Plugin, Message);

Message has the following format:

FUNC, PARAM1 [, PARAM2]

We have a test case with five sequential operation invocations of ProcessRequest,
e.g,

ProcessRequest (Plugin, FUNC1, PARAM1, PARAM2);
ProcessRequest (Plugin, FUNC2, PARAM1, PARAM2);
...
ProcessRequest (Plugin, FUNC5, PARAM1, PARAM2);

The variable FUNC is represented by the following plug-in operations:

FUNC = {BYPASS, REPEAT, ABSTIME, ASAP, COMPARE}

7.3 Extended Model of Built-in Contract Testing 277

DCOM_RIN
Server

DCOM

DCOM_RIN
SystemPlugin

DCOM_RINClient

ProcessRequest
(Plugin, Message) QueryInterface

(Plugin)

TProcessRequest

Create ()

DCOM_RIN
SystemPlugin::

CRINSystem

Create ()

IBaseDataClass
ProcessorObject

DCOM_RIN
Server::CRin
ServerSink

Create ()

AtlAdvise (Plugin,
CRinServerSink)

OnDataFromPlugin
(Data)

RetrieveServerSinkRetrieveServerSink

ServerSink

ProcessData
(Message)

ReceiveDataFrom
Server (Data)

sd ProcessRequest

Fig. 7.10. UML sequence diagram for the RIN system’s operation ProcessRequest

The variable PARAM1 can take the following values:

PARAM1 = {MemoryLoad, TotalPhys, AvailPhys,
TotalPageFile, AvailPageFile, TotalVirtual,
AvailVirtual}

Finally, the variable PARAM2 can take a 16-bit integer value plus one of the
following operators:

==, !=, <=, >=, <, >

These last parameters are required to determine the memory size when the
function COMPARE is called. It is used to assess whether an associated server
provides enough memory space for performing a specific task.

Each individual in the search algorithm represents one sequence of five
consecutive ProcessRequest calls with the respective input parameters. In
our case, the first parameter Plugin is always constant since we intend to
assess the timing behavior for the RIN’s memory plug-in in the context of
a particular application or configuration. The encoding of an operation call
needs to be binary if we are using a genetic algorithm as test case generator. So,
the input parameters for ProcessRequest have to be brought into a numerical
representation that can be expressed as a binary string. The message that

278 7 Assessing Quality-of-Service Contracts

ProcessRequest forwards comprises FUNC1 to FUNC5, which can be expressed
by five values, each an element of [0..4]. The same principle applies to the other
parameters. We can encode PARAM1 as a number in [0..5], and PARAM2 as a
number in [0..7]. For example, the representation [4, 0, 3, 256] for an individual
in the search algorithm will be expressed as the following operation invocation:

ProcessRequest (MemoryPlugin,
‘‘COMPARE’’,
‘‘MEMORYLOAD’’,
‘‘>=’’,
256

)

The size for the second parameter will be represented by a 16-bit integer. In
this example, the number 256 represents the size of the requested memory.
Every test case will comprise five of these encodings, each for one operation
invocation of ProcessRequest. These are subject to selection, recombination,
and mutation within the genetic algorithm. The fitness function transforms
the binary representations in real operation invocation sequences, calls them
and measures the execution time for each such sequence. This is fed back
into the genetic algorithm to determine the “goodness” of an individual with
respect to best- or worst-case timing.

The following parameters for the genetic algorithm have been used for
performing the timing tests of the previously introduced usage profile of the
client; they are based on experience. The algorithm used is my C++ imple-
mentation of a GA [71]:

• Number of parents in the population: 12
• Number of children in the population: 12
• Number of individuals: 24
• Number of generations: 40
• Number of executed tests: 800
• Crossover probability, Pc: 0.3
• Mutation probability, Pm: 0.02
• Tournament selection: 0.5, tournament size = 3

The following list shows the software encoding for the operation sequence for
the worst case execution-time found, 2.344 seconds on standard PC platform
(the ordering is important):

• ProcessRequest (ASAP, MemoryLoad)
• ProcessRequest (BYPASS)
• ProcessRequest (REPEAT, AvailPhys)
• ProcessRequest (ABSTIME, MemoryLoad)
• ProcessRequest (COMPARE, MemoryLoad, <=, size)

This outcome means that on the platform used, this method sequence with
these input parameter settings will result in worst-case execution time of

7.4 QoS Contract Testing for Dynamic Updates 279

2.344 seconds. The platform used is a typical Pentium PIII 200 MHz with
Microsoft’s built-in DCOM middleware. If this value is below the client’s ex-
pectation, the test passes and we can call this a successful integration of the
two components, the client and the server. The same applies for the assess-
ment of the best-case execution time, although here the test passes if the
value found is above the client’s expected value. The following list shows the
encoding of the test case for the operation sequence according the best case
execution time found (1.468 seconds):

• ProcessRequest (BYPASS)
• ProcessRequest (ASAP, MemoryLoad)
• ProcessRequest (REPEAT, AvailPhys)
• ProcessRequest (ABSTIME, MemoryLoad)
• ProcessRequest (COMPARE, MemoryLoad, <=, size)

The value of the 16-bit integer that represents the size in both cases does not
seem to have an impact on the measured response times.

7.4 QoS Contract Testing for Dynamic Updates

In the previous section, I have introduced the extended model of built-in
contract testing as a development-time testing technique. Dynamic updates
of a component-based real-time application cannot be assessed in this way.
A dynamic update of a system means that a component is replaced during
runtime.

Before any component may be replaced dynamically, the correctness of the
new, replacing implementation must be assessed according the requirements
of the integrating component framework. If no real-time contract must be
adhered to, this is relatively straightforward, and it can be realized through
the basic model of built-in contract testing.

The integrating component framework will have to provide two component
references, one for the original component that keeps operating as long as the
new component is being tested, and another one for acquiring and testing
the new implementation in parallel. The test process can be performed at
the lowest priority, so that it does not interfere with the normal operation of
the system; and this requires that there is still processing capacity left on the
platform. After a positive test, the two components can be replaced. Although
this sounds simple, replacing components is actually the most challenging task.
For example, one of the most difficult issues here is to transfer the internal
state from the replaced component instance to the replacing. The European
research project EMPRESS has dealt with such issues in an embedded system
context, and it proposes some solutions for handling dynamic updates, at
least partially [126]. So although there are currently no sound methodological
approaches available to perform live updates in component-based systems, the

280 7 Assessing Quality-of-Service Contracts

initial step, that is, assessing whether a new component is suitable for a new
context, is addressed through built-in contract testing.

A timing contract test on a running system is not so straightforward.
The fact that this test is not supposed to interfere with the system’s normal
operation is the major inhibiting factor for its application. If the timing test is
performed at the lowest priority, it is completely useless, because the measured
execution time will always be longer than it would be in normal circumstances.
If we schedule the test normally, as if the tested component were running in
its final execution environment, we will likely get inaccurate timings, and the
test may easily threaten the system’s normal operation that is supposed to
provide its service seamlessly. This is because we need processing capacity for
two components at the same time with the same priority. The only way out
of this dilemma that I can perceive is to run the test at the lowest possible
priority and apply a different timing measurement strategy. Such a timing
strategy could, for instance, instead of measuring absolute runtime of the
tested object, measure only the processor cycles that are required to execute
the test. There are some tools that can actually perform such processor cycle
timings, for example IBM Rational’s Purify Plus [154], but I have not yet
thought about to incorporate such a tool into a testing process of the kind
that I have put forward throughout this book. There is definitely a lot of
research still required in this area.

7.5 Built-in Quality-of-Service Runtime Monitoring

So far, I have described the two component integration steps that can be as-
sessed through built-in contract testing. The first one is concerned with testing
behavioral contracts between two components when they are integrated for the
first time (Chap. 4), and the second one is the test of timing contracts between
two associated components (this chapter). These testing steps are performed
by the system integrator during application assembly and development. Nei-
ther behavioral nor timing contract testing can guarantee that all behavioral
and timing failures are identified before the system is deployed. No quality
assurance technique is capable of doing that. Therefore, an additional quality
assurance measure can be constantly carried out during runtime of the final
system, and this is the assertion checking mechanisms that I briefly introduced
in Chap. 4. While assertion checking concentrates primarily on functional and
behavioral errors that may arise during final execution of a system, we can
also have built-in quality of service assessment that constantly monitors a
running application. In the following paragraphs, I will describe the so-called
built-in quality of service testing strategy that realizes constant monitoring
of a component-based application after it has been released [161, 162, 163].
The approach is fully described in a number of extensive Component+ project
reports [34, 35, 36].

7.5 Built-in Quality-of-Service Runtime Monitoring 281

Ideally, a test should reveal every single failure in a system, but in gen-
eral it can never guarantee that. It is not realistic to expect the deployment
of an entirely fault free application, even if the most advanced and effective
quality assurance techniques have been applied during development and in-
tegration. The principle of built-in QoS testing is therefore to expand testing
beyond deployment of a component-based application. It does that by the
same fundamental concepts that I introduced for built-in contract testing. So,
in general, every component should provide the same artifacts that contract
testing provides, plus some additional items. These are summarized as follows:

• Testing interface for the testable component. This is a collection of opera-
tions that a component provides to support constant runtime monitoring.

• Tester component. Associated component that uses the services of the
testing interface. This determines whether an error condition exists.

• Handler. This processes an error that a tester component or a testable
component identifies.

• Constructor. This is a conceptual element that is responsible for the cre-
ation and interconnection of tester and testable components and handlers.

Built-in quality-of-service testing was initially designed to deal with dead-
lock situations and response-time issues during a system’s normal runtime,
but other types of runtime monitoring such as performance profiling, memory
management, code and data integrity, and trace facilities are also perceivable
[163]. Interfaces to provided test or monitoring services are named IBITx.
This corresponds to what I have so far called testing interface. The x is a
placeholder for the type of monitoring that the testing interface supports,
i.e., IBITDeadlock for deadlock monitoring, and IBITtiming for response-
time monitoring. The tester component provides the corresponding notifica-
tion services, the IBITDeadlockNotify and the IBITTimingNotify interfaces,
through which monitored components can notify their tester components of
the relevant interactions. For example, the deadlock tester is notified of events
that are relevant to detecting deadlocks such as resource requests or releases.
Additionally built-in QoS testing adheres to the definition of IBITQuery,
IBITError, IBITErrorNotify. The following list summarizes these additional
interfaces:

• IBITQuery allows an external entity to query the availability of specific
testing interfaces, and to acquire a handle on the corresponding IBITx
interface.

• IBITError provides the basis for error propagation between components.
It can be queried to determine a component’s error status, or it can be
configured to notify the appropriate IBITErrorNotify interface of an as-
sociated tester component.

• IBITErrorNotify is the general notification interface that can be used to
support erroneous events other than timing and deadlock.

282 7 Assessing Quality-of-Service Contracts

• IBITRegister provides the mechanisms to associate all participating com-
ponents; this comprises construction, destruction, and the connection of
components, testers and, handlers.

Figure 7.11 shows all concepts of the built-in quality-of-service runtime mon-
itoring approach.

Deadlock
Tester

Component

Handler
Constructor

Timing
Tester

Component

Tested
Component

<<mandatory>>
IBITQuery

<<mandatory>>
IBITRegister <<mandatory>>

IBITQuery

<<mandatory>>
IBITRegister

<<mandatory>>
IBITRegister

IBITError
Notify

IBITDeadlock
Notify

<<mandatory>>
IBITError

<<mandatory>>
IBITQuery

IBITDeadlock IBITTiming

<<mandatory>>
IBITError

IBITTiming
Notify

<<mandatory>>
IBITRegister

<<mandatory>>
IBITError

<<mandatory>>
IBITQuery

Functional
Interface

Fig. 7.11. Concepts of the built-in quality-of-service runtime monitoring

In contrast with built-in contract testing for behavioral contracts, the addi-
tional components in QoS runtime monitoring are never exclusively associated
with a single tested component. This is probably the most important differ-
ence between the two technologies. For example, deadlocks can be detected
only if several components that are competing for a resource are registered
with the tester component that is responsible for monitoring this competition.
Tester components in quality-of-service runtime monitoring are therefore lo-
cated at an overall application level rather than associated with a particular
client component, as is the case for contract testing. The system integrator
must therefore consider a number of pairwise component interactions at a
time, and not only a single one. The constructors are intended to perform this
type of setup effort. Another difference is that for quality-of-service testing
(and this includes the timing contract testing approach as well) the testing

7.6 Summary 283

interfaces are always the same. They do not change from component to compo-
nent according to the external states. This clearly facilitates standardization,
so that the quality-of-service testing approaches as I have described them in
this chapter are much easier to integrate into existing component models than
built-in testing for behavioral contracts.

In the previous paragraphs I have described the architecture of built-in
quality-of-service monitoring as it has been designed in the Component+
project [34, 35, 36]. I give an overview on which testing services apart from
timing and deadlock monitoring the technology may be supporting. The fun-
damental mechanism to support all monitoring tasks is the IBITError in-
terface. It is responsible for the propagation of error conditions between the
different architectural entities of an application that supports this kind of
runtime quality assurance. The developer of a component may augment this
code with assertion-type mechanisms that make use of the provided interface.
In that way, a component can easily support a number of additional testing
and monitoring tasks such as pointer validation, completion of operations,
I/O errors, and the like [163]. Moreover, the IBITQuery interface can be used
to find out about the testing services that a third-party component provides.
So, even if the technology is not yet standardized, it can provide a number of
additional runtime quality assurance measures. I give the following examples
according to [163]:

• Code and data integrity, which is an issue in embedded systems. Many
of these systems do not provide proper memory management, so that the
application memory can easily be corrupted. This follows the initial idea
of built-in contract testing [166].

• Residual defects that show up only after some considerable execution pe-
riod such as invalid pointers, memory allocation and deallocation, accu-
mulated floating-point errors, etc.

• Trace as typical assertion mechanism. A trace is useful for locating an
error.

7.6 Summary

Quality-of-service requirements are important not only for embedded real-
time systems, but also for “normal” component-based systems that may have
such requirements, e.g., throughput in Web applications. Embedded systems
have especially stringent QoS requirements in general and timing requirements
in particular. Response-time specifications are typically determined at the
highest level of a system’s decomposition, at its boundary, and they must be
distributed among the decomposed objects. This activity is performed under
the umbrella of constructive timing analysis, and its goal is to come up with
a schedule for a system. This timing schedule must be assessed through a
validation timing analysis activity, and the extended model of built-in contract

284 7 Assessing Quality-of-Service Contracts

testing is specifically geared toward that. It is concerned with how the timing
requirements that are specified in terms of a timing contract between two
interacting components can be assessed and validated dynamically.

In order to apply this extended model, the tested component needs to be
augmented with an additional testing interface that provides timing notifica-
tion services. The tested component needs to be augmented with a test case
generator, typically a random generator, that applies a high volume of tests,
and measures their timings. More effective test case generation techniques
represent more sophisticated optimization strategies such as evolutionary al-
gorithms. They can be applied in the same way as random testing, but result
in much more accurate timings.

Permanent testing or monitoring of QoS requirements in general or real-
time requirements in particular, beyond deployment, can be carried out
through a supplementary quality assurance technique, built-in QoS testing.
This provides a built-in testing framework that can be used to check code and
data integrity, residual defects, deadlocks and timing, permanently during
runtime of a component-based application.

Glossary

Abstraction

Abstraction is a powerful concept of hiding details and concentrating on es-
sential information only. It refers also to a domain in the three-dimensional
model of development in the KobrA method in the abstraction/concretization
dimension.

Acceptance Testing

Acceptance testing refers to the test activities on the final application accord-
ing to the user’s or customer’s requirements.

Application Engineering

Application engineering refers to all activities that deal with assembling and
integrating existing components into a single application. It refers also to
the instantiation of a final product out of a product family in product line
engineering.

Assertion

An assertion is a boolean expression that defines the necessary conditions for
the correct execution of an object or a component.

Average Case Execution Time

Average runtime of a program or a component’s interaction over all feasible
runs according to varying input parameters.

Basic Contract

A basic contract includes the signatures that a component provides or re-
quires in terms of invocable operations, signals that a component sends or
receives, and exceptions that a component throws or catches. It is also termed
a syntactic contract.

286 Glossary

Behavioral Contract

This is the same as the basic contract, plus it defines the overall functionality
and behavior of a component in terms of pre- and postconditions of operations
and externally visible, provided and required state transitions.

Behavioral Model

This is one part of a KobrA component specification which describes in terms
of statechart diagrams or statechart tables how a component behaves in re-
sponse to external stimuli.

Best Case Execution Time

This is the shortest feasible runtime of a program or a component over all
feasible runs according to varying input parameters.

Built-in Testing

Built-in testing refers to all software artifacts that are built into a component,
such as assertions, testing interfaces and tester components, to support testing
activities.

COTS Component

A commercial off-the-shelf component is a ready-to-use physical component
from a third party that can be incorporated into an application.

Certification

Certification is the process, carried out by a third party, of assuring that a
vendor’s claims concerning a product (e.g., a component) are justified. The
third party may be an independent certification organization, the owner of a
broker platform that distributes components, or a user group that publishes
the opinions of its members.

Client

A client of a component instance SI is any other component instance that
invokes the operations of SI. A client of component S (development-time de-
scription) is any other component with instances that are clients of S’s in-
stances.

Component

A component is a reusable unit of composition with explicitly specified pro-
vided and required interfaces and quality attributes, which denotes a single
abstraction and can be composed without modification. In this book, the term
component refers to a development-time description of a unit of composition,
in contrast to a component instance or a physical component.

Glossary 287

Component Adapter

A component adapter is an additional component in its own right that is
inserted between two initially alien components to transfer what one compo-
nent “means” into something that the other component “understands” and
vice versa. It adapts the deviating contracts of two components so that they
can interact in a meaningful way.

Component Contract

The interaction of components is based on the client/server model and the
mutual agreement that the client meets the precondition of the server (client’s
contract) in order for the server to guarantee its postcondition (server’s) con-
tract. If the client fails to meet the precondition of a service, the server is not
bound to its postcondition. This is a mutual agreement on which all compo-
nent interactions are based, and termed a component contract.

Component Deployment

Component deployment is referred to as the act of configuring and running a
component instance in its runtime environment.

Component Engineering

Component engineering represents all development activities that deal with
developing individual components, rather than assemblies of components, that
is applications.

Component Framework

This is an assembly of components that represents a product family. It can be
instantiated, i.e., other components added, to retrieve the final application.

Component Instance

This is a component at runtime, according to the same idea that an object is
an instance of its corresponding class.

Component Meta-model

This is the organization of a component expressed in terms of a modeling
notation (a model of a model). A component meta-model describes the parts
of a component description in a graphical form.

Component Realization

This is a collection of descriptive documents defined by the KobrA method
that describe how the private design of a KobrA component fulfills its spec-
ification. The documents comprise structural models, activity models, inter-
action models, and a quality documentation.

288 Glossary

Component Specification

This is a collection of descriptive documents defined by the KobrA method
that describe a component’s interfaces. The documents comprise structural
models, behavioral models, functional models, non-functional specifications,
and a quality documentation.

Component State

A state is a distinct setting of a component’s internal attributes that deter-
mines the component’s externally visible behavior.

Component Wrapper

This is the same as a component adapter.

Component-Based Development

This term represents all activities that deal with the development of software
applications from existing reusable parts. It is separated into two subactivities,
component engineering dealing with how individual components need to be
built to be reusable, and application engineering dealing with how components
need to be integrated into final applications.

Composition

This is the act of building or composing an application from existing parts. It
is also a domain in the three-dimensional development model of the KobrA
method in the composition/decomposition dimension.

Concretization

This is the act of turning an abstract software application described in the
form of models into a more concrete software system, for example, described
in the form of source code. It is also a domain in the three-dimensional de-
velopment model of the KobrA method in the abstraction/concretization di-
mension.

Conformance Map

A conformance map describes a COTS component’s externally visible features
in terms of a mapping between the notation of the reused COTS component
and the notation of our own development process, for example, KobrA and
UML.

Containment

This is a development-time association defining a parent/child relation be-
tween components.

Glossary 289

Context Realization

This describes the properties of a component’s environment according to the
KobrA method. It comprises all the models of a normal component realization,
and, in addition, enterprise models that capture the abstract business for the
intended system.

Decision Model

In a product family development, a decision model describes the groups of fea-
tures possessed by the component for different members of the product fam-
ily. It identifies the variation points and the corresponding resolution space in
terms of effects of each resoltution option on the other models of the compo-
nent.

Decomposition

This is the act of separating an application into finer-grained parts that are
individually easier to tackle. It refers also to a domain in the three-dimensional
development model of the KobrA method in the composition/decomposition
dimension.

Deployment Environment

This is the runtime platform in which an application is eventually executed,
in contrast to the development environment.

Development Method

A development provides a number of concepts, techniques, tools, and proce-
dures that guide a software development in what engineers have to do, how
they have to do it, and when they have to do it.

Embodiment

This is the act of transferring an application from a more abstract representa-
tion into a more concrete representation along the abstraction/concretization
dimension of the KobrA method.

Encapsulation

Encapsulation is a key concept of object and component technology based
on abstraction. Encapsulation separates what a component does from how it
does it.

Execution Time Analysis

This is concerned with all activities carried out in order to assess a compo-
nent’s best-, average-, and worst-case timings.

290 Glossary

Export Interface

This is the collection of services that a component provides. It is also termed
provided interface.

Framework Engineering

This refers to all activities carried out to devise the core of a product family,
the component framework.

Functional Model

This is the part of a component specification which describes the externally
visible effects of the operations supplied by a component. Each component
operation has one functional model.

Genericity

This is a domain in the three-dimensional development model of the KobrA
method that refers to the genericity/specificity dimension. This dimension
deals with the framework and application engineering activities in a product
family development.

Import Interface

This is the collection of services that a component requires from its environ-
ment or runtime platform. It is also termed required interface.

Information Hiding

The principles of abstraction and encapsulation lead to the principle of infor-
mation hiding. It refers to the principle that objects and components are fully
described and usable according to their externally visible features without
access to their internal implementations.

Instantiation

Instantiation refers to the act of turning an abstract entity into a concrete
entitiy, that is, turning a component into a component instance, and instan-
tiating a product family core representing a generic system into a concrete
product.

Integration Test

This is a test that assesses component interactions according to their provided
and required contracts when components are integrated to compose the final
system.

Glossary 291

Interface Definition Language (IDL)

This is a notation used by many contemporary component platforms to es-
tablish syntactic component interactions.

Invocation History

The invocation history refers to the sequence of operation invocations on a
component, including their input parameter values, to bring a component into
a distinct state.

KobrA Component

This is a component in accordance with the component model of the KobrA
method, including a component specification, a component realization, and
quality attributes with the required models.

Logical Component

This refers to an abstract component in a modeling hierarchy, in contrast to
a concrete physical component in the runtime environment.

Logical State

This is an abstract externally visible description of the concrete internal at-
tribute settings of a component. Logical states represent value domains of
concrete physical component states. One logical state represents a number of
internal physical states.

Middleware

The middleware refers to what is commonly understood as the collection of all
services provided by contemporary component platforms. These services have
not yet made it into the operating system environment, so that they reside in
the middle between the operating platform and the application level.

Model-Based Testing

This refers to all activities and techniques that deal with the derivation of test
artifacts from models.

Model-Driven Architecture

This is one of OMG’s proposed approaches to future system engineering in
which entire applications are modeled in graphical notations and then trans-
formed automatically into executable entities.

292 Glossary

Model-Driven Development

System development according to the principles of the model-driven architec-
ture.

Normal Object Form (NOF)

This is a predefined implementation profile that contains elements of the core
features of object-oriented programming languages, and thus can be simply
translated into any mainstream object-oriented language.

Object Request Broker (ORB)

This is the part of a CORBA platform responsible for accepting and redirect-
ing component requests. It works pretty much like an Internet proxy.

Physical Component

This is a concrete binary executable version of an abstract component.

Physical State

This is a concrete internal attribute setting of a component. A physical state
represents a distinct value setting of an abstract component state that does
not define values but only value domains.

Postcondition

This refers to the collection of all constraints on component properties of
the server that must be fulfilled after successful completion of an operation
invocation on a component. The postcondition is part of a server’s component
contract.

Precondition

This refers to the collection of all constraints on component properties of the
client that must be fulfilled before an operation may be called on a server.
The precondition is part of the client’s component contract.

Product Family

This refers to all possible similar systems that are based on a common product
family core, the component framework.

Product Line

This is the same as a product family.

Glossary 293

QoS Contract

A quality-of-service contract quantifies the expected behavior or the compo-
nent interaction in terms of minimum and maximum response delays, average
response, quality of a result, e.g., in terms of precision, result throughput in
data streams, and the like.

Quality Assurance Plan

This is a collection of documents defining what quality means for a devel-
opment project, how it manifests itself in different kinds of products, what
quality aspects are important for different kinds of products, and which qual-
ity levels are required and how they can be reached.

Refinement

Refinement is the representation of an entity in the same notation at a finer
level of detail.

Semantic Map

This describes a mapping between the specification of a desired component
and the KobrA specification of the interface offered by a foreign component.

Server

A server of a component instance CI is any other component instance whose
operations CI invokes. A server of a component C (as a type) is any other
component with instances that are servers of C’s instances.

Structural Model

This describes classes and the nature of their attributes, operations, and re-
lations in the form of UML diagrams.

Spiral Model

The spiral model represents an iterative approach to organize the phases of
the software devlopment life-cycle. Each iteration in the process goes through
planning, determining goals, alternatives, and constraints, evaluating alterna-
tives and risks, developing and testing.

Synchronization Contract

The synchronization contract adds another dimension to the behavioral con-
tract, which is the sequence or combination with which the interdependent
operations of a component may be invoked.

294 Glossary

Test

This term refers to an experiment under controlled conditions that applies a
set of test cases or a test framework in order to validate wether a tested entity
is consistent with its specification.

Test Case

This refers to an experimental execution of the component under considera-
tion; a test case comprises an operation with parameters, expected and actual
pre- and postconditions, a result, and a verdict.

Test Modeling

This refers to all activities and techniques that deal with the specification of
test artifacts using models.

Test Stub

This represents fake functionality at a component’s required interface with
which it can be executed and assessed in a test run.

Testable Component

This refers to a component that provides an additional access mechanism to
alleviate testing in built-in contract testing.

Tester Component

This refers to a component that contains test cases in built-in contract testing.

Testing Component

This refers to a component that owns a built-in tester component in built-in
contract testing.

Testing Interface

This is an additional access mechanism of a component that facilitates its
testing.

Translation

Translation is a transformation from one representation format into another
one on the same level of detail.

UML Testing Profile

This is a variant of UML that addresses specifically the requirements of build-
ing test systems with UML.

Glossary 295

Usage Model

This is a model that describes how a system is used.

Validation

Validation refers to all activities that are applied to assess whether “we build
the right system.” Typically, this comprises testing technologies that are ap-
plied in a translation relation.

Verification

Verification refers to all activities that are applied to assess whether “we build
the system right.” Typically, this comprises inspection and review techniques
that are applied in a transformation relation.

V-Model

The v-model is one of the earliest product models that shows how the arti-
facts in a software development are related to one another. It aligns with the
waterfall model as process model.

Waterfall Model

Software development process that proceeds linearly from requirements anal-
ysis through design, coding, and unit testing, subsystem testing and system
testing. The waterfall model as process model aligns with the v-model as
product model.

Worst-Case Execution Time

This is the longest feasible runtime of a program or a component over all
feasible runs according to varying input parameters.

References

1. A. Abdurazik and J. Offutt. Using UML collaboration diagrams for static
checking and test generation. In International Conference on the Unified Mod-
eling Language (UML 2000), York, UK, October 2000.

2. P. Allen and F. Frost. Component-Based Development for Enterprise Systems:
Applying the Select Perspective. Cambridge University Press, 1998.

3. S. Amiri, C. Bunse, H.G. Gross, N. Mayer, and C. Peper. Marmot – Method
for object-oriented and component-based embedded real-time system develop-
ment and testing. http://www.marmot-project.org.

4. H. Apperly. The Component Industry Metaphor. In Component-Based Soft-
ware Engineering, Heineman/Councill (Eds), Boston, 2001. Addison-Wesley.

5. C. Atkinson, C. Bunse, H.-G. Gross, and T. Kühne. Towards a general com-
ponent model for Web-based applications. Annals of Software Engineering,
13, 2002.

6. C. Atkinson et al. Component-Based Product-Line Engineering with UML.
Addison-Wesley, London, 2002.

7. F. Barbier, N. Belloir, and J.-M. Bruel. Incorporation of test functionality
into software components. In 2nd International Conference on COTS-Based
Software Systems, Volume LNCS 2580, Ottawa, Canada, Feb. 2003. Springer.

8. J. Bayer et al. Pulse – A methodology to develop software product lines.
In Proceedings of the 5th Symposium on Software Reusability (SSR’99), Los
Angeles, May 21–23, 1999.

9. K. Beck. Extreme Programming Explained. Addison-Wesley, 1999.
10. K. Beck and E. Gamma. Test Infected – Programmers Love Writing Tests.

CSLife and OTI, Zürich (http://members.pingnet.ch/gamma/junit.htm).
11. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York,

1990.
12. B. Beizer. Black-Box Testing, Techniques for Functional Testing of Software

and Systems. Wiley, New York, 1995.
13. N. Belloir, J.-M. Bruel, and F. Barbier. BIT/J User’s Guide.

Technical Report, University of Pau, LIUPPA, http://liuppa.univ-
pau.fr/themes/aoc/aoc/bitj.php, 2003.

14. A. Bertolino and P. Inverardi. Architecture-based software testing. In SIG-
SOFT’96 Workshop on Software Architectures, San Francisco, CA, USA, 1996.

298 References

15. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making compo-
nents contract aware. IEEE Software, 32(7):38–44, 1999.

16. R. Binder. Testing Object-Oriented Systems: Models, Patterns and Tools.
Addison-Wesley, 2000.

17. J. Bloch. Effective Java Programming Language Guide. Sun Microsystems,
2001.

18. J. Bøegh. Quality evaluation of software products. Software Quality Profes-
sional, 1(2), 1999.

19. L. Bokhorst (Ed.). Requirements Specification Description Template. Tech-
nical Report, DESS Project (Software Development Process for Real-Time
Embedded Software Systems), November 2001.

20. G. Booch. Software Components with Ada: Structures, Tools and Subsystems.
Benjamin-Cummings, Redwood, CA, 1987.

21. M. Born, A. Hoffmann, A. Rennoch, and J. Reznik. The European CORBA
Components open source initiative. European Research Consortium for Infor-
matics and Mathematics – News, 55:33–34, October 2003.

22. J. Bosch (Ed.). Generative and Component-Based Software Engineering, Vol-
ume 2186 of Lecture Notes in Computer Science. Springer, Berlin, 2001.

23. F. Brooks. The Mythical Man Month. Addison-Wesley, 1995.
24. A.W. Brown. Large-Scale, Component-Based Development. Prentice Hall,

2000.
25. C. Bunse. Pattern-Based Refinement and Translation of Object-Oriented Mod-

els to Code, Volume 2 of PhD Theses in Experimental Software Engineering.
Fraunhofer, Stuttgart, 2001.

26. C. Bunse and C. Atkinson. Improving quality in object-oriented software: Sys-
tematic refinement and translation from models to code. In 12th International
Conference on Software & Systems Engineering and Their Applications, Paris,
France, 1999.

27. C. Bunse and C. Atkinson. The normal object form: Bridging the gap from
models to code. In 2nd International Conference on the Unified Modeling
Language, Fort Collins, USA, 1999.

28. J. Cheesman and J. Daniels. UML Components, A Simple Process for Speci-
fying Component-Based Systems. Addison-Wesley, 2000.

29. S. Chung et al. Testing of concurrent programms based on message sequence
charts. In IEEE International Symposium on Software Engineering for Parallel
and Distributed Systems, Los Angeles, CA, May 17–18, 1999.

30. J. Clark, C. Clarke, S. DePanfilis, G. Granatella, P. Predonzani, A. Sillitti,
G. Succi, and T. Vernazza. Selecting components in large COTS repositories.
Journal of Systems and Software, 2004.

31. A. Cockburn. Basic Use Case Template. Technical Report TR.96.03a, Human
and Technology (http://alistair.cockburn.us), Salt Lake City, 1996.

32. A. Cockburn. Writing Effective Use Cases. Addison-Wesley, Boston, 2001.
33. D. Coleman et al. Object-Oriented Development. The Fusion Method. Prentice

Hall, 1994.
34. Component+ Consortium, www.component-plus.org. Built-in Test Vade

Mecum – Part 1: A common BIT architecture, 2003.
35. Component+ Consortium, www.component-plus.org. Built-in Test Vade

Mecum – Part 2: Interface specifications, types, syntax and semantics, 2003.
36. Component+ Consortium, www.component-plus.org. Built-in Test Vade

Mecum – Part 3: Quality of service testing, 2003.

References 299

37. Component+ Consortium. Built-in Testing for Component-Based Develop-
ment. Technical Report, Component+ Project, www.component-plus.org,
2001.

38. Component+ Consortium. Built-in Testing for Component-Based Develop-
ment. Technical Report, Deliverable D3, www.component-plus.org, 2001.

39. J.R. Corbin. The Art of Distributed Applications: Programming Techniques
for Remote Procedure Calls. Springer, 1991.

40. K. Czarnecki and U.W. Eisenecker. Generative Programming. Addison-Wesley,
2000.

41. W. Dröschel and M. Wiemers. Das V-Model 1997. Oldenbourg, 1999.
42. D.F. D’Souza and A.C. Willis. Objects, Components and Frameworks.

Addison-Wesley, 1998.
43. A. Eberhart and S. Fischer. Web Services. Hanser, München, 2003.
44. H.-E. Eriksson and M. Penker. UML Toolkit. Wiley, 1998.
45. European Telecommunications Standards Institute (ETSI). The Testing and

Test Control Notation – Part 1: TTCN-3 Core Language. Technical Report,
ETSI ES 201 873-1, 2003.

46. European Telecommunications Standards Institute (ETSI). The Testing and
Test Control Notation – Part 2: TTCN-3 Tabular Presentation Format. Tech-
nical Report, ETSI ES 201 873-2, 2003.

47. European Telecommunications Standards Institute (ETSI). The Testing and
Test Control Notation – Part 3: TTCN-3 Graphical Presentation Format.
Technical Report, ETSI ES 201 873-3, 2003.

48. European Telecommunications Standards Institute (ETSI). The Testing and
Test Control Notation – Part 4: TTCN-3 Operational Semantics. Technical
Report, ETSI ES 201 873-4, 2003.

49. European Telecommunications Standards Institute (ETSI). The Testing and
Test Control Notation – Part 5: TTCN-3 Runtime Interface. Technical Report,
ETSI ES 201 873-5, 2003.

50. European Telecommunications Standards Institute (ETSI). The Testing and
Test Control Notation – Part 6: TTCN-3 Control Interface. Technical Report,
ETSI ES 201 873-6, 2003.

51. Cpp Test Framework for C++. http://cppunit.sourceforge.net.
52. Perl Unit Test Framework for C++. http://perlunit.sourceforge.net.
53. International Organization for Standardization (ISO). Information Technol-

ogy - Open System Interconnection, Conformance Testing Methodology and
Framework. Technical Report, ISO/IEC 9646:1998, 1998.

54. International Organization for Standardization (ISO). Information Technology
- Open Distributed Processing - Interface Definition Language. Technical
Report, ISO/IEC 14750:1999, 1999.

55. International Organization for Standardization (ISO). Software Engieering
– Product Evaluation – Part 3: Process for Developers. Technical Report,
ISO/IEC 14598-3:2000, 2000.

56. International Organization for Standardization (ISO). Software Engieering –
Product Quality – Part 1: Quality Model. Technical Report, ISO/IEC 9126-
1:2001, 2001.

57. International Organization for Standardization (ISO). Software Engieering –
Product Quality – Part 2: External Metrics. Technical Report, ISO/IEC TR
9126-2:2003, 2003.

300 References

58. International Organization for Standardization (ISO). Software Engieering –
Product Quality – Part 2: Internal Metrics. Technical Report, ISO/IEC TR
9126-3:2003, 2003.

59. M. Fowler. A UML Testing Framework. Software Development, April 1999.
60. M. Fowler and K. Scott. UML Distilled. Addison-Wesley, 1997.
61. C Unit Test Framework. http://cunit.sourceforge.net.
62. JUnit Test Framework. http://www.junit.org.
63. XUnit Test Framework. http://c2.com/cgi/wiki?testingframework.
64. S. Frolund and J. Koisten. QML: A language for quality of service specifica-

tion. Technical Report HPL-98-10 980210, Hewlett-Packard, 1998.
65. J. Gao. Challenges and problems in testing software components. In Workshop

on Component-Based Software Engineering (ICSE 2000), Limerick, June 2000.
66. J.Z. Gao, H.-S.J. Tsao, and Y. Wu. Testing and Quality Assurance for

Component-Based Software. Artech House, 2003.
67. S. Ghosh and A.P. Mathur. Issues in testing distributed component-based sys-

tems. In Workshop on Testing Distributed Component-Based Systems (ICSE
1999), Los Angeles, May 1999.

68. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

69. J. Grabowski and M. Schmitt. TTCN-3 - A language for the specification and
implementation of test cases. ’at – Automatisierungstechnik, 3, 2002.

70. L. Graham, B. Henderson-Sellers, and H. Younessi. The OPEN Process Spec-
ification. Addison-Wesley, 1997.

71. H.-G. Gross. Measuring Evolutionary Testability of Real-Time Software. PhD
thesis, University of Glamorgan, Pontypridd, Wales, UK, June 2000.

72. H.-G. Gross. An evaluation of dynamic, optimisation-based worst-case execu-
tion time analysis. In International Conference on Information Technology,
Kathmandu, Nepal, 2003.

73. H.-G. Gross, C. Atkinson, F. Barbier, N. Belloir, and J.-M. Bruel. Busi-
ness Component-Based Software Engineering, Barbier (Ed.), Chapter Built-in
Contract Testing for Component-Based Development (Chapter. 4). Kluwer,
2003.

74. H.-G. Gross, C. Atkinson, and F. Barbier. Component-Based Software Quality,
Cechich, Piattini, Vallecillo (eds.), Volume 2693 of Lecture Notes in Computer
Science (LNCS), chapter Component Integration through Built-in Contract
Testing. Springer, Berlin, 2003.

75. H.-G. Gross and N. Mayer. Search-based execution-time verification in object-
oriented and component-based real-time system development. In 8th IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS 2003), Guadalajara, Mexico, January, 15–17 2003.

76. H.-G. Gross, I. Schieferdecker, and G. Din. Quality in Component-based De-
velopment – Testing and Debugging, Beydeda (Ed.), Chapter Modeling and
Implementation of Built-in Contract Tests. Springer, Berlin, 2004.

77. M. Grossman. Component testing: An extended abstract. In Workshop on
Component-Oriented Programming (ECOOP 1998), Brussels, July 1998.

78. Object Management Group. History of CORBA. Technical Report,
http://www.omg.org, 1997–2004.

79. Object Management Group. Model driven architecture - resource page. Tech-
nical Report, http://www.omg.org, 1997–2004.

References 301

80. Object Management Group. Object management architecture - resource page.
Technical Report, http://www.omg.org, 1997–2004.

81. Object Management Group. UML testing profile. Technical Report,
http://www.omg.org, 1997-2004.

82. Object Management Group. CORBA - core specification. Technical Report,
Version 3.0, December 2002.

83. D.S. Guindi, W.B. Ligon, W.M. McCracken, and S. Rugaber. The impact of
verification and validation of reusable components on software productivity.
In 22nd Annual Hawaii Intl Conference on System Sciences, Pages 1016–1024,
1989.

84. D. Hamlet, D. Mason, and D. Woit. Theory of software reliability based
on components. In 23rd International Conference on Software Engineering
(ICSE-01), Los Alamitos, California, 2001. IEEE Computer Society.

85. D. Harel. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

86. M.J. Harrold, D. Liang, and S. Sinha. An approach to analyzing and testing
component-based systems. In Workshop on Testing Distributed Component-
Based Systems (ICSE 1999), Los Angeles, May 1999.

87. J. Hartmann, C. Imoberdorf, and M. Meisinger. UML-based integration test-
ing. In International Symposium on Software Testing and Analysis (ISSTA
2000), Portland, USA, August 2000.

88. R. Heckel and M. Lohmann. Towards model-driven testing. Electronic Notes
in Theoretical Computer Science, 82(6), 2003.

89. G.T. Heineman and W.T. Councill (Eds). Component-Based Software Engi-
neering. Addison-Wesley, Boston, 2001.

90. J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge, 1975.

91. IEEE. Standard Glossary of Software Engineering Terminology, Volume IEEE
Std. 610.12-1990. IEEE, 1999.

92. Fraunhofer IGD. RIN system specification. Technical Report, Fraun-
hofer Institute for Graphical Data Processing, Darmstadt, Germany
(www.igd.fraunhofer.de), 2002.

93. J.A. Illik. Programmierung in C unter UNIX. Sybex, Düsseldorf, 1990.
94. European Telecommunications Standard Institute. www.etsi.org.
95. I. Jacobson. Object-Oriented Software Engineering. Addison-Wesley, 1992.
96. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development

Process. Addison-Wesley, 1999.
97. J.M. Jézéquel and B. Meyer. Design by contract: The Lessons of ARIANE.

IEEE Computer, 30(1):129–130, Jan. 1997.
98. J.-M. Jézéquel, D. Deveaux, and Y. Le Traon. Reliable objects: Lightweight

testing for oo languages. IEEE Software, July/August 2001.
99. K.C. Kang, S.G. Cohen, W.E Novak, and E.S. Petersen. Feature-oriented

domain analysis (FODA) feasibility study. Technical Report, Software Engi-
neering Institute, November 1990.

100. Y.G. Kim, H.S. Hong, D.H. Bae, and S.D. Cha. Test cases generation from
UML state diagrams. IEE Proceedings Software, 146(4), 1999.

101. P.B. Kruchten. The Rational Unified Process – An Introduction. Addison-
Wesley, 2000.

102. D. Lane. JUnit – The Definitive Guide. O’Reilly, 2004.

302 References

103. Y. Le Traon, D. Deveaux, and J.-M. Jézéquel. Self-testable components: from
pragmatic tests to design for testability methodology. In Technology of Object-
Oriented Languages and Systems, Nancy, France, June 7-11 1999.

104. J.T.L. Lions and ARIANE 501 Inquiry Board. ARIANE 5, flight 501 failure.
Technical Report, European Space Agency, Paris, July 1996.

105. Testing Technologies IST Ltd. TTanalyze,
http://www.testingtech.de/products/TTanalyze.

106. Testing Technologies IST Ltd. TTspec,
http://www.testingtech.de/products/TTspec.

107. Testing Technologies IST Ltd. TTthree,
http://www.testingtech.de/products/TTthree.

108. Testing Technologies IST Ltd. TTtwo2three,
http://www.testingtech.de/products/TTtwo2three.

109. B. Marick. The Craft of Software Testing. Englewood-Cliffs, New Jersey, 1995.
110. R.C. Martin. Java vs. C++. Technical Report, Object Mentor, Inc.,

www.objectmentor.com, March 1997.
111. J.D. McGregor. Testing a software product line. Technical Report CMU/SEI-

2001-TR-022, Software Engineering Institute, 2001.
112. B. Meyer. Object-oriented Software Construction. Prentice Hall, 1997.
113. Microsoft. Microsoft .NET. http://www.microsoft.com/net.
114. Sun Microsystems. Enterprise JavaBeans technology specification, version 2.1

– final release. Technical Report, java.sun.com, 1995–2003.
115. Sun Microsystems. JavaBeans component architecture documentation. Tech-

nical Report, java.sun.com, 1995–2003.
116. H.D. Mills, R.C. Linger, and R.A. Hevner. Box structured information sys-

tems. IBM Systems Journal, 26(4), 1987.
117. K.D. Nilsen and B. Rygg. Worst-case execution time analysis on modern

processors. ACM SIGPLAN Notices, 30(11):61–64, 1995.
118. Object Management Group. Unified Modeling Language Specification, 2000.
119. J. Offutt and A. Abdurazik. Generating tests from UML specifications. In

International Conference on the Unified Modeling Language (UML 1999), Fort
Collins, USA, October 1999.

120. OMG. UML 2.0 Testing Profile Specification. Object Management Group,
www.omg.org, 2003.

121. OpenTTCN. http://www.openttcn.com.
122. C.Y. Park. Predicting program execution times by analyzing static and dy-

namic program paths. Real-Time Systems, 5:31–62, 1993.
123. P. Predonzani, G. Succi, and T. Vernazza. Strategic Software Production with

Domain-Oriented Reuse. Artech House, 2000.
124. R.S. Pressman. Software Engineering: A Practioner’s Approach. McGraw-Hill,

New York, 1997.
125. CLARiFi Project. http://www.clarify.eng.it.
126. EU ITEA Empress Project. http://www.empress-itea.org.
127. P. Puschner. A tool for high-level language analysis of worst-case execution

times. In 10th Euromicro Workshop on Real-Time Systems, Berlin, 1998.
128. P. Puschner. Worst-case execution-time analysis at low cost. In Control En-

gineering Practice, Volume 6, Pages 129–135, 1998.
129. P. Puschner and C. Koza. Calculating the maximum execution time of real-

time programs. In Real-Time Systems, Volume 1, Pages 159–176, 1989.

References 303

130. P. Puschner and R. Nossal. Testing the results of static worst-case execution
time analysis. In 19th IEEE Real-Time Systems Symposium, Madrid, Dec.
1998.

131. P. Puschner and A. Schedl. Computing maximum task execution times – a
graph-based approach. In Real-Time Systems, Volume 13, Pages 67–91, 1997.

132. T. Reenskaug, P. Wold, and O. Lehne. Working with Objects: The OORAM
Software Development Method. Manning/Prentice Hall, 1996.

133. B. Regnell and P. Runeson. Combining scenario-based requirements with
static verification and dynamic testing. In 4th International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ98), Pisa,
June 8–9, 1998.

134. B. Regnell, P. Runeson, and C. Wohlin. Towards the integration of use case
modeling and usage-based testing. In 4th International Workshop on Require-
ments Engineering: Foundation for Software Quality (REFSQ98), Pisa, June
8-9 1998.

135. R.H. Reussner. Parametrisierte Verträge zur Protokolladaption bei Software-
Komponenten. Logos, Berlin, 2001.

136. R.H. Reussner. The use of parameterised contracts for architecting systems
with software components. In 6th Intl Workshop on Component-Oriented Pro-
gramming, Budapest, Hungary, 2001.

137. R.H. Reussner and H.W. Schmidt. Using parameterised contracts to predict
properties of component based software architectures. In 9th International
Workshop on Component-Based Software Engineering, Lund, Sweden, 2002.

138. R.H. Reussner, H.W. Schmidt, and I.H. Poernomo. Reliability prediction for
component-based software architectures. Systems and Software, 66(3), 2002.

139. D.J. Richardson and A.L. Wolf. Software testing at the architectural level.
In SIGSOFT 1996 Workshop on Software Architectures, San Francisco, CA,
USA, 1996.

140. P.J. Robinson. Hierarchical Object-Oriented Design. Prentice Hall, 1992.
141. D.S. Rosenblum. A practical approach to programming with assertions. IEEE

Transactions on Software Engineering, 21(1):19–31, Jan. 1995.
142. D.S. Rosenblum. Adequate testing of component-based software. Technical

Report, Dept. of Computer Science, University of California, TR 97-34, 1997.
143. J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.
144. J. Ryser and M. Glinz. A practical approach to validating and testing software

systems using scenarios. In Quality Week Europe, Brussels, 1999.
145. J. Ryser and M. Glinz. SCENT: A method employing scenarios to system-

atically deriving test cases for system test. Technical Report, University of
Zürich, 2000.

146. J. Ryser and M. Glinz. Using dependency charts to improve scenario-based
testing. In 17th International Conference on Testing Computer Software
(TCS2000), Washington, 2000.

147. P. Santos, T. Ritter, and M. Born. Rapid engineering of collaborative and
adaptive multimedia systems on top of CORBA Components, K. Irmscher
(Ed.). Kommunikation in Verteilten Systemen, VDE, 2003.

148. I. Schieferdecker, Z.R. Dai, J. Grabowski, and A. Rennoch. The UML 2.0
testing profile and its relation to TTCN-3. In Wiles Hogrefe (Ed.), Proceed-
ings of the 15th International Conference on Testing Communicating Systems,
Springer LNCS Volume 2644, Heidelberg, 2003.

304 References

149. I. Schieferdecker and J. Grabowski. The graphical format of TTCN-3 in the
context of MSC and UML. In International Workshop on SDL and MSC,
Springer LNCS Volume 2599, Heidelberg, 2003.

150. M. Schünemann, I. Schieferdecker, A. Rennoch, L. Mang, and C. Desroches.
Improving test software using TTCN-3. Technical Report, GMD
Forschungszentrum Informationstechnik (now Fraunhofer FOKUS), 2001.

151. H.P. Schwefel and R. Männer. Parallel Problem Solving from Nature. Springer,
1990.

152. B. Selic, G. Gullekson, and P. Ward. Real-Time Object-Oriented Modeling.
Wiley, 1994.

153. A. Sillitti, G. Granatella, P. Predonzani, G. Succi, and T. Vernazza. Ranking
and selecting components to build systems. In International Conference on
Enterprise Information Systems (ICEIS 2003), Angers, France, 2003.

154. IBM Rational Software. Purifyplus; http://www-306.ibm.com/soft-
ware/awdtools/purifyplus.

155. G. Succi, W. Pedrycz, and R. Wong. Dynamic composition of components
using Web-CODs. International Journal of Computers and Applications, 2002.

156. SunSoft. Java 2 Enterprise Edition (J2EE). http://java.sun.com/j2ee/.
157. C. Szyperski. Component Software, Beyond Object-Oriented Programming.

Addison-Wesley, Harlow, England, 1999.
158. C. Szyperski. Component Software, Beyond Object-Oriented Programming.

Addison-Wesley, London, England, second edition, 2002.
159. J. Udell. Componentware. Byte Magazine, 14(5):46–56, May 1994.
160. A. van der Hoek and H. Muccini. Towards testing product line architectures. In

ETAPS 2003 – Workshop on Test and Analysis of Component-Based Systems,
2003.

161. J. Vincent and G. King. Built-in-test for run-time-testability in software com-
ponents: Testing architecture. In BCS Software Quality Management Confer-
ence, 2002.

162. J. Vincent, G. King, P. Lay, and J. Kinghorn. Principles of built-in-test for
run-time-testability in component based software systems. Software Quality
Journal, 10(2), 2002.

163. J. Vincent, G. King, P. Lay, and J. Kinghorn. Business Component-based Soft-
ware Engineering, Franck Barbier (Ed.), chapter Built-In-Test for Run-Time-
Testability in Software Components: Testing Architecture. Kluwer, Boston,
2003.

164. P.J.M. Von Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and
Applications. Kluwer, 1997.

165. Y. Wang, G. King, I. Court, M. Ross, and G. Staples. On testable object-
oriented programming. ACM Software Engineering Notes, 22(4), 1997.

166. Y. Wang, G. King, D. Patel, S. Patel, and A. Dorling. On coping with real-
time software dynamic inconsistency by built-in tests. Annals of Software
Engineering, 7, 1999.

167. Y. Wang, G. King, and H. Wickburg. A method for built-in tests in
component-based software maintenance. In IEEE International Conference on
Software Maintenance and Reengineering (CSMR-99), Pages 186–189, 1999.

168. Y. Wang, D. Patel, G. King, and S. Patel. BIT: A Method for Built-in Tests in
Object-Oriented Programming, chapter 47 in Handbook of Object Technology,
Zamir (Ed.). CRC Press, 1998.

References 305

169. C.D. Warner. Evaluation of program testing. Technical Report, IBM Data
Systems Division Development Laboratories, Poughkeepsie, NY, July 1964.

170. B.F. Webster. Pitfalls of Object-Oriented Development. M&T Books, 1995.
171. J. Wegener and M. Grochtmann. Verifying timing constraints by means of

evolutionary testing. Real-Time Systems, 3(15), 1998.
172. J. Wegener, R. Pitschinetz, and H. Sthamer. Automated testing of real-time

tasks. In 1st International Workshop on Automated Program Analysis, Testing
and Verification, Limerick, Ireland, June 2000.

173. J. Wegener, H. Sthamer, and A. Baresel. Application fields for evolutionary
testing. In EUROStar, Testing and Verification, Stockholm, Sweden, Novem-
ber 2001.

174. D.M. Weiss and C.T.R. Lai. Software Product Line Engineering – A Family-
Based Software Engineering Process. Addison-Wesley, 1999.

175. E.J. Weyuker. Testing component-based software: A cautionary tale. IEEE
Software, 15(5), 1998.

176. E.J. Weyuker. The trouble with testing components,. In Component-Based
Software Engineering, Heineman/Councill (Eds). Addison-Wesley, 2001.

Index

.NET, 203

abstract state
specification, 267

abstract test case, 136
abstract test software, 148
abstraction dimension, 187
ACET, 269
acquires

stereotype, 146
ActiveX, 203, 204
activity diagram, 102

concept, 104
testing, 104

Activity Model, 35
activity model, 106
adapter component, 56, 59, 175
algorithmic model, 44, 48
application

non-testable version, 138
testable version, 138

application engineering, 9, 62, 184
architectural reuse, 242
Ariane 5 failure, 14, 121
assertion, 123, 144

object invariant, 123
parts, 124
postcondition, 123
precondition, 123

assertion combination, 145
average case execution time, 269

banking application, 211
basic contract, 256

BCET, 269, 272

behavioral contract, 256

behavioral model, 30, 42, 135

testing, 99

behavioral modeling, 98, 102

best-case execution time, 269

best-case execution-time

analysis, 272

BIT/J Library, 199

BIT/J Library structure, 199

black box coverage, 77

black box testing, 77

bottom-up composition, 229

bottom-up development, 21

bottom-up integration, 176

built-in

documentation, 234

platform test, 233

quality of service testing, 280

self test, 125

testing artifacts, 231

built-in contract testing, 122

architecture, 130, 164

C, 188

component technologies, 206

C++, 191

development, 185

documentation, 165

embodiment, 183

implementation, 179, 185

implementation technologies, 214

integration, 174

Java, 191

308 Index

JUnit, 216
motivation, 127
objective, 123, 127
permanent artifacts, 163
process, 123, 157
product line engineering, 183
programming languages, 187
removable artifacts, 163
return on investment, 127
step-by-step guide, 159
support framework, 199
test architecture, 135
tested interactions, 163
tester component, 123
testing interface, 123
TTCN-3, 223
web services, 209, 210

built-in testing, 123, 124
integration testing, 144
permanent checking, 144

Catalysis, 23
category partitioning, 78
CCM, 204, 205
certification, 238
CLARiFi, 238

broker platform, 239
certification model, 239

class association, 92
multiplicity, 93

class diagram
concepts, 92
testing, 96

Cleanroom, 23
client, 129
client/server model, 129
clientship, 5
cloning, 212
cohesion, 43
collaboration diagram

concepts, 109
COM, 203
component, 2

acceptance testing, 122
acquisition, 122
adapter, 13, 56, 59, 175
allocation, 207
assembly, 121
association, 152

binding, 181
certification, 238
clientship, 5
cloning, 212
cohesion, 43
composability, 3
composition, 4
configuration, 146, 154
containment, 4
context, 146
contract, 5, 92, 123, 129, 256
customer test, 233
data cohesion, 43
deallocation, 207
definition, 2
degradation, 126
deployment environment, 131
different usage patterns, 233
documentation, 69
engineering, 123
expectation, 127
expected environment, 126
final state, 134
framework, 62, 67, 184
functional cohesion, 43
glue code, 128
identification, 122
implementation, 7
independent deployment, 2
initial state, 134
instance, 6
integration, 58, 60, 179
interaction, 3, 129
interaction model, 53
interface, 5
internal state, 134
invariant, 145
meta-model, 7
modularity, 3
nesting, 4, 28, 91, 129
physical component, 9
platform, 181
postcondition, 8
precondition, 8
procurement, 238
properties, 3
provided interface, 5, 6
provider, 13
provider test, 232

Index 309

quality assurance plan, 69
quality attributes, 6
realization, 9, 25, 37, 44, 47, 53, 147
required interface, 5, 6
reusability, 3
reuse, 56, 229
runtime environment, 128
runtime reuse, 235
self test, 126
specification, 9, 25, 37
stakeholder, 13
state, 6
state change, 135
stereotype, 29
usage profile, 130
user, 13
variant, 183
wiring standards, 200
wrapper, 56, 59

component diagram
concepts, 93
testing, 95

component engineering, 9
component hook, 244
component integration, 174

adapter, 175
Component Interface, 5
component market, 121
component meta model

extended, 157
component specification, 38, 40
component technology, 200
component-based development, 2, 21

bottom-up development, 21
challenges, 121
clientship, 5
composition, 4
dimensions, 24
expectation, 122
principles, 4, 22
savings, 122
top-down development, 21
vision, 121

component-based software testing, 11
composability, 3
composition, 4, 10, 27

bottom-up, 177
top-down, 177

composition dimension, 187

COM+, 203
concretization dimension, 179, 187
configuration, 154
configuration mechanism, 231
conformance map, 59
constructive timing analysis, 260
constructor, 280
containment, 129

hierarchy, 57
rules, 27
tree, 4

containment diagram
concepts, 90

containment tree
testing, 98

context realization, 29, 31
contract, 5, 78, 129

containment, 129
ownership, 129
parameterized, 129

contract testing
exception, 146

control flow test, 104
CORBA, 204
CORBA component model, 205
CORBA Components, 205
core testing interface, 140
COTS component, 58

integration, 58
coverage

state-transition, 151
customer self-certification, 240
customer test, 233

data cohesion, 43
DCOM, 203
decision

resolution model, 68
decision model, 62
decision modeling, 67
decomposition, 10, 24, 180
decomposition dimension, 187
dependency, 92
deployment, 60
deployment diagram

concepts, 94
testing, 96

deployment environment, 121, 131
development

310 Index

for reuse, 3
with reuse, 3

development environment, 121, 255
development for reuse, 214
development with reuse, 214
development-time

component reuse, 232
environment, 258
evolution, 235

different usage patterns, 233
documentation, 234
domain analysis, 78
domain knowledge, 121
duality of components, 76
dynamic tester component, 138
dynamic timing analysis, 274
dynamic update, 279

problems, 280

embodiment, 25, 26, 50, 68, 179, 180,
183, 186, 229

C, 188
C++, 191
Java, 191

encapsulation, 3, 42, 124, 134
Enterprise JavaBeans, 201
enterprise model, 30
environment

expectation, 127
equivalence partitioning, 77, 78
error classification, 74
evolution strategies, 272
evolutionary testing, 272
execution environment, 122
execution time analysis, 259
explicit client/server relationship, 165
explicit client/server-relationship, 166
explicit invariant, 145
Explicit Server, 130
explicit server, 131, 133
export interface, 7
extended model

tester component, 268
testing interface, 267

extensible markup language, 209
externally visible state, 135
extreme programming, 215

FAST, 23

final state, 41, 43, 134
fitness function, 272
flow graph coverage, 104
FODA, 23
framework, 64

engineering, 64, 67, 68
framework engineering, 62, 184
functional

cohesion, 43
component, 42
model, 41, 184
testing, 78

Fusion, 23

generalization, 92
generic framework, 67
genetic algorithms, 272
glue code, 179
good tester component, 148
good testing interface, 140

handler, 280
hard real-time, 264
heavy weight test, 149
high-level tester components, 84
HOOD, 23

IDL, 204
implementation, 26, 179
implementation technologies, 179
implicit client/server relationship, 165
implicit client/server-relationship, 166
implicit design decisions, 52
implicit invariant, 145
implicit runtime system, 259
Implicit Server, 130
implicit server, 131, 133
import interface, 7
independently deployable, 3
information hiding, 3, 124, 134
inheritance, 92
initial state, 41, 43, 134
instantiation, 184, 186
integration test, 75
interaction diagram

concepts, 107
testing, 109

Interaction Model, 35
interaction model, 44, 48, 52, 53
interaction modeling, 106

Index 311

interaction test, 105
interface, 5
interface definition language, 204
internal state, 100, 134
invariant, 145
invocation

history, 143, 144, 271
interface, 204

Java
beans, 201
component, 201
ORB, 207
self test, 125

JavaBeans, 201
JUnit, 215

KobrA Method, 22
KobrA method, 22, 23

abstraction, 24
abstraction dimension, 187
activity model, 35, 36
algorithmic model, 44, 48
behavioral model, 30, 38, 42
component realization, 37, 44, 47
component specification, 37, 38, 40
composition, 24, 27
composition dimension, 187
concretization, 24
concretization dimension, 187
conformance map, 59
containment rules, 27
context realization, 29, 30
decision model, 62
decision modeling, 67
decomposition, 24
decomposition dimension, 187
deployment, 60
dimensions, 24, 180
embodiment, 24–26, 50, 68
encapsulation, 23
enterprise model, 30, 33
framework engineering, 64, 68
functional model, 38, 41
genericity, 24
incremental development, 23
information hiding, 23
interaction model, 35, 37, 44, 48
model-based development, 23

modularity, 23
operation specification template, 41,

42, 87
principles, 22
process model, 33
reuse, 23
semantic map, 59
separation of concerns, 23
specialization, 24
state model, 42
structural model, 30, 33, 38, 39, 44,

46
system construction, 60
top-level component, 37
unified functions, 23
usage model, 30
use case definition, 31
use case template, 32, 34, 89
validation, 27

late integration, 121
light weight test, 149
live update, 279, 280

test of, 235
logical component, 60
logical state, 100, 135
low testability, 134

mapping
semantic, 127
syntactic, 127

Marmot method, 30
message flow coverage, 105
message sequence-based testing, 79
method sequence-based testing, 79
middleware, 181
middleware platform, 200

organization, 202
model-based testing, 74, 80
model-driven

architecture, 23, 56
development, 21

modularity, 3
mutation, 272

n-transition coverage, 100
natural evolution, 272
nesting

tree, 4
node coverage, 76

312 Index

NOF model, 56
non-functional properties, 255
non-functional requirements, 255
normal object form, 55

object diagram
concepts, 92
testing, 96

object-oriented principles, 3
encapsulation, 3
modularity, 3
unique identity, 3

observability, 152
OLE, 204
OMA, 204
OMG IDL, 204
OMT, 23
OORAM, 23
OPEN, 23
operation specification

template, 41
testing, 84

operation specification template, 42, 87
optimization-based timing analysis, 272
ORB platform, 200
output state, 134
ownership, 92, 129

package diagram
concept, 93
testing, 96

parameterized contract, 129
partition testing, 78
partitioning testing, 77
permanent testing artifacts, 163
persistent state, 6
physical component, 9, 60
physical state, 100, 135
piecewise coverage, 99
platform test, 233
population, 272
postcondition, 41
precondition, 41
predefined state, 138
procurement, 238
product family, 24, 61, 183

framework, 184
instantiation, 65
test of, 242, 244

product line, 24, 63
engineering, 62, 183
test of, 242, 244

Provided Interface, 5
provided interface, 7, 25, 38, 41
provider test, 232
public stereotype, 7
PuLSE, 23

QML, 38, 260
QoS, 255

contract, 256
contract testing, 279
requirements, 265
testing interface, 267

QoS Modeling Language, 38, 260
quality assurance

techniques, 70
quality assurance plan, 69
quality attributes, 6

dependability, 6
documentation, 6
performance, 6

quality-of-service, 255
quality-of-service contract, 256
quantitative contract, 256

random testing, 272
Rational Unified Process, 23
real-time

cohesion, 262
requirement, 257

refinement, 53–55, 92, 181, 193
remote procedure call, 201
remote testing, 267
removable testing artifacts, 163
reproduction, 272
Required Interface, 5
required interface, 7, 25, 38
resolution model, 69
resource information network, 159

behavioral model, 168, 170
built-in testing, 167
containment, 160
context, 159
test cases, 171
testing interface, 168
testing profile, 174

resource information system

Index 313

class diagram, 162
response-time, 255

requirement, 257
specification, 265

responsibility-based testing, 78
reusability, 3
reuse, 229

architectural level, 62
architecture, 242
at development-time, 232
runtime, 235

RIN system
scenarios, 274
sequence diagram, 277
timing measurement, 278

ROOM, 23
round-trip path coverage, 100
runtime

evolution, 235
monitoring, 280
reuse, 235
support software, 133

search space, 273
exploitation, 273
exploration, 273

search-based timing analysis, 272
selection, 272
SelectPerspective, 23
self test, 125

advantage, 125
self-certification, 240
semantic map, 59
semantic mapping, 127, 174
separation of concerns, 23, 52
sequence diagram

concepts, 107
sequence model, 108
server, 129

explicit, 130
implicit, 130

server-client test, 235
set-to-state, 141
signal flow coverage, 105
simulated annealing, 272
soft real-time, 264
software crisis, 11
software development method, 22
software engineering, 1

cost dimension, 1
quality dimension, 1

software testing, 73
spiral model, 27
state

definition, 44
model, 42
transition, 9

state setup
criteria, 143

state transition, 131
state-based testing, 79, 99

criteria, 99
state-of-the-practice development, 21
state-transition

coverage, 151
statechart diagram, 98

concepts, 98
testing, 99

statement coverage, 76
stereotype

acquires, 146
komponent, 47
public, 7
subject, 46
testing, 185
variant, 29, 65, 185

stratification, 211
structural diagram

concepts, 90
testing, 95

structural model, 30, 44, 46, 113
structural modeling, 88
structural testing, 75, 77
subject stereotype, 46
synchronization contract, 256
syntactic mapping, 127, 174
system

construction, 60
design, 123
implementation, 179

test
adequacy criteria, 70
architecture, 135
as product line, 253
behavior, 172
defined, 124
invocation sequence, 142

314 Index

method, 148
model, 86
modeling, 112
objective, 172
observation, 172
process, 74
server-client, 235
stub, 27
target definition, 95
two stages, 232
verdict, 172
weight, 149

test case, 172
behavior, 113
implementation, 269
ingredients, 265
pseudocode, 271

test of
code integrity, 283
data integrity, 283
residual defects, 283

Testability, 135
testability, 152
testable component, 131
tester component, 123, 268, 280

alternatives, 156
C, 190
criteria, 153
customization, 231
C++, 193
design, 146
heavy test, 149
invocation sequence, 176
Java, 193
lighter test, 149
optimal design, 148
realization, 169
specification, 169
test weight, 149
variation, 152
volume, 152

testing
architecture, 164
artifact, 74
component, 131, 169
concepts, 74
documentation, 165
model, 184
stereotype, 185

technique, 74
testing and test control notation, 219
testing criteria

black box, 77
white box, 75

testing interface, 123, 131, 134, 267, 280
alternatives, 136, 140
assert all, 145
C, 188
C++, 191
design, 141
IBITError, 281
IBITErrorNotify, 281
IBITQuery, 281
IBITRegister, 281
ingredients, 138
inheritance, 155
is-in-state, 144
Java, 191
nested components, 155
optimal design, 140
realization, 167
set-to-state, 141
specification, 167
state setup, 131
state validation, 131
usage, 140

testing profile, 112, 172, 224
arbiter, 117
behavior, 113
behavioral concepts, 118
concepts, 112, 113
mapping to UML, 115
structural concepts, 113
structure, 112
SUT, 117
test architecture, 115
test behavior, 172
test case, 117, 172
test component, 116
test configuration, 116
test context, 116
test objective, 118, 172
test observation, 172
UML structure, 115
validation action, 172
verdict, 172

throughput, 255
timing analysis, 260

Index 315

approaches, 263
constructive, 260
dynamic, 263
problems, 261
static, 263
validation, 260

timing behavior, 258
timing contract test, 280
timing measurement, 267
top-down decomposition, 229
top-down development, 21
transition, 9
transition coverage, 100
translation, 53–55, 181, 193
TTCN-3, 219, 224

UML, 73
activity diagram, 35
activity model, 36
anchor symbol, 164
class diagram, 39
implementation, 55
interaction diagram, 35
interaction model, 37
meta-model, 7
normal object form, 55
object diagram, 39
profile, 55
structural model, 33, 39
testing profile, 112, 172, 215, 224
tools, 73
usage model, 67
use case model, 30, 31, 33

UML Components, 23
Unified Modeling Language, 7, 73
usage model, 30
usage modeling, 80
Usage Profile, 130
usage profile, 121, 130
use case definition, 31
use case diagram, 80

concepts, 80
coverage, 84
coverage criteria, 83
testing, 81

use case template, 32, 34, 85, 89
testing, 84

user requirement, 257

v-model, 27, 50
validation, 27, 73
validation action, 172
validation timing analysis, 260
variability identification, 67
variant stereotype, 29, 65, 185
variant system, 183
vending machine, 24

usage model, 33, 81
activity diagram, 106
activity model, 36
algorithmic model, 48, 50, 51
behavioral model, 45, 46, 101
cash component, 29
collaboration diagram, 110
containment, 195
containment diagram, 86
containment hierarchy, 28, 57
containment model testing, 96
containment testing, 96
containment tree, 91
context realization, 29, 30
cooling component, 29
decision model, 64
decomposition, 26
dispenser component, 26
display component, 29
embodiment, 189, 192
functional model, 41
initial state, 141
insert coins, 141
interaction model, 38, 48, 52, 53
key pad component, 29
operation specification, 43
realization, 147
refinement, 194
sequence diagram, 108
state model, 45
state table, 46
state transition table, 102
structural model, 35, 39, 41, 49, 94
structure, 94
testing containment, 86
testing interface, 144
testing model, 86
translation, 195
usage model, 67
use case, 34
use case diagram, 33, 81

316 Index

use case model, 31, 33
verification, 73

waterfall model, 27, 50
WCET, 269, 272
web services, 209
white box coverage, 75
white box testing, 75

worst-case execution time, 269

worst-case execution-time

analysis, 272

wrapper component, 59

XML, 209

XUnit framework, 215

Printing: Strauss GmbH, Mörlenbach

Binding: Schäffer, Grünstadt

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

