

Free	Webinars,	Videos,	and	Live	Training
Mr.	Jones	plans	to	have	free	step-by-step	demonstration	webinars,	videos,	and	live
trainings	walking	people	through	concepts	of	Selenium	and	QTP/UFT	from	A	-	Z.	The
material	will	teach/train	individuals	the	fundamentals	of	the	programming	language,
fundamentals	of	Selenium	and	QTP/UFT,	and	important	concepts	of	Selenium	and
QTP/UFT.	All	of	the	webinars,	videos,	and	live	training	will	be	directed	toward	beginners
as	well	as	mid-level	automation	engineers.

	

Sign	Up	to	Receive

	

1.	 3	Tips	To	Master	Selenium	Within	30	Days
http://tinyurl.com/3-Tips-For-Selenium
	

2.	 3	Tips	To	Master	QTP/UFT	Within	30	Days
http://tinyurl.com/3-Tips-For-QTP-UFT
	

3.	 Free	Webinars,	Videos,	and	Live	Trainings	
http://tinyurl.com/Free-QTP-UFT-Selenium

http://tinyurl.com/3-Tips-For-Selenium
http://tinyurl.com/3-Tips-For-QTP-UFT
http://tinyurl.com/Free-QTP-UFT-Selenium

Rex	Jones’	Contact	Information
Email	Address:	Rex.Jones@Test4Success.org	
LinkedIn:	https://www.linkedin.com/in/rexjones34
Books:	http://tinyurl.com/Rex-Allen-Jones-Books
Twitter:	@RexJonesII
Skype:	rex.jones34

	

mailto:Rex.Jones@Test4Success.org
https://www.linkedin.com/in/rexjones34
http://tinyurl.com/Rex-Allen-Jones-Books

Table	of	Contents
FREE	WEBINARS,	VIDEOS,	AND	LIVE	TRAINING

REX	JONES’	CONTACT	INFORMATION

TABLE	OF	CONTENTS

PREFACE

ABOUT	THE	AUTHOR

COPYRIGHT,	LEGAL	NOTICE,	AND	DISCLAIMER

ACKNOWLEDGEMENTS

CHAPTER	1	INTRODUCTION	TO	OBJECT-ORIENTED	PROGRAMMING

CLASSES,	OBJECTS,	AND	METHODS

ARRAYS	AND	STRINGS

INHERITANCE

PACKAGES

INTERFACES

ERRORS,	EXCEPTIONS,	AND	DEBUGGING

UTILIZING	INPUT	AND	OUTPUT

CHAPTER	2	CLASSES,	OBJECTS,	AND	METHODS

CLASSES

OBJECTS

METHODS

THIS	KEYWORD

ANNOTATIONS

ACCESS	MODIFIERS

STATIC	KEYWORD

CHAPTER	3	ARRAYS	AND	STRINGS

SINGLE-DIMENSIONAL	ARRAYS

MULTI-DIMENSIONAL	ARRAYS

FOR-EACH	LOOP

STRINGS

CHAPTER	4	INHERITANCE

FUNDAMENTALS	OF	INHERITANCE

SUPERCLASS	OBJECT

INHERITING	PRIVATE	MEMBERS

SUPERCLASS	AND	SUBCLASS	CONSTRUCTORS

POLYMORPHISM

ABSTRACTION

KEYWORD	FINAL

CHAPTER	5	PACKAGES

CREATE	A	PACKAGE

IMPORT	A	PACKAGE

JAVA	CLASS	LIBRARY

CHAPTER	6	INTERFACES

INTERFACE	IMPLEMENTATION

INTERFACE	VARIABLES

MULTIPLE	INHERITANCE

DEFAULT	INTERFACE	METHOD

CHAPTER	7	ERRORS,	EXCEPTIONS,	AND	DEBUGGING

ERROR	TYPES

THROWABLE	EXCEPTION	PARENT	CLASS

JAVA’S	BUILT-IN	EXCEPTIONS

COMMON	EXCEPTIONS

PRINCIPLES	OF	HANDLING	EXCEPTIONS

TRY	/	CATCH	BLOCK

FINALLY	BLOCK

CATCH	A	THROWABLE	EXCEPTION

METHODS	DEFINED	BY	THROWABLE

THROW	VS	THROWS

DEBUGGING

CHAPTER	8	UTILIZING	INPUT	AND	OUTPUT

STREAMS

FILE	INPUT/OUTPUT

CONCLUSION

RESOURCES

BOOKS	BY	REX	JONES	II

SIGN	UP	TO	RECEIVE

Preface
According	to	TIOBE,	Java	is	the	most	popular	programming	language	within	the
programming	community.	Therefore	Java	is	a	great	language	to	learn	in	the	world	of
automating	applications.	A	core	set	of	Java	is	necessary	to	be	effective	on	automation
projects.	Part	2	–	Java	4	Selenium	WebDriver	provides	a	core	set	of	Java	plus	concepts
involving	inheritance,	packages,	and	much	more.

	

Target	Audience

The	target	audience	is	programmers	with	knowledge	of	variables,	data	types,	operators,
branches,	and	loops.	It	is	recommended	to	read	Part	1	–	Java	4	Selenium	WebDriver,	if	an
individual	needs	to	gain	a	foundation	in	Java.

	

Purpose

The	purpose	of	this	book	is	to	not	overwhelm	you	with	hundreds	and	hundreds	of	pages
(known	as	information	overload)	regarding	Java.	However	it	will	provide	valuable
information	that	is	concise	with	straightforward	definitions,	examples,	and	figures.	After
reading	Part	2	–	Java	4	Selenium	WebDriver,	a	thorough	understanding	of	Java	and
object-oriented	programming	will	be	in	your	possession.

http://www.tiobe.com/tiobe_index

About	the	Author

	

Rex	Allen	Jones	II	is	a	QA/Software	Tester	with	a	passion	for	sharing	knowledge	about
testing	software.	He	has	been	watching	webinars,	attending	seminars,	and	testing
applications	since	February	2005.	Mr.	Jones	graduated	from	DeVry	University	in	June
1999	with	a	Bachelor’s	of	Science	degree	in	Computer	Information	Systems	(CIS).

	

Currently,	Rex	is	a	Sr.	Consultant	and	former	Board	of	Director	for	User	Group:	Dallas	/
Fort	Worth	Mercury	User	Group	(DFWMUG)	and	member	of	User	Group:		Dallas	/	Fort
Worth	Quality	Assurance	Association	(DFWQAA).	In	addition	to	his	User	Group
memberships,	he	is	a	Certified	Software	Tester	Engineer	(CSTE)	and	has	a	Test
Management	Approach	(TMap)	certification.

	

Mr.	Jones’	advice	for	people	interested	in	Functional	Automation	Testing	is	to	learn	the
programming	language.	This	advice	led	him	to	write	books	four	programming	books
“(Part	1	&	Part	2)	You	Must	Learn	VBScript	for	QTP/UFT”	and	“(Part	1	&	Part	2)	Java	4
Selenium	WebDriver”.	VBScript	is	the	programming	language	for	Unified	Functional
Testing	(UFT)	formerly	known	as	Quick	Test	Professional	(QTP)	and	Java	is	one	of	the
programming	languages	for	Selenium	WebDriver.

Copyright,	Legal	Notice,	and	Disclaimer
This	publication	is	protected	under	the	US	Copyright	Act	of	1976.	All	rights	are	reserved
including	resale	rights	which	applies	to	international,	federal,	state,	and	local	laws.	The
purchaser	is	not	allowed	to	share	or	sell	this	book	to	anyone.

	

Please	note	that	much	of	this	publication	is	based	on	personal	experience	and	anecdotal
evidence.	The	author	has	made	every	reasonable	attempt	to	produce	accurate	content	in
this	book.	He	assumes	no	responsibility	for	unknown	errors	or	omissions.	Therefore,	the
purchaser	should	use	this	information	as	he/she	sees	fit.

	

Any	trademarks,	service	marks,	product	names	or	named	features	are	assumed	to	be	the
property	of	their	respective	owners	and	used	only	for	reference.

	

Copyright	©	2016	Test	4	Success,	LLC.	All	rights	reserved	worldwide.

Acknowledgements
I	would	like	to	express	my	gratitude	to	my	wife	Tiffany,	children	Olivia	Rexe’	and	Rex	III,
editor	Samantha	Mann,	family,	friends,	and	the	many	people	who	provided
encouragement.	Writing	this	book	took	time	and	your	support	helped	pushed	this	book
forward.

	

Thank	You,

	

	

Rex	Allen	Jones	II	

Chapter	1
Introduction	to	Object-Oriented

Programming
Object-Oriented	Programming	(OOP)	is	the	most	popular	paradigm	in	programming.	It	is
an	approach	to	programming	that	centers	around	objects.	As	a	result,	identifying	objects	is
one	of	the	most	essential	principles	in	OOP.	According	to	dictionary.com,	an	object	is
anything	visible	or	tangible.	Therefore	objects	can	be	a	person,	place,	or	thing	whereby	it
is	recognized	in	programming	like	the	real	world.	All	objects	have	two	characteristics:
state	and	behavior.	State	identifies	the	object	and	behavior	represent	the	actions	of	the
object.

	

Chapter	1	underlines	object-oriented	programming	(OOP)	by	providing	an	overview	of
this	book	“Part	2	–	Java	4	Selenium	WebDriver”:		

	

							Classes,	Objects,	and	Methods

							Arrays	and	Strings

							Inheritance

							Packages

							Interfaces

							Errors,	Exceptions,	and	Debugging

							Utilizing	Input	and	Output

	

http://www.dictionary.com/browse/object?s=t

Classes,	Objects,	and	Methods
Java	is	an	object-oriented	programming	(OOP)	language	containing	classes,	objects,	and
methods	(see	Classes,	Objects,	and	Methods	in	Chapter	2).	A	class	is	a	blueprint	for
creating	an	object	and	a	method	execute	a	job	for	the	object.	Classes	include	data	and	code
that	operate	on	the	data.	Objects	serve	as	the	foundation	for	OOP	while	methods	perform
actions.	A	method’s	responsibility	is	to	instruct	the	program	what	action	to	perform	and
how	to	perform	the	action.

	

Arrays	and	Strings
In	Java,	arrays	and	strings	are	objects	(see	Arrays	and	Strings	in	Chapter	3).	An	array	is	a
group	of	related	variables	with	the	same	data	type,	same	name,	and	fixed	number	of
values.	All	items	in	the	array	are	accessed	by	an	index	which	starts	at	zero.	On	the	other
hand,	a	string	is	a	group	of	unchangeable	characters.	Many	methods	are	available	for
strings	that	facilitate	an	operation	on	the	object.

	

Inheritance
Inheritance	is	a	hierarchical	concept	which	allows	code	and	objects	to	be	reused	(see
Inheritance	in	Chapter	4).	Each	class	allows	other	classes	to	inherit	its	code.	As	a	result,
the	relationship	between	the	classes	are	superclass	and	subclass.	Superclass	is	the	parent
class	and	subclass	is	the	child	class.	The	classes	maintain	a	certain	amount	data	in
common	while	holding	unique	characteristics.

	

Packages
A	package	is	a	collection	of	related	classes	(see	Packages	in	Chapter	5).	The	package	is
comparable	to	a	folder	and	the	classes	are	similar	to	files	within	the	folder.	Each	class
within	the	package	can	be	accessed	by	the	package	name.	It	is	important	to	know	that	a
package	must	be	imported	if	a	class	wants	to	use	members	from	a	different	class.

	

Interfaces
An	interface	is	a	collection	of	related	methods	(see	Interfaces	in	Chapter	6).	Generally,
most	interfaces	do	not	include	the	body	of	a	method.	Therefore	an	interface	method
reveals	what	action	to	perform	but	not	how	to	perform	the	action.	This	concept	allows	a
class	to	implement	the	interface	method	and	decide	how	to	perform	the	action.	Each	class
has	the	ability	to	implement	a	different	action	for	the	same	interface	method.

	

Errors,	Exceptions,	and	Debugging
Errors	are	unavoidable	problems	in	a	program.	New	programmers	as	well	as	experienced
programmers	will	face	errors.	Syntax,	runtime,	and	logical	are	three	types	of	errors	in
Java.	Syntax	errors	stop	the	code	from	executing	while	runtime	errors	allow	code	to
execute	then	generate	an	error.	Logical	errors	are	the	most	difficult	errors	to	detect	due	to
no	error	message	during	execution.	The	programmer	must	know	what	to	expect	in	order	to
find	and	resolve	a	logical	error.

	

An	exception	is	an	error	that	is	occurs	at	runtime.	This	type	of	error	can	be	managed	by	a
block	of	code	called	an	exception	handler.	Exception	handlers	allow	the	program	to
generate	an	error	but	continue	executing	after	the	error.	Debugging	is	a	process	that	allows
a	programmer	to	observe	then	correct	an	error	and/or	exception.	A	tool	called	debugger
simplifies	the	task	of	resolving	errors	due	to	breakpoints	and	its	step-by-step	features.	

	

Note:	See	Errors,	Exceptions,	and	Debugging	in	Chapter	7	for	more	information

	

Utilizing	Input	and	Output
Java’s	Input	and	Output	(I/O)	is	a	very	large	system	consisting	of	many	classes,	interfaces,
and	methods	(see	Utilizing	Input	and	Output	in	Chapter	8).	Information	is	read	from	an
input	source	and	written	to	an	output	destination.	The	programs	perform	input	and	output
through	streams	whereby	streams	represent	data.	Files	in	Java	are	stored	and	organized	for
convenience.	Most	of	the	files	are	structured	in	a	hierarchy	known	as	a	tree.	At	the	top	of
every	tree	is	the	root	node	which	contains	folders	and	files.	All	folders	and	files	have	a
distinctive	path	within	the	tree.	The	files	can	be	created,	deleted,	moved,	copied,	and
verified	for	existence.

	

Chapter	1	provided	an	overview	of	the	upcoming	chapters.	The	subsequent	chapters
explore	classes,	objects,	methods,	arrays,	strings,	inheritance,	packages,	interfaces,	errors,
exceptions,	debugging,	and	Java’s	input/output	system.	Chapter	2	will	thoroughly	explain
classes,	objects,	and	methods	which	is	the	cornerstone	of	object-oriented	programming.

Chapter	2
Classes,	Objects,	and	Methods

Object-oriented	programming	(OOP)	is	a	programming	language	structured	around
objects.	Classes,	objects,	and	methods	are	interrelated	fundamentals	within	OOP.	An
object	is	anything	that	can	be	seen	or	perceived.	However,	a	class	is	a	template	for	objects
while	a	methods	provide	interaction	with	a	class	from	various	components	of	the	program.

	

The	data	and	the	code	(known	as	statements)	that	operate	on	the	data	are	two	merged
notions	of	an	object.	As	a	result,	the	two	merged	notions	allow	a	concept	called
information	hiding	whereby	data	can	be	hidden.	Therefore	by	default	an	object’s	data	can
be	accessed	only	by	methods	holding	the	object.	The	limited	access	prevent	other	program
components	from	interfering	and	causing	errors.	If	another	component	wants	to	change	an
object’s	data	then	the	component	must	call	a	publicly	accessible	method.	The	following
are	four	types	of	methods:

	

1.	 Instance	–	A	method	that	can	be	accessed	by	objects
2.	 Class	–	A	method	shared	between	all	objects	in	a	class
3.	 Main	–	A	special	method	used	to	run	an	application.	This	type	of	method	is	not

needed	for	Selenium	WebDriver.
4.	 Constructor	–	A	special	method	used	to	initialize	objects	of	a	particular	class

	

Methods	and	variables	are	labeled	members	of	a	class	since	they	form	the	class.	Access	to
both	members	are	controlled	by	four	modifiers:

	

1.	 public	–	A	modifier	that	allows	access	to	code	defined	outside	of	its	class
2.	 private	–	A	modifier	that	allows	access	to	other	members	within	its	class
3.	 no	modifier	–	A	modifier	that	allows	access	to	all	classes	within	its	package
4.	 protected	–	A	modifier	that	allows	access	within	its	package	and	to	all	subclasses

	

Usually,	members	of	a	class	are	accessed	by	objects	within	its	own	class.	However,	the
keyword	“static”	permits	a	member	to	be	accessed	before	any	object	is	created	within	its
class.	Methods	and	variables	are	declared	static	when	the	keyword	is	placed	in	front	of	the
member.	

	

Chapter	two	will	explain	the	following	regarding	classes,	objects,	and	methods:

	

							Classes

							Objects

							Methods

							This	Keyword

							Annotations

							Access	Modifiers

							Static	Keyword

	

Classes
Classes	define	data	and	code	that	operates	on	the	data.	The	data	is	represented	by	variables
while	the	code	is	represented	by	methods.	Both	variables	and	methods	are	members	of	a
class.	Hence	a	class	is	a	template	that	defines	the	structure	of	an	object.	Therefore	the
structure	of	a	class	must	be	precise.	Classes	formed	with	one	logical	entity	makes	the	class
complete.	It	is	important	to	define	classes	with	information	that	is	logically	connected.	For
example,	a	class	that	contains	information	about	an	English	class	would	not	contain
unrelated	information	about	the	school	zone	speed	limit.

	

Most	real-world	classes	include	an	instance	variable	and	a	method	to	operate	on	the
instance	variable.	Remember	from	the	first	book	“(Part	1)	Absolute	Beginner:	Java	4
Selenium	WebDriver”	an	instance	variable	is	declared	inside	a	class	but	outside	of	a
method.	As	a	result,	values	of	an	instance	variable	are	unique	to	each	object.	This	type	of
variable	can	be	used	before	or	after	it	is	initialized	with	visibility	to	all	methods	within	a
class.	The	following	is	the	syntax	for	defining	a	class:		

	

Syntax
class	ClassName

{

//	Declare	Instance	Variable

variableType	variableName1;

variableType	variableName2;

variableType	variableNameN;

//	Declare	Methods

methodType	methodName1	()

{

														//	Body	of	the	Method

}

methodType	methodName2	()

{

														//	Body	of	the	Method

}

methodType	methodNameN	()

{

														//	Body	of	the	Method

}

}

	

The	following	is	an	example	of	a	data	only	class	called	English	which	stores	three	instance
variables:	students,	weeks,	and	days.

	
class	English

{

int	students;

int	weeks;

int	days;

}

	

	

Figure	2.1	–	Data	Only	Class

	

Line	1	defines	the	English	class	and	lines	3	–	5	declare	the	instance	variables.	English	is	a
school	course	while	instance	variable	students	represent	the	number	of	students	in	the
class,	weeks	represent	the	number	of	weeks	for	the	English	course,	and	days	represent	the
number	of	days	per	week.	Whenever	a	class	is	defined,	it	is	considered	a	new	data	type.	In
this	case,	the	new	data	type	“English”	is	the	class	name.

	

Note:	A	convention	for	naming	classes	is	to	use	an	UpperCamelCase	where	each	word	in
the	class	name	begins	with	a	capital	letter	(i.e.,	EnglishCourse).

	

Objects
Object-Oriented	programming	(OOP)	is	built	upon	objects.	Therefore	it	is	crucial	to
understand	how	objects	are	formed	and	utilized.	An	object	can	be	anything.	All	objects
share	two	characteristics:	state	and	behavior.	State	identifies	the	object	and	behavior
represent	the	actions	of	the	object.	For	example,	a	dog	has	a	state	(name,	breed,	color)
which	identifies	the	dog	and	behavior	(bark,	jump,	fetch)	which	represent	the	dog’s
actions.	The	state	of	an	object	is	supported	by	variables	while	behavior	is	implemented
through	methods.	Objects	are	created	using	the	keyword	“new”.	The	following	example
illustrates	how	to	create	an	object	and	how	to	access	instance	variables:	

	
class	English

{

int	students;

int	weeks;

int	days;

}

	

class	OneEnglishCourse

{

public	static	void	main	(String	args[])

{

														English	ENG101	=	new	English	();

														int	totalDays;

													

														ENG101.students	=	10;

														ENG101.weeks	=	4;

														ENG101.days	=	3;

													

														totalDays	=	ENG101.weeks	*	ENG101.days;

														System.out.println(“The	English	101	course	is	a	total	of	“	+	totalDays	+	”	days”);

}

}

	

	

Figure	2.2	–	Create	New	Object	and	Access	Instance	Variables

	

Program	Output:
The	English	101	course	is	a	total	of	12	days

	

Line	12	creates	a	new	object	(English	ENG101	=	newEnglish	();)	by	combining	two	steps.
According	to	Java	A	Beginner’s	Guide	Sixth	Edition	(2014),	the	two	steps	combined	can
be	rewritten	like	the	following	to	show	each	step	individually	(page	106):

	

1.	 English	ENG101;	-	The	left	side	of		the	assignment	which	declares	a	variable
called	ENG101	of	class	type	English

2.	 ENG101	=	new	English	();	-	The	right	side	of	the	assignment	which	creates	a	copy
of	the	object	and	give	ENG101	a	reference	to	the	object

	

ENG101	is	a	creation	(known	as	instance)	of	English	after	creating	the	new	object.	Lines
15	–	17	assign	values	to	the	instance	variables	by	accessing	the	variables	using	the	dot	(.)
operator.	The	following	is	the	syntax	for	utilizing	the	dot	operator:

	

Syntax
objectName.MemberName;

	

The	dot	operator	connects	an	object	with	a	member	(instance	variable	or	method).	In	this
example,	an	object	name	(ENG101)	is	located	on	the	left	and	the	instance	variables
(students,	weeks,	days)	are	located	on	the	right.	An	object	hold	its	own	instance	variable
copy	defined	by	the	class.	Therefore,	if	multiple	objects	exist,	each	object	can	hold	a

different	value	than	the	other	object.	The	following	example	illustrate	a	creation	of	two
objects	(ENG101	and	ENG202):

	
class	English

{

int	students;

int	weeks;

int	days;

}

	

class	TwoEnglishCourses

{

public	static	void	main	(String	args[])

{

														English	ENG101	=	new	English	();

														English	ENG202	=	new	English	();

													

														int	totalDays101;

														int	totalDays202;

													

														ENG101.students	=	10;

														ENG101.weeks	=	4;

														ENG101.days	=	3;

													

														ENG202.students	=	12;

														ENG202.weeks	=	6;

	

														ENG202.days	=	3;

													

														totalDays101	=	ENG101.weeks	*	ENG101.days;

														System.out.println(“The	English	101	course	has	“	+	ENG101.students	+	”	students	and	the	course	last	“	+
totalDays101	+	”	days”);

													

														totalDays202	=	ENG202.weeks	*	ENG202.days;

														System.out.println(“The	English	202	course	has	“	+	ENG202.students	+	”	students	and	the	course	last	“	+
totalDays202	+	”	days”);

}

}

	

	

Figure	2.3	–	Two	Objects	Created

	

Program	Output:
The	English	101	course	has	10	students	and	the	course	last	12	days

The	English	202	course	has	12	students	and	the	course	last	18	days

	

Lines	12	and	13	create	two	objects	(ENG101	and	ENG202)	then	assign	values	to	both
objects	in	lines	18	–	24.	Recall,	if	multiple	objects	exist	then	each	object	can	hold	a
different	value	than	the	other	object.	In	this	example,	a	different	value	is	assigned	to
variables	“students	and	weeks”	but	variable	“days”	contains	the	same	value	“3”	for	both
objects.

	

Note:	The	convention	for	variables	are	lowerCamelCase	where	each	word	in	the	variable
name	begins	with	a	capital	letter	except	the	first	word.	However,	ENG101	and	ENG202	is
an	exception	which	contains	all	capital	letters	because	school	courses	normally	have	all
capital	letters	before	a	number	in	their	course	name.

	

Methods
A	method	is	a	block	of	code	surrounded	by	curly	brackets	that	perform	a	specific
action/task.	The	purpose	is	to	manipulate	and	provide	access	to	data	defined	by	the	class.
In	other	words,	a	method	performs	actions	on	the	data.	It	is	best	for	all	methods	to	carry
out	a	single	task.	For	example,	a	good	method	will	only	perform	a	single	task	of	adding
numbers	but	not	adding	numbers	and	saving	data	to	a	file.	The	program	may	become
difficult	to	read	and	understand	if	a	method	carries	out	more	than	one	task.

	

Methods	consist	of	a	header	and	body.	The	method	header	includes	a	method	type	and	a
method	name.	The	convention	for	method	name	is	similar	to	a	variable	name	which
consist	of	a	lowerCamelCase	style.	Each	word	begins	with	a	capital	letter	except	the	first
word.	Succeeding	the	method	name	is	a	required	pair	of	parenthesis	which	sets	apart
variables	from	methods.	The	following	is	the	syntax	for	method:

	

Syntax
methodType	methodName	(parameter-list)

{

//	Method	Body

}

	

The	methodType	(known	as	return	type)	determines	the	data	type	returned	by	the	method.
A	programmer	is	forced	to	use	keyword	“void”	for	the	methodType	if	no	values	are
returned.	The	methodName	can	be	any	name	except	a	Java	keyword.	A	good	technique	to
employ	for	naming	a	method	is	verb-noun	combinations,	such	as	“getOrder	or
addNumbers”.	Method	body	is	where	code	will	be	executed	to	carry	out	a	task.	The
parameter	list	are	variables	that	receive	arguments	passed	to	the	method.	If	the	method	has
no	parameters	then	the	parameter	list	must	remain	empty.

	

Note:	A	method	signature	is	the	methodName	and	parameter	list.

	

Method	Returns

	

Method	returns	are	concepts	that	return	a	value	from	a	method	or	transfer	control	out	of	a
method.	Both	concepts	are	achieved	by	using	the	return	keyword.	Execution	is	terminated
and	subsequent	statements	within	the	method	are	skipped	no	matter	where	the	return
keyword	is	located.	The	following	are	two	method	return	types:

	

1.	 Methods	that	return	a	value
2.	 Methods	that	cannot	return	a	value

According	to	ORACLE,	a	method	returns	to	the	code	that	invoked	it	when	it

	

completes	all	the	statements	in	the	method,
reaches	a	return	statement	or
throws	an	exception

whichever	occurs	first.

	

Note:	Usually,	the	return	keyword	(also	known	as	return	statement)	is	not	used	for
methods	that	cannot	return	a	value.	It	is	not	used	because	all	of	the	code	within	the	method
is	completed	before	executing	the	return	keyword.	However,	if	the	return	keyword	is	used,
then	it	will	be	implemented	at	the	end	of	the	method	to	transfer	control.

	

Return	A	Value

	

Most	methods	return	a	value	which	specifies	the	outcome	of	a	calculation	or	result	(pass,
fail,	etc.)	The	return	value	is	required	to	be	the	same	data	type	as	the	method	type.	For
instance,	if	the	method	type	is	an	“int”	data	type	then	the	return	type	must	be	an	“int”	data
type.	The	following	is	a	syntax	and	example	for	a	method	return:

	

Syntax
return	value;

	
class	English

{

int	students,	weeks,	days;

int	totalDays	()

{

https://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html

														return	weeks	*	days;

}													

}

	

class	TwoEnglishCourses

{

public	static	void	main	(String	args[])

{

														English	ENG101	=	new	English	();

														English	ENG202	=	new	English	();

													

														ENG101.students	=	10;

														ENG101.weeks	=	4;

														ENG101.days	=	3;

													

														ENG202.students	=	12;

														ENG202.weeks	=	6;

														ENG202.days	=	3;

													

														System.out.println(“The	English	101	course	has	“	+	ENG101.students	+	”	students	and	the	course	last	“	+
ENG101.totalDays	()	+	”	days”);

														System.out.println(“The	English	202	course	has	“	+	ENG202.students	+	”	students	and	the	course	last	“	+
ENG202.totalDays	()	+	”	days”);

}													

}

	

	

Figure	2.4	–	Return	a	Value

	

Program	Output:
The	English	101	course	has	10	students	and	the	course	last	12	days

The	English	202	course	has	12	students	and	the	course	last	18	days

	

Methods	return	a	value	to	the	code	that	called	the	method.	In	this	example,	lines	26	and	27
make	calls	to	the	method	(inttotalDays	())	at	line	5.	Then	the	method	returns	the	outcome
from	calculation	(weeks	*	days)	back	to	lines	26	and	27.	The	dot	(.)	operator	connects	both
objects	(ENG101	and	ENG202)	to	a	member	(totalDays	())	which	is	a	method.	The
method	is	placed	on	the	right	side	of	the	dot	operator	while	the	objects	are	located	on	the
left:

	

ENG101.totalDays	();
ENG202.totalDays	();

	

Line	3	declares	all	instance	variables	as	an	“int”	data	type.	Therefore	the	instance
variables	(weeks	and	days)	used	for	calculation	at	line	7	is	automatically	declared	with	an
“int”	data	type.	This	will	not	cause	a	return	error	because	the	return	type	(line	7)	and
method	type	(line	5)	possess	the	same	data	type.	The	values	for	each	instance	variable	are
calculated	based	on	lines	19,	20,	23,	and	24.	Lines	19	and	23	contain	values	for	variable
“weeks”	while	lines	20	and	24	contain	values	for	variable	“days”.

	

Return	No	Value

	

Methods	that	cannot	return	a	value	are	called	void	methods.	The	keyword	“void“	is
implemented	as	the	methodType	rather	than	a	data	type	such	as	“int”.	An	error	occurs	if
there	is	an	attempt	to	return	a	value	from	the	void	method.	The	following	is	a	void	method
example:

	
class	English

{

int	students,	weeks,	days;

void	totalDays	()

{

														System.out.println(weeks	*	days);

}													

}

	

class	TwoEnglishCourses

{

public	static	void	main	(String	args[])

{

														English	ENG101	=	new	English	();

														English	ENG202	=	new	English	();

													

														ENG101.students	=	10;

														ENG101.weeks	=	4;

														ENG101.days	=	3;

													

														ENG202.students	=	12;

														ENG202.weeks	=	6;

														ENG202.days	=	3;

													

														System.out.println(“How	many	students	are	in	the	English	101	course?	“	+	ENG101.students);

														System.out.println(“The	course	is	“	+	ENG101.days	+	”	days	for	“	+	ENG101.weeks	+	”	weeks.”);

														System.out.print(“Therefore	the	course	last	the	following	total	number	of	days:”);

														ENG101.totalDays();

														System.out.println(“\n”);

													

														System.out.println(“How	many	students	are	in	the	English	202	course?	“	+	ENG202.students);

														System.out.println(“The	course	is	“	+	ENG202.days	+	”	days	for	“	+	ENG202.weeks	+	”	weeks.”);

														System.out.print(“Therefore	the	course	last	the	following	total	number	of	days:”);

														ENG202.totalDays();

}

}

	

	

Figure	2.5	–	Void	Method

	

Program	Output:
How	many	students	are	in	the	English	101	course?	10

The	course	is	3	days	for	4	weeks.

Therefore	the	course	last	the	following	total	number	of	days:	12

	

	

How	many	students	are	in	the	English	202	course?	12

The	course	is	3	days	for	6	weeks.

Therefore	the	course	last	the	following	total	number	of	days:	18

	

Line	5	displays	keyword	“void”	which	indicates	the	method	will	not	return	any	values.
Nevertheless,	the	void	method	only	performs	a	task	of	calculating	the	total	of	number	of
days.	Line	7	prints	the	total	days	after	multiplying	weeks	and	days.	The	following	displays
an	error	when	the	void	method	implements	the	return	keyword	with	a	value:

	
class	English

{

int	students,	weeks,	days;

//	A	void	method	cannot	return	a	value

void	totalDays	()

{

														return	weeks	*	days

}													

}

	

Figure	2.6	–	Void	Method	Error

	

Pass	Arguments	To	Parameters

Arguments	are	values	passed	to	a	method	while	parameters	receives	the	values.	In	other
words,	parameters	receive	arguments.	Parameter	variables	are	declared	within	a	method’s
parenthesis	and	operate	like	a	local	variable.	Local	variables	and	parameter	variables	are
only	visible	to	the	method	where	is	declared.	It	is	important	to	know	that	one	or	more
arguments	can	be	passed	to	individual	parameters.	The	following	is	an	example	of	passing
two	arguments	to	two	parameters:

	
class	English

{

int	totalDays	(int	wk,	int	d)

{

														return	wk	*	d;

}													

}

	

class	TwoEnglishCourses

{

public	static	void	main	(String	args[])

{

														English	ENG101	=	new	English	();

														English	ENG202	=	new	English	();

													

														System.out.println(“The	English	101	course	is	a	total	of	“	+	ENG101.totalDays	(4,	3)	+	”	days”);

														System.out.println(“The	English	202	course	is	a	total	of	“	+	ENG202.totalDays	(6,	3)	+	”	days”);

}													

}

	

	

Figure	2.7	–	Pass	Arguments	To	Parameters

	

Program	Output:
The	English	101	course	is	a	total	of	12	days

The	English	202	course	is	a	total	of	18	days

	

Line	3	defines	two	parameters	“wk,	d”	for	method	totalDays	().	Methods	can	have
more	than	one	parameter	by	separating	each	parameter	with	a	comma
Lines	16	and	17	indicates	the	arguments	“4,	3”	for	object	“ENG101”	and	“6,	3”	for
object	“ENG202”	are	passed	to	parameters	“wk,	d”

	

Note:	Objects	can	be	passed	to	a	method	and	returned	from	a	method.
	

Method	Types

	

The	following	are	the	four	types	of	methods:

	

1.	 Instance	Methods
2.	 Class	Methods
3.	 Main	Method
4.	 Constructors

	

Instance	Methods

	

Instance	methods	are	called	(known	as	invoked)	by	using	an	object.	Therefore	an	instance
method	is	similar	to	an	instance	variable	whereby	both	members	can	be	accessed	through
initialized	objects.	However,	instance	variables	can	be	accessed	with	an	object	reference
or	without	an	object	reference.	The	following	is	an	instance	method	example:

	
public	class	Lion

{

void	sound	()

{

														System.out.println(“ROAR”);

}

public	static	void	main	(String	args[])

{

														Lion	maleLion	=	new	Lion	();

														maleLion.sound	();

}													

}

	

	

Figure	2.8	–	Instance	Method

	

Program	Output:
ROAR

	

Lines	3	–	6	starts	and	completes	the	instance	method	“sound”
Line	10	creates	an	object	“maleLion”	using	keyword	“new”
Line	11	calls	the	instance	method	“sound”	through	initialized	object	“maleLion”

Class	Methods

	

A	class	method	(known	as	static	method)	is	similar	to	a	class	variable	whereby	they	are
declared	with	a	static	keyword.	The	static	keyword	means	the	member	belongs	to	the	class
and	shared	between	all	objects.	Class	methods	can	be	accessed	via	the	object	name	or
class	name.		However,	a	warning	appears	when	accessing	the	method	by	an	object.
Therefore	the	favored	way	to	access	classed	methods	is	through	class	name.	The	following
is	a	class	method	example:		
class	StaticAddNumbers

{

static	int	a,	b;

static	int	addNumbers	()

{

														return	a	+	b;

}													

}													

	

class	StaticExample

{

public	static	void	main(String[]	args)

{

														StaticAddNumbers	objAdd	=	new	StaticAddNumbers	();

													

														objAdd.a	=	20;

														StaticAddNumbers.b	=	30;

													

														System.out.println(“The	addition	of	variables	‘a	+	b’	is	“	+	objAdd.addNumbers()	+	”	and	accessed	by	an
object”);

														System.out.println(“The	addition	of	variables	‘a	+	b’	is	“	+	StaticAddNumbers.addNumbers()	+	”	and
accessed	by	a	class	name”);																											

}

}

	
Figure	2.9	–	Class	Method

	

Program	Output:
The	addition	of	variables	‘a	+	b’	is	50	and	accessed	by	an	object

The	addition	of	variables	‘a	+	b’	is	50	and	accessed	by	a	class	name

	

Line	3	declares	two	class/static	variables	“a,	b”
Lines	5	–	7	defines	the	class/static	method	“addNumbers”
Line	17	assigns	20	to	class	variable	“a”.	Notice,	the	warning	next	to	line	17	that
states	“The	static	field	StaticAddNumbers.a	should	be	accessed	in	a	static	way”.
This	warning	means	the	class	variable	(known	as	static	variable)	is	preferred	to	be
accessed	by	class	name.	Line	18	does	not	have	a	warning	because	class	name
precedes	the	variable	name	“b”
Line	20	is	similar	to	line	18.	A	warning	message	appears	because	the	static	method
is	accessed	via	object	name	rather	than	class	name	“i.e.,	line	21”	

	

Note:	Class	methods	can	only	access	class	variables	and	only	call	other	class	methods.

	

Main	Method

	

The	main	method	is	unique	and	mandatory	if	a	particular	class	begins	the	program.	This
method	is	required	because	it	executes	the	program.	The	following	is	the	syntax	for	main
method:

	

Syntax
public	static	void	main(String[]	args)

{

//	Method	Body

}

	

There	are	several	examples	of	the	main	method	but	the	following	explains	each
component:

	

public	-	the	method	can	be	accessed	by	all	classes
static	–	the	method	is	shared	between	all	objects
void	–	the	method	does	not	return	any	values
String[]	args	–	the	method	receives	a	String	argument	and	pass	the	argument	to	the
program

	

Note:	The	main	method	is	explained	in	this	chapter	because	Part	2	–	Java	4	Selenium
WebDriver	focuses	on	Java	programming.	However,	Selenium	WebDriver	write	simple
checks	uses	a	testing	framework	such	as	JUnit	and	TestNG	that	will	not	require	the	main
method.	The	next	book	“Selenium	WebDriver	for	Functional	Automation	Testing”	will
focus	on	Selenium	and	dive	into	JUnit.

	

Constructors

	

A	constructor	is	a	special	method	that	has	the	same	name	as	the	class.	If	a	constructor	is
not	defined	then	a	blank	constructor	is	automatically	created.	Consequently	all	classes
contain	a	constructor	which	initialize	objects	of	a	specific	class.	A	new	object	calls	a
constructor	every	time	the	object	is	created.	By	default,	the	instance	variables	are

initialized	to	zero	for	numeric	types,	null	for	reference	types,	and	false	for	boolean	types.

	

Constructors	have	the	ability	to	set	the	initial	value	for	an	instance	variable.	Recall	an
instance	variable	can	be	accessed	and	assigned	a	value	using	the	dot	operator.	In	Figure
2.4	–	Return	A	Value,	the	following	instance	variables	were	assigned	values:

	

ENG101.students	=	10;

ENG101.weeks	=	4;

ENG101.days	=	3;

	

ENG202.students	=	12;

ENG202.weeks	=	6;

ENG202.days	=	3;

	

Constructors	contain	parameters	which	receive	arguments	when	an	object	is	created.	The
following	example	illustrates	how	to	pass	arguments	to	a	constructor:

	
class	English

{

int	students,	weeks,	days;

English	(int	s,	int	w,	int	d)

{

														students	=	s;

														weeks	=	w;

														days	=	d;

}

int	totalDays	()

{

														return	weeks	*	days;

}													

}

	

class	TwoEnglishCourses

{

public	static	void	main	(String	args[])

{

														English	ENG101	=	new	English	(10,	4,	3);

														English	ENG202	=	new	English	(12,	6,	3);

													

														System.out.println(“The	English	101	course	has	“	+	ENG101.students	+	”	students	and	the	course	last	“	+
ENG101.totalDays	()	+	”	days”);

														System.out.println(“The	English	202	course	has	“	+	ENG202.students	+	”	students	and	the	course	last	“	+
ENG202.totalDays	()	+	”	days”);

}													

}

	

	
Figure	2.10	–	Parameterized	Constructor

	

Program	Output:
The	English	101	course	has	10	students	and	the	course	last	12	days

The	English	202	course	has	12	students	and	the	course	last	18	days

	

Line	5	–	10	create	a	constructor	which	defines	three	parameters	“s,	w,	d”	on	line	5.	Each
parameter	is	used	to	initialize	the	instance	variables	“students,	weeks,	days”	on	lines	7	-	9.
After	lines	22	and	23	are	executed,	the	values	“10,	4,	3”	for	ENG101	and	values	“12,	6,	3”
for	ENG202	are	assigned	to	the	parameters	“s,	w,	d”.	As	a	result,	the	values	are	passed	to
the	English	()	constructor	when	the	keyword	“new”	creates	each	object	“ENG101	and
ENG202”.

	

Note:	Constructors	are	not	defined	with	a	method	type	such	as	int	or	void.	Notice	how	line
5	begins	with	English	then	define	the	parameters.	Java	allows	a	class	to	contain	multiple

constructors.	The	feature	is	called	constructor	overloading	if	the	constructors	contain	a
different	parameter	list.

	

Accessor	Methods

	

Accessor	methods	are	methods	used	to	get	and	set	values	of	private	variables.	Private
variables	can	only	be	accessed	by	code	within	its	own	class.	Therefore	the	accessor
methods	are	two	methods	known	as	getters	and	setters	defined	in	the	same	class	as	the
private	variables.

	

Both	methods	are	defined	with	a	prefix	that	begins	with	“get”	and	“set”	before	the	method
name.	For	example,	getDays	()	and	setDays	()	are	regarded	as	accessor	methods	to	get	the
number	of	days	then	set	the	number	of	days.	The	following	is	an	example	of	both	accessor
methods:

	
class	English

{

private	int	students,	weeks,	days;

English	(int	s,	int	w,	int	d)

{

														students	=	s;

														weeks	=	w;

														days	=	d;

}

int	getStudents	()

{

														return	students;

}

int	getWeeks()

{

														return	weeks;

}

int	getDays()

{

														return	days;

}

void	setStudents	(int	s)

{

														students	=	s;

}

void	setWeeks(int	w)

{

														weeks	=	w;

}

void	setDays(int	d)

{

														days	=	d;

}													

int	totalDays	()

{

														return	weeks	*	days;

}													

}

	

	
Figure	2.11	–	Accessor	Methods

	

Line	3	declares	all	of	the	instance	variables	“students,	weeks,	and	days”	as	private
Lines	5	–	10	is	the	constructor	method

Lines	12	–	25	are	the	get	accessor	methods.	Each	method	only	get/return	the
number	of	students,	weeks,	and	days
Lines	27	–	40	are	the	set	access	methods.	Each	method	sets/modifies	the	number
students,	weeks,	and	days

	

This	Keyword
The	word	“this”	is	a	keyword	which	operates	as	a	reference	inside	instance	methods
and/or	constructors.	It	refers	to	the	current	object	or	member	of	the	current	object	whose
method	is	being	called.	The	keyword	“this”	is	optional	but	useful	when	a	programmer
decides	to	hide	information.	In	addition,	the	keyword	“this”	prevents	uncertainty	in	a
program	when	a	local	variable	and	instance	variable	contain	the	same	name.	A	warning
message	states	“The	assignment	to	variable	name	has	no	effect”	if	both	variables	have	the
same	name.	The	following	example	shows	how	to	use	keyword	“this”	when	the	local
variable	and	instance	variable	contain	the	same	name:

	
public	class	ThisKeyword

{

int	testVariable	=	34;

void	hideInstanceVariable	()

{

														int	testVariable	=	15;

													

														System.out.println(“What	is	the	value	of	the	local	variable	NOT	using	the	keyword	‘this’?	“	+	testVariable);

														System.out.println(“What	is	the	value	of	the	instance	variable	using	the	keyword	‘this’?	“	+
this.testVariable);

}

public	static	void	main(String[]	args)

{

														ThisKeyword	objHide	=	new	ThisKeyword	();

													

														objHide.hideInstanceVariable	();

}

}

	

	
Figure	2.12	–	This	Keyword

	

Program	Output:
What	is	the	value	of	the	local	variable	NOT	using	the	keyword	‘this’?	15

What	is	the	value	of	the	instance	variable	using	the	keyword	‘this’?	34

	

Line	3	declares	and	initializes	an	instance	variable	“testVariable”	to	a	value	of	34
Line	7	declares	and	initializes	a	local	variable	“testVariable”	to	a	value	of	15
Line	9	print	a	message	which	includes	the	local	variable	“testVariable”
Line	10	prints	a	message	which	includes	the	instance	variable	“this.testVariable”
using	the	keyword	“this”

	

Annotations
According	to	dictionary.com,	annotation	means,	“a	critical	or	explanatory	note.”	Recall
from	Part	1	–	Java	4	Selenium	WebDriver,	comments	are	notes	that	help	programmers
understand	the	program.	An	annotation	is	similar	to	a	comment	whereby	they	both	provide
information.	However,	comments	are	ignored	by	the	compiler	while	annotations	supply
data	to	the	compiler.	Annotations	provide	metadata	which	is	data	that	describes	data.

	

All	annotations	start	with	an	at	“@”	symbol	and	specify	the	purpose	of	a	method.	Some
annotations	can	be	customized	to	replace	comments	and	predefined	annotations	such	as
@Override.	The	following	are	examples	of	three	JUnit	annotations	used	in	Selenium
WebDriver:			

	

1.	 @Before	–	allocate	resources	and	execute	one	time	before	each	test
2.	 @Test	–	executes	a	test	script
3.	 @After	–	release	allocated	resources	and	execute	one	time	after	each	test

	

Note:	Details	of	the	JUnit	annotations	are	used	and	explained	in	the	“Selenium
WebDriver”	books.

	

http://dictionary.reference.com/browse/annotation?s=t

Access	Modifiers
Access	modifiers	are	helpful	features	of	object-oriented	programming.	They	are	helpful
because	of	the	access	limitation	it	places	on	every	class	and	class	members	(variables	and
methods).	In	Java,	there	are	four	kinds	of	access	modifiers:

	

1.	 public	–	indicates	a	member	can	be	accessed	by	all	classes
2.	 protected	–	indicates	a	member	can	be	accessed	by	all	classes	and	subclasses	(see

Inheritance	in	Chapter	4)	within	its	own	package	(see	Packages	in	Chapter	5)	
3.	 no	modifier	–	indicates	a	member	can	be	accessed	by	all	classes	within	its	own

package
4.	 private	–	indicates	a	member	can	be	accessed	within	its	own	class

	

The	access	modifier	precedes	a	class,	variable,	and	method	declaration.	Classes	can	only
use	the	public	modifier	or	no	modifier.	Therefore,	an	error	occurs	if	a	class	makes	use	of	a
private	or	protected	access	modifier.	The	following	is	an	example	of	a	class,	method,	and
variables	using	a	public	modifier:

	
public	class	English

{

public	int	students,	weeks,	days;

public	int	totalDays	()

{

														return	weeks	*	days;

}													

}

	

class	TwoEnglishCourses

{

public	static	void	main	(String	args[])

{

														English	ENG101	=	new	English	();

														English	ENG202	=	new	English	();

													

														ENG101.students	=	10;

														ENG101.weeks	=	4;

														ENG101.days	=	3;

													

														ENG202.students	=	12;

														ENG202.weeks	=	6;

														ENG202.days	=	3;

													

														System.out.println(“The	English	101	course	has	“	+	ENG101.students	+	”	students	and	the	course	last	“	+
ENG101.totalDays	()	+	”	days”);

														System.out.println(“The	English	202	course	has	“	+	ENG202.students	+	”	students	and	the	course	last	“	+
ENG202.totalDays	()	+	”	days”);

}													

}

	

	
Figure	2.13	–	Public	Class,	Variables,	and	Method	
	

The	class	(line	1),	all	of	the	variables	(line	3),	and	method	(lines	5	-	8)	are	declared	with	a
public	access	modifier.	Consequently,	there	are	no	errors	and	the	members	within	the
English	class	can	be	accessed	by	code	from	the	class	“TwoEnglishCourses”.

	

The	following	is	an	example	of	a	private	method:

	
public	class	English

{

public	int	students,	weeks,	days;

private	int	totalDays	()

{

														return	weeks	*	days;

}													

}

	

class	TwoEnglishCourses

{

public	static	void	main	(String	args[])

{

														English	ENG101	=	new	English	();

														English	ENG202	=	new	English	();

													

														ENG101.students	=	10;

														ENG101.weeks	=	4;

														ENG101.days	=	3;

													

														ENG202.students	=	12;

														ENG202.weeks	=	6;

														ENG202.days	=	3;

													

														System.out.println(“The	English	101	course	has	“	+	ENG101.students	+	”	students	and	the	course	last	“	+
ENG101.totalDays	()	+	”	days”);

														System.out.println(“The	English	202	course	has	“	+	ENG202.students	+	”	students	and	the	course	last	“	+
ENG202.totalDays	()	+	”	days”);

}													

}

	

	

Figure	2.14	–	Private	Method

	

Line	5	declares	the	method	totalDays	()	with	a	private	access	modifier.	That	means	only
members	within	its	class	“English”	can	access	the	method.	Lines	26	and	27	attempts	to
call	method	“totalDays	()”	but	cannot	because	they	are	located	in	a	different	class
“TwoEnglishCourses”.	As	a	result,	an	error	message	states	“The	method	totalDays	()”
from	Type	English	is	not	visible.	The	following	is	an	example	of	one	private	variable	and
two	public	variables:			
	

	
Figure	2.15	–	Private	and	Public	Instance	Variables

	

Line	3	declares	instance	variable	“students”	as	private	while	line	4	declares	instance
variables	“weeks	and	days”	as	public.	Notice	lines	19	–	25,	two	errors	“lines	19	and	23”
occur	for	the	private	variable	“students”.	In	addition,	there	is	an	error	on	lines	27	and	28
which	states	“The	field	English.students	is	not	visible”.	The	private	variable	is	only	visible
to	the	English	class	but	not	visible	to	the	class	“TwoEnglishCourses”.	However,	the	public
variables	are	visible	to	both	classes.	The	following	are	access	levels	for	each	modifier:

	

	 public protected no	modifier private

Class Yes Yes Yes Yes

Package Yes Yes Yes No

Subclass Yes Yes No No

World Yes No No No

	
Figure	2.16	–	Access	Modifier	Levels

	

Static	Keyword
The	static	keyword	can	be	applied	to	variables,	methods,	blocks,	and	nested	classes.
Usually,	the	members	of	a	class	are	accessed	through	an	object	of	the	class	via	the	dot
operator.	When	a	member	is	declared	as	static,	the	member	can	be	accessed	prior	to
creating	an	object.	However	to	access	a	static	member,	it	is	best	to	precede	the	static
member	with	a	class	name	and	dot	operator	rather	than	the	object	name	and	dot	operator.
A	warning	message	appears	if	the	static	member	is	preceded	by	an	object	name	and	dot
operator.	The	following	is	the	syntax	and	example	of	a	static	variable:

	

Syntax
ClassName.variableName;
class	StaticAddNumbers

{

static	int	a;

int	b;

int	addNumbers	()

{

														return	a	+	b;

}

}													

	

class	StaticExample

{

public	static	void	main(String[]	args)

{

														StaticAddNumbers	objAdd	=	new	StaticAddNumbers	();

																																									

														objAdd.b	=	50;																																																							

														StaticAddNumbers.a	=	25;

													

														System.out.println(“The	value	of	‘objAdd.b’	is	“	+	objAdd.b);																																																							

														System.out.println(“The	value	of	‘a’	is	“	+	StaticAddNumbers.a);

														System.out.println(“The	total	of	‘a	+	b’	is	“	+	objAdd.addNumbers()	+	“\n”);

													

														StaticAddNumbers.a	=	30;

														System.out.println(“The	value	of	‘a’	changed	to	“	+	StaticAddNumbers.a	+	”	but	the	value	of	‘objAdd.b’
remains	“	+	objAdd.b);																											

														System.out.println(“The	total	of	‘a+b’	is	“	+	+	objAdd.addNumbers());

}

}

	

	
Figure	2.17	–	Static	Variable

	

Program	Output:
The	value	of	‘objAdd.b’	is	50

The	value	of	‘a’	is	25

The	total	of	‘a	+	b’	is	75

	

The	value	of	‘a’	changed	to	30	but	the	value	of	‘objAdd.b’	remains	50

The	total	of	‘a+b’	is	80

	

Line	3	declares	a	static	variable	named	“a”	within	class	“StaticAddNumbers”.	The
variable	“a”	is	accessed	in	lines	19,	22,	25,	and	26	by	using	the	class	name,	dot	operator,
and	static	variable	name.	Lines	19	and	25	set	the	value	while	lines	22	and	26	displays	the
value.	Static	variables	are	treated	like	global	variables	and	initialized	at	the	start	of
execution.

	

Chapter	2	described	classes,	objects,	methods,	annotations,	access	modifiers,	and
keywords	“this	and	static”.	A	class	incorporates	data	and	code	that	operates	on	the	data.	In
addition,	classes	provide	a	template	for	objects	which	is	the	foundation	for	object-oriented
programming.	Methods	carry	out	a	specific	task	while	providing	access	to	data	defined	by
the	class.	Chapter	3	will	discuss	arrays	and	strings	which	are	regarded	as	objects	in	Java.

Chapter	3
Arrays	and	Strings

An	array	is	a	collection	of	variables	with	the	same	data	type,	same	name	and	fixed	number
of	values.	The	values	are	accessed	via	an	index	which	identifies	an	item	and	starts	at	zero.
Each	item	in	the	array	is	called	an	element.	A	benefit	of	arrays	is	the	capacity	to	deal	with
a	large	number	of	related	values	in	one	entity.	For	instance,	a	single	array	has	the	ability	to
hold	every	employee’s	salary.

	

In	Java,	arrays	and	strings	are	considered	objects.	A	string	is	a	data	type	containing	an
immutable	sequence	of	characters.	Immutable	means	the	string	cannot	be	modified	after
an	initialization	statement.	However,	there	are	many	methods	that	can	perform	actions	on
the	strings.

	

Chapter	three	will	discuss	the	following	concerning	arrays	and	strings:

	

							Single-Dimensional	Arrays

							Multi-Dimensional	Arrays

							For-Each	Loop

							Strings

	

Single-Dimensional	Arrays
Single-Dimensional	arrays	are	the	most	used	type	of	arrays.	It	stores	a	list	of	related
values	such	as	daily	temperatures	for	a	specific	month.	In	return,	the	list	of	values	can	lead
to	a	monthly	temperature	average.	All	of	the	information	stored	in	an	array	is	easily
accessible	by	an	index.	The	following	are	two	syntaxes	for	defining	a	single-dimensional
array:

	

Syntax	
arrType	arrName[]	=	new	arrType[arrSize];

or

arrType	arrName[];
arrName	=	new	arrType[arrSize];

	

Parameter Description

arrType Determines	the	data	type	of	each	value	in	the	array

arrName Name	of	the	array

new Allocates	memory	for	the	array

arrSize Number	of	values	in	the	array

	
Figure	3.1	–	Single	Dimension	Syntax	Details

	

The	following	is	an	example	of	a	single-dimensional	array:

	
public	class	OneDimensionalArray

{

public	static	void	main(String[]	args)

{

														int	[]	tempMay	=	new	int	[3];

													

														tempMay[0]	=	105;

														tempMay[1]	=	102;

														tempMay[2]	=	98;

																											

														System.out.println(“The	highest	temperature	in	May	was	“	+	tempMay[0]	+	”	degrees”);

														System.out.println(“The	2nd	highest	temperature	in	May	was	“	+	tempMay[1]	+	”	degrees”);

														System.out.println(“The	3rd	highest	temperature	in	May	was	“	+	tempMay[2]	+	”	degrees”);

}

}

	

	
Figure	3.2	–	Single-Dimensional	Array	Example

	

Program	Output:
The	highest	temperature	in	May	was	105	degrees

The	2nd	highest	temperature	in	May	was	102	degrees

The	3rd	highest	temperature	in	May	was	98	degrees

	

Line	5	initializes	the	array	“tempMay”	by	using	the	keyword	“new”.	The	number	3
in	brackets	[3]	indicate	the	array	contain	3	elements
Lines	7	–	9	assign	values	to	each	of	the	array.	The	first	value	is	stored	at	index
position	0.	Zero	is	always	the	starting	position	for	arrays.	In	this	example,	the	last
index	position	is	2.	Elements	0	–	2	holds	a	total	of	3	elements.

	

Arrays	can	be	assigned	values	on	one	line	without	the	keyword	“new”.	The	following	is
another	way	to	assign	values	to	an	array:

	
public	class	OneDimensionalArray

{

public	static	void	main(String[]	args)

{

														int[]	tempMay	=	{105,	102,	98};

																											

														System.out.println(“The	highest	temperature	in	May	was	“	+	tempMay[0]	+	”	degrees”);

														System.out.println(“The	2nd	highest	temperature	in	May	was	“	+	tempMay[1]	+	”	degrees”);

														System.out.println(“The	3rd	highest	temperature	in	May	was	“	+	tempMay[2]	+	”	degrees”);

}

}

	

	
Figure	3.3	–	Alternate	Single-Dimensional	Array	Example

	

Program	Output:
The	highest	temperature	in	May	was	105	degrees

The	2nd	highest	temperature	in	May	was	102	degrees

The	3rd	highest	temperature	in	May	was	98	degrees

	

Line	5	initializes	the	array	“tempMay”	and	assigns	three	values	to	the	array.	Notice	the
keyword	“new”	is	not	used	to	initialize	the	array.	However,	the	data	type	“int”	is	specified
along	with	the	array	name	and	values.	Square	brackets	indicates	an	array	while	the	number
of	values	within	the	curly	brackets	dictate	the	array	size.	The	following	is	a	diagram
displaying	the	array	values	from	Figure	3.2	and	Figure	3.3:

	

	
Figure	3.4	–	Array	Name,	Values,	and	Indexes

	

Multi-Dimensional	Arrays
Multi-Dimensional	arrays	are	regarded	as	an	array	of	arrays.	Therefore	two	or	more
brackets	must	be	used	to	declare	a	multi-dimensional	array.	The	most	common	type	of
multi-dimensional	array	is	a	two-dimensional	array.	Each	dimension	contains	its	own	set
of	brackets.	A	spreadsheet	with	rows	and	columns	is	a	good	way	to	imagine	a	two-
dimensional	array.	The	first	pair	of	brackets	are	rows	and	second	pair	of	brackets	are
columns.	The	following	is	the	syntax	and	example	for	a	two-dimensional	array:

	

Syntax
arrType	arrName[]	[]	=	new	arrType[arrSize1]	[arrSize2];

	
public	class	TwoDimensionalArray

{

public	static	void	main(String[]	args)

{

														int	row,	column;

													

														int	testTwoDimension	[][]	=	new	int	[2][3];

													

														for	(row	=	0;	row	<	2;	row++)

														{

																												for	(column	=	0;	column	<	3;	column++)

																												{

																																										testTwoDimension	[row][column]	=	(row*3)	+	column	+	1;

																																										System.out.print(testTwoDimension	[row][column]	+	”	“);

																												}

																												System.out.println();

														}

}

}

	

	
Figure	3.5	–	Two-Dimensional	Array	Example

	

Program	Output:
1	2	3

4	5	6

	

Line	7	initializes	the	two-dimensional	array	“testTwoDimension”	by	using	the
keyword	“new”.	Two	brackets	indicate	there	are	two	dimensions	similar	to	rows
and	columns.
Notice	the	output	produces	a	total	of	two	rows	and	three	columns.	Line	9	represents
the	count	for	rows	while	line	11	represents	the	count	for	column
Line	13	calculates	the	values	one	through	six
Line	14	prints	the	values	one	through	six

	

Comparable	to	single-dimensional	arrays,	a	two-dimensional	array	can	be	declared	and
initialized	without	the	keyword	“new”.	The	following	is	an	example	of	a	two-dimensional
array	without	being	initialized	using	keyword	“new”.

	
public	class	TwoDimensionalArray

{

public	static	void	main(String[]	args)

{

														int	row,	column;

													

														int	testTwoDimension	[][]	=

																												{

																																										{1,	2,	3},

																																										{4,	5,	6}

																												};																											

																																									

														for	(row	=	0;	row	<	2;	row++)

														{

																												for	(column	=	0;	column	<	3;	column++)

																																										System.out.print(testTwoDimension	[row][column]	+	”	“);

																																										System.out.println();																																																																																																															
																																																																					

														}

}

}

	

	
Figure	3.6	–	Alternate	Two-Dimensional	Array	Example

	

Program	Output:
1	2	3

4	5	6

	

Lines	7	–	11	initialize	the	array	by	surrounding	each	dimension’s	list	within	a	separate	set
of	brackets.	Notice	how	each	element	is	divided	by	a	comma	and	each	set	of	brackets
represent	a	row.	The	previous	two	examples	output	the	same	information.	A	specific	value
can	be	printed	by	indicating	a	specific	row	and	column.	The	following	example	prints	a
specific	value	according	to	a	defined	row	and	column:

	
public	class	TwoDimensionalArray

{

public	static	void	main(String[]	args)

{

														int	row,	column;

													

														int	testTwoDimension	[][]	=

																												{

																																										{1,	2,	3},

																																										{4,	5,	6}

																												};																											

																																									

														for	(row	=	0;	row	<	2;	row++)

														{

																												for	(column	=	0;	column	<	3;	column++)

																																										System.out.print(testTwoDimension	[row][column]	+	”	“);

																																										System.out.println();																																																																																																															
																																																																					

														}

														System.out.println(“\n”	+	“What	value	is	located	in	row	1	-	column	2?	“	+	testTwoDimension	[1][2]);

}

}

	

	
Figure	3.7	–	Print	A	Specific	Value	From	A	Two-Dimensional	Array

	

Program	Output:
1	2	3

4	5	6

	

What	value	is	located	in	row	1	-	column	2?	6

	

Thefollowing	illustrates	the	output	in	a	spreadsheet	format:
	

	
Figure	3.8	–	Specific	Index	For	A	Two-Dimensional	Array
	

For-Each	Loop
The	for-each	loop	(known	as	enhanced	for	loop)	was	established	to	cycle	through	a
collection	of	objects	such	as	an	array.	This	type	of	control	structure	presents	the	same
functionality	as	the	for	loop	(see	Chapter	4	-	Control	Structures	in	(Part	1)	Java	4
Selenium	WebDriver)	which	executes	a	block	of	code	a	certain	number	of	iterations.
However,	the	for-each	loop	executes	a	block	of	code	while	cycling	through	each	element
in	the	collection.	The	following	is	the	for-each	loop	syntax:

	

Syntax
for	(collType	itrVariable:	collection)
{
			statement(s)
}			

	

Syntax	Details

Argument Description

collType Refers	to	the	type	of	data	for	the	collection

itrVariable Refers	to	the	name	of	the	iteration	variable	that
receives	each	element	after	every	iteration

collection The	collection	such	as	array	that	will	be	iterated	or
cycled	through

statement(s) The	blocked	of	that	will	be	executed

{	…	} The	opening	and	closing	curly	brackets

	
Figure	3.9	–	For-Each	Loop	Syntax	Details

	

All	elements	in	the	for-each	loop	are	retrieved	and	stored	in	the	itrVariable.	The	loop
repeats	until	all	elements	are	read	in	index	order.	It	is	important	to	know	that	the	colltype
must	be	the	same	type	as	the	object.	In	the	case	of	arrays,	the	collType	must	be	the	same
type	as	the	arrType.	The	following	is	an	example	of	for-each	loop:

	
public	class	ForEachLoop

{

public	static	void	main(String[]	args)

{

														double[]	costPerItem	=	{12.34,	56.78,	99.99};

														double	totalCost	=	0;

													

														for	(double	i:	costPerItem)

														{

																												System.out.println(“The	cost	is	“	+	i);

																												totalCost	=	totalCost	+	i;

														}

														System.out.println(“\n”	+	“The	total	cost	of	all	items	is	“	+	totalCost);

}

}

	

	
Figure	3.10	–	For	Each	Loop	Example

	

Program	Output:
The	cost	is	12.34

The	cost	is	56.78

The	cost	is	99.99

	

The	total	cost	of	all	items	is	169.11

	

Line	5	and	6	initialize	and	assign	values	to	the	array	“costPerItem”	and	“totalCost”
Line	8	retrieves	each	element	(12.34,	56.78,	99.99)	in	array	“costPerItem”
Line	10	prints	each	element
Line	11	calculates	the	total	of	all	elements

	

Note:	Lines	8	–	11	can	be	read	as	”For	each	double	data	type	in	the	“costPerItem”	array,
print	each	element	and	calculate	the	total	of	all	elements”.

	

Two-Dimensional	Array	Iteration

	

Iterations	for	two-dimensional	arrays	operate	similar	to	single-dimensional	arrays.	The
iteration	variable	for	a	two-dimensional	array	must	reference	the	single-dimensional	array.
It	must	reference	the	single-dimensional	array	because	two-dimensional	arrays	are
considered	arrays	of	arrays.	Therefore	each	two-dimensional	array	iteration	retrieves	the
next	array.	The	following	is	an	example	of	a	two-dimensional	array	iteration:			

	
public	class	ForEachLoop

{

public	static	void	main(String[]	args)

{

														int	totalCost	=	0;

														int[][]	costPerItem	=

																												{

																																										{5,	10},

																																										{15,	20},

																																										{25,	30}

																												};

																											

														for	(int	i[]:	costPerItem)

														{

																												for	(int	j:	i)

																												{

																																										System.out.println(“The	cost	is	“	+	j);

																																										totalCost	=	totalCost	+	j;

																												}																																									

														}

														System.out.println(“\n”	+	“The	total	cost	of	all	items	is	“	+	totalCost);

}

}

	

	
Figure	3.11	–	Two-Dimension	Array	Iteration	Example

	

Program	Output:
The	cost	is	5

The	cost	is	10

The	cost	is	15

The	cost	is	20

The	cost	is	25

The	cost	is	30

	

The	total	cost	of	all	items	is	105

	

Line	5	initializes	and	assigns	zero	“0”	to	totalCost
Lines	6	–	11	initialize	and	assign	values	to	the	two-dimensional	array	“costPerItem”
Line	13	“ for	(int	i[]:	costPerItem) ”	references	a	single-dimensional	array	whereby	each
iteration	retrieves	the	next	array	in	costPerItem	from	start	to	finish	“index	0	to	index
5”
Line	15	“ for	(int	j:	i) ”	cycles	through	each	element

	

Search	An	Array	

	

Arrays	can	be	searched	to	retrieve	specific	values.	There	are	times	when	only	a	certain
value	is	needed	from	a	collection	of	values.	The	following	example	illustrates	how	to
retrieve	a	specific	value	from	an	array:

	
public	class	ForEachLoop

{

public	static	void	main(String[]	args)

{

														int	specificCost	=	20;

														int[][]	costPerItem	=

																												{

																																										{5,	10},

																																										{15,	20},

																																										{25,	30}

																												};

																											

														for	(int	i[]:	costPerItem)

														{

																												for	(int	j:	i)

																												{

																																										if	(j	==	specificCost)

																																										{

																																																								System.out.println(“The	specific	cost	of	“	+	”’”	+	specificCost	+	”’”	+	”	was
located	in	the	collection	of	values”);

																																										}

																												}

														}																											

}

}

	

	
Figure	3.12	–	Search	A	Two-Dimensional	Array

	

Program	Output:
The	specific	cost	of	‘20’	was	located	in	the	collection	of	values

	

Line	5	initializes	and	assigns	20	to	variable	“specificCost”
Lines	6	–	11	initialize	and	assign	values	to	the	two-dimensional	array	“costPerItem”
Line	13	“ for	(int	i[]:	costPerItem) ”	references	a	single-dimensional	array	whereby	each
iteration	retrieves	the	next	array	in	costPerItem	from	start	to	finish	“index	0	to	index
5”
Line	15	“ for	(int	j:	i) ”	cycles	through	each	element
Line	17	searches	the	two-dimensional	array	for	a	specific	element	“20”	via	variable
specificCost

	

Strings
A	string	is	a	data	type	containing	an	immutable	sequence	of	characters.	This	data	type	is
considered	an	object	so	it	was	not	discussed	in	(Part	1)	Java	4	Selenium	WebDriver	with
the	other	data	types.	There	are	two	ways	to	create	a	string:

	

1.	 String	Literal
2.	 String	using	the	keyword	“new”

	

The	following	is	an	example	of	a	string	literal:

	
public	class	StringObject

{

public	static	void	main(String[]	args)

{

														String	firstName	=	“Rex”;

														String	lastName	=	“Jones”;

													

														System.out.println(“Strings	are	placed	within	quotation	marks”);																											

														System.out.print(“The	first	name	is	“	+	firstName	+	”	and	last	name	is	“	+	lastName	+	“.”);

														System.out.println(”	Both	names	were	declared	and	initialized	as	strings.	A	sequence	of
characters”);																											

}

}

	

	
Figure	3.13	–	String	Example

	

Program	Output:
Strings	are	placed	within	quotation	marks

The	first	name	is	Rex	and	last	name	is	Jones.	Both	names	were	declared	and	initialized	as	strings.	A	sequence	of
characters

	

Lines	5	and	6	declare	and	initialize	a	string	data	type
Lines	8	–	10	displays	the	string	literal	within	the	println	method	()

	

Strings	can	be	created	like	other	objects	by	using	the	keyword	“new”	which	calls	the
String	constructor.	The	following	is	an	example	of	a	String	with	the	keyword	“new”:

	

String	name	=	new	String	(“Rex	Jones”);

	

String	Operations

	

In	Java,	there	is	a	String	class	which	contains	many	methods	for	operations.	The	following
is	a	screenshot	of	several	String	methods	per	Eclipse:

	

	
Figure	3.14	–	String	Methods

	

Line	7	displays	a	list	of	methods	after	typing	a	period	after	the	variable	“name”
A	description	of	a	specific	method	“equals”	appears	when	it	is	highlighted

	

The	following	are	popular	String	methods,	their	data	type,	and	description:

	

1.	 charAt	(int	index):	char	-	Returns	the	character	at	the	specified	index
2.	 compareTo	(str):	int	-	Returns	less	than	zero	if	the	calling	string	is	less	than	str,

greater	than	zero	if	the	calling	string	is	greater	than	str,	and	zero	if	the	strings	are
equal

3.	 concat	(String	str):	String	-	Concatenates	the	given	string	at	the	end	of	the	string	
4.	 equals	(Object	anObject):	boolean	–	Compares	the	string	to	a	specific	object
5.	 equalsIgnoreCase	(String	string):	boolean	-	Compare	strings	and	ignore	the	cases
6.	 indexOf	(String	str):	int	-	Returns	the	index	of	the	first	occurrence	of	a	specified

substring
7.	 lastindexOf	(String	str):	int	-	Returns	the	index	of	the	last	occurrence	of	a	string
8.	 length	():	int	-	Returns	the	length	of	a	string
9.	 replace	(char	oldChar,	char	newChar):	String	-	Returns	the	new	string	after

changing	all	occurrences	of	the	old	string
10.																						split	(String	regex):	String[]	-	Splits	the	string	and	returns	a	string	array

that	matches	the	given	regular	expression
11.																						toLowerCase	():	String	-	Converts	all	of	the	characters	in	a	String	to
lower	case
12.																						toUpperCase	():	String	-	Converts	all	of	the	characters	in	a	String	to
upper	case
13.																						trim	():	String	-	Returns	a	copy	of	the	string,	after	deleting	leading	and
trailing	white	spaces	from	the	original	string

	

A	string	data	type	cannot	be	combined	with	a	different	data	type	for	an	operation	such	as
multiplication,	subtraction,	or	division.	For	example,	a	string	value	of	“534000.00”
appears	to	be	a	numeric	value	but	string	does	not	allow	mathematical	operations	unless	a
type	wrapper	converts	the	string.	The	value	“534000.00”	resembles	a	double	data	type.
However,	an	error	occurs	if	combined	with	a	double	data	type.	The	following	example
displays	an	error	if	a	string	data	type	is	combined	with	a	subtraction	operator:

	
public	class	StringObject

{

public	static	void	main(String[]	args)

{

														String	grossIncome	=	“534000.00”;

														double	gross	=	534000.00;																											

														double	taxes	=	225000.00;

														double	netIncome;

													

														netIncome	=	grossIncome	-	taxes;

														netIncome	=	gross	-	taxes;													

													

														System.out.println(“The	net	income	is	“	+	netIncome);																																									

}

}

	

	
Figure	3.15	–	String	Error	Due	To	Mathematical	Operations

	

Line	5	declares	and	initializes	a	Sting	value	“534000.00”
Line	10	displays	an	error	because	Strings	do	not	allow	mathematical	operations.
However,	notice	line	11	does	not	display	an	error	because	both	variables	“gross	and
taxes”	are	declared	as	a	double	data	type	“lines	6	and	7”

	

Type	Wrappers

	

Type	wrappers	are	used	to	convert	strings	into	primitive	types	(byte,	double,	float,	integer,
long,	short).	Therefore	the	previous	example	which	displayed	an	error	for	string	value
“534000.00”	can	be	converted	into	a	number.	Type	wrappers	are	used	to	wrap	the
primitive	type.	The	following	is	an	example	of	how	to	return	a	double	when	the	value
“534000”	is	specified	as	a	string:

	
public	class	StringObject

{

public	static	void	main(String[]	args)

{

														String	grossIncome	=	“534000.00”;

														double	taxes	=	225000.00;

														double	netIncome;

													

														netIncome	=	Double.parseDouble(grossIncome)	-	taxes;

																																									

														System.out.println(“The	net	income	is	“	+	netIncome);																																									

}

}

	

	
Figure	3.16	–	Returns	A	Double	After	Reading	A	String	Value

	

Program	Output:
The	net	income	is	309000.00

	

Line	5	declares	and	initializes	a	Sting	value	“534000.00”
Line	9	parses	(known	as	reads)	the	string	“grossIncome”	then	return	a	double	data
type.	Afterwards,	the	variable	taxes	“225000”	is	subtracted	from	variable
grossIncome	“534000”	and	the	value	is	assigned	to	variable	“netIncome”

	

The	following	is	a	list	of	type	wrappers	that	convert	a	string	data	type:

	

Wrapper Conversion	Method

Double Double.parseDouble(string)

Float Float.parseFloat(string)

Long Long.parseLong(string)

Integer Integer.parseInteger(string)

Short String.parseString(string)

Byte Byte.parseByte(string)

	
Figure	3.17	–	Type	Wrappers

	

Chapter	3	explained	arrays	and	strings	which	are	objects.	An	array	is	a	collection	of
variables	with	the	same	data	type,	same	name	and	fixed	number	of	values.	A	string	is	a
data	type	containing	an	immutable	sequence	of	characters.	Chapter	4	will	define
inheritance	which	is	a	hierarchical	concept.	The	concept	allows	code	and	objects	to	be
reused.

Chapter	4
Inheritance

Inheritance	is	a	hierarchical	concept	which	allows	reusable	code	and	objects	to	be
extended.	A	class	known	as	superclass	can	be	created	with	variables	and	methods	then
inherited	by	other	classes.	The	inherited	classes	are	called	subclasses.	Each	subclass	that
inherits	the	superclass	members	are	permitted	to	add	their	own	class	members.	For
example,	a	dog	is	an	animal,	so	the	class	“Dog”,	would	be	a	subclass	of	Animal.	A	cat	is
an	animal	and	the	class	“Cat”	would	also	be	a	subclass	of	Animal.	In	both	examples,	class
“Animal”	is	the	superclass.				

	

Chapter	four	will	explain	the	following	regarding	Inheritance:

	

							Fundamental	of	Inheritance

							Superclass	Object

							Inheriting	Private	Members

							Superclass	and	Subclass	Constructors

							Polymorphism

							Abstraction

							Keyword	Final

	

Fundamentals	of	Inheritance
The	concept	of	inheriting	classes	is	an	important	foundation	within	object-oriented
programming.	Functionalities	are	added	to	an	existing	class	which	prevents	the	same	code
from	being	written	multiple	times.	The	subclass	inherits	all	class	members	from	the
superclass.	Another	way	to	view	superclass	and	subclass,	is	to	think	of	superclass	as	the
parent	and	subclass	as	the	child.

	

In	order	for	the	subclass	to	inherit	the	superclass,	the	keyword	“extends”	must	be	used	in
the	class	declaration.	Keyword	“extends”	means	the	subclass	will	add	to	the	superclass.
Subclasses	are	not	allowed	to	inherit	multiple	superclasses.	However,	a	subclass	is
allowed	to	become	a	superclass	for	an	additional	subclass.	As	a	result,	the	additional
subclass	inherits	all	class	members	from	each	superclass.	The	following	is	the	syntax	for	a
subclass	inheriting	a	superclass:

	

Syntax
class	SubClassName	extends	SuperClassName

{

//Class	Body

}

	

The	following	is	an	example	for	a	subclass	inheriting	a	superclass:		

	
class	School

{

int	numTeachers;

int	numStudents;

void	showNumberOfPeople	()

{

														System.out.println(“There	are	“	+	numTeachers	+	”	teachers	and	“	+	numStudents	+	”	students”);

}

}													

class	ElementarySchool	extends	School

{

String	principalName;														

int	totalTeacherStudents	()

{

														return	numTeachers	+	numStudents;

}

void	displayPrincipal	()

{

														System.out.println(“The	principal	name	is	“	+	principalName);

}

}

class	SchoolDistrict

{

public	static	void	main(String[]	args)

{

														ElementarySchool	BishopHeights	=	new	ElementarySchool	();

														ElementarySchool	AltaMesa	=	new	ElementarySchool	();

	

														BishopHeights.numTeachers	=	10;

														BishopHeights.numStudents	=	130;

														BishopHeights.principalName	=	“Joe	Doe”;

													

														System.out.println(“My	elementary	school	is	Bishop	Heights	\n”);

														BishopHeights.displayPrincipal	();

														BishopHeights.showNumberOfPeople	();

														System.out.println(“Therefore	the	total	of	teachers	and	students	is	“	+	BishopHeights.totalTeacherStudents
());

}

}

	

	
Figure	4.1	–	Subclass	Extends	Superclass	Example

	

Program	Output:
My	elementary	school	is	Bishop	Heights

	

The	principal	name	is	Joe	Doe

There	are	10	teachers	and	130	students

Therefore	the	total	of	teachers	and	students	is	140

	

Line	1	displays	superclass	“School”
Line	11	uses	the	keyword	“extends”	to	create	subclass	“ElementarySchool”	which
inherits	superclass	“School”
Line	17	utilize	variables	“numTeachers	and	numStudents”	of	the	superclass
Lines	29	and	30	display	two	objects	“BishopHeights	and	AltaMesa”
Lines	32	and	33	assign	values	“10	and	130”	to	variables	“numTeachers	and
numStudents”	which	are	inherited	from	superclass	“School”
Line	34	assign	a	value	“Joe	Doe”	to	variable	“principalName”	which	is	a	member
of	subclass	“Elementary	School”

	

The	subclass	“ElementarySchool”	is	a	unique	type	of	superclass	“School”.	More
subclasses	such	as	HighSchool,	University,	etc.	can	inherit	superclass	“School”.	The
“ElementarySchool“	class	inherits	all	of	the	“School“	class	members	then	add	a	variable

“principalName”	and	two	methods	“totalTeacherStudents	and	displayPrincipal”.	Notice
how	line	30	creates	an	object	that	was	not	utilized.	This	shows	that	more	Elementary
School	objects	can	be	created	to	access	members	of	the	superclass	“School”.

	

Note:	Objects	from	the	superclass	do	not	have	knowledge	of	the	subclass.	Therefore,	the
superclass	objects	cannot	access	the	subclass.

	

Superclass	Object
The	superclass	“Object”	is	the	highest	superclass	of	all	classes.	In	other	words,	there	is	no
parent	class	above	the	“Object”	superclass.	By	default,	the	“Object”	superclass	includes
methods	that	are	inherited	by	all	subclasses.	The	following	is	a	screenshot	which	shows
Object	“java.lang.Object”	by	default	as	the	Superclass	when	creating	a	new	class:

	

Figure	4.2	–	Eclipse	New	Class	Creation	Modal

Inheriting	Private	Members
Private	members	that	are	inherited	from	the	superclass	remain	private	in	the	subclass.
Therefore	the	subclass	cannot	access	the	private	members.	Variables	and	methods	are	only
accessible	by	code	within	its	own	class	which	does	not	include	subclasses.	Nevertheless,
the	private	members	can	be	accessed	by	using	accessor	methods.	

	

Superclass	and	Subclass	Constructors
Superclasses	and	subclasses	contain	their	own	constructors	which	initialize	objects	of	its
class.	As	a	result,	the	constructors	are	independent	of	each	other.	The	superclass	does	not
have	access	to	the	subclass	constructors	but	the	subclass	has	access	to	the	superclass
constructors.	Subclasses	call	a	superclass’s	constructor	by	utilizing	the	keyword	“super”.
The	following	is	the	syntax	for	a	subclass	calling	a	superclass	constructor:

	

Syntax
super	(parameter-list)

	
The	following	is	an	example	of	a	subclass	inheriting	a	superclass:

	

class	School

{

private	int	numTeachers,	numStudents;

School	(int	t,	int	s)

{

														numTeachers	=	t;

														numStudents	=	s;																											

}

int	getTeachers	()	{	return	numTeachers;	}

int	getStudents	()	{	return	numStudents;	}

void	setTeachers	(int	t)	{	numTeachers	=	t;	}

void	setStudents	(int	s)	{	numStudents	=	s;	}

void	showNumberOfPeople	()

{

														System.out.println(“There	are	“	+	numTeachers	+	”	teachers	and	“	+	numStudents	+	”	students”);

}

}													

class	ElementarySchool	extends	School

{

private	String	principalName;														

ElementarySchool	(String	p,	int	t,	int	s)

{

														super	(t,	s);

														principalName	=	p;

}

int	totalTeacherStudents	()

{

														return	getTeachers	()	+	getStudents	();

}

void	displayPrincipal	()

{

														System.out.println(“The	principal	name	is	“	+	principalName);

}

}

class	SchoolDistrict

{

public	static	void	main(String[]	args)

{

														ElementarySchool	BishopHeights	=	new	ElementarySchool	(“Joe	Doe”,	10,	130);

													

														System.out.println(“My	elementary	school	is	Bishop	Heights	\n”);

														BishopHeights.displayPrincipal	();

														BishopHeights.showNumberOfPeople	();

														System.out.println(“Therefore	the	total	of	teachers	and	students	is	“	+	BishopHeights.totalTeacherStudents
());

}

}

	

	
Figure	4.3	–	Subclass	Inherits	Superclass	Example

	

Program	Output:	
My	elementary	school	is	Bishop	Heights

	

The	principal	name	is	Joe	Doe

There	are	10	teachers	and	130	students

Therefore	the	total	of	teachers	and	students	is	140

	

Line	3	declares	all	of	the	variables	“numTeachers	and	numStudents”	as	private
Lines	5	–	9	is	the	constructor	for	superclass	“School”
Lines	11	–	14	are	the	accessor	methods	“get	and	set”
Lines	25	–	29	is	the	subclass	constructor	for	“ElementarySchool”	which	calls	the
superclass	constructor	“School”.	The	statement	“super	(t,	s);”	on	line	27	refers	to
the	superclass	constructor	via	keyword	“super”

	

Note:	A	superclass	constructor	is	executed	first	if	the	program	includes	a	superclass
constructor	and	subclass	constructor.

	

Polymorphism
Polymorphism	is	a	significant	concept	in	object-oriented	programming.	This	concept
allows	one	interface	to	be	utilized	by	multiple	methods.	In	the	case	of	superclass	and
subclass,	a	superclass	provide	a	structure	whereby	a	subclass	can	define	its	own	method
operation.	The	methods	are	inherited	automatically	when	the	subclass	extends	the
superclass.	

	

Method	Overriding	vs	Method	Overloading

	

Method	overriding	is	a	feature	when	the	subclass	method	overrides	the	superclass	method.
Both	methods	must	have	the	same	method	data	type	and	signature.	A	method’s	signature
consists	of	a	method’s	name	and	parameter	list.	The	superclass	method	can	be	called
although	it	is	overridden	by	a	subclass	method.	It	is	overridden	if	the	keyword	“super”	and
dot	(.)	operator	is	followed	by	the	method	name:	super.methodName();

	

Method	overloading	is	two	or	more	methods	in	the	same	class	with	the	same	name	but	a
different	parameter	list.	The	parameter	list	determines	which	overloaded	method	is
executed	if	a	call	is	made	to	the	method	name.	However	a	duplicate	method	error	occurs	if
multiple	methods	have	the	same	signature.	The	following	shows	the	differences	between
method	overriding	and	method	overloading:

	

	 Method	Overriding Method	Overloading

Definition The	superclass	and	subclass
has	a	method	with	the	same
method	type	and	signature

A	class	has	multiple
methods	with	the	same
name	and	different
parameter	list

Method
Type

The	superclass	and	subclass
method	types	must	be
compatible

The	type	can	be	the	same	or
different

Signature The	superclass	and	subclass
must	have	the	same
signature

The	signatures	are	different
regarding	number	of
parameters,	type	of
parameters,	and	order	of
parameters

	
Figure	4.4	–	Differences	Between	Method	Overriding	and	Overloading

	

Note:	An	“@Override”	annotation	can	be	used	to	instruct	the	compiler	of	a	subclass
overriding	a	superclass.	Annotations	make	the	program	easier	to	read	and	lets	the	compiler
verify	if	the	override	is	valid.	

	

Static	Binding

	

Binding	is	the	connection	between	a	method	call	and	the	method	definition.	Static	binding
(known	as	early	binding)	is	when	binding	occurs	at	compile	time.	Therefore	binding
happens	before	a	program	executes.	The	following	is	an	example	of	static	binding:

	
class	Binding

{

void	printClassName()

{

														System.out.println(“This	class	is	called	Binding”);

}

}

	

class	BindingExtend	extends	Binding

{

@Override

void	printClassName()

{

														System.out.println(“This	class	is	called	BindingExtend”);

}

}

	

class	BindingExamples

{

public	static	void	main(String[]	args)

{

														BindingExtend	objBindingExtend	=	new	BindingExtend	();

														objBindingExtend.printClassName();

}

}

	

	
Figure	4.5	–	Static	Binding	Example

	

Program	Output:
This	class	is	called	BindingExtend

	

Line	11	displays	an	annotation	which	indicates	the	subclass	method
“printClassName()”	will	override	the	superclass	method	“printClassName()”
Line	12	displays	an	icon	next	to	the	line	number	which	has	a	tooltip	that	states
“overrides	Binding.printClassName”
Line	22	creates	an	object	“objBindingExtend”	of	class	“BindingExtend”
Line	23	calls	the	method	definition	“printClassName()”

	

Note:	For	static	binding,	the	compiler	verifies	if	a	method	definition	“printClassName”
exist	in	class	“BindingExtend”.

	

Dynamic	Binding			

	

Dynamic	binding	is	when	binding	occurs	at	run	time.	Therefore	this	type	of	binding
happens	when	the	program	is	running.	Unlike	static	binding,	dynamic	binding	allows
polymorphism.	Therefore	a	method	override	is	good	illustration	of	dynamic	binding.	The
following	is	an	example	of	dynamic	binding:

	
class	Binding

{

void	printClassName()

{

														System.out.println(“This	class	is	called	Binding”);

}

}

	

class	BindingExtend	extends	Binding

{

@Override

void	printClassName()

{

														System.out.println(“This	class	is	called	BindingExtend”);

}

}

	

class	BindingExamples

{

public	static	void	main(String[]	args)

{

														Binding	objBinding	=	new	Binding	();

														objBinding.printClassName();

													

														Binding	objBindingExtend	=	new	BindingExtend	();

														objBindingExtend.printClassName();

}

}

	

	
Figure	4.6	–	Dynamic	Binding	Example

	

Program	Output:
This	class	is	called	Binding

This	class	is	called	BindingExtend

	

Lines	3	and	12	define	the	same	method	name	“printClassName()”	for	each	class
“Binding	and	BindingExtend”
Lines	22	and	25	creates	both	objects	“objBinding”	and	“objBindingExtend”
Lines	23	and	26	is	where	dynamic	binding	takes	place.	Both	calls	are	made	to	the
same	method	name	“printClassName()”	but	in	different	classes	“superclass	and
subclass”.	The	objects	“objBinding”	and	“objBindingExtend”	are	used	for	binding
at	run	time.

	

Abstraction
Abstraction	applies	to	classes	as	well	as	methods.	The	keyword	“abstract”	is	used	to	create
abstract	classes	and	methods.	An	abstract	class	cannot	be	instantiated	so	it	is	used	as	a
superclass.	Abstract	methods	are	declared	without	an	implementation	so	it	does	not
include	a	body.	Abstract	classes	can	include	abstract	methods	and	implemented	methods.
However,	an	abstract	class	cannot	contain	objects	due	to	incomplete	implementation	of	its
methods.

	

The	purpose	of	abstract	classes	is	to	only	define	a	generalized	method	then	allow	a
subclass	to	define	the	details	of	the	method.	There	are	situations	when	a	superclass	cannot
create	a	meaningful	method	implementation.	An	instance	method	can	be	declared	abstract
but	static	methods	and	constructors	cannot	be	declared	abstract.		The	following	is	the
syntax	for	an	abstract	class	and	method:

	

Syntax	–	Abstract	Class

abstract	class	ClassName
{

//	Abstract	Classes	can	contain	abstract	methods	and	implemented	methods

//	Abstract	Method

abstract	methodType	methodName	(parameter-list);	

//	Implemented	Method

methodType	methodName	(parameter-list)

{

														//	Method	Body

}

}

	

Syntax	–	Abstract	Method

abstract	methodType	methodName	(parameter-list);	

	

Note:	A	subclass	must	be	declared	as	abstract	or	implement	all	of	the	abstract	methods
from	the	superclass.

	

Keyword	Final
The	keyword	“final”	prevents	a	class	or	method	from	being	overwritten.	Methods	are
implicitly	declared	as	final	if	the	class	is	declared	final.	Recall	from	Part	1	–	Java	4
Selenium	WebDriver,	the	keyword	“final”	is	used	to	declare	and	initialize	constants.
Constants	are	unchangeable	values	assigned	to	a	variable	name.	The	benefit	of	using
keyword	“final”	is	to	confirm	a	class	or	class	member	will	not	change	because	it	is	critical
to	the	program.	As	a	result,	an	error	occurs	if	there	is	an	attempt	to	inherit	a	class	or
override	a	class	member	(method	or	variable)	declared	as	final.

	

Chapter	4	explained	inheritance,	superclass,	and	subclass.	Inheritance	is	a	hierarchical
concept	which	allows	reusable	code	and	objects	to	be	extended.	Superclass	is	the	parent
class	to	subclass	whereby	subclass	inherits	the	class	members.	Chapter	5	will	dive	into
packages	which	is	a	group	of	related	classes.

Chapter	5
Packages

A	package	is	a	collection	of	related	classes	whereby	the	package	operates	like	a	folder	to
organize	code.	The	classes	within	a	package	are	accessed	by	the	package	name.	Recall
from	Part	1	–	Java	4	Selenium	WebDriver,	that	an	error	occurs	if	a	class	makes	use	of	the
private	access	modifier.	However,	a	class	can	be	made	private	and	not	accessed	by	code
outside	of	the	package	by	using	no	modifier.	A	package	defines	a	unique	namespace	which
prevents	multiple	classes	of	having	the	same	name	within	a	package.	In	Java,	there	is	no
problem	with		different	packages	using	the	same	class	name.

	

Chapter	5	will	explain	the	following	regarding	packages:

	

							Create	A	Package

							Import	A	Package

							Java	Class	Library

	

Create	A	Package
A	programmer	can	create	their	own	package	to	group	classes.	All	classes	have	a	package
that	is	stored	in	a	directory.	The	first	line	in	most	source	files	includes	a	package
statement.	However,	a	package	statement	is	optional	so	the	first	line	can	remain	blank.	A
blank	package	statement	is	the	default	which	contains	no	name.	It	is	important	to	know
that	different	source	files	are	allowed	to	use	the	same	package	statement.	The	following	is
the	syntax	for	a	package	statement:

	

Syntax
package	packagename;

	

The	name	of	each	package	“e.g.,	packagename”	is	case	sensitive.	In	Java,	it	is
conventional	to	use	all	lowercase	letters	for	a	package	name.	All	lowercase	letters	for	a
package	serves	as	a	clear	distinction	from	class	names,	method	names	and	most	variable
names.	Eclipse	IDE	displays	a	warning	if	the	first	letter	within	package	name	begins	with
a	capital	letter.	The	following	is	a	screenshot	which	shows	a	warning	if	the	first	letter	is	a
capital	letter:
	

	
Figure	5.1	–	Package	Naming	Convention

	

The	following	is	an	example	of	a	package	statement:

	
package	examplepackage;

	

class	PackageTest

{

void	printTest	()

{

														System.out.println(“This	is	a	test”);

}

}

	

public	class	Package

{

public	static	void	main	(String	args[])

{

														System.out.println(“This	is	another	test”);																											

}

}

	

	
Figure	5.2	–	Package	Statement

	

Program	Output:
This	is	another	test

	

Line	1	contains	the	package	statement	“package	examplepackage”
Line	3	begins	the	class	definition	for	class	“PackageTest”.	This	class	is	a
component	of	a	package	“examplepackage”
Line	11	begins	the	class	definition	for	class	“Package”.	This	class	is	a	component	of
a	package	“examplepackage”

	

The	following	is	a	screenshot	of	the	classes	grouped	together	in	a	package	directory:

	

	
Figure	5.3	–	Package	Directory	Screenshot

	

Import	A	Package
A	Java	package	is	imported	by	using	the	keyword	“import”.	Imports	are	useful	when	a
class	wants	to	access	a	member	in	another	class.	The	other	class	can	be	in	the	same
package	or	different	package.	After	importing	a	package,	the	members	of	the	package	are
used	directly	without	any	additional	syntax.	The	following	is	the	syntax	for	importing	a
package:

	

Syntax
importpackagename.ClassName; 	

	

To	import	a	class,	the	dot	(.)	operator	is	placed	between	the	package	name	and	class	name.
The	import	statements	must	be	entered	after	the	package	statement	but	before	the	classes
are	declared	in	the	current	file.	The	following	is	an	example	of	a	package	statement,
import	statement,	and	a	class	declaration:

	
package	examplepackage;

import	examplepackage.PackageTest;

	

public	class	PackageOne

{

public	static	void	main	(String	args[])

{

														PackageTest	objPackage	=	new	PackageTest	();

													

														objPackage.printTest();

}													

}

	
Figure	5.4	–	Package	Import

	

Program	Output:
This	is	a	test

	

Line	1	contains	the	package	statement	“package	examplepackage;”
Line	2	contains	the	import	statement	“import	examplepackage.PackageTest;”.	The
package	name	is	“examplepackage”	and	class	name	is	“PackageTest”	which	is
located	in	a	different	file.
Line	4	begins	the	class	declaration	“public	class	PackageOne”
Line	8	creates	an	object	“objPackage”	using	the	imported	class	“PackageTest”
Line	10	calls	the	method	“printTest();”	which	is	located	in	class	“PackageTest”.
View	Figure	5.2	-	Package	Statement,	to	see	details	of	the	method.

	

Note:	All	of	the	classes	from	a	specific	package	can	be	imported	by	using	the	package
name	and	an	asterisk:	import	packagename.*;	

	

Java	Class	Library
The	Java	Class	Library	is	known	as	Java	Application	Programming	Interface	(API)	which
provides	programmers	with	a	collection	of	prewritten	classes.	Each	prewritten	class	helps
support	the	logic	of	a	program	by	supplying	useful	functions.	One	of	the	packages	called
java.lang	is	automatically	imported	into	all	programs.	Therefore	classes	such	as	System	is
employed	automatically	when	using	the	print	()	and	println	()	methods	to	display
information.	According	to	Oracle,	the	following	shows	four	of	many	Java	Class	Libraries:	

	

java.lang	–	Provides	classes	that	are	fundamental	to	the	design	of	the	Java
programming	language.

	

java.io	-	Provides	for	system	input	and	output	through	data	streams,	serialization
and	the	file	system.

	

java.math	-	Provides	classes	for	performing	arbitrary-precision	integer	arithmetic
(BigInteger)	and	arbitrary-precision	decimal	arithmetic	(BigDecimal).

	

	

java.sql	-	Provides	the	API	for	accessing	and	processing	data	stored	in	a	data	source
(usually	a	relational	database)	using	the	JavaTM	programming	language.

	

Note:	Package	java.lang	contains	a	math	class	which	is	different	from	package	java.math.
The	math	class	within	java.lang	contains	methods	that	performs	basic	numeric	operations.	

	

Chapter	5	described	packages	in	Java.	Each	package	contains	a	group	of	related	classes.
The	classes	are	accessed	by	the	package	name.	An	import	statement	must	be	placed	in	the
program	in	order	for	a	class	to	utilize	members	of	another	class.	Chapter	6	will	look	into
interfaces	which	is	a	group	of	related	methods.

https://docs.oracle.com/javase/7/docs/api/

Chapter	6
Interfaces

An	interface	is	a	collection	of	related	methods.	Interfaces	are	comparable	to	a	class
whereby	it	contains	variables	and	methods.	However	by	default,	an	interface’s	variable	is
declared	public,	static,	and	final	while	the	method	is	declared	abstract.	It	is	possible	for	an
interface	to	perform	a	task	but	usually	there	is	no	behavior	implementation.	In	other
words,	most	methods	in	an	interface	do	not	contain	a	body.	Therefore	an	interface	method
without	a	body	only	includes	a	method’s	signature.	As	a	result,	the	interface	defines	what
task	to	perform	but	not	how	to	perform	the	task.	The	class	which	implements	the	interface
decides	how	to	perform	the	task.	Interfaces	can	extend	one	or	more	interfaces	similar	to	a
subclass	extending	a	superclass.	The	following	is	the	syntax	for	an	interface:

	

Syntax
accessmodifier	interface	interfaceName	extends	interfaceName1,	interfaceName2,
interfaceNameN

{

variableType	variableName1;

variableType	variableName2;

variableType	variableNameN;

methodType	methodName1	(parameter-list);

methodType	methodName2	(parameter-list);

methodType	methodNameN	(parameter-list);

}

	

Syntax	Details

	

Argument Description

accessmodifier Can	be	public	or	no	access	modifier.
A	public	declaration	indicates	the
interface	can	be	used	by	any	code.	A
no	access	modifier	is	the	default
which	indicates	the	interface	is	only
available	to	members	of	its	package

interface A	keyword	used	to	declare	an
interface

interfaceName The	name	of	an	interface

extends An	optional	keyword	that	extends
one	or	more	interfaces

interfaceName1,	2,	N One	or	more	interfaces	separated	by
a	comma	that	will	be	extended

variableType	variableName1,	2,	N; One	or	more	interface	variables

methodType	methodName1
(parameter-list);

One	or	more	interface	methods

	
Figure	6.1	–	Interface	Syntax	Details

	

The	following	is	an	interface	example:

	
public	interface	InterfaceTest

{

public	void	methodOne();

public	void	methodTwo();

}

	

	
Figure	6.2	–	Interface	Example

	

Line	3	declares	an	interface	by	using	the	keyword	“interface”	with	a	“public”
access	modifier.	Therefore	the	code	can	be	implemented	by	any	class	within	any
package.	The	name	of	the	interface	is	called	InterfaceTest.
Lines	5	and	6	are	void	abstract	methods	“methodOne	and	methodTwo”.	The
keyword	“abstract”	is	not	needed	within	an	interface.	Notice	the	semi-colon	at	the

end	of	each	method.	The	semi-colon	is	placed	at	the	end	of	the	methods	because
there	is	no	body/implementation.
	

Chapter	six	will	discuss	the	following	regarding	interfaces:

	

							Interface	Implementation

							Interface	Variables

							Multiple	Inheritance

							Default	Interface	Method

	

Interface	Implementation
Interfaces	are	implemented	using	keyword	“implements”	and	one	or	more	classes	provide
implementation	for	the	methods.	If	a	class	does	not	implement	a	method	by	providing	a
body	then	the	class	must	be	declared	as	abstract.	Each	class	may	implement	the	same
interface	differently	while	supporting	the	same	methods.	It	is	important	to	know	that	one
class	can	implement	multiple	interfaces.	The	following	is	the	syntax	for	a	class
implementing	an	interface:

	

Syntax
class	ClassName	extends	SuperClassName	implements	interfaceName		

{

//	Class	Body

}

	

The	following	is	an	example	of	a	class	implementing	an	interface.

	
package	InterfaceTesting;

	

public	class	InterfaceExamples	implements	InterfaceTest

{

public	void	methodOne()

{

														System.out.println(“This	is	the	body	which	implements	methodOne”);

}

public	void	methodTwo()

{

														System.out.println(“This	is	the	body	which	implements	methodTwo”);

}

	

public	static	void	main(String[]	args)

{

														InterfaceTest	objInterface	=	new	InterfaceExamples();

														objInterface.methodTwo();

}

}

	

	
Figure	6.3	–	Class	Implements	An	Interface

	

Program	Output:
This	is	the	body	which	implements	methodTwo

	

Note:	The	screenshot	displays	a	split	image	due	to	the	interface	and	class	being	in	separate
files.	Eclipse	displays	a	message	which	states	“interface	must	be	defined	in	its	own	file”	if
the	interface	and	class	is	located	in	the	same	file.

	

Line	3	includes	the	“implements”	keyword	within	the	class	definition
Lines	5	–	12	are	the	implemented	methods	which	has	a	body.	Each	class	method
must	match	the	interface	method.	Therefore	the	methods	are	declared	“public”,
“void”	method	type,	and	same	signature.		The	class	would	have	been	declared	as
abstract	if	one	of	the	methods	were	not	implemented.	An	abstract	class	resembles
the	following	declaration:	
	

abstract	public	class	InterfaceExamples	implements	InterfaceTest

	

Interface	Variables
Interface	constants	(known	as	constants)	are	implicitly	declared	as	public,	static,	and	final.
In	other	words,	interface	variables	are	by	default	constants	initialized	with	a	value.
Constants	are	unchangeable	values	assigned	to	a	variable	name.	The	values	are	established
in	an	interface	without	a	method	and	shared	across	all	files.	A	class	implements	the
interface	variables	in	the	same	manner	as	methods.	The	following	is	an	example	of	an
interface	variable:

	

public	interface	InterfaceVariable

{

int	DAYS_PER_WEEK	=	7;

int	MAX_HOURS_PER_DAY	=	24;													

}			

	

	
Figure	6.4	–	Interface	Variable	Example

Multiple	Inheritance
Multiple	inheritance	is	when	an	interface	extends	another	interface	or	a	class	implements
multiple	interfaces.	The	keyword	“extends”	is	used	to	extend	an	interface.	An	extension	of
interfaces	is	beneficial	if	a	programmer	elects	to	add	more	methods.	Errors	are	displayed	if
a	method	is	added	to	the	original	interface	and	the	interface	has	already	been	implemented
by	a	class.	All	of	the	classes	which	used	the	original	interface	will	break	existing	code
because	there	is	no	implementation	of	the	newly	added	method.	However	the	original
interface	can	get	extended	to	accommodate	the	new	method	in	a	separate	interface.
Programmers	can	decide	to	either	continue	using	the	original	interface	or	start	using	the
extended	interface.

	

A	class	inherits	multiple	interfaces	by	using	the	keyword	“implements”	followed	by	the
interfaces	which	are	separated	using	a	comma.	A	class	must	provide	implementations	for
all	methods	if	the	interface	inherits	another	interface	or	the	class	implements	multiple
interfaces.	The	following	is	an	example	of	multiple	inheritance	for	an	interface:

	
public	interface	ExtendInterface	extends	InterfaceTest

{

public	void	methodThree();

public	void	methodFour();

}

	

	
Figure	6.5	–	Interface	Extend	Example

	

Line	3	uses	the	“extends”	keyword	to	extends	an	interface	“InterfaceTest”.	The
extended	interface	contains	abstract	methods	“methodOne	and	methodTwo”	from
Figure	6.2	Interface	Example
	
Lines	5	and	6	display	public	void	abstract	methods	“methodThree	and
methodFour”.	The	methods	from	the	extended	interface	are	not	needed	when
inheriting	an	interface.	Additional	interfaces	can	be	extended	by	adding	the
interface	name	and	separating	all	interfacing	with	a	comma

	

The	following	is	an	example	of	a	class	implementing	multiple	interfaces:

	
public	class	MultipleInterfaces	implements	InterfaceTest,	ExtendInterface

{

public	void	methodOne()

{

														System.out.println(“This	is	the	body	which	implements	methodOne”);

}

public	void	methodTwo()

{

														System.out.println(“This	is	the	body	which	implements	methodTwo”);

}

public	void	methodThree()

{

														System.out.println(“This	is	the	body	which	implements	methodThree”);

}

public	void	methodFour()

{

														System.out.println(“This	is	the	body	which	implements	methodFour”);

}

public	static	void	main(String[]	args)

{

														InterfaceTest	objInterface1	=	new	MultipleInterfaces();

														objInterface1.methodOne();

													

														ExtendInterface	objInterface3	=	new	MultipleInterfaces();

														objInterface3.methodThree();

}

}

	

	
Figure	6.6	–	Class	Implementing	Multiple	Interfaces

	

Program	Output:
This	is	the	body	which	implements	methodOne

This	is	the	body	which	implements	methodThree

	

Line	3	uses	the	“implements”	keyword	to	implement	multiple	interfaces
“InterfaceTest	and	ExtendInterface”
Lines	5	–	21	implements	a	body/behavior	for	each	method	defined	in	both
interfaces
Lines	25	–	29	create	objects	“objInterface1	and	objInterface3”	that	is	used	to	call
methods	“methodOne	and	methodThree”

	

Default	Interface	Method
A	default	interface	method	(known	an	extension	method)	allows	an	interface	method	to
provide	a	body.	Therefore,	the	interface	methods	are	permitted	to	implement	a	behavior.
This	change	occurred	in	the	release	of	JDK	8	whereby	an	interface	has	the	option	to
remain	abstract	or	define	a	default	implementation.	Default	methods	contain	a	“default”
keyword	which	precedes	the	method	type.	An	advantage	of	default	methods	is	a	class	does
not	require	implementation.	However	a	class	requires	implementation	of	a	default	method
if	a	different	value	is	returned.	The	following	is	an	example	of	a	default	method	using
figures	“Figures	6.2	–	Interface	Example	and	Figure	6.5	–	Interface	Extend	Example”.		

	
public	interface	DefaultMethod

{

public	void	methodOne();													

public	void	methodTwo();

default	public	void	methodThree()

{

														System.out.println(“This	is	the	body	which	implements	methodThree”);

}

default	public	void	methodFour()

{

														System.out.println(“This	is	the	body	which	implements	methodFour”);

}

}

	

	
Figure	6.7	–	Default	Method	Example

	

Chapter	6	explained	interfaces	which	is	a	collection	of	related	methods.	Generally,	the

interface	methods	do	not	contain	a	body.	Therefore	the	interface	methods	define	what	task
to	perform	but	not	how	to	perform	the	task.	However,	a	default	method	allows	an	interface
method	to	provide	a	body	which	occurred	in	the	release	of	JDK	8.	Chapter	7	will	discuss
errors,	exceptions,	and	debugging.		

	

Chapter	7
Errors,	Exceptions,	and	Debugging

All	programs	will	include	some	kind	of	error.	An	error	is	an	unwanted	problem	in	the
program.	It	can	be	an	unexpected	problem	such	as	misspelling	a	keyword.	In	Java,	the
errors	are	grouped	into	three	types:

	

1.	 Syntax	–	prevents	code	from	executing
2.	 Runtime	–	generates	an	error	when	the	program	is	executing
3.	 Logical	–	does	not	generate	an	error	message	due	to	a	fault	in	the	code’s	logic

	

Logical	errors	are	difficult	to	locate	because	an	error	message	is	not	generated.	Usually,
logical	errors	are	hidden	until	a	programmer	debugs	their	program.	Although	errors	are
unavoidable	problems,	some	problems	can	be	handled	at	runtime.	Problems	handled	at
runtime	are	called	exceptions.	The	programmer	creates	a	block	of	code	called	an
exception	handler	which	handle	exceptions	in	a	disciplined	manner.	A	benefit	of	handling
exceptions	is	the	program	continues	to	run	after	catching	the	exception.			

	

Debugging	is	a	process	that	allows	a	programmer	to	observe	then	correct	an	error.	The
problems	in	a	program	can	be	found	by	using	System.out.print,	System.out.println	or	a
debugger.	A	debugger	is	a	tool	that	follows	a	code’s	logic.	Most	programmers	prefer	to	use
a	debugger	instead	of	several	print	statements	to	investigate	a	problem.	If	print	statements
are	used,	then	the	programmer	must	add	the	print	statements	and	remove	the	print
statement	after	resolving	the	problem.

	

Chapter	seven	will	explain	the	following	regarding	errors,	exceptions,	and	debugging.

	

							Error	Types

							Throwable	Exception	Parent	Class

							Java’s	Built-In	Exceptions

							Common	Exceptions

							Principles	of	Handling	Exceptions

							Try/Catch	Block

							Finally	Block

							Catch	A	Throwable	Exception

							Methods	Defined	By	Throwable

							Throw	vs	Throws

							Debugging

	

Error	Types
In	programming,	errors	are	problems	that	result	from	a	mistake	in	a	programmer’s	code.
The	errors	are	found	before	a	program	executes,	when	a	program	executes,	and	sometimes
hidden	within	a	program.	The	errors	located	before	execution	of	a	program	are	called
syntax	errors.	Errors	found	during	execution	of	a	program	are	called	runtime	errors.	The
hardest	errors	to	discover	which	are	hidden	in	a	program	are	called	logical	errors.
Nevertheless,	all	errors	must	be	resolved	to	have	a	successful	program.

	

Syntax	Errors

	

Syntax	errors	(known	as	compiler	errors)	stop	programs	from	executing.	Recall	from	the
first	book	“Part	1	–	Java	4	Selenium	WebDriver”,	syntax	is	a	set	of	rules	that	specifies	a
structured	combination	of	words	and	symbols.	If	not	structured	correctly,	an	error	occurs
to	prevent	the	statements	from	compiling.	As	a	result,	the	errors	are	not	compiled	due	to
an	inaccuracy	in	the	programmer’s	code.	

	

Syntax	errors	are	the	easiest	errors	to	locate	and	resolve.	An	Integrated	Development
Environment	(IDE)	such	as	Eclipse	points	out	the	errors.	The	errors	are	disclosed	by	a	red
underline	beneath	the	code	and/or	red	X	to	the	left	of	a	line	number.	In	addition,	a	tool	tip
displays	a	message	that	reveals	the	error	after	hovering	over	the	red	X.	According	to
Beginning	Java®	Programming	(2015),	syntax	errors	include	the	following	examples
(page	172):

	

							Misspelled	class,	variable,	or	method	names

							Misspelled	keywords

							Missing	semicolons

							Missing	return	type	for	methods

							Out	of	place	or	mismatched	parentheses	and	brackets

							Undeclared	or	uninitialized	variables

							Incorrect	format	of	loops,	methods,	or	other	structures

	

The	following	code	has	syntax	errors	in	the	program:

	
public	class	SyntaxError

{

public	static	void	main(String[]	args)

{

														int	x,	y,	total;

													

														x	=	10;

														y	=	6,

														Total	=	x	+	y;

													

														System.out.println(“The	total	of	10	+	6	is	“	+	total);

}

}

	

	
Figure	7.1	–	Syntax	Error	Example

	

Line	10	displays	an	error	due	to	a	comma	rather	than	a	semi-colon
Line	11	displays	an	error	because	Total	is	not	declared.	Line	7	declares	total	but	the
first	letter	begins	with	a	lowercase	“t”	rather	than	an	uppercase	“T”.

	

The	following	is	an	example	of	Eclipse	revealing	the	error	after	hovering	over	the	red	X
for	line	10:

	

	
Figure	7.2	–	Error	Message	After	Hovering	Over	Red	X

	

The	error	states	“Syntax	error	on	token	“,”,	;	expected”	which	means	the	compiler	expects
a	semi-colon.	A	gray	X	with	a	circle	and	white	background	appears	after	correcting	the

error.	Consequently,	the	red	underline	and	red	X	disappear	after	replacing	the	comma	with
a	semi-colon	to	complete	the	statement.

	

Some	errors	display	a	yellow	circle	with	a	smaller	red	X	similar	to	line	11.	This	error
uncovers	multiple	solutions	that	may	resolve	the	problem	after	clicking	the	red	X.	The
following	is	a	screenshot	of	Eclipse	displaying	possible	solutions	to	fix	the	error	on	line
11:

	

	
Figure	7.3	–	Possible	Solutions	After	Clicking	The	Red	X

	

Several	solutions	unfold	after	clicking	the	red	X	on	line	11.	However,	the	correct	solution
is	the	first	option	“Change	to	‘total’”.	Eclipse	automatically	updates	the	code	to	reflect	the
selected	proposed	solution.	Therefore	lines	10	and	11	display	a	gray	X	with	a	circle	and
white	background.	Both	X’s	are	removed	after	saving	the	file.

	

Runtime	Errors

	

Runtime	errors	are	detected	when	a	program	executes	an	invalid	action.	Invalid	actions	are
operations	such	as	divide	by	zero.	The	syntax	is	correct	so	the	program	runs	but	a	problem
occurs	during	runtime.	The	following	is	an	example	of	a	runtime	error:

	
public	class	RuntimeError

{

public	static	void	main(String[]	args)

{

														int	a,	b,	x,	y;

														int	result,	sum;

													

														a	=	x	=	10;													

														b	=	y	=	0;

																																									

														result	=	a/b;

														sum	=	x+y;

																																									

														System.out.println(“What	is	10/0?”	+	result);

														System.out.println(“What	is	10+0?”	+	sum);

}

}

	

	
Figure	7.4	–	Runtime	Error	Example

	

Program	Output:
Exception	in	thread	“main”	java.lang.ArithmeticException:	/	by	zero

at	Errors.RuntimeError.main(RuntimeError.java:13)

	

	

	
Figure	7.5	–	Console/Program	Output	Screenshot

	

Line	7	declares	four	variables	“a,	b,	x,	y”
Line	8	declares	two	variables	“result,	sum”
Line	10	initialize	two	of	the	variables	“a	and	b”	to	10
Line	11	initialize	two	of	the	variables	“x	and	y”	to	0
Line	13	initialize	variable	“result”	to	divide	‘a’	by	‘b’
Line	14	initialize	variable	sum	to	add	‘x’	plus	‘y’

	

The	program	executes	but	a	runtime	error	occurs	due	to	line	13.	Therefore	execution
immediately	stops	and	does	not	execute	lines	14	–	17.	Although,	line	14	is	a	valid
operation,	the	compiler	will	not	execute	the	statement.	The	Program	Output	displays	a
message	which	informs	the	programmer	of	the	problem.	First	line	indicates	a	problem	by
showing	“/	by	zero”	meaning	a	number	was	divided	by	zero.	Second	line	specifies	where
the	problem	occurred	by	showing	the	package	name	“Errors”,	class	name	“RuntimeError”,
method	name	“main”,	and	line	number	“13”.

	

Logical	Errors

	

Logical	errors	execute	without	an	error	but	logically	performs	the	wrong	task.	As	a	result,
this	type	of	error	is	challenging	unless	a	programmer	knows	what	to	expect.	The	actual
results	are	compared	to	the	expected	results	to	verify	what	went	wrong.	Logical	errors
such	as	using	an	operator	precedence	incorrectly	or	misplacing	a	semicolon	will	execute
and	produce	improper	results.	The	following	are	examples	of	logical	errors:

	
public	class	LogicalErrors

{

public	static	void	main(String[]	args)

{

														int	total1	=	(9	+	(8	*	7))	/	6;

														int	total2	=	(9	+	8)	*	(7	/	6);

														int	total3	=	9	+	8	*	7	/	6;

														int	total4	=	(9	+	8)	*	7	/	6;																											

													

														System.out.println(“What	is	the	result	of	total1:	“	+	total1);

														System.out.println(“What	is	the	result	of	total2:	“	+	total2);

														System.out.println(“What	is	the	result	of	total3:	“	+	total3);

														System.out.println(“What	is	the	result	of	total4:	“	+	total4);

}

}

	
Figure	7.6	–	Operator	Precedence	Logical	Error	Example

	

Program	Output:
What	is	the	result	of	total1:	10

What	is	the	result	of	total2:	17

What	is	the	result	of	total3:	18

What	is	the	result	of	total4:	19

	

Lines	7	–	10	initialize	each	variable	“total1,	total2,	total3,	total4”	with	a	different	operator
precedence.	Each	variable	produce	a	different	value	although	the	values	“9,	8,	7,	6”	are	the
same.	The	following	is	an	example	of	misplacing	a	semicolon:

	
public	class	LogicalErrors2

{

public	static	void	main(String[]	args)

{

														int	i;

													

														for	(i	=	0;	i	<	5;	i++);

														{													

																												System.out.println(“The	loop	control	variable	is	“	+	i);

														}

}

}

	

	
Figure	7.7	–	Misplaced	Semicolon	Logical	Error	Example

	

Program	Output:
The	loop	control	variable	is	5

Line	9	incorrectly	places	a	semicolon	at	the	end	of	the	for	loop.	Therefore	the	program
outputs	5	rather	than	0,	1,	2,	3,	4.

	

Throwable	Exception	Parent	Class
An	exception	is	a	Java	class	whereby	java.lang.Throwable	is	the	parent	class.	Therefore,
the	Throwable	exception	represents	all	exception	classes.	An	object	of	a	particular
exception	class	is	generated	when	an	exception	is	thrown	in	a	program.	There	are	two
main	subclasses	deriving	from	the	Throwable	parent	class:

	

1.	 Error	–	contains	serious	exceptions	that	occur	in	the	Java	Virtual	Machine	(JVM).
JVM	is	a	machine	within	a	machine	which	solves	problems	and	helps	the	program
remain	secure.	An	Error	subclass	is	not	managed	by	the	programmer.
	

2.	 Exception	–	contains	exceptions	that	occur	in	the	program.	An	Exception	subclass
is	managed	by	the	programmer.

	

This	book	“Part	2	–	Java	4	Selenium	WebDriver”	will	explain	the	Exception	subclass.
Exceptions	from	subclass	“Error”	are	beyond	a	programmer’s	control.	The	following	is	a
diagram	from	Program	Creek	which	shows	a	hierarchy	of	Java	Exception	classes:

	

http://www.programcreek.com/wp-content/uploads/2009/02/Exception-Hierarchy-Diagram.jpeg

	
Figure	7.8	–	Java	Exception	Class	Hierarchy

	

Java’s	Built-In	Exceptions
In	Java,	there	is	a	respectable	amount	of	exception	classes	defined	inside	the	java.lang
standard	package.	Therefore	some	exceptions	are	automatically	available	due	to	an
implicit	import	of	java.lang	into	every	program.	Most	of	the	exceptions	are	subclasses	that
originate	from	a	standard	type	called	RuntimeException.	RuntimeException	contains
exceptions	that	are	not	checked	by	the	compiler.	All	other	exceptions	are	checked	by	the
compiler	and	must	be	included	in	a	method’s	throws	list.	The	following	is	a	list	of
unchecked	and	checked	exceptions	defined	in	the	java.lang	package:

	

Unchecked	Exceptions Description

ArithmeticException Arithmetic	error,	such	as	divide-by-
zero.

ArrayIndexOutOfBoundsException Array	index	is	out-of-bounds.

ArrayStoreException Assignment	to	an	array	element	of	an
incompatible	type.

ClassCastException Invalid	cast.

EnumConstantNotPresentException An	attempt	is	made	to	use	an
undefined	enumeration	value.

IllegalArgumentException Illegal	argument	used	to	invoke	a
method.

IllegalMonitorStateException Illegal	monitor	operation,	such	as
waiting	on	an	unlocked	thread.

IllegalStateException Environment	or	application	is	in
incorrect	state.

IllegalThreadStateException Requested	operation	not	compatible
with	current	thread	state.

IndexOutOfBoundsException Some	type	of	index	is	out-of-bounds.

NegativeArraySizeException Array	created	with	a	negative	size.

NullPointerException Invalid	use	of	a	null	reference.

NumberFormatException Invalid	conversion	of	a	string	to	a
numeric	format.

SecurityException Attempt	to	violate	security.

StringIndexOutOfBoundsException Attempt	to	index	outside	the	bounds
of	a	string.

TypeNotPresentException Type	not	found.

UnsupportedOperationException An	unsupported	operation	was
encountered.

	
Figure	7.9	–	Java	Unchecked	Exceptions

	

Checked	Exceptions Description

ClassNotFoundException Class	not	found.

CloneNotSupportedException Attempt	to	clone	an	object	that	does
not	implement	the	Cloneable
interface.

IllegalAccessException Access	to	a	class	is	denied.

InstantiationException Attempt	to	create	an	object	of	an
abstract	class	or	interface.

InterruptedException One	thread	has	been	interrupted	by
another	thread.

NoSuchFieldException A	requested	field	does	not	exist.

NoSuchMethodException A	requested	method	does	not	exist.

ReflectiveOperationException Superclass	of	reflection-related
exceptions.

	
Figure	7.10	–	Java	Checked	Exceptions

	

Note:	In	addition	to	java.lang,	the	following	packages	include	exceptions:

	

java.awt java.net

java.awt.color java.rmi

java.awt.datatransfer java.security

java.beans java.text

	
Figure	7.11	–	Packages	That	Include	Exceptions

	

Common	Exceptions
Common	exceptions	are	exceptions	that	occur	frequently	in	a	program.	These	type	of
exception	happens	to	new	programmers	as	well	as	experienced	programmers.	The
following	is	a	list	of	common	exceptions	in	alphabetical	order:

	

ArrayIndexOutOfBoundsException
ClassCastException
IllegalArgumentException
IllegalStateException
NullPointerException
NumberFormatException
OutOfMemoryError
StackOverFlowError

	

Arrays	start	at	index	position	zero	which	stores	the	first	value.	Therefore	the	last	index
position	is	one	less	the	size	of	the	complete	array.	An	ArrayIndexOutOfBoundsException
is	thrown	when	a	program	attempts	to	access	an	index	outside	the	boundaries	of	the	array.
The	following	is	an	ArrayIndexOutOfBoundsException:	

	
public	class	CommonException

{

	

public	static	void	main(String[]	args)

{

														String[]	continents	=	new	String[7];

																											

														continents[0]	=	“Africa”;	

														continents[1]	=	“Antarctica”;

														continents[2]	=	“Asia”;

														continents[3]	=	“Australia”;

														continents[4]	=	“Europe”;

														continents[5]	=	“North	America”;

														continents[6]	=	“South	America”;

														continents[7]	=	“America”;

													

														System.out.println(“There	are	“	+	continents.length	+	”	countries”);																											

}

}

	

	
Figure	7.12	–	ArrayIndexOutOfBoundsException	/	Common	Exception	Example

	

Line	8	creates	an	array	with	7	elements	“String[]	continents	=	new	String[7];”
Line	17	which	contains	“continents[7]	=	“America”;”	is	out	of	bounds	for	the	array
“continents”
Line	19	is	not	executed	because	the	error	causes	the	program	to	stop

	

Program	Output:
Exception	in	thread	“main”	java.lang.ArrayIndexOutOfBoundsException:	7

at	ExceptionHandling.CommonException.main(CommonException.java:17)

	

According	to	the	Program	Output,	the	out	of	bounds	index	is	“7”	located	at	line	17.	The
first	line	indicates	there	is	an	exception	then	shows	the	exception	type
“ java.lang.ArrayIndexOutOfBoundsException ”.	Number	7	specifies	the	index	which	causes	the
exception.	The	second	line	displays	where	the	exception	is	located		” 	at
ExceptionHandling.CommonException.main(CommonException.java:17) ”.	The	following	is	a	translation	of
the	second	line:

An	exception	occurred	in	package	name	”ExceptionHandling”,	class	name
“CommonException”,	method	name	“main”,	at	line	number	17.

	

Principles	of	Handling	Exceptions
It	is	understood	that	exceptions	are	problems	that	occur	at	runtime	(during	program
execution).	Java	allows	an	exception	handler	to	handle	exceptions	which	include	benefits.
Remember	the	runtime	error	example	from	Figure	7.4,	where	execution	stopped	due	to	a
division	by	zero.	A	benefit	of	handling	exceptions	is	the	program	will	continue	executing
after	responding	to	an	error.	Therefore	an	error	does	not	stop	program	execution	but	the
exception	handler	permits	the	program	to	continue	running.	In	Java,	there	are	five
interrelated	keywords	that	facilitate	the	management	of	handling	exceptions.	The
following	is	a	description	of	each	keyword:

	

1.	 try	–	monitors	code	where	an	exception	might	occur
2.	 catch	–	handles	the	exception	when	an	error	occurs
3.	 throw	–	manually	throws	a	custom	exception
4.	 throws	–	throws	an	exception	that	occurred	from	a	method	
5.	 finally	–	automatically	executes	code	after	exiting	a	try	block	

	

The	Java	Virtual	Machine	(JVM)	catches	all	exceptions	if	the	exception	handler	does	not
catch	the	exception.	JVM	displays	an	error	message	which	is	good	for	debugging	but	not
for	handling	exceptions.	It	is	not	good	for	handling	exceptions	due	to	termination	of	the
program.	

	

Try	/	Catch	Block
The	try	/	catch	block	allows	code	to	be	tried	to	verify	whether	an	exception	occurs.	If	an
exception	occurs	then	the	exception	is	caught	to	specify	what	should	happen.	The
keywords	“try	and	catch”	operate	together	when	handling	exceptions.	Try	is	used	to
contain	the	code	that	may	cause	an	exception	while	catch	manages	the	exception.	Both
keywords	“try	and	catch”	are	central	to	handling	exceptions.	A	try	block	is	provided	along
with	one	or	more	catch	blocks.	It	is	important	to	know	that	the	try	block	and	all	catch
blocks	are	bypassed	if	no	exception	occurs.	The	following	is	the	try	/	catch	block	syntax
for	handling	exceptions:

	

Syntax
try

{

//	Code	monitored	by	try	block

}

catch	(ExceptionType1	excObject)

{

//	Exception	Handler	for	ExceptionType1

}
catch	(ExceptionType2	excObject)

{

//	Exception	Handler	for	ExceptionType2

}

	

The	following	is	the	syntax	details	for	try	and	catch	block:

	

Arguments Description

try Monitors	a	block	of	code	for	an	exception

catch Handles	and	processes	the	exception

ExceptionType1
ExceptionType2

Type	of	exception	that	must	be	the	name	of	a	class
inherited	from	the	Throwable	class

excObject Receives	the	value	of	an	exception	caught	by	the

handler.

	
Figure	7.13	–	Syntax	Details

	

The	following	is	an	example	of	a	try	and	catch	exception	handler:

	
public	class	TryCatchBlock

{

public	static	void	main(String[]	args)

{

														String[]	continents	=	new	String[7];

														try

														{													

																												System.out.println(“An	exception	has	not	been	thrown”);

																											

																												continents[0]	=	“Africa”;	

																												continents[1]	=	“Antarctica”;

																												continents[2]	=	“Asia”;

																												continents[3]	=	“Australia”;

																												continents[4]	=	“Europe”;

																												continents[5]	=	“North	America”;

																												continents[6]	=	“South	America”;

																												continents[7]	=	“America”;

																											

																												System.out.println(“There	are	“	+	continents.length	+	”	continents”);

														}

														catch	(ArrayIndexOutOfBoundsException	exc)

														{

																												System.out.println(“Exception!!!	-	Array	Index	Out	of	Bounds.	Not	a	valid	continent”);

														}																											

														System.out.println(“This	line	executes	automatically	whether	an	exception	occurs	or	not”);

}
}

	

	
Figure	7.14	–	Try	and	Catch	Block	Example

	

Program	Output:
An	exception	has	not	been	thrown

Exception!!!	-	Array	Index	Out	of	Bounds.	Not	a	valid	continent

This	line	executes	automatically	whether	an	exception	occurs	or	not

	

Line	8	starts	the	code	monitoring	process	for	errors	using	the	try	block
Line	19	forces	an	exception	when	defining	index	position	7	which	is	outside	of	the
array	boundaries.	Therefore	the	try	block	is	terminated	and	the	program	transfers
control	to	the	catch	block
Line	21	does	not	execute	due	to	the	exception	at	line	19
Line	23	starts	the	exception	handling	process	by	listing	the	exception	type
“ArrayIndexOutOfBoundsException”	within	the	catch	block
Line	25	is	executed	within	the	catch	block	after	the	exception	is	caught
Line	27	is	executed	following	the	catch	block.	This	line	executes	automatically
whether	an	exception	occurs	or	not.

	

A	common	practice	in	Java	is	to	associate	multiple	catch	blocks	with	a	try	block.	Each
catch	block	must	include	a	unique	exception	type	such	as	arithmetic	exception,	array
index	out	of	bounds	exception,	etc.	The	exception	type	determines	which	catch	block	is
executed	after	creating	multiple	catch	blocks.	Therefore	if	the	arithmetic	exception	type	is
executed	then	the	array	index	out	of	bounds	exception	type	is	bypassed.	The	following	is
an	example	of	a	try	block	with	multiple	catch	blocks:

	

public	class	MultipleCatchBlocks

{

public	static	void	main(String[]	args)

{

														int	oddNumbers[]	=	{11,	33,	55,	77,	99,	111};

														int	evenNumbers[]	=	{0,	2,	4,	6,	8};

													

														for	(int	i	=	0;	i	<	oddNumbers.length;	i++)

														{

																												try

																												{

																																										System.out.println(“What	is	“	+	oddNumbers[i]	+	“/”	+	evenNumbers[i]	+	“?	“

																																																																						+	””	+	oddNumbers[i]/evenNumbers[i]);

																												}

																												catch	(ArithmeticException	except)

																												{

																																										System.out.println(“Exception!!!	-	Cannot	divide	a	number	by	zero”);

																												}

																												catch	(ArrayIndexOutOfBoundsException	except)

																												{

																																										System.out.println(“Exception!!!	-	Cannot	locate	the	index”);

																												}

														}

}

}

	

	
Figure	7.15	–	Multiple	Catch	Blocks

	

Program	Output:
Exception!!!	-	Cannot	divide	a	number	by	zero

What	is	33/2?	16

What	is	55/4?	13

What	is	77/6?	12

What	is	99/8?	12

Exception!!!	-	Cannot	locate	the	index

	

Line	17	displays	the	first	catch	block	which	contains	an	arithmetic	exception.	Catch
blocks	are	evaluated	according	to	their	order	of	association	to	the	try	block.
Therefore	this	catch	block	is	evaluated	first	since	it	occurs	first	in	the	program.	The
other	catch	block	is	ignored	when	a	match	is	found	for	this	exception	type.
Line	19	is	executed	when	the	code	reaches	zero	“0”	in	array	“evenNumbers[]”
Line	21	displays	the	second	catch	block	which	contains	an	array	index	out	of
bounds	exception
Line	23	is	executed	when	the	code	searches	for	an	index	that	is	not	available	in
array	“evenNumbers[]”.	The	other	catch	block	is	ignored	when	a	match	is	found	for
this	exception	type.

	

Finally	Block
The	finally	block	is	an	extension	of	try	/	catch	block.	This	block	confirms	certain	actions
such	as	writing	data	to	a	file	is	performed	whether	an	exception	occurs	or	not.	Java	allows
the	same	action	to	be	placed	within	the	try	block	and	catch	block.	On	the	other	hand,
placing	the	same	code	in	both	blocks	“try	block	and	catch	block”	creates	duplicate	code.

	

For	example,	what	happens	if	there	is	no	exception	and	data	needs	to	be	written	to	a	file.
In	this	scenario,	the	try	block	executes	the	code	while	the	catch	block	is	bypassed.
However,	if	there	is	an	exception,	the	catch	block	executes	the	code	while	the	try	block	is
bypassed.	Therefore,	a	programmer	must	place	code	in	the	try	and	catch	block	for
certainty	that	data	is	written	to	a	file.	In	programming,	it	is	difficult	to	read	and	maintain
duplicate	code.	A	finally	block	is	not	required	but	it	will	certainly	write	data	to	the	file
when	an	exception	is	thrown	and	when	it	is	not	thrown.	The	following	is	the	syntax	of	a
try/catch/finally	block:

	

Syntax
try

{

//	Code	monitored	by	try	block

}

catch	(ExceptionType1	excObject)

{

//	Exception	Handler	for	ExceptionType1

}
catch	(ExceptionType2	excObject)

{

//	Exception	Handler	for	ExceptionType2

}
finally

{

//	Execute	code	if	exception	occurs	or	not

}

	

The	following	is	an	example	using	the	try/catch/finally	block:

	

public	class	FinallyBlock

{

public	static	void	main(String[]	args)

{

														int	oddNumbers[]	=	{11,	33,	55,	77,	99,	111};

														int	evenNumbers[]	=	{0,	2,	4,	6,	8};

													

														for	(int	i	=	0;	i	<	oddNumbers.length;	i++)

														{

																												try

																												{

																																										System.out.println(“What	is	“	+	oddNumbers[i]	+	“/”	+	evenNumbers[i]	+	“?	“

																																																																						+	””	+	oddNumbers[i]/evenNumbers[i]);

																												}

																												catch	(ArithmeticException	except)

																												{

																																										System.out.println(“Exception!!!	-	Cannot	divide	a	number	by	zero”);

																												}

																												catch	(ArrayIndexOutOfBoundsException	except)

																												{

																																										System.out.println(“Exception!!!	-	Cannot	locate	the	index”);

																												}

																												finally

																												{

																																										System.out.println(“			Perform	an	Action”);

																												}

														}

}

}

	

	
Figure	7.16	–	Finally	Block

	

Program	Output:
Exception!!!	-	Cannot	divide	a	number	by	zero

Perform	an	Action

What	is	33/2?	16

Perform	an	Action

What	is	55/4?	13

Perform	an	Action

What	is	77/6?	12

Perform	an	Action

What	is	99/8?	12

Perform	an	Action

Exception!!!	-	Cannot	locate	the	index

Perform	an	Action

	

Line	25	starts	the	finally	block	at	the	end	of	the	try/catch	block
Line	27	is	executed	automatically	when	an	exception	is	thrown	and	when	an
exception	is	not	thrown
	

Catch	A	Throwable	Exception
A	Throwable	exception	can	be	utilized	to	catch	all	exceptions	since	it	is	the	parent	class.
The	superclass	Throwable	matches	all	of	its	subclasses	which	includes	RuntimeException.
In	order	to	catch	exceptions	for	both	classes,	the	superclass	and	subclass	must	be
implemented	in	their	respective	catch	block.	The	following	is	a	Throwable	superclass	and
ArithmeticException	subclass	example	using	code	from	Figure	7.15:	

	
public	class	SuperSubClassException

{

	

public	static	void	main(String[]	args)

{

														int	oddNumbers[]	=	{11,	33,	55,	77,	99,	111};

														int	evenNumbers[]	=	{0,	2,	4,	6,	8};

													

														for	(int	i	=	0;	i	<	oddNumbers.length;	i++)

														{

																												try

																												{

																																										System.out.println(“What	is	“	+	oddNumbers[i]	+	“/”	+	evenNumbers[i]	+	“?	“

																																																																						+	””	+	oddNumbers[i]/evenNumbers[i]);

																												}

																												catch	(ArithmeticException	except)

																												{

																																										System.out.println(“Exception!!!	-	Cannot	divide	a	number	by	zero”);

																												}

																												catch	(Throwable	except)

																												{

																																										System.out.println(“Exception!!!	-	The	Throwable	Exception	caught	an	error”);

																												}

														}

}

}

	

	
Figure	7.17	–	Throwable	and	ArithmeticException	Example

	

Program	Output:
Exception!!!	-	Cannot	divide	a	number	by	zero

What	is	33/2?	16

What	is	55/4?	13

What	is	77/6?	12

What	is	99/8?	12

Exception!!!	-	The	Throwable	Exception	caught	an	error

	

Line	18	implements	the	subclass	exception	“ArithmeticException”	inside	the	first
catch	block
Line	20	is	executed	when	the	code	reaches	zero	“0”	in	array	“evenNumbers[]”
Line	22	implements	the	Throwable	exception	inside	the	second	catch	block
Line	24	is	executed	when	the	code	searches	for	an	index	that	is	not	available	in
array	“evenNumbers[]”

	

The	Throwable	superclass	and	subclass	are	allowed	to	catch	exceptions	by	placing	the
subclass	in	the	first	catch	block.	An	error	occurs	if	the	Throwable	exception	is
implemented	in	the	first	block.	The	error	message	states	“Unreachable	catch	block	for
ArithmeticException.	It	is	already	handled	by	the	catch	block	for	Throwable”.

	

Methods	Defined	By	Throwable
As	mentioned,	Throwable	is	a	superclass	of	every	exception	subclass.	Therefore	all
exceptions	support	methods	defined	by	Throwable.	An	exception	can	be	caught	by	a
Throwable	exception	but	it	is	a	generic	catch.	It	is	best	to	use	a	specific	exception	such	as
ArithmeticException	when	handling	exceptions.	However,	some	of	the	methods	defined
by	Throwable	can	help	the	superclass	be	more	specific	when	handling	exceptions.	The
following	is	a	list	of	Throwable	methods:

	

Method Description

fillInStackTrace() Fills	in	the	completed	execution	stack	trace

getLocalizedMessage() Creates	a	localized	description	of	the
Throwable	exception

getMessage() Returns	a	detail	message	of	the	Throwable
exception

printStackTrace() Prints	the	stack	trace

printStackTrace(PrintStream) Prints	the	stack	trace	to	the	specified	print
stream

printStackTrace(PrintWriter) Prints	the	stack	trace	to	the	specified	print
writer

toString() Returns	a	short	exception	description	after
being	called	by	println()	method

	
Figure	7.18	–	Methods	Defined	by	Throwable

	

One	of	the	most	common	methods	defined	by	Throwable	is	the	printStackTrace()	method.
This	method	prints	the	stack	trace	“standard	error	message”.	The	following	is	an	example
of	printStackTrace()	method:

	
public	class	ThrowableMethod

{

public	static	void	main(String[]	args)

{

														int	oddNumbers[]	=	{11,	33,	55,	77,	99,	111};

https://www.cis.upenn.edu/%7Ebcpierce/courses/629/jdkdocs/api/java.lang.Throwable.html#fillInStackTrace%28%29
https://www.cis.upenn.edu/%7Ebcpierce/courses/629/jdkdocs/api/java.lang.Throwable.html#getLocalizedMessage%28%29
https://www.cis.upenn.edu/%7Ebcpierce/courses/629/jdkdocs/api/java.lang.Throwable.html#getMessage%28%29
https://www.cis.upenn.edu/%7Ebcpierce/courses/629/jdkdocs/api/java.lang.Throwable.html#printStackTrace%28%29
https://www.cis.upenn.edu/%7Ebcpierce/courses/629/jdkdocs/api/java.lang.Throwable.html#printStackTrace%28java.io.PrintStream%29
https://www.cis.upenn.edu/%7Ebcpierce/courses/629/jdkdocs/api/java.lang.Throwable.html#printStackTrace%28java.io.PrintWriter%29
https://www.cis.upenn.edu/%7Ebcpierce/courses/629/jdkdocs/api/java.lang.Throwable.html#toString%28%29
https://www.cis.upenn.edu/%7Ebcpierce/courses/629/jdkdocs/api/java.lang.Throwable.html#printStackTrace%28%29

														int	evenNumbers[]	=	{0,	2,	4,	6,	8};

													

														for	(int	i	=	0;	i	<	oddNumbers.length;	i++)

														{

																												try

																												{

																																										System.out.println(“What	is	“	+	oddNumbers[i]	+	“/”	+	evenNumbers[i]	+	“?	“

																																																																						+	””	+	oddNumbers[i]/evenNumbers[i]);

																												}

																												catch	(ArithmeticException	exceptName)

																												{

																																										System.out.println(“Exception!!!	-	Cannot	divide	a	number	by	zero”);

																												}													

																												catch	(Throwable	exceptName)

																												{

																																										System.out.println(“Exception!!!	-	The	Throwable	Exception	caught	the	following	error:”
+	“\n”);

																																										exceptName.printStackTrace();																																																							

																												}																																																							

														}

}

}

	

	
Figure	7.19	–	Print	Stack	Trace	Method

	

Program	Output:
Exception!!!	-	Cannot	divide	a	number	by	zero

What	is	33/2?	16

What	is	55/4?	13

What	is	77/6?	12

What	is	99/8?	12

Exception!!!	-	The	Throwable	Exception	caught	the	following	error:

	

java.lang.ArrayIndexOutOfBoundsException:	5

at	ExceptionHandling.ThrowableMethod.main(ThrowableMethod.java:14)

	

Line	21	defines	the	second	catch	block	with	an	exception	object	“exceptName”	that
will	be	used	to	display	the	exception	value
Line	24	creates	the	printStackTrace()	method	by	using	the	exception	object
followed	by	the	dot	operator

	

Throw	vs	Throws
The	keyword	“throw”	is	used	to	explicitly	throw	an	exception.	An	object	of	the	exception
parent	class	Throwable	must	be	created	to	throw	an	exception.	There	are	two	ways	to
manually	throw	an	exception:

	

1.	 Use	a	parameter	in	the	catch	block
2.	 Create	an	object	using	the	new	operator

The	following	is	the	syntax	for	manually/explicitly	throwing	an	exception:

	

Syntax	
throw	excObject

	

The	following	is	an	example	of	throwing	an	exception	using	the	new	operator:

	
public	class	ThrowTest

{

int	DivideByZero	(int	num1,	int	num2)

{

														if	(num2	==	0)

														{

																												System.out.println(“			An	error	has	not	been	thrown”);

																												throw	new	ArithmeticException	(“Exception!!!	-	Cannot	divide	a	number	by	zero”);

														}

														else

														{

																												return	num1/num2;

														}

													

}

public	static	void	main(String[]	args)

{

														try

														{

																												ThrowTest	objThrow	=	new	ThrowTest	();

																												System.out.println(objThrow.DivideByZero(34,	0));

														}

														catch	(Exception	exc)

														{

																												System.out.println(exc.getMessage());

														}

														finally

														{

																												System.out.println(“			Perform	an	action	if	exception	thrown	or	not	“);

														}

}

}

	

	
Figure	7.20	–	Throw	Exception	Example
	

Program	Output:
			An	error	has	not	been	thrown

Exception!!!	-	Cannot	divide	a	number	by	zero

Perform	an	action	if	exception	thrown	or	not

	

Line	10	creates	an	explicit	exception	using	keywords	“throw”	and	“new”.	The
keyword	“new”	is	used	to	construct	an	instance	of	“ArithmeticException”	with	a
String	parameter.	
Line	24	passes	the	values	“34	and	0”	to	method	“DivideByZero”	which	starts	at	line
5.	Parameter	variable	“num2”	receives	zero	“0”	which	causes	the	exception		
Line	28	displays	the	string	parameter	from	line	10	by	calling	method	“getMessage”

	

The	keyword	“throws”	is	used	to	explicitly	define	exceptions	that	a	method	might	throw.
Therefore,	a	method	call	must	handle	all	of	the	exceptions	if	a	declared	method	has	one	or
more	exceptions	using	the	keyword	“throws”.	The	following	is	an	example	using	“throws”
to	define	an	exception	list:

	

Syntax
methodType	methodName	(parameter-list)	throws	exc-list
{
					//	Method	Body
}

	

The	following	is	an	example	using	“throws”	to	define	an	exception:

	
public	class	ThrowsKeywordTest

{

static	void	throwMethod	()	throws	NullPointerException

{

														System.out.println(“			An	error	has	not	been	thrown”);

														throw	new	NullPointerException	(“Exception!!!	-	Null	Pointer”);

}

public	static	void	main(String[]	args)

{

														try

														{

																												throwMethod	();

														}

														catch	(NullPointerException	exc)

														{

																												System.out.println(“Exception	Type	“	+	exc);

														}																											

}

}

	

	
Figure	7.21	–	Throws	Exception	Example
	

Line	5	defines	an	exception	“NullPointerException”	using	the	keyword	“throws”.
Multiple	exceptions	can	be	created	by	way	of	a	comma-separated	list	of	exceptions
that	the	method	might	throw.
Line	15	calls	method	“throwMethod”	which	has	an	exception
Line	19	displays	the	NullPointerException

	

	

The	following	describes	the	differences	between	throw	and	throws:

	

Throw Throws

Can	throw	one	exception Can	declare	multiple	exceptions

Followed	by	an	instance Followed	by	an	exception	class

Used	within	a	method’s	body Used	within	a	method’s	signature

	
Figure	7.22	–	Throw	vs	Throws

Debugging
At	some	point	while	developing	a	program,	the	program	will	consist	of	errors	and/or
exceptions.	The	key	for	every	programmer	is	to	learn	how	to	debug	the	program.
Debugging	is	the	process	of	detecting	and	removing	unexpected	conditions	from	the
program.	An	IDE	such	as	Eclipse	provides	a	debugger	tool	which	facilitate	the	debugging
process.	The	tool	allows	a	programmer	to	execute	their	code	line-by-line	to	view	what	is
happening	on	each	line.

	

Breakpoints

	

To	start	the	debugging	process,	a	breakpoint	must	be	placed	in	the	program.	The	purpose
of	breakpoints	is	to	pause	execution	of	the	program.	As	a	result,	the	program	runs	up	to
the	breakpoint	until	the	debugger	receives	additional	instructions	on	what	to	do	next.	A
program	can	have	several	breakpoints	set	or	cleared	at	anytime.	The	following	is	a	list	of
ways	to	set	or	clear	a	breakpoint:

	

1.	 Double-click	the	left	of	the	desired	line	number
2.	 Move	the	cursor	to	the	left	of	the	desired	line	number,	right-click	the	mouse,	then

select	Toggle	Breakpoint
3.	 Move	the	cursor	to	the	desired	line	and	press	shortcut	keys	(Ctrl	+	Shift	+	B)

	

A	blue	dot	is	located	next	to	the	line	number	after	setting	the	breakpoint.	Next,	the
programmer	must	open	the	Debug	perspective	which	provides	a	combination	of	views	and
editors	to	debug	a	program.	The	Debug	perspective	can	be	opened	the	following	ways:

	

1.	 Press	F11
2.	 Right-click	inside	the	program,	select	Debug	As,	then	Java
3.	 Click	Run	then	select	Debug	As,	then	Java	Application
4.	 Shortcut	keys	(Alt	+	Shift	+	D,	J)

	

Note:	Select	Yes	when	Eclipse	displays	a	Confirm	Perspective	Switch	dialogue.

	

	
Figure	7.23	–	Confirm	Perspective	Switch	Screenshot

	

The	following	is	a	screenshot	of	the	Debug	perspective:

	

	
Figure	7.24	–	Debug	Perspective	Screenshot

	

Step	Through	The	Program

	

Stepping	through	the	program	is	when	the	debugger	steps/executes	a	line	of	code	one	line
at	a	time.	The	process	of	stepping	helps	the	programmer	understand	how	the	logic	works.
Function	keys	F5,	F6,	F7,	and	F8	control	execution	of	stepping	through	the	program.

	

Step	Into	(F5)	–	Executes	only	the	current	code	line.	The	debugger	pauses	at	every
line	of	code	that	is	stepped	into	including	a	called	method.
	
Step	Over	(F6)	–	Executes	the	current	method	without	displaying	every	step.	The
debugger	stays	in	the	main	routine	while	the	subroutines	execute	in	the	background.
	
Step	Return	(F7)	–	Executes	the	current	method	in	the	background	while	returning
to	the	method	that	was	stepped	into.
	
Resume	(F8)	–	Executes	until	the	next	breakpoint

	

Chapter	7	discussed	errors,	exceptions,	and	debugging.	An	error	is	a	problem	in	the
program.	The	three	types	of	errors	are	syntax,	runtime,	and	logical.	Exceptions	are	errors
that	occur	at	runtime.	However,	an	exception	handler	allows	a	block	of	code	to	manage
the	exceptions.	Therefore	the	exception	allows	execution	to	continue	after	responding	to
the	problem.	Debugging	is	a	process	that	permits	a	programmer	to	detect	and	resolve	all
errors.	Chapter	8	is	an	introduction	Java’s	input/output	system.

Chapter	8
Utilizing	Input	and	Output

Java’s	Input/Output	(I/O)	package	“java.io”	contains	many	classes,	interfaces,	and
methods.	The	package	provides	input	and	output	streams	that	reads/writes	data.	Data	is
read	from	an	input	source	and	written	to	an	output	destination.	An	input	source	and	output
destination	is	anything	that	contains	information	such	as	a	file,	string,	or	memory.	Input	is
data	received	by	the	program	and	output	is	data	sent	from	the	program.	A	program	can	be
a	web	browser	which	receives	and	sends	data.

	

Chapter	eight	is	an	introduction	which	covers	the	following	regarding	Java’s	large
Input/Output	system:

	

							Streams

							File	Input/Output

Streams
Programs	in	Java	perform	input	and	output	through	streams.	Streams	represent	a	sequence
of	data	that	is	read	or	written.	Therefore	streams	have	the	ability	to	pass	data	or	perform
transformations	on	data.	According	to	Oracle,	the	InputStream	class	is	an	abstract
superclass	of	all	classes	representing	an	input	stream	of	bytes.	The	OutputStream	class	is
an	abstract	superclass	of	all	classes	representing	an	output	stream	of	bytes.	Therefore	the
I/O	classes	is	an	abstraction	that	supplies	or	consumes	information.	Streams	provide	a
variety	of	data	formats.

	

https://docs.oracle.com/javase/7/docs/api/java/io/package-summary.html#package_description

Byte	Streams

	

Byte	stream	classes	are	derived	from	an	InputStream	and	OutputStream.	Programs	using
byte	streams	provide	functionality	and	manage	details	of	reading/writing.	The	following	is
a	list	of	byte	stream	classes.

	

Byte	Stream Description

BufferedInputStream Adds	functionality	to	another	input	stream-
namely,	the	ability	to	buffer	the	input	and	to
support	the	mark	and	reset	methods

BufferedOutputStream Implements	a	buffered	output	stream

ByteArrayInputStream Input	stream	that	reads	from	a	byte	array

ByteArrayOutputStream Output	stream	that	writes	to	a	byte	array

DataInputStream An	input	stream	that	includes	methods	for
reading	the	Java	standard	data	types

DataOutputStream An	output	stream	that	includes	methods	for
writing	the	Java	standard	data	types

FileInputStream Input	stream	that	reads	from	a	file

FileOutputStream Output	stream	that	writes	to	a	file

InputStream Abstract	class	that	is	the	superclass	of	all
classes	representing	an	input	stream	of	bytes

ObjectInputStream Input	stream	for	objects

ObjectOutputStream Output	stream	for	objects

OutputStream Abstract	class	that	is	the	superclass	of	all
classes	representing	an	output	stream	of	bytes

PipedInputStream Provides	data	bytes	that	are	written	to	the	piped
output	stream

PipedOutputStream Connected	to	a	piped	input	stream	to	create	a
communications	pipe

PrintStream Output	stream	that	contains	print()	and	println()

PushbackInputStream Input	stream	that	allows	bytes	to	be	returned	to
the	stream

SequenceInputStream Represents	the	logical	concatenation	of	other
input	streams.

	
Figure	8.1	–	Byte	Stream

	

The	following	is	a	list	of	InputStream	methods:

	

InputStream	Method Description

abstract	int	read() Reads	the	next	byte	of	data	from	the	input
stream

boolean	markSupported() Tests	if	this	input	stream	supports	the
mark	and	reset	methods

int	available	() Returns	an	estimate	of	the	number	of	bytes
that	can	be	read	(or	skipped	over)	from
this	input	stream	without	blocking	by	the
next	invocation	of	a	method	for	this	input
stream

int	read	(byte[]	b) Reads	some	number	of	bytes	from	the
input	stream	and	stores	them	into	the
buffer	array	b

int	read	(byte[]	b,	int	off,
int	len)

Reads	up	to	len	bytes	of	data	from	the
input	stream	into	an	array	of	bytes

long	skip	(long	n) Skips	over	and	discards	n	bytes	of	data
from	this	input	stream

void	close	() Closes	this	input	stream	and	releases	any
system	resources	associated	with	the
stream

void	mark	(int	readLimit) Marks	the	current	position	in	this	input
stream

void	reset() Repositions	this	stream	to	the	position	at
the	time	the	mark	method	was	last	called
on	this	input	stream

	
Figure	8.2	–	InputStream	Methods

	

The	following	is	a	list	of	OutputStream	methods:

	

OutputStream
Methods

Description

abstract	void	write(int
b)

Writes	the	specified	byte	to	this	output	stream

void	close() Closes	this	output	stream	and	releases	any
system	resources	associated	with	this	stream

void	flush() Flushes	this	output	stream	and	forces	any
buffered	output	bytes	to	be	written	out

void	write(byte[]	b) Writes	b.length	bytes	from	the	specified	byte
array	to	this	output	stream

void	write(byte[]	b,
int	off,	int	len)

Writes	len	bytes	from	the	specified	byte	array
starting	at	offset	off	to	this	output	stream

	
Figure	8.3	–	OutputStream	Methods

	

Character	Stream

	

Character	stream	classes	are	derived	from	Reader	and	Writer	which	offer	similar	methods
as	InputStream	and	OutputStream.	The	character	stream	class	manages	I/O	paralleling	the
byte	stream	class.	Unicode	characters	are	translated	from	character	stream	classes.	The
following	is	a	list	of	character	stream	classes:

	

Character	Stream Description

BufferedReader Reads	text	from	a	character-input	stream,
buffering	characters	so	as	to	provide	for	the
efficient	reading	of	characters,	arrays,	and	lines.

BufferedWriter Writes	text	to	a	character-output	stream,	buffering
characters	so	as	to	provide	for	the	efficient
writing	of	single	characters,	arrays,	and	strings.

CharArrayReader This	class	implements	a	character	buffer	that	can
be	used	as	a	character-input	stream.

CharArrayWriter This	class	implements	a	character	buffer	that	can
be	used	as	an	Writer.

FileReader Convenience	class	for	reading	character	files.

FileWriter Convenience	class	for	writing	character	files.

FilterReader Abstract	class	for	reading	filtered	character
streams

FilterWriter Abstract	class	for	writing	filtered	character
streams

InputStreamReader An	InputStreamReader	is	a	bridge	from	byte
streams	to	character	streams:	It	reads	bytes	and
decodes	them	into	characters	using	a	specified
charset

LineNumberReader A	buffered	character-input	stream	that	keeps	track
of	line	numbers

OutputStreamWriter An	OutputStreamWriter	is	a	bridge	from
character	streams	to	byte	streams:	Characters
written	to	it	are	encoded	into	bytes	using	a

specified	charset

PipedReader Piped	character-input	streams

PipedWriter Piped	character-output	streams.

PrintWriter Prints	formatted	representations	of	objects	to	a
text-output	stream.

PushbackReader A	character-stream	reader	that	allows	characters
to	be	pushed	back	into	the	stream.

Reader Abstract	class	for	reading	character	streams

StringReader A	character	stream	whose	source	is	a	string.

StringWriter A	character	stream	that	collects	its	output	in	a
string	buffer,	which	can	then	be	used	to	construct
a	string

Writer Abstract	class	for	writing	to	character	streams

	
Figure	8.4	–	Character	Stream

	

Buffered	Streams

	

Buffered	input	streams	read	data	from	a	memory	area	known	as	a	buffer.	On	the	other
hand,	buffered	output	streams	write	data	to	a	buffer.	In	Java,	majority	of	the	streams	are
unbuffered	meaning	each	read	or	write	request	is	managed	directly	by	the	operating
system	(OS).	A	management	request	by	an	OS	make	programs	less	efficient	due	to	a
request	triggering	an	expensive	operation.

Buffered	I/O	streams	is	implemented	to	reduce	overhead	by	administering	a	dedicated
space	in	memory.	The	dedicated	space	stores	data	in	an	efficient	manner.	For	instance,	the
buffered	input	stream	is	only	called	when	the	buffer	is	empty	and	buffered	output	streams
are	only	called	when	the	buffer	is	full.	Therefore,	the	four	following	buffer	classes	can	be
used	to	wrap	around	a	byte	or	character	I/O	stream:

	

Buffer	Classes Description

BufferedInputStream Supplies	buffering	to	output	streams

BufferedOutputStream Supplies	buffering	to	input	streams

BufferedReader Reads	text	from	a	character	input	stream

BufferedWriter Writes	text	to	a	character	output	stream

	
Figure	8.5	–	Buffered	Streams

	

Data	Streams

	

Data	streams	serve	as	a	foundation	for	String	values,	binary	input,	and	output	of	primitive
data	types	such	as	boolean,	byte,	char,	double,	float,	int,	long,	and	short.	A	DataInput	or
DataOutput	interface	is	implemented	by	all	of	the	data	streams.	The	DataInput	interface
provides	methods	for	reading	while	DataOutput	interface	provides	methods	for	writing	all
of	Java’s	primitive	types.	DataInputStream	implements	the	DataInput	interface	and
DataOutputStream	implements	the	DataOutput	interface.	The	following	is	a	list	of
methods	for	DataInputStream	and	DataOutputStream:

	

DataInputStream	Method Description

boolean	readBoolean() Reads	a	boolean	input	from	the	file

byte	readByte() Reads	a	byte	input	from	the	file

char	readChar() Reads	a	char	input	from	the	file

double	readDouble() Reads	a	double	input	from	the	file

float	readFloat() Reads	a	float	input	from	the	file

int	readInt() Reads	a	int	input	from	the	file

long	readLong() Reads	a	long	input	from	the	file

short	readShort() Reads	a	short	input	from	the	file

	
Figure	8.6	–	DataInputStream	Methods

	

DataOutputStream
Method

Description

void	writeBoolean(boolean
v)

Writes	a	boolean	output	to	the	file

void	writeByte(int	v) Writes	a	byte	output	to	the	file

void	writeChar(int	v) Writes	a	char	output	to	the	file

void	writeDouble(double	v) Writes	a	double	output	to	the	file

void	writeFloat(float	v) Writes	a	float	output	to	the	file

void	writeInt(int	v) Writes	a	int	output	to	the	file

void	writeLong(long	v) Writes	a	long	output	to	the	file

void	writeShort(int	v) Writes	a	short	output	to	the	file

	
Figure	8.7	–	DataOutputStream	Methods

	

Standard	Streams

	

Java	provides	support	for	standard	I/O	so	a	program	receives	input	from	a	keyboard	and
produce	output	onto	the	computer	monitor.	A	class	called	System	within	the	java.lang
package	includes	three	standard	stream	variables:	in,	out,	and	err.	System.in	is	an
InputStream	object	while	System.out	and	System.err	are	PrintStream	objects.	PrintStream
allows	formatted	data	to	be	written	to	an	OutputStream.	The	following	is	a	description	of
the	standard	streams:	

	

Standard	Stream Description

Standard	Input (System.in)	/	By	default	the	keyboard
Standard	Input	controls	where	the	program	receives
input

Standard	Output (System.out)	/	By	default	the	console
Standard	Output	controls	where	the	program	sends
output

Standard	Error (System.err)	/	By	default	the	console
Standard	Error	used	to	output	an	error	supplied	by
the	program

	
Figure	8.8	–	Standard	Streams

	

File	Input/Output
Files	are	stored	and	organized	so	they	can	be	retrieved	and	accessed	in	a	convenient
manner.	In	Java,	there	are	two	packages	“java.io.file	and	java.nio.fio”	set	aside	for	files.
Package	“java.nio.file”	is	the	newer	file	system	labeled	NIO2	meaning	“New	Input/Output
2”.	NIO2	identifies	interfaces	and	classes	to	access	files,	file	attributes,	and	file	systems.

	

Path

	

Most	files	are	arranged	in	a	hierarchical	(known	as	tree)	structure.	The	root	node	(i.e.,	C:\)
is	located	at	the	top	of	the	hierarchy	followed	by	folders	and	files.	All	folders	have	the
ability	to	include	additional	folders	and	files.	A	unique	path	identifies	a	specific	resource
(file	or	folder)	within	a	tree.	Therefore	the	path	“C:\java4selenium\input_output\test.txt”
indicates	a	file	named	“test”	is	located	in	a	folder	named	“input_output”	within	another
folder	named	“java4selenium”.	The	following	are	common	Path	Interface	methods	for
Java’s	file	system:

	

Path	Conversion

	

toAbsolutePath	()
Returns	a	Path	object	characterizing	the	absolute	path	
	
toRealPath	(LinkOption…	options)
Returns	the	real	path	of	an	existing	file
	
toUri	()
Returns	a	URI	to	characterize	this	path

	

Retrieve	Path	Information

	

getFileName	()
Returns	the	name	of	the	file	or	last	element	in	the	Path	object
	
getName	(int	index)
Returns	the	Path	element	corresponding	to	the	specified	index
	
getNameCount	()
Returns	the	number	of	name	elements	in	the	path
	
getParent	()
Returns	the	parent	path	or	null	
	
getRoot	()
Returns	the	path’s	root	
	
normalize	()
Returns	a	path	with	redundant	name	elements	eliminated

	
resolve	(Path	other)
Resolve	the	specified	path	against	this	path	
	
relativize	(Path	other)
Constructs	a	relative	path	between	this	path	and	a	specified	path
	
subPath	(int	beginIndex,	int	endIndex)
Returns	the	subsequence	of	the	Path	indicated	by	starting	and	ending	indices
	
toString
Returns	the	path’s	string	representation

	

Files

	

Files	can	be	created,	deleted,	moved,	copied,	and	verified	for	existence.	Both	packages
“java.io.file	and	java.nio.fio”	include	methods	which	read,	write,	and	manipulate	files	and
folders.	The	following	are	common	methods	within	both	packages	for	Java’s	file	system:

	

Check	Existence	Methods

	

exists(Path	path,	LinkOption…	options)	
Tests	if	the	resource	exist
	
notExists(Path	path,	LinkOption…	options)	
Tests	if	the	resource	located	by	this	path	does	not	exist

	

Check	Status	Methods

	

isDirectory	(Path	path,	LinkOption…	options)
Tests	if	the	resource	is	a	directory
	
isExecutable	(Path	path)
Tests	if	the	resource	is	executable
	
isFile()
Tests	if	the	resource	indicated	by	this	abstract	pathname	is	a	normal	resource
	
isReadable	(Path	path)
Tests	if	the	resource	is	readable
	
isSameFile	(Path	path,	Path	path2)
Tests	if	two	resources	locate	the	same	resource
	
isWritable	(Path	path)
Tests	if	the	resource	is	writable

	

Copy	Method

	

copy	(Path	source,	Path	target,	CopyOption…	options)
Copy	the	resource	to	a	specified	target

https://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html#exists%28java.nio.file.Path,%20java.nio.file.LinkOption…%29
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/LinkOption.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html#notExists%28java.nio.file.Path,%20java.nio.file.LinkOption…%29
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/LinkOption.html

	

Create	Method

	

createFile	(Path	path,	FileAttribute<?>…	attrs)
Creates	a	new	and	empty	resource

	

Delete	Method

	

Delete	(Path	path)
Deletes	the	resource

	

Note:	Folders	must	be	empty	before	it	can	be	deleted

	

Directory	Methods

	

list	()
Returns	an	array	of	strings	naming	the	resources	and	directories	in	the	directory
indicated	by	this	abstract	pathname
	
listFiles	()
Returns	an	array	of	abstract	pathnames	indicating	the	files	in	the	directory	indicated
by	this	abstract	pathname

	

Move	Method

	

move	(Path	source,	Path	target,	CopyOption…	options)	
Move	or	rename	the	resource	to	a	target

	

Read	Methods

	

readAllBytes	(Path	path)
Reads	all	the	bytes	from	the	resource
	
readAllLines	(Path	path,	Charset	cs)
Read	all	lines	from	the	resource

https://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html#move%28java.nio.file.Path,%20java.nio.file.Path,%20java.nio.file.CopyOption…%29
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/7/docs/api/java/nio/file/CopyOption.html

	

Space	Methods

	

length	()
Returns	the	length	of	the	resource	indicated	by	this	abstract	pathname
	
getFreeSpace	()
Returns	the	number	of	unallocated	bytes	in	the	partition	named	by	this	abstract
pathname
	
getTotalSpace	()
Returns	the	size	of	the	partition	named	by	this	abstract	pathname
	
getUsableSpace	()
Returns	the	number	of	bytes	available	to	this	virtual	machine	on	the	partition	named
by	this	abstract	pathname

	

Write	Methods

	

write	(Path	path,	byte[]	bytes,	OpenOption…	options)
Writes	bytes	to	the	resource
	
write	(Path	path,	Iterable<?	extends	CharSequence>	lines	Charset	cs,
OpenOption…	options)
Write	lines	of	text	to	the	resource

Conclusion
Java	is	a	popular	object-oriented	programming	(OOP)	language	centered	around	objects.
The	goal	of	“Part	2	–	Java	4	Selenium	WebDriver”	was	to	provide	deep	concepts	of	Java.
One	of	the	benefits	of	Java	is	the	ability	to	reuse	code.	The	following	are	take-away	topics
from	this	book:

	

Classes:	A	class	is	a	template	for	objects	which	contains	data	and	code	that	operates	on	the
data.

	

Objects:	Objects	are	the	foundation	to	object-oriented	programming.	It	consists	of	two
characteristics:	state	and	behavior.	State	identifies	the	object	and	behavior	represent	the
actions	of	the	object.

	

Methods:	A	method	is	a	block	of	code	that	perform	a	specific	task.

	

Inheritance:	Inheritance	is	a	hierarchical	concept	which	allows	reusable	code	and	objects
to	be	extended.

	

Package:	A	package	is	a	collection	of	related	classes.

	

Interface:	An	interface	is	a	collection	of	related	methods.

	

Error:	An	error	is	an	unavoidable	problem	in	a	program.

	

Exceptions:	An	exception	is	an	error	that	occurs	at	runtime

	

Debugging:	Debugging	is	the	process	of	detecting	and	removing	unexpected	conditions
from	the	program.

Resources
1.				Beginning	Java®	Programming
The	Object-Oriented	Approach
Bart	Baesens,	Aimée	Backiel,	Seppe	vanden	Broucke
	

2.				Java	A	Beginner’s	Guide	Sixth	Edition
Create,	Compile,	and	Run	Java	Programs	Today
Herbert	Schildt
	

3.				ORACLE	Java	Documentation
The	Java	TM	Tutorials
https://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html
https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/java/io/package-
summary.html#package_description
	

4.				Program	Creek
http://www.programcreek.com/2009/02/diagram-for-hierarchy-of-exception-
classes/
	

5.				TIOBE
http://www.tiobe.com/tiobe_index
	

6.				Dictionary.com
http://www.dictionary.com/browse/object?s=t
http://www.dictionary.com/browse/annotation?s=t

https://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html
https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/java/io/package-summary.html#package_description
http://www.programcreek.com/2009/02/diagram-for-hierarchy-of-exception-classes/
http://www.tiobe.com/tiobe_index
http://www.dictionary.com/browse/object?s=t
http://www.dictionary.com/browse/annotation?s=t

Books	by	Rex	Jones	II
1.	 Free	Book	Absolute	Beginner

(Part	1)	You	Must	Learn	VBScript	for	QTP/UFT
Don’t	Ignore	The	Language	For	Functional	Automation	Testing
	

2.	 (Part	2)	You	Must	Learn	VBScript	for	QTP/UFT
Don’t	Ignore	The	Language	For	Functional	Automation	Testing
	

3.	 Free	Book	Absolute	Beginner		
(Part	1)	Java	4	Selenium	WebDriver
Come	Learn	How	To	Program	For	Automation	Testing
	

4.	 (Part	2)	Java	4	Selenium	WebDriver
Come	Learn	How	To	Program	For	Automation	Testing

	

Coming	Soon

5.	 Free	Book	Absolute	Beginner
(Part	1)	Selenium	WebDriver	for	Functional	Automation	Testing
Your	Beginners	Guide	To	Become	Good
	

6.	 (Part	2)	Selenium	WebDriver	for	Functional	Automation	Testing
Your	Guide	To	Stay	Effective

	

						 	

	

						 						
						

						

Sign	Up	To	Receive
1.	 3	Tips	To	Master	Selenium	Within	30	Days

http://tinyurl.com/3-Tips-For-Selenium
	

2.	 3	Tips	To	Master	QTP/UFT	Within	30	Days
http://tinyurl.com/3-Tips-For-QTP-UFT
	

3.	 Free	Webinars,	Videos,	and	Live	Trainings	
http://tinyurl.com/Free-QTP-UFT-Selenium

http://tinyurl.com/3-Tips-For-Selenium
http://tinyurl.com/3-Tips-For-QTP-UFT
http://tinyurl.com/Free-QTP-UFT-Selenium

	Free Webinars, Videos, and Live Training
	Rex Jones’ Contact Information
	Table of Contents
	Preface
	About the Author
	Copyright, Legal Notice, and Disclaimer
	Acknowledgements
	Chapter 1 Introduction to Object-Oriented Programming
	Classes, Objects, and Methods
	Arrays and Strings
	Inheritance
	Packages
	Interfaces
	Errors, Exceptions, and Debugging
	Utilizing Input and Output
	Chapter 2 Classes, Objects, and Methods
	Classes
	Objects
	Methods
	This Keyword
	Annotations
	Access Modifiers
	Static Keyword
	Chapter 3 Arrays and Strings
	Single-Dimensional Arrays
	Multi-Dimensional Arrays
	For-Each Loop
	Strings
	Chapter 4 Inheritance
	Fundamentals of Inheritance
	Superclass Object
	Inheriting Private Members
	Superclass and Subclass Constructors
	Polymorphism
	Abstraction
	Keyword Final
	Chapter 5 Packages
	Create A Package
	Import A Package
	Java Class Library
	Chapter 6 Interfaces
	Interface Implementation
	Interface Variables
	Multiple Inheritance
	Default Interface Method
	Chapter 7 Errors, Exceptions, and Debugging
	Error Types
	Throwable Exception Parent Class
	Java’s Built-In Exceptions
	Common Exceptions
	Principles of Handling Exceptions
	Try / Catch Block
	Finally Block
	Catch A Throwable Exception
	Methods Defined By Throwable
	Throw vs Throws
	Debugging
	Chapter 8 Utilizing Input and Output
	Streams
	File Input/Output
	Conclusion
	Resources
	Books by Rex Jones II
	Sign Up To Receive

