


Mastering	Software	Testing	with	JUnit	5
	

	

	

	

	

	

	

	

	

	

Comprehensive	guide	to	develop	high	quality	Java	applications
	

	

	

	

	

	

	

	

	

	

Boni	García

	

	

	

	



BIRMINGHAM	-	MUMBAI



Mastering	Software	Testing	with
JUnit	5
	

	

Copyright	©	2017	Packt	Publishing

	

	

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted	in	any	form	or	by	any	means,	without	the
prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the
accuracy	of	the	information	presented.	However,	the	information	contained	in
this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the
author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held
liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by
this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all
of	the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use
of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

	

	

First	published:	October	2017

	

	

Production	reference:	1231017

	

	



Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham

B3	2PB,	UK.
	

	

ISBN	978-1-78728-573-6

	
www.packtpub.com

http://www.packtpub.com


Credits

Author

Boni	García

Copy	Editor

Charlotte	Carneiro

Reviewers

Luis	Fernández	Muñoz	

Ashok	Kumar	S

Project	Coordinator

Ritika	Manoj

Commissioning	Editor

Smeet	Thakkar

Proofreader

Safis	Editing



Acquisition	Editor

Nigel	Fernandes

Indexer

Aishwarya	Gangawane

Content	Development	Editor

Mohammed	Yusuf	Imaratwale

Graphics

Jason	Monteiro

Technical	Editor

Ralph	Rosario

Production	Coordinator

Shraddha	Falebhai



About	the	Author
Boni	García	has	a	PhD	degree	on	information	and	communications
technology	from	Technical	University	of	Madrid	(UPM)	in	Spain	since
2011.	His	doctoral	dissertation	was	focused	on	test	automation	for	web
applications.	He	is	an	author	of	more	than	30	research	papers,	including
international	conferences,	journals,	and	magazines.

At	the	time	of	writing	this	book,	he	was	working	as	a	researcher	at	King	Juan
Carlos	University	(URJC),	and	also	as	assistant	professor	at	Digital	Art	and
Technology	University	(U-tad)	in	Spain.	He	has	participated	in	different
research	initiatives.	For	instance,	he	is	member	of	Kurento	project,	where	he
has	created	a	testing	framework	for	WebRTC	applications.	He	also
participates	in	the	coordination	of	ElasTest,	a	project	aimed	to	create	an
elastic	platform	for	end-to-end	testing	of	different	types	of	applications.

Boni	is	an	active	member	on	the	free	open	source	software	community	with	a
big	emphasis	on	software	testing	and	web	engineering.	Among	others,	he	is
the	owner	and	main	developer	of	the	WebDriverManager	and	selenium-
jupiter	projects	(JUnit	5	extension	for	Selenium).

First	of	all,	I	would	like	to	thank	my	girl,	Verónica,	for	her	essential	support
while	writing	this	book.	Without	you,	this	manuscript	would	have	been	simply
impossible.	But,	most	importantly,	thank	you	for	sharing	your	life	with	me.	I
would	also	like	to	thank	to	my	sisters,	Yoly	and	Inma,	for	all	their	help,	not
only	with	this	book,	but	in	life	in	general.	Thank	you	for	being	always	there.
In	addition,	I	want	to	dedicate	this	book	to	my	nieces,	Andrea,	Silvia,	and
Laura,	who	are	the	most	amazing	people	in	the	universe	(at	least	the	part	I
know).	I	also	would	like	to	remember	here	my	parents,	Pablo	and	Dolores.
There	is	nothing	I	would	like	more	than	if	you	were	here.	I	know	that	a	part	of
you	is	living	with	us,	in	your	daughters,	grandchildren,	and	myself.	I	miss	you
so	much.	Finally,	I	also	want	to	dedicate	this	book	to	the	most	important
person	in	the	world,	my	little	boy,	Pablo.	Son,	whenever	you	read	this,	I	want
you	to	know	that	I	learned	what	happiness	really	means	by	looking	into	your
eyes.	I	would	like	to	believe	these	words	can	travel	in	time	and	space	to	give
you	a	big	hug	anytime.	Remember	that	your	parents	love	you	more	than
anything.



About	the	Reviewers
Luis	Fernández	Muñoz	in	the	last	25	years	he	has	been	serving	as	a
Professor	and	Researcher	at	Technical	University	of	Madrid	(UPM)
and	King	Juan	Carlos	University	(URJC),	both	in	Spain.	he	has
also	collaborate	as	Consultor	and	Trainer	in	different	public	and	private
national	and	international	institutions.	His	main	expertise	comprises	all	the
software	engineering	disciplines,	from	coding	and	testing,	to	analysis,	design,
architecture,	and	project	management,	usually	around	C++/Java	and	Web/JEE
technologies.

As	a	Consultor	in	private	companies,	he	has	participated	in	different	projects
as	different	roles,	from	management	to	development	of	code	and	tests.	In	the
different	areas	he	has	worked,	he	highlight	cloud	computing,	combat
simulation	and	physical	activity	expert	systems,	among	others.

Additional,	my	entrepreneur	spirit	took	me	to	become	in	the	one	of	co-
founders	of	TS	Company,	an	UPM	startup	with	25	employees	in	only	four
years.

He	has	developed	my	research	endeavor	in	the	Natural	Computing	Group,	in
which	he	made	his	PhD	dissertation	focused	on	Parallel	Algorithms	for	the
Application	of	Evolution	Rules	in	Endomembrane	P	Systems.	After	that,	he
has	directed	some	others	PhD	dissertations.	Thanks	to	all	of	this,	he	has
participated	in	more	than	60	publications,	in	conferences,	journals,	and
several	research	projects.

This	versatile	career	has	given	me	the	opportunity	of	learn	by	reading	and
listening	to	relevant	people	in	the	field,	which	is	one	of	his	main	hobbies.
Deep	reflections,	discussions	and	building	the	mental	structure	of	conceptual
ideas	rigorously,	but	his	way,	is	his	motivation	challenge.	Traveling,	chatting,
and	venturing	-without	losing	his	mind-	is	the	way	he	enjoy’s	the	best	in	life.

Ashok	Kumar	S	is	an	Android	developer	residing	in	Bangalore,	India.	A
gadget	enthusiast,	he	thrives	on	innovating	and	exploring	the	latest	gizmos	in
the	tech	space.	He	has	been	developing	softwares	for	all	Google	related
technologies,	and	he	also	a	Google	certified	Android	developer.	A	strong
believer	in	spirituality,	he	heavily	contributes	to	the	open	source	community
as	an	e-spiritual	ritual	to	improve	his	e-karma.	He	regularly	conducts
workshops	about	Android	application	development	in	local	engineering
colleges	and	schools.	He	also	organizes	multiple	tech	events	at	his



organization	and	he	is	a	regular	attendee	of	all	the	conferences	that	happen	on
Android	and	Java	related	technologies	in	the	silicon	valley	of	India
(Bengaluru).	He	also	runs	a	YouTube	channel,	called	AndroidABCD,	where	he
discusses	all	aspects	of	Android	development,	including	quick	tutorials.
Having	4	years	of	professional	experience.	Currently	working	with	Dunst
Technologies	Pvt	Ltd	as	full-time	Sr.	Mobile	Engineer.	He	has	extensively
worked	on	Android	Native	applications	ranging	from	Enterprise	applications
to	commerce	application.	I	spend	most	of	my	time	in	exploring	brilliant
architectures	and	libraries.	I	have	a	strong	interest	in	code	quality,	testing,	and
automation,	and	all	three.	he	is	a	speaker	at	Android	conferences	that
happen’s	in	Bengaluru,	Apart	from	all	of	it,	I	am	also	a	photographer,	A
storyteller.

https://www.youtube.com/c/AndroidABCD


www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.
com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Pa
cktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the
eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and
offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access
to	all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help
you	plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt


Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser



Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our
editorial	process.	To	help	us	improve,	please	leave	us	an	honest	review	on	this
book’s	Amazon	page	at	https://www.amazon.com/dp/1787285731.

If	you’d	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at
customerreviews@packtpub.com.	We	award	our	regular	reviewers	with	free	eBooks
and	videos	in	exchange	for	their	valuable	feedback.	Help	us	be	relentless	in
improving	our	products!

https://www.amazon.com/dp/1787285731


Table	of	Contents
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	 Retrospective	On	Software	Quality	And	Java	Testing
Software	quality

Quality	engineering
Requirements	and	specification
Quality	Assurance

ISO/IEC-25000
Verification	and	Validation

Software	defects
Static	analysis

Software	testing
Testing	levels

Unit	testing
Integration	testing
System	testing

Testing	methods
Black-box	testing
White-box	testing
Non-functional	testing

Testing	types
Other	testing	approaches

Testing	frameworks	for	the	JVM
JUnit	3

Standard	tests	in	JUnit	3
Test	execution	in	JUnit	3

JUnit	4
Standard	tests	in	JUnit	4
Test	execution	in	JUnit	4
Advanced	features	of	JUnit	4

JUnit	ecosystem



Summary
2.	 What’s	New	In	JUnit	5

Road	to	JUnit	5
JUnit	5	motivation

Modularity
JUnit	4	runners
JUnit	4	rules

JUnit	5	inception
JUnit	5	community

JUnit	5	architecture
Test	Engine	SPI
Test	Launcher	API

Running	tests	in	JUnit	5
Jupiter	tests	with	Maven
Jupiter	tests	with	Gradle
Legacy	tests	with	Maven
Legacy	tests	wih	Gradle
The	ConsoleLauncher
Jupiter	tests	in	JUnit	4

IntelliJ
Eclipse

The	extension	model	of	JUnit	5
Test	lifecycle
Conditional	extension	points
Dependency	injection
Third-party	extensions

Summary
3.	 JUnit	5	Standard	Tests

Test	lifecycle
Test	instance	lifecycle
Skipping	tests
Display	names

Assertions
Jupiter	assertions

Group	of	assertions
Asserting	exceptions
Asserting	timeouts

Third-party	assertion	libraries
Tagging	and	filtering	tests

Filtering	tests	with	Maven
Maven	regular	support

Filtering	tests	with	Gradle
Meta-annotations



Conditional	test	execution
Assumptions

Nested	tests
Repeated	tests
Migration	from	JUnit	4	to	JUnit	5

Rule	support	in	Jupiter
Summary

4.	 Simplifying	Testing	With	Advanced	JUnit	Features
Dependency	injection

TestInfoParameterResolver
RepetitionInfoParameterResolver
TestReporterParameterResolver

Dynamic	tests
Test	interfaces
Test	templates
Parameterized	tests

@ValueSource
@EnumSource
@MethodSource
@CsvSource	and	@CsvFileSource
@ArgumentsSource
Argument	conversion

Implicit	conversion
Explicit	conversion

Custom	names
Java	9

JUnit	5	and	Java	9	compatibility
Beyond	JUnit	5.0
Summary

5.	 Integration	Of	JUnit	5	With	External	Frameworks
Mockito

Mockito	in	a	nutshell
JUnit	5	extension	for	Mockito

Spring
Spring	in	a	nutshell

Spring	modules
Introduction	to	Spring	Test
Testing	Spring	Boot	applications

JUnit	5	extension	for	Spring
Selenium

Selenium	in	a	nutshell
JUnit	5	extension	for	Selenium

Cucumber



Cucumber	in	a	nutshell
JUnit	5	extension	for	Cucumber

Docker
Docker	in	a	nutshell
JUnit	5	extension	for	Docker

Android
Android	in	a	nutshell
Gradle	plugin	for	JUnit	5	in	Android	projects

REST
REST	in	a	nutshell
Using	REST	test	libraries	with	Jupiter

Summary
6.	 From	Requirements	To	Test	Cases

The	importance	of	requirements
Test	planning
Test	design

Equivalence	partitioning
Boundary	analysis
Test	coverage

Software	testing	principles
The	psychology	of	testing

Test	anti-patterns
Code	smells

Summary
7.	 Testing	Management

Software	development	processes
Continuous	Integration

Jenkins
Travis	CI

Test	reporting
Maven	Surefire	Report
Allure

Defect-tracking	systems
Static	analysis
Putting	all	pieces	together

Features	and	requirements
Design
Tests

Summary



Preface
Humans	are	not	perfect	thinkers.	At	the	time	of	this	writing,	software
engineers	are	human	beings.	Most	of	them.	For	that	reason,	writing	high-
quality,	useful	software	is	a	really	difficult	task.	As	we	will	discover	in	this
book,	software	testing	is	one	of	the	most	important	activities	carried	out	by
software	engineers	(that	is,	developers,	programmers,	or	testers)	to	warranty	a
level	of	quality	and	confidence	in	a	given	piece	of	software.

JUnit	is	the	most	used	testing	framework	for	the	Java	language,	and	one	of	the
most	remarkable	in	software	engineering	in	general.	Nowadays,	JUnit	is
much	more	than	a	unit	testing	framework	for	Java.	As	we	will	discover,	it	can
be	used	to	implement	different	types	of	tests	(such	as	unit,	integration,	end-to-
end,	or	acceptance	tests)	using	different	strategies	(such	as	black-box	or
white-box).

On	September	10,	2017,	the	JUnit	team	released	JUnit	5.0.0.	This	book	is
mainly	focused	on	this	new	major	release	of	JUnit.	As	we	will	discover,	JUnit
5	has	supposed	a	complete	redesign	of	the	JUnit	framework,	improving
important	features,	such	as	modularization	(JUnit	5	architecture	is	completely
modular),	composability	(the	extension	model	of	JUnit	5	allows	to	integrate
third-party	frameworks	in	the	JUnit	5	test	lifecycle	is	an	easy	way),	and
compatibility	(JUnit	5	supports	the	execution	of	JUnit	3	and	4	legacy	tests	in
the	brand-new	JUnit	Platform).	All	of	it,	following	a	modern	programming
model	based	on	Java	8	and	compliant	with	Java	9.

Software	engineering	involves	a	multidisciplinary	body	of	knowledge	with	a
strong	impetus	for	the	change.	This	book	provides	a	comprehensive	review	of
many	different	aspects	related	to	software	testing	from,	mainly	following	an
open	source	point	of	view	(JUnit	is	open	source	from	its	inception).	In	this
book,	in	addition	to	JUnit,	you	learn	how	to	use	third-party	frameworks	and
technologies	in	our	development	process,	namely,	Spring,	Mockito,	Selenium,
Appium,	Cucumber,	Docker,	Android,	REST	services,	Hamcrest,	Allure,
Jenkins,	Travis	CI,	Codecov,	or	SonarCube,	among	others.



What	this	book	covers
Chapter	1,	Retrospective	On	Software	Quality	And	Java	Testing,	provides	a
detailed	review	of	software	quality	and	testing.	The	objective	of	this	chapter
is	to	clarify	the	terminology	of	this	domain	in	an	intelligible	way.	Moreover,
this	chapter	provides	a	summary	the	history	of	JUnit	(version	3	and	4)	and
also	some	JUnit	enhancers	(for	example,	libraries	that	can	be	used	to	extend
JUnit).

Chapter	2,	What’s	New	In	JUnit	5,	first	introduces	the	motivation	to	create	a
version	5	of	JUnit.	Then,	this	chapter	describes	the	main	components	of	the
JUnit	5	architecture,	namely,	Platform,	Jupiter,	and	Vintage.	Next,	we
discover	how	to	run	JUnit	tests,	for	example,	using	different	build	tools	such
as	Maven	or	Gradle.	Finally,	this	chapter	is	the	extension	model	of	JUnit	5,
which	allows	extending	the	core	functionality	of	JUnit	5	by	any	third	party.

Chapter	3,	JUnit	5	Standard	Tests,	gives	a	detailed	description	of	the	basic
features	of	the	new	JUnit	5	programming	model.	This	programming	model,
together	with	the	extension	model,	is	called	Jupiter.	In	this	chapter,	you	learn
about	the	basic	test	lifecycle,	assertions,	tagging	and	filtering	tests,
conditional	test	execution,	nested	and	repeated	tests,	and	finally	how	to
migrate	from	JUnit	4.

Chapter	4,	Simplifying	Testing	With	Advanced	JUnit	Features,	provide	a	detailed
description	of	the	JUnit	5	features,	such	as	dependency	injection,	dynamic
tests,	test	interfaces,	test	templates,	parameterized	tests,	compatibility	with
Java	9,	and	planned	features	for	the	for	JUnit	5.1	(not	released	yet	at	the	time
of	this	writing).

Chapter	5,	Integration	Of	JUnit	5	With	External	Frameworks,	talks	about	the
integration	of	JUnit	5	with	existing	third-party	software.	This	integration	can
be	done	in	different	ways.	Typically,	the	Jupiter	extension	model	should	be
used	to	interact	with	external	frameworks.	This	is	the	case	of	Mockito	(a
popular	mock	framework),	Spring	(a	Java	framework	aimed	to	created
enterprise	applications	based	on	dependency	injection),	Docker	(a	container
platform	technology),	or	Selenium	(test	framework	for	web	applications).	In
addition,	developers	can	reuse	to	Jupiter	test	lifecycle	to	interact	with	other
technologies,	for	example,	Android	or	REST	services.

Chapter	6,	From	Requirements	To	Test	Cases,	provides	a	set	of	best	practices
aimed	to	help	a	software	tester	to	write	meaningful	test	cases.	Considering	the



requirements	as	the	basis	of	software	testing,	this	chapter	provides	a
comprehensive	guide	for	coding	tests	avoiding	typical	mistakes	(anti-patterns
and	code	smell).

Chapter	7,	Testing	Management,	is	the	final	chapter	of	the	book,	and	its
objective	is	to	guide	the	reader	to	understand	how	software	testing	activities
are	managed	in	a	living	software	project.	To	that	aim,	this	chapter	reviews
concepts	such	as	Continuous	Integration	(CI),	build	servers	(Jenkins,
Travis),	test	reporting,	or	defect	tracking	systems.	To	conclude	the	book,	a
complete	example	application	together	with	different	types	of	tests	(unit,
integration,	and	end-to-end)	is	presented.



What	you	need	for	this	book
In	order	to	understand	the	concepts	presented	in	this	book	better,	it	is	highly
recommended	to	fork	the	GitHub	repository,	which	contains	the	code
examples	presented	in	this	book	(https://github.com/bonigarcia/mastering-junit5).	In	the
author’s	opinion,	touching	and	playing	with	the	code	is	essential	to	achieve	a
quick	hands-on	understanding	of	the	JUnit	5	testing	framework.	As
introduced	before,	the	last	chapter	of	this	book	provides	a	complete
application	example	covering	some	of	the	most	important	topics	of	this	book.
This	application	(called	Rate	my	cat!)	is	also	available	on	GitHub,	in	the
repository	https://github.com/bonigarcia/rate-my-cat.

In	order	to	run	these	example,	you	will	need	JDK	8	or	higher.	You	can
download	the	Oracle	JDK	from	its	website:	http://www.oracle.com/technetwork/java/java
se/downloads/index.html.	In	addition,	it	is	highly	recommended	to	use	an
Integrated	Development	Environment	(IDE)	to	ease	the	development	and
testing	process.	As	we	will	discover	in	this	book,	at	the	time	of	this	writing
there	are	two	IDEs	fully	compliant	with	JUnit	5,	namely:

Eclipse	4.7+	(Oxygen):	https://eclipse.org/ide/.
IntelliJ	IDEA	2016.2+:	https://www.jetbrains.com/idea/.

If	you	prefer	to	run	JUnit	5	from	the	command	line,	two	possible	build	tools
can	be	used:

Maven:	https://maven.apache.org/
Gradle:	https://gradle.org/

https://github.com/bonigarcia/mastering-junit5
https://github.com/bonigarcia/rate-my-cat
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://eclipse.org/ide/
https://www.jetbrains.com/idea/
https://maven.apache.org/
https://gradle.org/


Who	this	book	is	for
This	book	is	targeted	for	Java	software	engineers.	For	that	reason,	this	piece
of	literature	tries	to	speak	the	same	language	than	the	reader	(that	is,	Java)	and
therefore	it	is	driven	by	working	code	examples	available	on	the
aforementioned	public	open	source	GitHub	repositories.



Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.	Code	words	in	text,	database	table	names,
folder	names,	filenames,	file	extensions,	path	names,	dummy	URLs,	user
input,	and	Twitter	handles	are	shown	as	follows:	“The	@AfterAll	and	@BeforeAll
methods	are	executed	only	once”.

A	block	of	code	is	set	as	follows:
package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	org.junit.jupiter.api.Test;

class	StandardTest	{

				@Test

				void	verySimpleTest	()	{

								assertTrue(true);

				}

}

Any	command-line	input	or	output	is	written	as	follows:
mvn	test

New	terms	and	important	words	are	shown	in	bold	like	this:
“Compatibility	is	the	degree	to	which	a	product,	system	or	component	can
exchange	information	with	other	products”.

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.



Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for
us	as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	email	feedback@packtpub.com,	and	mention
the	book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/author
s.

http://www.packtpub.com/authors


Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of
things	to	help	you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	h
ttp://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://w
ww.packtpub.com/support	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	email	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/bonigar
cia/mastering-junit5.	We	also	have	other	code	bundles	from	our	rich	catalog	of
books	and	videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/bonigarcia/mastering-junit5
https://github.com/PacktPublishing/


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a
mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to
us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us
improve	subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report
them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking
on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata
will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under
the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content
/support	and	enter	the	name	of	the	book	in	the	search	field.	The	required
information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across
all	media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on
the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.



Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.



Retrospective	On	Software	Quality
And	Java	Testing
In	order	to	make	an	apple	pie	from	scratch,	you	must	first	invent	the	universe.

-	Carl	Sagan

The	well-known	testing	framework	JUnit	has	come	a	long	way	since	its
inception	in	1995.	On	September	10,	2017,	an	important	milestone	in	the
project	life	cycle	took	place,	i.e.	the	release	of	JUnit	5.0.0.	Before	going	deep
into	the	details	of	JUnit	5,	it	is	worth	reviewing	the	status	quo	of	software
testing,	in	order	to	understand	from	where	we	have	come,	and	where	we	are
going.	To	that	aim,	this	chapter	provides	a	high-level	review	of	the
background	of	software	quality,	software	testing,	and	testing	for	Java.
Concretely,	the	chapter	is	composed	of	three	sections:

Software	quality:	The	first	section	reviews	the	status	quo	in	quality
engineering:	Quality	assurance,	ISO/IEC-2500,	Verification	&
Validation	(V&V),	and	software	defects	(bugs).
Software	testing:	This	is	the	most	commonly	performed	activity	to
guarantee	software	quality	and	reduce	the	number	of	software	defects.
This	section	provides	a	theoretical	background	of	software	testing	levels
(unit,	integration,	system,	and	acceptance),	methods	(black-box,	white-
box,	and	non-functional),		automated	and	manual	software	testing.
Testing	frameworks	for	the	Java	Virtual	Machine	(JVM):	This
section	provides	a	summary	of	the	main	features	of	the	legacy	versions
of	the	JUnit	framework	(that	is,	versions	3	and	4).	Finally,	a	brief
description	of	alternative	testing	frameworks	and	enhancers	to	JUnit	is
depicted.



Software	quality
Software	is	the	collection	of	computer	programs,	related	data,	and	associated
documentation	developed	for	a	particular	customer	or	for	a	general	market.	It
is	an	essential	part	of	the	modern	world,	and	it	has	become	pervasive	in
telecommunications,	utilities,	commerce,	culture,	entertainment,	and	so	on.
The	question	What	is	software	quality?	can	generate	different	answers,
depending	on	the	involved	practitioner’s	role	in	a	software	system.	There	are
two	main	groups	of	people	involved	in	a	software	product	or	service:

Consumers:	are	people	who	use	software.	In	this	group,	we	can
differentiate	between	customers	(that	is,	people	responsible	for	the
acquisition	of	software	products	or	services)	and	users	(that	is,	people
who	use	the	software	products	or	services	for	various	purposes).
Nevertheless,	the	dual	roles	of	customers	and	users	are	quite	common.
Producers:	are	people	involved	with	the	development,	management,
maintenance,	marketing,	and	service	of	software	products.

The	quality	expectations	of	consumers	are	that	a	software	system	performs
useful	functions	as	specified.	For	software	producers,	the	fundamental	quality
question	is	fulfilling	their	contractual	obligations	by	producing	software
products	that	conform	to	the	Service	Level	Agreement	(SLA).	The	definition
of	software	quality	by	the	well-known	software	engineer	Roger	Pressman
comprises	both	points	of	view:

An	effective	software	process	applied	in	a	manner	that	creates	a	useful
product	that	provides	measurable	value	for	those	who	produce	it	and	those
who	use	it.



Quality	engineering
Quality	engineering	(also	known	as	quality	management)	is	a	process	that
evaluates,	assesses,	and	improves	the	quality	of	software.	There	are	three
major	groups	of	activities	in	the	quality	engineering	process:

1.	 Quality	planning:	This	stage	establishes	the	overall	quality	goal	by
managing	customer’s	expectations	under	the	project	cost	and	budgetary
constraints.	This	quality	plan	also	includes	the	strategy,	that	is,	the
selection	of	activities	to	perform	and	the	appropriate	quality
measurements	to	provide	feedback	and	assessment.

2.	 Quality	Assurance	(QA):	This	guarantees	that	software	products	and
processes	in	the	project	life	cycle	meet	their	specified	requirements	by
planning	and	performing	a	set	of	activities	to	provide	adequate
confidence	that	quality	is	being	built	into	the	software.	The	main	QA
activity	is	Verification	&	Validation,	but	there	are	others,	such	as
software	quality	metrics,	the	use	of	quality	standards,	configuration
management,	documentation	management,	or	an	expert’s	opinion.

3.	 Post-QA:	These	stage	includes	activities	for	quality	quantification	and
improvement	measurement,	analysis,	feedback,	and	follow-up	activities.
The	aim	of	these	activities	is	to	provide	quantitative	assessment	of
product	quality	and	identification	of	improvement	opportunities.

These	phases	are	represented	in	the	following	chart:

Software	Quality	Engineering	Process



Requirements	and	specification
Requirements	are	a	key	topic	in	the	quality	engineering	domain.	A
requirement	is	a	statement	identifying	a	capability,	physical	characteristic,	or
quality	factor	that	bounds	a	product	or	process	need	for	which	a	solution	will
be	pursued.	The	requirement	development	(also	known	as	requirements
engineering)	is	the	process	of	producing	and	analyzing	customer,	product,	and
product-component	requirements.	The	set	of	procedures	that	support	the
development	of	requirements,	including	planning,	traceability,	impact
analysis,	change	management,	and	so	on,	is	known	as	requirements
management.	There	are	two	kinds	of	software	requirements:

Functional	requirements	are	actions	that	the	product	must	do	to	be
useful	to	its	users.	They	arise	from	the	work	that	stakeholders	need	to	do.
Almost	any	action	such	as,	inspecting,	publishing,	or	most	other	active
verbs	can	be	a	functional	requirement.
Non-functional	requirements	are	properties,	or	qualities,	that	the
product	must	have.	For	example,	they	can	describe	properties	such	as
performance,	usability,	or	security.	They	are	often	called	quality
attributes.

Another	important	topic	strongly	linked	with	the	requirements	is	the
specification,	which	is	a	document	that	specifies	in	a	complete,	precise,
verifiable	manner,	the	requirements,	design,	behavior,	or	other	characteristics
of	a	system,	and	often	the	procedures	for	determining	whether	these
provisions	have	been	satisfied.



Quality	Assurance
Quality	Assurance	(QA)	is	primarily	concerned	with	defining	or	selecting
standards	that	should	be	applied	to	the	software	development	process	or
software	product.	Daniel	Galin,	the	author	of	the	book	Software	Quality
Assurance	(2004)	defined	QA	as:

Systematic,	planned	set	of	actions	necessary	to	provide	adequate	confidence
that	the	software	development	and	maintenance	process	of	a	software	system
product	conforms	to	established	specification	as	well	as	with	the	managerial
requirements	of	keeping	the	schedule	and	operating	within	the	budgetary
confines.

The	QA	process	selects	the	V&V	activities,	tools,	and	methods	to	support	the
selected	quality	standards.	V&V	is	a	set	of	activities	carried	out	with	the	main
objective	of	withholding	products	from	shipment	if	they	do	not	qualify.	In
contrast,	QA	is	meant	to	minimize	the	costs	of	quality	by	introducing	a
variety	of	activities	throughout	the	development	and	maintenance	process	in
order	to	prevent	the	causes	of	errors,	detect	them,	and	correct	them	in	the
early	stages	of	development.	As	a	result,	QA	substantially	reduces	the	rates	of
non-qualifying	products.	All	in	all,	V&V	activities	are	only	a	part	of	the	total
range	of	QA	activities.



ISO/IEC-25000
Various	quality	standards	have	been	proposed	to	accommodate	these	different
quality	views	and	expectations.	The	standard	ISO/IEC-9126	was	one	of	the
most	influential	in	the	software	engineering	community.	Nevertheless,
researchers	and	practitioners	detected	several	problems	and	weaknesses	in
this	standard.	For	that	reason,	the	ISO/IEC-9126	international	standard	is
superseded	by	the	ISO/IEC-25000	series	of	international	standards	on
Software	product	Quality	Requirements	and	Evaluation	(SQuaRE).	This
section	provides	a	high-level	overview	of	this	standard.

The	ISO/IEC-2500	quality	reference	model	distinguishes	different	views	on
software	quality:

Internal	quality:	This	concerns	the	properties	of	the	system,	that	can	be
measured	without	executing	it.
External	quality:	This	concerns	the	properties	of	the	system,	that	can	be
observed	during	its	execution.
Quality	in	use:	This	concerns	the	properties	experienced	by	its
consumer	during	operation	and	maintenance	of	the	system.

Ideally,	the	development	(process	quality)	influences	the	internal	quality;
then,	the	internal	quality	determines	the	external	quality.	Finally,	external
quality	determines	quality	in	use.	This	chain	is	depicted	in	the	following
picture:

ISO/IEC-2500	Product	Quality	Reference	Model

The	quality	model	of	ISO/IEC-25000	divides	the	product	quality	model	(that
is,	the	internal	and	external	attributes)	into	eight	top-level	quality	features:
functional	suitability,	performance	efficiency,	compatibility,	usability,
reliability,	security,	maintainability,	and	portability.	The	following	definitions
have	been	extracted	directly	from	the	standard:



Functional	suitability:	This	represents	the	degree	to	which	a	product	or
system	provides	functions	that	meet	stated	and	implied	needs	when	used
under	specified	conditions.
Performance	efficiency:	This	represents	the	performance	relative	to	the
amount	of	resources	used	under	stated	conditions.
Compatibility:	This	is	the	degree	to	which	a	product,	system	or
component	can	exchange	information	with	other	products,	systems	or
components,	and/or	perform	its	required	functions,	while	sharing	the
same	hardware	or	software	environment.
Usability:	This	is	the	degree	to	which	a	product	or	system	can	be	used
by	specified	users	to	achieve	specified	goals	with	effectiveness,
efficiency,	and	satisfaction	in	a	specified	context	of	use.
Reliability:	This	is	the	degree	to	which	a	system,	product,	or	component
performs	specified	functions	under	specified	conditions	for	a	specified
period	of	time.
Security:	This	is	the	degree	to	which	a	product	or	system	protects
information	and	data	so	that	persons	or	other	products	or	systems	have
the	degree	of	data	access	appropriate	to	their	types	and	levels	of
authorization
Maintainability:	This	represents	the	degree	of	effectiveness	and
efficiency	with	which	a	product	or	system	can	be	modified	to	improve	it,
correct	it,	or	adapt	it	to	changes	in	environment	and	in	requirements
Portability:	This	is	the	degree	of	effectiveness	and	efficiency	with
which	a	system,	product,	or	component	can	be	transferred	from	one
hardware,	software,	or	other	operational	or	usage	environment	to	another

On	the	other	hand,	the	attributes	of	quality	in	use	can	be	categorized	into	the
following	five	characteristics:

Effectiveness:	This	is	the	accuracy	and	completeness	with	which	users
achieve	specified	goals.
Efficiency:	These	are	the	resources	expended	in	relation	to	the	accuracy
and	completeness	with	which	users	achieve	goals.
Satisfaction:	This	is	the	degree	to	which	user	needs	are	satisfied	when	a
product	or	system	is	used	in	a	specified	context	of	use.
Freedom	from	risk:	This	is	the	degree	to	which	a	product	or	system
mitigates	the	potential	risk	to	economic	status,	human	life,	health,	or	the
environment.
Context	coverage:	This	is	the	degree	to	which	a	product	or	system	can
be	used	with	effectiveness,	efficiency,	freedom	from	risk,	and



satisfaction	in	both	specified	contexts	of	use	and	in	contexts	beyond
those	initially	explicitly	identified.



Verification	and	Validation
Verification	and	Validation	-also	known	as	Software	Quality	Control-	is
concerned	with	evaluating	that	the	software	being	developed	meets	its
specifications	and	delivers	the	functionality	expected	by	the	consumers.
These	checking	processes	start	as	soon	as	requirements	become	available,	and
continue	through	all	stages	of	the	development	process.	Verification	is
different	to	validation,	although	they	are	often	confused.

The	distinguished	professor	of	computer	science	Barry	Boehm	expressed	the
difference	between	them	back	in	1979:

Verification:	are	we	building	the	product	right?	The	aim	of	verification
is	to	check	that	the	software	meets	its	stated	functional	and	non-
functional	requirements	(that	is,	the	specification).
Validation:	are	we	building	the	right	product?	The	aim	of	validation	is
to	ensure	that	the	software	meets	consumer’s	expectations.	It	is	a	more
general	process	than	verification,	due	to	the	fact	that	specifications	do
not	always	reflect	the	real	wishes	or	needs	of	consumers.

V&V	activities	include	a	wide	array	of	QA	activities.	Although	software
testing	plays	an	extremely	important	role	in	V&V,	other	activities	are	also
necessary.	Within	the	V&V	process,	two	big	groups	of	techniques	of	system
checking	and	analysis	may	be	used:

Software	testing:	This	is	the	most	commonly	performed	activity	within
QA.	Given	a	piece	of	code,	software	testing	(or	simply	testing)	consists
of	observing	a	sample	of	executions	(test	cases),	and	giving	a	verdict	on
them.	Hence,	testing	is	an	execution-based	QA	activity,	so	a	prerequisite
is	the	existence	of	the	implemented	software	units,	components,	or
system	to	be	tested.	For	this	reason,	it	is	sometimes	called	dynamic
analysis.
Static	analysis:	This	is	a	form	of	V&V	that	does	not	require	execution
of	the	software.	Static	analysis	works	on	a	source	representation	of	the
software:	either	a	model	of	the	specification	of	design	or	the	source	or
the	program.	Perhaps,	the	most	commonly	used	are	inspections	and
reviews,	where	a	specification,	design,	or	program	is	checked	by	a	group
of	people.	Additional	static	analysis	techniques	may	be	used,	such	as
automated	software	analysis	(the	source	code	of	a	program	is	checked



for	patterns	that	are	known	to	be	potentially	erroneous).

It	should	be	noted	that	there	is	a	strong	divergence	of	opinion	about	what
types	of	testing	constitute	validation	or	verification.	Some	authors	believe	that
all	testing	is	verification	and	that	validation	is	conducted	when	requirements
are	reviewed	and	approved.	Other	authors	view	unit	and	integration	testing	as
verification	and	higher-order	testing	(for	example,	system	or	user	testing)	as
validation.	To	solve	this	divergence,	V&V	can	be	treated	as	a	single	topic
rather	than	as	two	separate	topics.



Software	defects
Key	to	the	correctness	aspect	of	V&V	is	the	concept	of	software	defects.	The
term	defect	(also	known	as	bug)	refers	to	a	generic	software	problem.	The
IEEE	Standard	610.12	propose	the	following	taxonomy	related	to	software
defects:

Error:	A	human	action	that	produces	an	incorrect	result.	Errors	can	be
classified	into	two	categories:
1.	 Syntax	error	(program	statement	that	violates	one	or	more	rules	of

the	language	in	which	it	is	written).
2.	 Logic	error	(incorrect	data	fields,	out-of-range	terms,	or	invalid

combinations).
Fault:	The	manifestation	of	an	error	in	the	software	system	is	known	as
a	fault.	For	example,	an	incorrect	step,	process,	or	data	definition.
Failure:	The	inability	of	the	software	system	to	perform	its	required
functions	is	known	as	(system)	failure.

The	term	bug	was	first	coined	in	1946	by	the	software	pioneer
Grace	Hooper,	when	a	moth	trapped	in	rely	of	an
electromechanical	computer	caused	a	system	malfunction.	In
this	decade,	the	term	debug	was	also	introduced,	as	the	process
of	detecting	and	correcting	defects	in	a	system.

In	addition	to	this	level	of	granularity	for	defects,	it	is	also	interesting	to
contemplate	incidences	as	symptoms	associated	with	a	failure	perceived	by
the	software	consumer.	All	in	all,	error,	faults,	failures,	and	incidences	are
different	aspects	of	software	defects.	A	causal	relation	exists	between	these
four	aspects	of	defects.	Errors	may	cause	faults	to	be	injected	into	the
software,	and	faults	may	cause	failures	when	the	software	is	executed.
Finally,	incidences	happen	when	failures	are	experienced	by	the	final	user	or
costumer.	Different	QA	activities	can	be	carried	out	to	try	to	minimize	the
number	of	defects	within	a	software	system.	As	defined	by	Jeff	Tian	in	his
book	Software	Quality	Engineering	(2005),	the	alternatives	can	be	grouped
into	the	following	three	generic	categories:

Defect	prevention	through	error	removal:	For	example,	the	use	of	certain
processes	and	product	standards	can	help	to	minimize	the	injection
certain	kinds	of	faults	into	the	software.



Defect	reduction	through	fault	detection	and	removal:	The	traditional
testing	and	static	analysis	activities	are	examples	of	this	category.	We
discover	the	specific	types	of	these	mechanisms	in	the	body	of	this
chapter.
Defect	containment	through	failure	prevention:	These	activities	are
typically	out	of	the	scope	of	the	software	system.	The	objective	of
containment	is	to	minimize	the	damage	caused	by	software	system
failures	(for	example,	walls	to	contain	radioactive	material	in	case	of
reactor	failures).

Software	defect	chain	and	associated	QA	activities



Static	analysis
Static	analysis	of	a	software	piece	is	performed	without	executing	the	code.
There	are	several	advantages	to	software	analysis	over	testing:

1.	 During	testing,	errors	can	hide	other	errors.	This	situation	does	not
happen	with	static	analysis,	because	it	is	not	concerned	with	interactions
between	errors.

2.	 Incomplete	versions	of	a	system	can	be	statically	analyzed	without
additional	cost.	In	testing,	if	a	program	is	incomplete,	test	harnesses	have
to	be	developed.

3.	 Static	analysis	can	consider	broader	quality	attributes	of	a	software
system,	such	as	compliance	with	standards,	portability,	and
maintainability.

There	are	different	methods	that	can	be	identified	as	static	analysis:

Inspection	(first	proposed	by	Michael	Fagan	in	1976)	are	examinations
of	software	artifacts	by	human	inspectors	aimed	at	discovering	and
fixing	faults	in	the	software	systems.	All	kinds	of	software	assets	are
subject	to	be	inspected,	for	example	the	specification,	design	models,
and	so	on.	The	primary	reason	for	the	existence	of	inspection	is	not
waiting	for	the	availability	of	executable	programs	(such	as	in	testing)
before	starting	performing	inspection.
Review	is	the	process	in	which	a	group	of	people	examine	the	software
and	its	associated	documentation,	looking	for	potential	problems	and
non-conformance	with	standards,	and	other	potential	problems	or
omissions.	Nowadays,	reviews	are	frequently	carried	out	for	new	code
before	being	merged	in	a	shared	source	code	repository.	Typically,	the
review	is	done	by	a	different	person	to	the	code	author	within	the	same
team	(peer	review).	This	process	is	quite	expensive	in	terms	of	time	and
effort,	but	on	the	other	side,	when	correctly	performed,	it	helps	to	ensure
a	high	internal	code	quality	reducing	potential	risks.

A	walkthrough	is	a	special	form	of	review.	According	to	IEEE
Standard	for	Software	Reviews,	a	walkthrough	is	a	form	of
software	peer	review	in	which	a	designer	or	programmer	leads
members	of	the	development	team	and	other	interested	parties



through	a	software	product,	and	the	participants	ask	questions
and	make	comments	about	possible	errors,	violation	of
development	standards,	and	other	problems.

Automated	software	analysis	assesses	the	source	code	using	patterns
that	are	known	to	be	potentially	dangerous.	This	technique	is	usually
delivered	as	commercial	or	open	source	tools	and	services,	commonly
known	as	lint	or	linter.	These	tools	can	locate	many	common
programming	faults,	analyze	the	source	code	before	it	is	tested,	and
identify	potential	problems	in	order	to	re-code	them	before	they	manifest
themselves	as	failures.	The	intention	of	this	linting	process	is	to	draw	a
code	reader’s	attention	to	faults	in	the	program,	such	as:
1.	 Data	faults:	This	may	include	variables	declared	but	never	used,

variables	assigned	twice	but	never	used	between	assignments,	and
so	on.

2.	 Control	faults:	This	may	include	unreachable	code	or	unconditional
branches	into	loops.

3.	 Input/output	faults:	This	may	include	variables	output	twice	with	no
intervening	assignment.

4.	 Interface	faults:	This	may	include	parameter-type	mismatches,
parameter	under	mismatches,	non-usage	of	the	results	of	functions,
uncalled	functions	and	procedures,	and	so	on.

5.	 Storage	management	faults:	This	may	include	unassigned	pointers,
pointers	arithmetic,	and	so	on.

Halfway	between	static	analysis	and	dynamic	testing	we	find	an	especial	way
of	software	evaluation,	called	formal	verification.	This	kind	of	assessment
provides	mechanisms	to	check	that	a	system	operates	according	to	its	formal
specification.	To	that	aim,	software	is	treated	as	a	mathematical	entity	whose
correctness	can	be	proved	using	logical	operations,	combining	different	types
of	static	and	dynamic	evaluation.	Nowadays,	formal	methods	are	not	widely
adopted	mainly	due	to	scalability	problems.	Projects	using	these	techniques
are	mostly	relatively	small,	such	as	critical	kernel	systems.	As	systems	grow,
the	effort	required	to	develop	a	formal	specification	and	verification	grow
excessively.



Software	testing
Software	testing	consists	of	the	dynamic	evaluation	of	the	behavior	of	a
program	on	a	finite	set	of	test	cases,	suitably	selected	from	the	usually	infinite
executions	domain,	against	the	expected	behavior.	The	key	concepts	of	this
definition	are	depicted	as	follows:

Dynamic:	The	System	Under	Test	(SUT)	is	executed	with	specific
input	values	to	find	failures	in	its	behavior.	Thus,	the	actual	SUT	should
ensure	that	the	design	and	code	are	correct,	and	also	the	environment,
such	as	the	libraries,	the	operating	system	and	network	support,	and	so
on.
Finite:	Exhaustive	testing	is	not	possible	or	practical	for	most	real
programs.	They	usually	have	a	large	number	of	allowable	inputs	to	each
operation,	plus	even	more	invalid	or	unexpected	inputs	and	the	possible
sequences	of	operations	are	usually	infinite	as	well.	Testers	must	choose
a	number	of	tests	so	that	we	can	run	the	tests	in	the	available	time.
Selected:	Since	there	is	a	huge	or	infinite	set	of	possible	tests	and	we	can
can	afford	to	run	only	a	small	fraction	of	them,	the	key	challenge	of
testing	is	how	to	select	the	tests	that	are	most	likely	to	expose	failures	in
the	system.
Expected:	After	each	test	execution,	it	must	be	decided	whether	the
observed	behavior	of	the	system	was	a	failure	or	not.

Software	testing	is	a	broad	term	encompassing	a	wide	spectrum	of	different
concepts.	There	is	no	universal	classification	for	all	the	different	testing	forms
available	in	the	literature.	For	the	shake	of	clarity,	in	this	book	we	classify	the
different	form	of	tests	using	three	axis,	namely	testing	level	(unit,	integration,
system,	and	acceptance),	testing	methods	(black-box,	white-box,	and	non-
functional	testing),	and	testing	types	(manual	and	automated).

Next	sections	provide	more	details	about	all	of	these	concepts,	which	are
summarized	in	the	following	diagram:



Taxonomy	of	software	testing	in	three	categories:	levels,	methods,	and	types

For	example,	as	we	will	discover,	a	JUnit	test	that	exercises	a	method	in	a
class	according	to	its	functional	behaviour	can	be	seen	as	an	automated	unit
black-box	test.	When	a	final	consumer	uses	a	software	product	to	validate	if
works	as	expected,	according	the	taxonomy	before	we	can	see	this	as	a
manual	black-box	acceptance	test.	It	should	be	noticed	than	not	all	possible
combination	of	these	three	axes	is	always	meaningful.	For	instance,	non-
functional	tests	(example,	performance)	is	typically	carried	out	automatically
and	at	system	levels	(it	would	be	very	unlikely	to	do	manually	or	at	unit
level).



Testing	levels
Depending	on	the	size	of	the	SUT	and	the	scenario	in	which	it	is	exercised,
testing	can	be	carried	out	at	different	levels.	In	this	book,	we	classify	the
different	testing	levels	in	four	phases:

Unit	testing:	Here,	individual	program	units	are	tested.	Unit	testing
should	focus	on	the	functionality	of	objects	or	methods.
Integration	testing:	Here,	units	are	combined	to	create	composite
components.	Integration	testing	should	focus	on	testing	components,
interfaces.
System	testing:	Here,	all	of	the	components	are	integrated	and	the
system	is	tested	as	a	whole.
Acceptance	testing:	Here,	consumers	decide	whether	or	not	the	system
is	ready	to	be	deployed	in	the	consumer	environment.	It	can	be	seen	as	a
high-level	functional	testing	performed	at	system	level	by	final	users	or
customers.

There	is	no	universal	classification	in	the	many	different	forms
of	testing.	Regarding	testing	levels,	in	this	book,	we	use	the
aforementioned	classification	of	four	levels.	Nevertheless,	other
levels	or	approaches	are	present	in	the	literature	(for	example,
system	integration	testing	or	regression	testing).	In	the	last	part
of	this	section,	we	can	find	a	review	of	different	testing
approaches.

The	first	three	levels	(unit,	integration,	and	system)	are	typically	carried	out
during	the	development	phases	of	the	software	life	cycle.	These	tests	are
typically	performed	by	different	roles	of	software	engineers	(that	is,
programmers,	testers,	QA	team,	and	so	on).	The	objective	of	these	tests	is	the
verification	of	the	system.	On	the	other	side,	the	fourth	level	(acceptance)	is	a
type	of	user	testing,	in	which	potential	or	real	users	are	usually	involved
(validation).	The	following	picture	provides	a	graphical	description	of	these
concepts:



Testing	levels	and	its	relationship	with	V&V



Unit	testing
Unit	testing	is	a	method	by	which	individual	pieces	of	source	code	are	tested
to	verify	that	the	design	and	implementation	for	that	unit	have	been	correctly
implemented.	There	are	four	phases	executed	in	sequence	in	a	unit	test	case
are	the	following:

Setup:	The	test	case	initializes	the	test	fixture,	that	is	the	before	picture
required	for	the	SUT	to	exhibit	the	expected	behavior.
Exercise:	The	test	case	interacts	with	the	SUT,	getting	some	outcome
from	it	as	a	result.	The	SUT	usually	queries	another	component,	named
the	Depended-On	Component	(DOC).
Verify:	The	test	case	determines	whether	the	expected	outcome	has	been
obtained	using	assertions	(also	known	as	predicates).
Teardown:	The	test	case	tears	down	the	test	fixture	to	put	the	SUT	back
into	the	initial	state.

These	phases	and	its	relationship	with	the	SUT	and	DOC	is	illustrated	as
follows:

Unit	test	generic	structure

Unit	testing	is	done	with	the	unit	under	test	in	isolation,	that	is,	without
interacting	its	DOCs.	To	that	aim,	test	doubles	are	employed	to	replace	any
components	on	which	the	SUT	depends.	There	are	several	kinds	of	test
doubles:

A	dummy	object	simply	satisfies	the	real	object	API	but	it	is	never
actually	used.	The	typical	use	case	for	dummy	objects	is	when	they	are
passed	as	parameters	to	meet	the	method	signature,	but	then	the	dummy
object	is	not	actually	used.
A	fake	object	replaces	the	real	object	with	a	simpler	implementation,	for



example,	an	in-memory	database.
A	stub	object	replaces	the	real	object	providing	hard-coded	values	as
responses.
A	mock	object	also	replaces	the	real	object,	but	this	time	with
programmed	expectations	as	responses.
A	spy	object	is	a	partial	mock	object,	meaning	that	some	of	its	methods
are	programmed	with	expectations,	but	the	others	use	the	real	object’s
implementation.



Integration	testing
Integration	testing	should	expose	defects	in	the	interfaces,	and	the	interaction
between	integrated	components	or	modules.	There	are	different	strategies	for
performing	integration	testing.	These	strategies	describe	the	order	in	which
units	are	to	be	integrated,	presuming	that	the	units	have	been	separately
tested.	Examples	of	common	integration	strategies	are	the	following:

Top-down	integration:	This	strategy	starts	with	the	main	unit	(module),
that	is,	the	root	of	the	procedural	tree.	Any	lower-level	module	that	is
called	by	the	main	unit	should	be	substituted	by	a	test	double.	Once
testers	are	convinced	that	the	main	unit	logic	is	correct,	the	stubs	are
gradually	replaced	with	the	actual	code.	This	process	is	repeated	for	the
rest	of	the	lower-unit	in	the	procedural	tree.	The	main	advantage	of	this
approach	is	that	defects	are	more	easily	found.
Bottom-up	integration:	This	strategy	starts	the	testing	process	with	the
most	elementary	units.	Larger	subsystems	are	assembled	from	the	tested
components.	The	main	advantage	of	this	type	is	that	test	doubles	are	not
needed.
Ad	hoc	integration:	The	components	are	integrated	in	the	natural	order
in	which	are	finished.	It	allows	an	early	testing	of	the	system.	Test
doubles	are	usually	required.
Backbone	integration:	A	skeleton	of	components	is	built	and	others	are
gradually	integrated.	The	main	disadvantage	of	this	approach	is	the
creation	of	the	backbone,	which	can	be	labor-intensive.

Another	strategy	commonly	referred	in	the	literature	is	big-bang
integration.	In	this	strategy,	testers	wait	until	all	or	most	of	the
units	are	developed	e	integrated.	As	a	result,	all	the	failures	are
found	at	the	same	time,	making	very	difficult	and	time-
consuming	to	correct	the	underlying	faults.	If	possible,	this
strategy	should	be	avoided.



System	testing
System	testing	during	development	involves	integrating	components	to	create
a	version	of	the	system	and	the	testing	the	integrated	system.	It	verifies	that
the	components	are	compatible,	interacts	correctly,	and	transfer	the	right	data
at	the	right	time,	topically	across	its	user	interfaces.	It	obviously	overlaps	with
integration	testing,	but	the	difference	here	is	that	system	testing	should
involve	all	the	system	components	together	with	the	final	user	(typically
impersonated).

There	is	an	special	type	of	system	testing	called	end-to-end	testing.	In	this
approach,	the	final	user	is	typically	impersonated,	that	is,	simulated	using
automation	techniques.



Testing	methods
Testing	methods	(or	strategies)	define	the	way	for	designing	test	cases.	They
can	be	responsibility	based	(black-box),	implementation	based	(white	box),
or	non-functional.	Black-box	techniques	design	test	cases	on	the	basis	of	the
specified	functionality	of	the	item	to	be	tested.	White-box	ones	rely	on	source
code	analysis	to	develop	test	cases.	Hybrid	techniques	(grey-box)	testing
designs	test	cases	using	both	responsibility-based	and	implementation-based
approaches.



Black-box	testing
Black-box	testing	(also	known	as	functional	or	behavioral	testing)	is	based
on	requirements	with	no	knowledge	of	the	internal	program	structure	or	data.
Black-box	testing	relies	on	the	specification	of	the	system	or	the	component
that	is	being	tested	to	derive	test	cases.	The	system	is	a	black-box	whose
behavior	can	only	be	determined	by	studying	its	inputs	and	the	related
outputs.	There	are	a	lot	of	specific	black-box	testing	techniques;	some	of	the
most	well-known	ones	are	described	as	follows:

Systematic	testing:	This	refers	to	a	complete	testing	approach	in	which
SUT	is	shown	to	conform	exhaustively	to	a	specification,	up	to	the
testing	assumptions.	It	generates	test	cases	only	in	the	limiting	sense	that
each	domain	point	is	a	singleton	sub-domain.	Inside	this	category,	some
of	the	most	commonly	performed	are	equivalence	partitioning	and
boundary	value	analysis,	and	also	logic-based	techniques,	such	as	cause-
effect	graphing,	decision	table,	or	pairwise	testing.
Random	testing:	This	is	literally	the	antithesis	of	systematic	testing	-the
sampling	is	over	the	entire	input	domain-.	Fuzz	testing	is	a	form	of
black-box	random	testing,	which	randomly	mutates	well-formed	inputs
and	tests	the	program	on	the	resulting	data.	It	delivers	randomly
sequenced	and/or	structurally	bad	data	to	a	system	to	see	if	failures
occur.
Graphic	User	Interface	(GUI)	testing:	This	is	the	process	of	ensuring
the	specification	of	software	with	a	graphic	interface	interacting	with	the
user.	GUI	testing	is	event-driven	(for	example,	mouse	movements	or
menu	selections)	and	provides	a	frontend	to	the	underlying	application
code	through	messages	or	method	calls.	GUI	testing	at	unit	level	is	used
typically	at	the	button	level.	GUI	testing	at	system	level	exercises	the
event-driven	nature	of	the	SUT.
Model-based	testing	(MBT):	This	is	a	testing	strategy	in	which	test
cases	are	derived	in	part	from	a	model	that	describes	some	(if	not	all)
aspects	of	the	SUT.	MBT	is	a	form	of	black-box	testing	because	tests	are
generated	from	a	model,	which	is	derived	from	the	requirements
documentation.	It	can	be	done	at	different	levels	(unit,	integration,	or
system).
Smoke	testing:	This	is	the	process	of	ensuring	the	critical	functionality
of	the	SUT.	A	smoke	test	case	is	the	first	to	be	run	by	testers	before



accepting	a	build	for	further	testing.	Failure	of	a	smoke	test	case	will
mean	that	the	software	build	is	refused.	The	name	of	smoke	testing
derives	electrical	system	testing,	whereby	the	first	test	was	to	switch	on
and	see	if	it	smoked.

Sanity	testing:	This	is	the	process	of	ensuring	the	basic	functionality	of
the	SUT.	Similarly	to	smoke	testing,	sanity	tests	are	performed	at	the
beginning	of	the	test	process,	but	its	objective	is	different.	Sanity	tests
are	supposed	to	ensure	that	the	SUT	basic	features	continue	working	as
expected	(i.e.	the	rationality	of	the	SUT),	before	conducting	more
exhaustive	tests.

Smoke	and	sanity	testing	are	usually	confusing	terms	in	the
software	testing	community.	It	is	commonly	accepted	that	both
kind	of	tests	are	performed	to	avoid	wasting	effort	in	rigorous
testing	when	these	tests	fail,	being	the	main	difference	their
target	(critical	vs.	basic	functionality).



White-box	testing
White-box	testing	(also	known	as	structural	testing)	is	based	on	knowledge
of	the	internal	logic	of	an	application’s	code.	It	determines	if	the	program-
code	structure	and	logic	is	faulty.	White-box	test	cases	are	accurate	only	if	the
tester	knows	what	the	program	is	supposed	to	do.

Black-box	testing	uses	only	the	specification	to	identify	use	cases,	while
white-box	testing	uses	the	program	source	code	(implementation)	as	the	basis
of	test	case	identification.	Both	approaches,	used	in	conjunction,	should	be
necessary	in	order	to	select	a	good	set	of	test	cases	for	the	SUT.	Some	of	the
most	significant	white-box	techniques	are	as	follows:

Code	coverage	defines	the	degree	of	source	code,	which	has	been	tested,
for	example,	in	terms	of	percentage	of	LOCs.	There	are	several	criteria
for	the	code	coverage:
1.	 Statement	coverage:	The	line	of	code	coverage	granularity.
2.	 Decision	(branch)	coverage:	Control	structure	(for	example,	if-else)

coverage	granularity.
3.	 Condition	coverage:	Boolean	expression	(true-false)	coverage

granularity.
4.	 Paths	coverage:	Every	possible	route	coverage	granularity.
5.	 Function	coverage:	Program	functions	coverage	granularity.
6.	 Entry/exit	coverage:	Call	and	return	of	the	coverage	granularity.

Fault	injection	is	the	process	of	injecting	faults	into	software	to
determine	how	well	(or	badly)	some	SUT	behaves.	Defects	can	be	said
to	propagate,	and	in	that	case,	their	effects	are	visible	in	program	states
beyond	the	state	in	which	the	error	existed	(a	fault	became	a	failure).
Mutation	testing	validates	tests	and	their	data	by	running	them	against
many	copies	of	the	SUT	containing	different,	single,	and	deliberately
inserted	changes.	Mutation	testing	helps	to	identify	omissions	in	the
code.



Non-functional	testing
The	non-functional	aspects	of	a	system	can	require	considerable	effort	to
test.	Within	this	group	it	can	be	found	different	means	of	testing,	for	example,
performance	testing	conducted	to	evaluate	the	compliance	of	a	SUT	with
specified	performance	requirements.	These	requirements	usually	include
constraints	about	the	time	behavior	and	resource	usage.	Performance	testing
may	measure	response	time	with	a	single	user	exercising	the	system	or	with
multiple	users	exercising	the	system.	Load	testing	is	focused	on	increasing	the
load	on	the	system	to	some	stated	or	implied	maximum	load,	to	verify	the
system	can	handle	the	defined	system	boundaries.	Volume	testing	is	often
considered	synonymous	with	load	testing,	yet	volume	testing	focuses	on	data.
Stress	testing	exercises	beyond	normal	operational	capacity	to	the	extent	that
the	system	fails,	identifying	actual	boundaries	at	which	the	system	breaks.
The	aim	of	stress	testing	is	to	observe	how	the	system	fails	and	where	the
bottlenecks	are.

Security	testing	tries	to	ensure	the	following	concepts:	confidentiality
(protection	against	the	disclosure	of	information),	integrity	(ensuring	the
correctness	of	the	information),	authentication	(ensuring	the	identity	of	the
user),	authorization	(determining	that	a	user	is	allowed	to	receive	a	service	or
perform	an	operation),	availability	(ensuring	that	the	system	performs	its
functionality	when	required),	and	non-repudiation	(ensuring	the	denial	that	an
action	happened).	Authorized	attempts	for	evaluating	the	security	of	system
infrastructure	is	often	known	as	penetration	testing.

Usability	testing	focuses	on	finding	user	interface	problems,	which	may	make
the	software	difficult	to	use	or	may	cause	users	to	misinterpret	the	output.
Accessibility	testing	is	the	technique	of	making	sure	that	our	product	is
accessibility	(the	ability	to	access	the	system	functionality)	compliant.



Testing	types
There	are	two	main	types	to	carrying	out	software	testing:

Manual	testing:	This	is	the	process	of	assessing	the	SUT	is	done	by	a
human,	typically	a	software	engineer	or	the	final	consumer.	In	this	type
of	testing,	we	can	find	the	so-called	exploratory	testing,	which	is	a	type
of	manual	testing	in	which	human	testers	evaluate	the	system	by
investigating	and	freely	evaluating	the	system	using	its	personal
perception.
Automated	testing:	This	is	the	process	of	assessing	the	SUT	in	which
the	testing	process	(test	execution,	reporting,	and	so	on)	is	carried	out
with	special	software	and	infrastructure	for	testing.	Elfriede	Dustin,	in
her	book	Implementing	Automated	Software	Testing:	How	to	Save	Time
and	Lower	Costs	While	Raising	Quality	(2009),	defined	Automated
Software	Testing	(AST)	as	the:

Application	and	implementation	of	software	technology	throughout	the	entire
software	testing	life	cycle	with	the	goal	to	improve	efficiencies	and
effectiveness.

The	main	benefits	of	AST	are:	anticipated	cost	savings,	shortened	test
duration,	heightened	thoroughness	of	the	tests	performed,	improvement	of	test
accuracy,	improvement	of	result	reporting	as	well	as	statistical	processing,
and	subsequent	reporting.

Automated	tests	are	typically	executed	in	build	servers	in	the
context	of	Continuous	Integration	(CI)	processes.	More	details
about	this	are	provided	in	chapter	7,	Testing	Management.

AST	is	most	effective	when	implemented	within	a	framework.	Testing
frameworks	may	be	defined	as	a	set	of	abstract	concepts,	processes,
procedures	and	environments	in	which	automated	tests	will	be	designed,
created,	and	implemented.	This	framework	definition	includes	the	physical
structures	used	for	test	creation	and	implementation,	as	well	as	the	logical
interactions	among	those	components.

Strictly	speaking,	that	definition	of	framework	is	not	very	far	from	what	we
can	understand	by	library.	In	order	to	make	the	difference	clearer,	consider	the
following	quote	from	the	well-known	software	engineering	guru	Martin



Folwer:

A	library	is	essentially	a	set	of	functions	that	you	can	call,	these	days	usually
organized	into	classes.	Each	call	does	some	work	and	returns	control	to	the
client.	A	framework	embodies	some	abstract	design,	with	more	behavior	built
in.	In	order	to	use	it	you	need	to	insert	your	behavior	into	various	places	in
the	framework	either	by	subclassing	or	by	plugging	in	your	own	classes.	The
framework’s	code	then	calls	your	code	at	these	points.

Visual	explanation	of	the	difference	between	library	and	framework

Frameworks	are	becoming	more	and	more	important	in	modern	software
development.	They	provide	a	capability	highly	desired	in	software-intensive
systems:	reusability.	This	way,	large	applications	will	end	up	consisting	of
layers	of	frameworks	that	cooperate	with	each	other.



Other	testing	approaches
As	introduced	at	the	beginning	of	this	section,	there	is	no	an	universal
definition	for	the	different	forms	of	testing.	In	this	section	we	review	some	of
the	most	commonly	varieties	of	testing	available	in	the	literature	not	covered
so	far.	For	instance,	when	the	testing	process	is	performed	to	determine
whether	the	system	meets	its	specifications,	it	is	known	as	conformance
testing.	When	a	new	feature	or	functionality	is	introduced	to	a	system	(we	can
call	it	a	build),	the	way	of	testing	this	new	feature	in	known	as	progression
testing.	In	addition	to	that,	to	check	that	the	new	introduced	changes	do	not
affect	the	correctness	of	the	rest	of	the	system,	the	existing	test	cases	are
exercised.	This	approach	is	commonly	known	as	regression	testing.

When	the	system	interacts	with	any	external	or	third-party	system,	another
testing	could	be	done,	known	as	system	integration	testing.	This	kind	of
testing	verifies	that	the	system	is	integrated	to	any	external	systems	properly.

User	or	customer	testing	is	a	stage	in	the	testing	process	in	which	users	or
customers	provide	input	and	advice	for	system	testing.	Acceptance	testing	is	a
type	of	user	testing,	but	there	can	also	be	different	types	of	user	testing:

Alpha	testing:	This	takes	place	at	developers’	sites,	working	together
with	the	software’s	consumers,	before	it	is	released	to	external	users	or
customers.
Beta	testing:	This	takes	place	at	customer’s	sites	and	involves	testing	by
a	group	of	customers	who	use	the	system	at	their	own	locations	and
provide	feedback,	before	the	system	is	released	to	other	customers.
Operational	testing:	This	is	performed	by	the	end	user	in	its	normal
operating	environment.

Finally,	release	testing	refers	to	the	process	of	testing	a	particular	release	of	a
system	performed	by	a	separate	team	outside	the	development	team.	The
primary	goal	of	the	release	testing	process	is	to	convince	the	supplier	of	the
system	that	is	good	enough	for	use.



Testing	frameworks	for	the	JVM
JUnit	is	a	testing	framework	which	allows	to	create	automated	tests.	The
development	of	JUnit	was	started	by	Kent	Beck	and	Erich	Gamma	in	late
1995.	Since	then,	the	popularity	of	the	framework	has	been	growing.
Nowadays,	it	is	broadly	considered	as	the	de	facto	standard	for	testing	Java
applications.

JUnit	was	designed	to	be	a	unit-testing	framework.	Nevertheless,	it	can	be
used	to	implement	not	just	unit	tests,	but	also	other	kinds	of	tests.	As	we	will
discover	in	the	body	of	this	book,	depending	on	how	the	test	logic	exercises
the	piece	of	software	under	test,	a	test	case	implemented	with	JUnit	can	be
considered	as	an	unit,	integration,	system,	and	even	acceptance	test.	All	in	all,
we	can	think	of	JUnit	as	a	multi-purpose	testing	framework	for	Java.



JUnit	3
Since	the	early	versions	of	JUnit	3,	the	framework	can	work	with	Java	2	and
higher.	JUnit3	is	open	source	software,	released	under	Common	Public
License	(CPL)	Version	1.0	and	hosted	on	SourceForge	(https://sourceforge.net/proje
cts/junit/).	The	latest	version	of	JUnit	3	was	JUnit	3.8.2,	released	on	May	14,
2007.	The	main	requirements	introduced	by	JUnit	in	the	world	of	testing
frameworks	were	the	following:

1.	 It	should	be	easy	to	define	which	tests	will	run.
2.	 The	framework	should	be	able	to	run	tests	independently	of	all	other

tests.
3.	 The	framework	should	detect	and	report	errors	test	by	test.

https://sourceforge.net/projects/junit/


Standard	tests	in	JUnit	3
In	JUnit	3,	in	order	to	create	test	cases,	we	need	to	extend	the	class
junit.framework.TestCase.	This	base	class	includes	the	framework	code	that	JUnit
needs	to	automatically	run	the	tests.	Then,	we	simply	make	sure	that	the
method	name	follows	the	testXXX()	pattern.	This	naming	convention	makes	it
clear	to	the	framework	that	the	method	is	a	unit	test	and	that	it	can	be	run
automatically.

The	test	life	cycle	is	controlled	in	the	setup()	and	tearDown()methods.	The
TestCase	calls	setup()	before	running	each	of	its	tests	and	then	calls	teardown()
when	each	test	is	complete.	One	reason	to	put	more	than	one	test	method	into
the	same	test	case	is	to	share	the	same	test	fixture.

Finally,	in	order	to	implement	the	verification	stage	in	the	test	case,	JUnit	3
defines	several	assert	methods	in	a	utility	class	named	junit.framework.Assert.
The	following	table	summarizes	the	main	assertions	provided	by	this	class:

Method Description

assertTrue
Asserts	that	a	condition	is	true.	If	it	isn’t,	the	method	throws
an	AssertionFailedError	with	the	given	message	(if	any).

assertFalse
Asserts	that	a	condition	is	false.	If	it	isn’t,	the	method	throws
an	AssertionFailedError	with	the	given	message	(if	any).

assertEquals
Asserts	that	two	objects	are	equal.	If	they	are	not,	the	method
throws	an	AssertionFailedError	with	the	given	message	(if	any).

assertNotNull
Asserts	that	an	object	is	not	null.	If	it	is,	the	method	throws	an
AssertionFailedError	with	the	message	(if	any).

assertNull
Asserts	that	an	object	is	null.	If	it	isn’t,	the	method	throws	an
AssertionFailedError	with	the	given	message	(if	any).

assertSame

Asserts	that	two	objects	refer	to	the	same	object.	If	they	do
not,	the	method	throws	an	AssertionFailedError	with	the	given
message	(if	any).

assertNotSame

Asserts	that	two	objects	do	not	refer	to	the	same	object.	If
they	do,	the	method	throws	an	AssertionFailedError	with	the
given	message	(if	any).

fail
Fails	a	test	(throwing	AssertionFailedError)	with	the	given



message	(if	any).

The	following	class	shows	a	simple	test	implemented	with	JUnit	3.8.2.	As	we
can	see,	this	test	case	contains	two	tests.	Before	each	test,	the	method	setUp()
will	be	invoked	by	the	framework,	and	after	the	execution	of	each	test,	the
method	tearDown()	will	be	also	invoked.	This	example	has	been	coded	so	that
the	first	test,	named	testSuccess()	finishes	correctly,	and	the	second	test	named
testFailure()	ends	with	an	error	(the	assertion	throws	an	exception):

package	io.github.bonigarcia;

import	junit.framework.TestCase;

public	class	TestSimple	extends	TestCase	{

				//	Phase	1:	Setup	(for	each	test)

				protected	void	setUp()	throws	Exception	{

								System.out.println("<Setup>");

				}

				//	Test	1:	This	test	is	going	to	succeed

				public	void	testSuccess()	{

								//	Phase	2:	Simulation	of	exercise

								int	expected	=	60;

								int	real	=	60;

								System.out.println("**	Test	1	**");

								//	Phase	3:	Verify

								assertEquals(expected	+	"	should	be	equals	to	"	

									+	real,	expected,	real);

				}

				//	Test	2:	This	test	is	going	to	fail

				public	void	testFailure()	{

								//	Phase	2:	Simulation	of	exercise

								int	expected	=	60;

								int	real	=	20;

								System.out.println("**	Test	2	**");

								//	Phase	3:	Verify

								assertEquals(expected	+	"	should	be	equals	to	"	

									+	real,	expected,	real);

				}

				//	Phase	4:	Teardown	(for	each	test)

				protected	void	tearDown()	throws	Exception	{

								System.out.println("</Ending>");

				}

}

All	the	code	examples	explained	in	this	book	are	available	on
the	GitHub	repository	https://github.com/bonigarcia/mastering-junit5.

https://github.com/bonigarcia/mastering-junit5


Test	execution	in	JUnit	3
JUnit	3	allows	to	run	test	cases	by	means	of	Java	applications	called	test
runners.	JUnit	3.8.2	provides	three	different	test	runners	out	of	the	box:	two
graphical	(Swing	and	AWT	based)	and	one	textual	that	can	be	used	from	the
command	line.	The	JUnit	framework	provides	separate	class	loaders	for	each
test,	in	order	to	avoid	side	effects	among	tests.

It	is	a	common	practice	that	build	tools	(such	as	Ant	or	Maven)	and
Integrated	Development	Environments	-IDE-	(such	as	Eclipse	and	IntelliJ)
implement	its	own	JUnit	test	runner.

The	following	image	shows	what	the	previous	test	looks	like	when	we	use	the
JUnit	Swing	runner,	and	also	when	we	use	Eclipse	to	run	the	same	test	case.

Execution	of	an	JUnit	3	test	case	using	the	graphical	Swing	test	runner	and	also	with	the	Eclipse	test
runner

When	a	test	is	not	succeeded	in	JUnit,	it	can	be	for	two	reasons:	a	failure	or
an	error.	On	the	one	hand,	a	failure	is	caused	by	an	assertion	(Assert	class)
which	is	not	meet.	On	the	other	hand,	an	error	is	an	unexpected	condition	not
expected	by	the	test,	such	as	a	conventional	exception	in	the	software	under
test.

Another	important	contribution	of	JUnit	3	is	the	concept	of	the	test	suite,
which	is	a	convenient	way	to	group	tests	that	are	related.	Test	suites	are
implemented	by	means	of	the	JUnit	class	junit.framework.TestSuite.	This	class,
in	the	same	way	as	TestCase,	implements	the	framework	interface
junit.framework.Test.



A	diagram	containing	the	main	classes	and	methods	of	JUnit	3	is	depicted	as
follows:

Core	JUnit	3	classes

The	following	snippet	shows	an	example	of	the	use	of	test	suites	in	JUnit	3.	In
short,	we	can	create	a	group	of	tests	simply	instantiating	a	TestSuite	object,	and
then	add	single	test	cases	using	the	method	addTestSuite():

package	io.github.bonigarcia;

import	junit.framework.Test;

import	junit.framework.TestSuite;

public	class	TestAll	{

				public	static	Test	suite()	{

								TestSuite	suite	=	new	TestSuite("All	tests");

								suite.addTestSuite(TestSimple.class);

								suite.addTestSuite(TestMinimal.class);

								return	suite;

				}

}

This	test	suite	can	be	later	executed	using	a	test	runner.	For	example,	we
could	use	the	command-line	test	runner	(junit.textui.TestRunner)	and	the
command	line,	as	follows:



Test	suite	executed	using	the	textual	test	runner	and	the	command	line



JUnit	4
JUnit	4	is	still	an	open	source	framework,	though	the	license	changed	with
respect	to	JUnit	3,	from	CPL	to	Eclipse	Public	License	(EPL)	Version	1.0.
The	source	code	of	JUnit	4	is	hosted	on	GitHub	(https://github.com/junit-team/junit4/).

On	February	18,	2006,	JUnit	4.0	was	released.	It	follows	the	same	high-level
guidelines	than	JUnit	3,	that	is,	easily	define	test,	the	framework	run	tests
independently,	and	the	framework	detects	and	report	errors	by	the	test.

One	of	the	main	differences	of	JUnit	4	with	respect	to	JUnit	3	is	the	way	that
JUnit	4	allows	to	define	tests.	In	JUnit	4,	Java	annotations	are	used	to	mark
methods	as	tests.	For	this	reason,	JUnit	4	can	only	be	used	for	Java	5	or	later.
As	the	documentation	of	JUnit	4.0	stated	back	in	2006:

The	architecture	of	JUnit	4.0	is	a	substantial	departure	from	that	of	earlier
releases.	Instead	of	tagging	test	classes	by	subclassing
junit.framework.TestCase	and	tagging	test	methods	by	starting	their	name
with	‘test’,	you	now	tag	test	methods	with	the	@Test	annotation.

https://github.com/junit-team/junit4/


Standard	tests	in	JUnit	4
In	JUnit	4,	the	@Test	annotation	(contained	in	package	org.junit)	represents	a
test.	Any	public	method	can	be	annotated	with	@Test	to	make	it	a	test	method.

In	order	to	set	up	the	test	fixture,	JUnit	4	provides	the	@Before	annotation.	This
annotation	can	be	used	in	any	public	method.	Similarly,	any	public	method
annotated	with	@After	gets	executed	after	each	test	method	execution.	JUnit	4
provides	two	more	annotations	to	enhance	the	test	life	cycle:	@BeforeClass	and
@AfterClass.	They	are	executed	only	once	per	test	class,	before	and	after	all
tests,	respectively.	The	following	picture	depicts	the	life	cycle	of	a	JUnit	4	test
case:

JUnit	4	test	life	cycle

@Before	and	@After	can	be	applied	to	any	public	void	methods.
@AfterClass	and	@BeforeClass	can	be	applied	to	only	public	static
void	methods.

The	following	table	summarizes	the	main	differences	between	JUnit	3	and
JUnit	4	seen	so	far:

Feature JUnit	3 JUnit	4

Test	definition testXXX	pattern @Test	annotation

Run	before	the	first
test Not	supported @BeforeClass	annotation



Run	after	all	the	tests Not	supported @AfterClass	annotation

Run	before	each	test Override	setUp()	method @Before	annotation

Run	after	each	test Override	tearDown()
method @After	annotation

Ignore	tests Not	supported @Ignore	annotation

The	org.junit.Assert	class	provides	static	methods	to	carry	out	assertions
(predicates).	The	following	are	the	most	useful	assertion	methods:

assertTrue:	If	the	condition	becomes	false,	the	assertion	fails	and
AssertionError	is	thrown.
assertFalse:	If	the	condition	becomes	true,	the	assertion	fails	and
AssertionError	is	thrown.
assertNull:	This	checks	whether	the	argument	is	null,	otherwise	throws
AssertionError	if	the	argument	is	not	null.
assertNotNull:	This	checks	whether	the	argument	is	not	null;	otherwise,	it
throws	AssertionError
assertEquals:	This	compares	two	objects	or	primitive	types.	Moreover,	if
the	actual	value	doesn’t	match	the	expected	value,	AssertionError	is
thrown.
assertSame:	This	supports	only	objects	and	checks	the	object	reference
using	the	==	operator.
assertNotSame:	This	is	the	opposite	of	assertSame.

The	following	snippets	provide	a	simple	example	of	a	JUnit	4	test	case.	As	we
can	see,	it	is	the	equivalent	test	case	as	seen	in	the	previous	section,	this	time
using	the	JUnit	4	programming	model,	that	is,	using	@Test	annotation	to
identify	tests	and	other	annotations	(@AfterAll,	@After,	@BeforeAll,	@Before)	to
implement	the	test	life	cycle	(setup	and	teardown	test	fixture):

package	io.github.bonigarcia;

import	static	org.junit.Assert.assertEquals;

import	org.junit.After;

import	org.junit.AfterClass;

import	org.junit.Before;

import	org.junit.BeforeClass;

import	org.junit.Test;

public	class	TestSimple	{

				//	Phase	1.1:	Setup	(for	all	tests)

				@BeforeClass

				public	static	void	setupAll()	{



								System.out.println("<Setup	Class>");

				}

				//	Phase	1.2:	Setup	(for	each	test)

				@Before

				public	void	setupTest()	{

								System.out.println("<Setup	Test>");

				}

				//	Test	1:	This	test	is	going	to	succeed

				@Test

				public	void	testSuccess()	{

								//	Phase	2:	Simulation	of	exercise

								int	expected	=	60;

								int	real	=	60;

								System.out.println("**	Test	1	**");

								//	Phase	3:	Verify

								assertEquals(expected	+	"	should	be	equals	to	"	

										+	real,	expected,	real);

				}

				//	Test	2:	This	test	is	going	to	fail

				@Test

				public	void	testFailure()	{

								//	Phase	2:	Simulation	of	exercise

								int	expected	=	60;

								int	real	=	20;

								System.out.println("**	Test	2	**");

								//	Phase	3:	Verify

								assertEquals(expected	+	"	should	be	equals	to	"	

										+	real,	expected,	real);

				}

				//	Phase	4.1:	Teardown	(for	each	test)

				@After

				public	void	teardownTest()	{

								System.out.println("</Ending	Test>");

				}

				//	Phase	4.2:	Teardown	(for	all	test)

				@AfterClass

				public	static	void	teardownClass()	{

								System.out.println("</Ending	Class>");

				}

}



Test	execution	in	JUnit	4
The	concept	of	the	test	runner	is	also	present	in	JUnit	4,	but	it	was	slightly
improved	with	respect	to	JUnit	3.	In	JUnit	4,	a	test	runner	is	a	Java	class	used
to	manage	a	test’s	life	cycle:	instantiation,	calling	setup	and	teardown
methods,	running	the	test,	handling	exceptions,	sending	notifications,	and	so
on.	The	default	JUnit	4	test	runner	is	called	BlockJUnit4ClassRunner,	and	it
implements	the	JUnit	4	standard	test	case	class	model.

The	test	runner	to	be	used	in	a	JUnit	4	test	case	can	be	changed	simply	using
the	annotation	@RunWith.	JUnit	4	provides	a	collection	of	built-in	test	runners
that	allows	to	change	the	nature	of	the	test	class.	In	this	section,	we	are	going
to	review	the	most	important	ones.

To	run	a	group	of	tests	(that	is,	a	test	suite)	JUnit	4	provides	the	Suite
runner.	In	addition	to	the	runner,	the	class	Suite.SuiteClasses	allows	to
define	the	individual	test	classes	belonging	to	the	suite.	For	example:

					package	io.github.bonigarcia;

					import	org.junit.runner.RunWith;

					import	org.junit.runners.Suite;

					@RunWith(Suite.class)

					@Suite.SuiteClasses({	TestMinimal1.class,	TestMinimal2.class	})

					public	class	MySuite	{

					}

Parameterized	tests	are	used	to	specify	different	input	data	that	is	going
to	be	used	in	the	same	test	logic.	To	implement	this	kind	of	tests,	JUnit	4
provides	the	Parameterized	runner.	To	define	the	data	parameters	in	this
type	of	test,	we	need	to	annotate	a	static	method	of	the	class	with	the
annotation	@Parameters.	This	method	should	return	a	Collection	of	the	two-
dimensional	array	providing	input	parameters	for	the	test.	Now,	there
will	be	two	options	to	inject	the	input	data	into	the	test:
1.	 Using	the	constructor	class.
2.	 Annotating	class	attributes	with	the	annotation	@Parameter.

The	following	snippets	show	an	example	of	the	latter:
package	io.github.bonigarcia;

import	static	org.junit.Assert.assertTrue;

import	java.util.Arrays;

import	java.util.Collection;



import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.junit.runners.Parameterized;

import	org.junit.runners.Parameterized.Parameter;

import	org.junit.runners.Parameterized.Parameters;

@RunWith(Parameterized.class)

public	class	TestParameterized	{

				@Parameter(0)

				public	int	input1;

				@Parameter(1)

				public	int	input2;

				@Parameter(2)

				public	int	sum;

				@Parameters(name	=	"{index}:	input1={0}	input2={1}	sum={2}?")

				public	static	Collection<Object[]>	data()	{

								return	Arrays.asList(

																new	Object[][]	{	{	1,	1,	2	},	{	2,	2,	4	},	{	3,	3,	9	}	});

				}

				@Test

				public	void	testSum()	{

								assertTrue(input1	+	"+"	+	input2	+	"	is	not	"	+	sum,

																input1	+	input2	==	sum);

				}

}

The	execution	of	this	test	on	Eclipse	would	be	as	follows:

Execution	of	a	Parameterized	test	in	Eclipse

JUnit	theories	are	an	alternative	to	JUnit’s	parameterized	tests.	A	JUnit
theory	is	expected	to	be	true	for	all	datasets.	Thus,	in	JUnit	theories,	we
have	a	method	providing	data	points	(that	is,	the	input	values	to	be	used
for	the	test).	Then,	we	need	to	specific	a	method	annotated	with	@Theory
which	takes	parameters.	The	theories	in	a	class	get	executed	with	every
possible	combination	of	data	points:

					package	io.github.bonigarcia;

					import	static	org.junit.Assert.assertTrue;

					import	org.junit.experimental.theories.DataPoints;

					import	org.junit.experimental.theories.Theories;

					import	org.junit.experimental.theories.Theory;

					import	org.junit.runner.RunWith;

						@RunWith(Theories.class)



					public	class	MyTheoryTest	{

									@DataPoints

									public	static	int[]	positiveIntegers()	{

													return	new	int[]	{	1,	10,	100	};

									}

									@Theory

									public	void	testSum(int	a,	int	b)	{

													System.out.println("Checking	"	+	a	+	"+"	+	b);

													assertTrue(a	+	b	>	a);

													assertTrue(a	+	b	>	b);

									}

					}

Take	a	look	at	the	execution	of	this	example,	again	in	Eclipse:

Execution	of	a	JUnit	4	theory	in	Eclipse



Advanced	features	of	JUnit	4
One	of	the	most	significant	innovations	introduced	in	JUnit	4	was	the	use	of
rules.	Rules	allow	flexible	addition	or	redefinition	of	the	behavior	of	each	test
method	in	a	test	class.	A	rule	should	be	included	in	a	test	case	by	annotating	a
class	attribute	with	the	annotation	@Rule.	The	type	of	this	attribute	should
inherit	the	JUnit	interface	org.junit.rulesTestRule.	The	following	rules	are
provided	out	of	the	box	in	JUnit	4:

ErrorCollector:	This	rule	allows	execution	of	a	test	to	continue	after	the
first	problem	is	found
ExpectedException:	This	rule	allows	to	verify	that	a	test	throws	a	specific
exception
ExternalResource:	This	rule	provides	a	base	class	for	Rules	that	set	up	an
external	resource	before	a	test	(a	file,	socket,	server,	database
connection,	and	so	on)	and	guarantee	to	tear	it	down	afterward
TestName:	This	rule	makes	the	current	test	name	available	inside	test
methods
TemporaryFolder:	This	rule	allows	creation	of	files	and	folders	that	should
be	deleted	when	the	test	method	finishes
Timeout:	This	rule	applies	the	same	timeout	to	all	test	methods	in	a	class
TestWatcher:	It	is	a	base	class	for	rules	that	will	keep	a	log	of	each	passing
and	failing	test

Another	advance	JUnit	4	features	allow	to:

Execute	tests	is	a	given	order,	using	the	annotation	@FixMethodOrder.
Create	assumptions	using	the	class	Assume.	This	class	offers	many	static
methods,	such	as	assumeTrue(condition),	assumeFalse(condition),
assumeNotNull(condition),	and	assumeThat(condition).	Before	executing	a	test,
JUnit	checks	the	assumptions	present	in	the	test.	If	one	of	the
assumptions	fail,	the	JUnit	runner	ignores	the	tests	with	failing
assumptions.
JUnit	provides	a	timeout	value	(in	milliseconds)	in	the	@Test	annotation	to
make	sure	that	if	a	test	runs	longer	than	the	specified	value,	the	test	fails.
Categorize	tests	using	the	test	runner	Categories	and	identify	the	types	of
test	annotating	the	tests	method	with	the	annotation	Category.



Meaningful	examples	for	each	of	one	of	the	earlier	mentioned
features	can	be	found	in	the	GitHub	repository	(https://github.com/bo
nigarcia/mastering-junit5).

https://github.com/bonigarcia/mastering-junit5


JUnit	ecosystem
JUnit	is	one	of	the	most	popular	test	frameworks	for	the	JVM,	and	it	is
considered	one	of	the	most	influential	frameworks	in	software	engineering.
We	can	find	several	libraries	and	frameworks	that	provide	additional
functionality	on	top	of	JUnit.	Some	examples	of	these	ecosystem	enhancers
are:

Mockito	(http://site.mockito.org/):	This	is	the	mock	framework,	which	can	be
used	in	conjunction	with	JUnit.
AssertJ	(http://joel-costigliola.github.io/assertj/):	This	is	the	fluent	assertions
library	for	Java.
Hamcrest	(http://hamcrest.org/):	This	is	the	library	with	matchers	that	can	be
combined	to	create	flexible	and	readable	assertions.
Cucumber	(https://cucumber.io/):	This	is	the	testing	framework	that	allows	to
run	automated	acceptance	tests	written	in	a	Behavior-Driven
Development	(BDD)	style.
FitNesse	(http://www.fitnesse.org/):	This	is	the	testing	framework	designed	to
support	acceptance	testing	by	facilitating	detailed	readable	descriptions
of	system	functions.

While	JUnit	is	the	largest	testing	framework	for	the	JVM,	it	is	not	the	only
one.	There	are	several	other	testing	frameworks	available	for	the	JVM.	Some
examples	are:

TestNG	(http://testng.org/):	This	is	the	testing	framework	inspired	from	JUnit
and	NUnit.
Spock	(http://spockframework.org/):	This	is	the	testing	and	specification
framework	for	Java	and	Groovy	applications.
Jtest	(https://www.parasoft.com/product/jtest/):	This	is	the	automated	Java	testing
and	static	analysis	framework	made	and	distributed	by	the	company
Parasoft.
Scalatest	(http://www.scalatest.org/):	This	is	the	testing	framework	for	Scala,
Scala.js	(JavaScript),	and	Java	applications.

Thanks	to	JUnit,	testing	has	moved	to	a	central	part	of	programming.
Consequently,	the	underlying	testing	model	implemented	in	JUnit,	has	been
ported	to	a	set	of	testing	frameworks	outside	the	boundary	of	the	JVM,	in	the

http://site.mockito.org/
http://joel-costigliola.github.io/assertj/
http://hamcrest.org/
https://cucumber.io/
http://www.fitnesse.org/
http://testng.org/
http://spockframework.org/
https://www.parasoft.com/product/jtest/
http://www.scalatest.org/


so-called	xUnit	family.	In	this	model,	we	find	the	concepts	of	test	case,
runner,	fixture,	suite,	test	execution,	report,	and	assertion.	To	name	a	few,
consider	the	following	frameworks.	All	of	them	fall	into	the	xUnit	family:

Google	Test	(https://github.com/google/googletest):	Google’s	C++	testing
framework.
JSUnit	(http://www.jsunit.net/):	Unit	testing	framework	for	JavaScript.
Mocha	(https://mochajs.org/):	Unit	testing	framework	running	on	Node.js.
NUnit	(https://www.nunit.org/):	Unit	testing	framework	for	Microsoft.NET.
PHPUnit	(https://phpunit.de/):	Unit	testing	framework	for	PHP.
SimplyVBUnit	(http://simplyvbunit.sourceforge.net/):	Unit	testing	framework	for
VB.NET.
Unittest	(https://docs.python.org/3/library/unittest.html):	Unit	testing	framework	for
Python.

https://github.com/google/googletest
http://www.jsunit.net/
https://mochajs.org/
https://www.nunit.org/
https://phpunit.de/
http://simplyvbunit.sourceforge.net/
https://docs.python.org/3/library/unittest.html


Summary
Software	quality	is	a	key	concept	in	software	engineering,	since	it	determines
the	degree	in	which	a	software	system	meets	its	requirements	and	user
expectations.	Verification	and	Validation	is	the	name	given	to	set	of	activities
aimed	to	assess	a	software	system.	The	goal	of	V&V	is	to	ensure	the	quality
of	a	piece	of	software	while	reducing	the	number	of	defects.	The	two	core
activities	in	V&V	are	software	testing	(evaluation	of	a	running	piece	of
software)	and	static	analysis	(assessment	of	software	artefacts	without	its
execution).

Automated	software	testing	has	experienced	biggest	advances	in	the	last	few
decades.	In	this	arena,	the	JUnit	framework	has	a	remarkable	position.	JUnit
was	designed	to	be	a	unit	framework	for	the	JVM.	Nowadays,	it	is	a	fact	that
JUnit	is	the	most	popular	test	frameworks	in	the	Java	community,	providing	a
comprehensive	programming	model	to	create	and	execute	test	cases.	In	the
next	section,	we	will	discover	the	features	and	capabilities	provided	by	the
new	version	of	the	framework,	JUnit	5.



What’s	New	In	JUnit	5
Those	who	can	imagine	anything,	can	create	the	impossible.

-	Alan	Turing

JUnit	is	the	most	important	testing	framework	for	the	JVM	and	one	of	the
most	influential	in	software	engineering	in	general.	JUnit	5	is	the	next
generation	of	JUnit,	and	its	first	General	Availability	(GA)	version	(5.0.0)
was	released	on	September	10,	2017.	As	we	will	discover,	JUnit	5	supposes	a
small	revolution	with	respect	to	JUnit	4,	providing	a	completely	new
architecture,	programming,	and	extension	model.	This	chapter	covers	the
following	content:

Road	to	JUnit	5:	In	the	first	section,	we	will	discover	the	motivation	to
create	a	new	major	version	of	JUnit	(that	is,	the	limitations	of	JUnit	4),
the	design	principles	guiding	the	development	of	JUnit	5,	and	finally	the
details	of	the	JUnit	5	open	source	community.
JUnit	5	architecture:	JUnit	5	is	a	modular	framework	composed	of
three	major	components,	named	Platform,	Jupiter,	and	Vintage.
Running	tests	in	JUnit	5:	We	will	discover	how	to	run	JUnit	5	tests
using	popular	build	tools,	such	as	Maven	or	Gradle,	and	also	with	IDEs
such	as	IntelliJ	or	Eclipse.
The	extension	model	of	JUnit	5:	The	extension	model	allows	for	third-
party	libraries	and	frameworks	to	extend	the	JUnit	5	programming	model
with	their	own	additions.



Road	to	JUnit	5
Software	testing	has	changed	a	lot	since	the	first	release	of	JUnit	4	in	2006.
Since	then,	not	only	have	Java	and	the	JVM	has	evolved,	but	also	our	testing
needs	matured.	We	are	not	writing	just	unit	tests	anymore.	Instead,	in	addition
to	verifying	a	single	piece	of	code,	software	engineers	and	testers	demand
other	kinds	of	tests,	such	as	integration	and	end-to-end	tests.

In	addition,	our	expectations	about	testing	frameworks	have	grown.
Nowadays,	we	demand	advanced	capabilities	for	these	frameworks,	such	as
extensibility	or	modularity,	to	name	a	few.	In	this	section,	we	discover	the
main	limitations	of	JUnit	4,	the	vision	of	JUnit	5,	and	the	community
supporting	its	development.



JUnit	5	motivation
According	to	several	studies,	JUnit	4	is	the	most	used	library	for	Java
projects.	For	instance,	The	Top	100	Java	libraries	on	GitHub	is	a	well-known
report	published	by	OverOps	(@overopshq),	a	software	analytics	company
focused	on	large-scale	Java	and	Scala	code	bases.

In	its	edition	of	2017,	this	report	analyzed	the	import	statements	of	unique
Java	libraries	that	are	used	by	the	top	1,000	Java	projects	on	GitHub	(by
stars).	In	the	light	of	the	results,	JUnit	4	is	the	undisputed	king	of	Java
Libraries:	the	imports	of	the	packages	org.junit	and	org.junit.runner	appear	in
the	first	and	second	position,	respectively:

The	Top	20	Java	libraries	on	GitHub

https://twitter.com/overopshq


Despite	this	fact,	JUnit	4	is	a	framework	created	more	than	a	decade	ago,	and
there	are	important	several	limitations	that	impose	a	complete	redesign	of	the
framework.



Modularity
First	of	all,	JUnit	4	is	not	modular.	As	depicted	in	the	following	picture,	the
architecture	of	JUnit	4	is	completely	monolithic.	All	the	capabilities	of	JUnit
4	are	provided	by	the	junit.jar	dependency.	As	a	result,	different	test
mechanisms,	such	as	test	discovery	and	execution,	are	tightly	coupled	in
JUnit	4.

The	JUnit	4	Architecture

Johannes	Link,	one	of	the	JUnit	5	core	team	members,	summarizes	this
problem	in	an	interview	for	Jax	magazine	on	August	13,	2015	(during	the
inception	of	JUnit	5):

The	success	of	JUnit	as	a	platform	prevents	the	development	of	JUnit	as	a	test
tool.	The	basic	problem	we	want	to	solve	is	executing	test	cases	by	separating
a	sufficiently	powerful	and	stable	API.



JUnit	4	runners
The	JUnit	4’s	runner	API	also	has	an	important	deterrent.	As	described	in	chapt
er	1,	Retrospective	on	software	quality	and	Java	testing,	in	JUnit	4	a	runner	is
a	Java	class	used	to	manage	a	test’s	life	cycle.	The	runner	API	in	JUnit	4	is
quite	powerful,	nevertheless,	it	has	an	important	drawback:	runners	are	not
composable,	that	is,	we	can	only	use	a	single	runner	at	a	time.

For	example,	a	parameterized	test	cannot	be	combined	with	the	Spring	test
support,	due	to	the	fact	that	both	tests	would	use	their	own	runner
implementation.	Thinking	in	Java	(see	the	snippets	given	follow),	each	test
case	uses	its	own	unique	@RunWith	annotation.	The	first	one	uses
the	Parameterized	runner:

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.junit.runners.Parameterized;

@RunWith(Parameterized.class)

public	class	MyParameterizedTest	{

			@Test

			public	void	myFirstTest()	{

						//	my	test	code

			}

}

While	this	second	example	is	using	the	SpringJUnit4ClassRunner	runner,		it	would
not	be	combined	with	the	previous	one	due	to	a	limitation	on	JUnit	4	(runners
are	not	composable):

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)

public	class	MySpringTest	{

			@Test

			public	void	yetAnotherTest()	{

						//	my	test	code

			}

}



JUnit	4	rules
Due	to	the	strict	limitation	of	uniqueness	of	a	JUnit	4	runner	within	the	same
test	class,	version	4.7	of	JUnit	introduced	the	concept	of	method-level	rules,
which	are	annotated	fields	in	a	test	class	with	@Rule.	These	rules	allow	for
addition	or	redefinition	of	test	behavior	by	executing	some	code	before	and
after	the	execution	of	the	test.	JUnit	4.9	also	incorporates	the	concept	of	class-
level	rules,	which	are	rules	that	are	executed	before	and	after	all	tests	within
the	class.	These	rules	are	identified	by	annotating	static	fields	with	@ClassRule,
as	shown	in	the	following	example:

import	org.junit.ClassRule;

import	org.junit.Test;

import	org.junit.rules.TemporaryFolder;

public	class	MyRuleTest	{

			@ClassRule

			public	static	TemporaryFolder	temporaryFolder	=	new	TemporaryFolder();

		

			@Test

			public	void	anotherTest()	{

						//	my	test	code

			}

}

While	rules	are	simpler	and	mostly	compostable,	they	have	other	drawbacks.
The	main	inconvenience	when	using	JUnit	4	rules	for	complex	tests	is	that	we
are	not	able	to	use	a	single	rule	entity	for	method-level	and	class-level.	At	the
end	of	the	day,	this	imposes	limitations	to	customize	the	life	cycle
management	(the	before/after	behavior).



JUnit	5	inception
Even	though	JUnit	4	was	the	default	testing	framework	for	millions	of	Java
developers	worldwide,	none	of	the	active	JUnit	maintainers	were	paid	by	their
employer	to	do	that	work.	For	that	reason,	and	in	order	to	overcome	the
drawbacks	of	JUnit	4,	in	July	2015	Johannes	Link	and	Marc	Philipp	started
the	JUnit	Lambda	crowdfunding	campaign	(http://junit.org/junit4/junit-lambda-campaign
.html)	on	Indiegogo	(an	international	crowdfunding	website):

JUnit	Lambda	Crowdfunding	Campaign

JUnit	Lambda	was	the	name	given	to	the	project,	which	was	the	seed	of	the
current	JUnit	5	framework.	The	inclusion	of	the	word	lambda	in	the	project
name	enforces	the	idea	of	using	Java	8	from	the	very	beginning	of	the	project.
Quoting	the	JUnit	Lambda	project	site:

The	goal	is	to	create	an	up-to-date	foundation	for	developer-side	testing	on
the	JVM.	This	includes	focusing	on	Java	8	and	above,	as	well	as	enabling
many	different	styles	of	testing.

The	JUnit	Lambda	Crowdfunding	Campaign	ran	from	July	to	October	2015.

http://junit.org/junit4/junit-lambda-campaign.html


It	was	a	success,	raising	53,937	euros	from	474	individuals	and	companies
worldwide.	From	this	point,	the	JUnit	5	kick-off	team	was	created,	joining
people	from	Eclipse,	Gradle,	IntelliJ,	or	Spring.

The	JUnit	Lambda	project	became	JUnit	5,	and	the	design	principles	guiding
the	development	process	were	the	follows:

Modularization:	As	introduced	before,	JUnit	4	was	not	modular,	and	this
causes	some	problems.	From	its	inception,	JUnit	5	architecture	is	much
completely	modular,	allowing	developers	to	use	the	specific	parts	of	the
framework	they	require.
Powerful	extension	model	with	focus	on	composability:	Extensibility	is	a
must	for	modern	testing	frameworks.	Therefore,	JUnit	5	should	provide
seamless	integration	with	third-party	frameworks,	such	as	Spring	or
Mockito,	to	name	a	few.
API	segregation:	Decouple	test	discovery	and	execution	from	test
definition.
Compatibility	with	older	releases:	Supporting	the	execution	of	legacy
Java	3	and	Java	4	in	the	new	JUnit	5	platform.
Modern	programming	model	for	writing	tests	(Java	8):	Nowadays,	more
and	more	developers	write	code	with	Java	8	new	features,	such	as
lambda	expressions.	JUnit	4	was	built	on	Java	5,	but	JUnit	5	has	been
created	from	scratch	using	Java	8.



JUnit	5	community
The	source	code	of	JUnit	5	is	hosted	on	GitHub	(https://github.com/junit-team/junit5).
All	modules	of	the	JUnit	5	framework	have	been	released	under	the	terms	of
the	open	source	license	EPL	v1.0.	There	is	one	exception	to	this	rule,	since
the	module	called	junit-platform-surefire-provider	(described	later)	has	been
released	using	Apache	License	v2.0.

The	roadmap	of	the	JUnit	development	(https://github.com/junit-team/junit5/wiki/Roadma
p)	and	the	definition	and	status	of	the	different	releases	and	milestones	(https://gi
thub.com/junit-team/junit5/milestones/)	are	public	on	GitHub.	The	following	table
summarizes	this	roadmap:

Phase Date Release

0.
Crowdfunding

From	July	2015	to
October	2015 -

1.	Kick	off From	October	20	to
22,	2015 -

2.	First
prototype

From	October	23,
2015	to	the	end	of
November	2015

-

3.	Alpha
version February	1,	2016 5.0	Alpha

4.	First
milestone

July	9,	2016
5.0	M1:	Stable,	documented	IDE-facing
APIs	(Launcher	API	and	Engine	SPI),
dynamic	tests

5.	Additional
milestones

July	23,	2016	(5.0
M2)

November	30,	2016
(5.0	M3)

April	1,	2017	(5.0
M4)

5.0	M2:	Bugfix	and	minor	improvement
release

5.0	M3:	JUnit	4	interoperability,
additional	discovery	selectors

5.0	M4:	Test	templates,	repeated	tests,
and	parameterized	tests

5.0	M5:	Dynamic	containers	and	minor

https://github.com/junit-team/junit5
https://github.com/junit-team/junit5/wiki/Roadmap
https://github.com/junit-team/junit5/milestones/


July	5,	2017	(5.0	M5)

July	16,	2017	(5.0
M6)

API	changes

5.0	M6:	Java	9	compatibility,	scenario
tests,	additional	extension	APIs	for
JUnit	Jupiter

6.	Release
candidate
(RC)

July	30,	2017

July	30,	2017

August	23,	2017

5.0	RC1:	Final	bug	fixes	and
documentation	improvements

5.0	RC2:	Fix	Gradle	consumption	of
junit-jupiter-engine

5.0	RC3:	Configuration	parameters	and
bug	fixes

7.	General
availability
(GA)

September	10,	2017 5.0	GA:	First	stable	release

	

The	JUnit	5	contributors	are	more	than	just	developers.	Contributors	are	also
testers,	maintainers,	and	communicators.	At	the	time	of	writing,	the	top	JUnit
5	contributors	on	GitHub	are:

Sam	Brannen	(@sam_brannen):	Core	Spring	Framework	and	JUnit	5
committer.	Enterprise	Java	Consultant	at	Swiftmind.	Spring	&	JUnit
trainer.	Conference	speaker.
Marc	Philipp	(@marcphilipp):	Senior	Software	Engineer	on	LogMeIn,
active	contributor	to	open	source	projects	such	as	JUnit	or	Usus.
Conference	speaker.
Johannes	Link	(@johanneslink):	Programmer	and	software	therapist.	JUnit	5
supporter.
Matthias	Merdes:	Lead	Developer	at	Heidelberg	Mobil	GmbH,
Germany.

https://twitter.com/sam_brannen
https://twitter.com/marcphilipp
https://twitter.com/johanneslink


Top	JUnit	5	contributors	on	GitHub

The	following	list	provides	a	collection	of	online	JUnit	5	resources:

Official	website	(http://junit.org/junit5/).
Source	code	(https://github.com/junit-team/junit5/).
JUnit	5	developer	guide	(http://junit.org/junit5/docs/current/user-guide/).	Reference
documentation.
Twitter	of	the	JUnit	team	(https://twitter.com/junitteam).	Usually,	the	tweets
about	JUnit	5	are	tagged	with	#JUnit5	(https://twitter.com/hashtag/JUnit5).
Issues	(https://github.com/junit-team/junit5/issues).	Problems	or	suggestions	for
additional	functionality	on	GitHub.
Questions	on	Stack	Overflow	(https://stackoverflow.com/questions/tagged/junit5).
Stack	Overflow	is	a	popular	question-and-answer	website	for	computer
programming.	The	tag	junit5	should	be	used	to	ask	questions	about	JUnit

https://twitter.com/hashtag/JUnit5
https://github.com/junit-team/junit5/
http://junit.org/junit5/docs/current/user-guide/
https://twitter.com/junitteam
https://twitter.com/hashtag/JUnit5
https://github.com/junit-team/junit5/issues
https://stackoverflow.com/questions/tagged/junit5


5.
JUnit	5	JavaDoc	(http://junit.org/junit5/docs/current/api/).
JUnit	5	Gitter	(https://gitter.im/junit-team/junit5),	an	instant	messaging	and	chat
room	system	used	to	discuss	directly	with	the	JUnit	5	team	members	and
other	practitioners.
Open	Test	Alliance	for	the	JVM	(https://github.com/ota4j-team/opentest4j).	It	is	an
initiative	started	by	the	JUnit	5	team,	and	its	objective	is	to	provide	a
minimal	common	foundation	for	testing	libraries	(JUnit,	TestNG,	Spock,
and	so	on)	and	third-party	assertion	libraries	(Hamcrest,	AssertJ,	and	so
on)	on	the	JVM.	The	idea	is	to	use	a	common	set	of	exceptions	that	IDEs
and	build	tools	can	support	in	a	consistent	manner	across	all	testing
scenarios	(so	far	there	is	no	standard	for	testing	on	the	JVM,	and	the	only
common	building	block	is	the	Java	exception	java.lang.AssertionError).

http://junit.org/junit5/docs/current/api/
https://gitter.im/junit-team/junit5
https://github.com/ota4j-team/opentest4j


JUnit	5	architecture
The	JUnit	5	framework	has	been	designed	to	be	consumed	by	different
programmatic	clients.	The	first	group	of	clients	are	Java	tests.	These	tests	can
be	based	on	JUnit	4	(tests	which	use	the	test	legacy	programming	model),
JUnit	5	(tests	which	use	the	brand	new	programming	model),	and	even	other
kinds	of	Java	tests	(third	party).	The	second	group	of	clients	are	build	tools
(such	as	Maven	or	Gradle)	and	IDEs	(such	as	IntelliJ	or	Eclipse).

In	order	to	achieve	the	integration	of	all	these	pieces	in	a	loosely	coupled
manner,	JUnit	5	was	designed	to	be	modular.	As	depicted	in	the	following
picture,	the	JUnit	5	framework	is	composed	of	three	major	components,
called	Platform,	Jupiter,	and	Vintage:

JUnit	5	Architecture:	high-level	component

The	high-level	components	of	the	JUnit	5	architecture	are	enumerated	as
follows:

The	first	high-level	component	is	called	Jupiter.	It	provides	the	brand-
new	programming	and	extension	model	of	the	JUnit	5	framework.
In	the	core	of	JUnit	5,	we	find	the	JUnit	Platform.	This	component	is
aimed	to	become	the	foundation	for	any	testing	framework	executed	in
the	JVM.	In	other	words,	it	provides	mechanisms	to	run	Jupiter	tests,
legacy	JUnit	4,	and	also	third-party	tests	(for	example,	Spock,	FitNesse,
and	so	on).
The	last	high-level	component	of	the	JUnit	5	architecture	is	called



Vintage.	This	component	allows	running	legacy	JUnit	tests	on	the	JUnit
Platform	out	of	the	box.

Let’s	take	a	closer	look	at	the	details	of	each	component	to	find	out	their
internal	modules:

JUnit	5	Architecture:	modules

As	can	be	seen	in	the	picture	preceding,	there	are	three	types	of	module:

Test	APIs:	These	are	the	modules	facing	users	(that	is,	software	engineer
and	testers).	These	modules	provide	the	programming	model	for	a
particular	Test	Engine	(for	example,	junit-jupiter-api	for	JUnit	5	tests	and
junit	for	JUnit	4	tests).
Test	Engines:	These	modules	allow	to	execute	a	kind	of	test	(Jupiter
tests,	legacy	JUnit	4,	or	other	Java	tests)	within	the	JUnit	Platform.	They
are	created	by	extending	the	general	Platform	Engine	(junit-platform-
engine).
Test	Launcher:	These	modules	provide	the	ability	of	test	discovery
inside	the	JUnit	platform	for	external	build	tools	and	IDEs.	This	API	is
consumed	by	tools	such	as	Maven,	Gradle,	IntelliJ,	and	so	on,	using	the
junit-platform-launcher	module.

As	a	result	of	this	modular	architecture,	the	JUnit	framework	exposes	a	set	of



interfaces:

An	API	(Application	Programming	Interface)	to	write	tests,	the
Jupiter	API.	The	detailed	description	of	this	API	is	what	it	is	known	as
the	Jupiter	programming	model	and	it	is	described	in	detail	in	chapters
3,	JUnit	5	Standard	Tests	and	chapter	4,	Simplifying	Testing	With	Advanced
JUnit	Features	of	this	book.
An	SPI	(Service	Provider	Interface)	to	discover	and	execute	tests,	the
Engine	SPI.	This	SPI	is	typically	extended	by	test	engines,	which	in	the
end	provide	the	programming	models	to	write	tests.
An	API	for	test	discovery	and	execution,	the	Launcher	API.	This	API	is
typically	consumed	by	programmatic	clients,	that	are	IDEs	and	build
tools.

API	and	SPI	are	both	a	sets	of	assets	(typically	classes	and
interfaces)	used	by	software	engineers	for	a	given	purpose.	The
difference	is	that	API	is	called	while	SPI	is	extended.



Test	Engine	SPI
The	Test	Engine	SPI	allows	for	creating	test	executors	on	top	of	the	JVM.	In
the	JUnit	5	framework,	there	are	two	Test	Engine	implementations	out	of	the
box:

The	junit-vintage-engine:	This	allows	running	JUnit	3	and	4	tests	in	the
JUnit	platform.
The	junit-jupiter-engine:	This	allows	running	JUnit	5	tests	in	the	JUnit
platform.

Moreover,	third-party	test	libraries	(for	example,	Spock,	TestNG,	and	so	on)
can	plug	into	the	JUnit	Platform	by	providing	a	custom	Test	Engine.	To	do
that,	these	frameworks	should	create	its	own	Test	Engine	by	extending	the
JUnit	5	interface	org.junit.platform.engine.TestEngine.	In	order	to	extend	this
interface,	three	mandatory	methods	must	be	overridden:

getId:	The	unique	identifier	for	the	test	engine.
discover:	The	logic	to	find	and	filter	the	test(s).
execute:	The	logic	to	run	the	previously	found	test(s).

The	following	example	provides	the	skeleton	for	a	custom	Test	Engine:
package	io.github.bonigarcia;

import	org.junit.platform.engine.EngineDiscoveryRequest;

import	org.junit.platform.engine.ExecutionRequest;

import	org.junit.platform.engine.TestDescriptor;

import	org.junit.platform.engine.TestEngine;

import	org.junit.platform.engine.UniqueId;

import	org.junit.platform.engine.support.descriptor.EngineDescriptor;

public	class	MyCustomEngine	implements	TestEngine	{

				public	static	final	String	ENGINE_ID	=	"my-custom-engine";

				@Override

				public	String	getId()	{

								return	ENGINE_ID;

				}

				@Override

				public	TestDescriptor	discover(EngineDiscoveryRequest	discoveryRequest,

												UniqueId	uniqueId)	{

								//	Discover	test(s)	and	return	a	TestDescriptor	object

								TestDescriptor	testDescriptor	=	new	EngineDescriptor(uniqueId,

																"My	test");

								return	testDescriptor;

				}

				@Override



				public	void	execute(ExecutionRequest	request)	{

								//	Use	ExecutionRequest	to	execute	TestDescriptor

								TestDescriptor	rootTestDescriptor	=													

																request.getRootTestDescriptor();

								request.getEngineExecutionListener()

																.executionStarted(rootTestDescriptor);

				}

}

A	list	of	existing	Test	Engines	(for	example,	Specsy,	Spek,	and
others)	is	maintained	by	the	community	in	the	wiki	located	in	the
GitHub	site	of	the	JUnit	5	team:	https://github.com/junit-team/junit5/wiki/T
hird-party-Extensions.

https://github.com/junit-team/junit5/wiki/Third-party-Extensions


Test	Launcher	API
One	of	the	goals	of	JUnit	5	is	to	make	the	interface	between	JUnit	and	its
programmatic	clients	(build	tools	and	IDEs)	more	powerful	and	stable.	To
that	aim,	the	Test	Launcher	API	has	been	implemented.	This	API	is	used	by
IDEs	and	build	tools	for	discovering,	filtering,	and	executing	tests.

Looking	closer	at	the	details	of	this	API,	we	find	the	class
LauncherDiscoveryRequest,	which	exposes	a	fluent	API	to	select	the	location	of
tests	(for	example	classes,	methods,	or	packages).	This	group	of	tests	can	be
filtered,	for	example,	using	a	match	pattern:

import	static	

org.junit.platform.engine.discovery.ClassNameFilter.includeClassNamePatterns;

import	static	org.junit.platform.engine.discovery.DiscoverySelectors.selectClass;

import	static	org.junit.platform.engine.discovery.DiscoverySelectors.selectPackage;

import	org.junit.platform.launcher.Launcher;

import	org.junit.platform.launcher.LauncherDiscoveryRequest;

import	org.junit.platform.launcher.TestPlan;

import	org.junit.platform.launcher.core.LauncherDiscoveryRequestBuilder;

import	org.junit.platform.launcher.core.LauncherFactory;

//	Discover	and	filter	tests

LauncherDiscoveryRequest	request	=	LauncherDiscoveryRequestBuilder

					.request()

					.selectors(selectPackage("io.github.bonigarcia"),					

						selectClass(MyTest.class))

					.filters(includeClassNamePatterns(".*Test")).build();

Launcher	launcher	=	LauncherFactory.create();

TestPlan	plan	=	launcher.discover(request);

After	that,	the	resulting	test	suite	can	be	executed	using	the	class
TestExecutionListener.	This	class	can	be	also	used	to	get	feedback	and	receive
events:

import	org.junit.platform.launcher.TestExecutionListener;

import	org.junit.platform.launcher.listeners.SummaryGeneratingListener;

//	Executing	tests

TestExecutionListener	listener	=	new	SummaryGeneratingListener();

launcher.registerTestExecutionListeners(listener);

launcher.execute(request);



Running	tests	in	JUnit	5
At	the	time	of	writing,	Jupiter	tests	can	be	executed	in	several	ways:

Using	a	build	tool:	Maven	(implemented	in	the	module	junit-plaform-
surefire-provider)	or	Gradle	(implemented	in	the	module	junit-platform-
gradle-plugin).
Using	the	Console	Launcher:	A	command-line	Java	application	that
allows	to	launch	the	JUnit	Platform	from	the	console.
Using	an	IDE:	IntelliJ	(since	version	2016.2)	and	Eclipse	(since	version
4.7,	Oxygen).

As	we	are	going	to	discover,	and	due	to	the	modular	architecture	of	JUnit	5,
we	need	to	include	three	dependencies	in	our	projects:	one	for	the	Test	API
(to	implement	tests),	an	other	for	the	Test	Engine	(to	run	tests),	and	the	last
one	of	the	Test	Launcher	(to	discover	tests).



Jupiter	tests	with	Maven
In	order	to	run	Jupiter	tests	within	a	Maven	project,	we	need	to	configure	the
pom.xml	file	properly.	First	of	all,	we	need	to	include	the	junit-jupiter-api
module	as	a	dependency.	This	is	needed	to	write	our	test,	and	typically	with
test	scope:

<dependencies>

			<dependency>

						<groupId>org.junit.jupiter</groupId>

						<artifactId>junit-jupiter-api</artifactId>

						<version>${junit.jupiter.version}</version>

						<scope>test</scope>

			</dependency>

</dependencies>

In	general,	it	is	recommended	to	use	the	latest	version	of	the
dependencies.	In	order	to	check	what	it	that	version,	we	can
check	it	on	Maven	Central	(http://search.maven.org/)

Then,	the	maven-surefire-plugin	has	to	be	declared.	Internally,	this	plugin	needs
two	dependencies:	the	Test	Launcher	(junit-platform-surefire-provider)	and	the
Test	Engine	(junit-jupiter-engine):

<build>

			<plugins>

						<plugin>

									<artifactId>maven-surefire-plugin</artifactId>

									<version>${maven-surefire-plugin.version}</version>

									<dependencies>

													<dependency>

																<groupId>org.junit.platform</groupId>

																<artifactId>junit-platform-surefire-provider</artifactId>

																<version>${junit.platform.version}</version>

												</dependency>

												<dependency>

															<groupId>org.junit.jupiter</groupId>

															<artifactId>junit-jupiter-engine</artifactId>

															<version>${junit.jupiter.version}</version>

												</dependency>

									</dependencies>

						</plugin>

			</plugins>

	</build>

All	the	source	code	of	this	book	is	publicly	available	on	the
GitHub	repository	at	https://github.com/bonigarcia/mastering-junit5.

Last	but	not	least,	we	need	to	create	a	Jupiter	test	case.	So	far,	we	have	not
learned	how	to	implement	Jupiter	tests	(this	part	is	covered	in	chapter	3,	JUnit	5
Standard	Tests).	Nevertheless,	the	test	we	execute	here	is	the	simplest	test	to
demonstrate	the	execution	of	the	JUnit	5	framework.	A	Jupiter	test,	in	its

http://search.maven.org/
https://github.com/bonigarcia/mastering-junit5


minimal	expression,	is	just	a	Java	class	in	which	one	(or	more)	of	its	methods
are	annotated	with	@Test	(package	org.junit.jupiter.api).	The	following	snippet
provides	an	example:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	org.junit.jupiter.api.Test;

class	MyFirstJUnit5Test	{

			@Test

			void	myFirstTest()	{

							String	message	=	"1+1	should	be	equal	to	2";

							System.out.println(message);

							assertEquals(2,	1	+	1,	message);

			}

}

JUnit	requires	Java	8	(or	higher)	at	runtime.	However,	we	can
still	test	code	that	has	been	compiled	with	previous	versions	of
Java.

As	shown	in	the	following	picture,	this	test	can	be	executed	using	the
command	mvn	test:



Running	Jupiter	tests	with	Maven



Jupiter	tests	with	Gradle
Now,	we	are	going	to	study	the	same	example,	but	this	time	executed	with
Gradle.	Therefore,	we	need	to	configure	the	build.gradle	file.	In	this	file,	we
need	to	define:

The	dependency	for	the	Jupiter	API	(junit-jupiter-api).
The	dependency	for	the	Test	Engine	(junit-jupiter-engine).
The	plugin	for	the	Test	Launcher	(junit-platform-gradle-plugin).

The	complete	source	of	build.gradle	is	as	follows:
buildscript	{

			repositories	{

						mavenCentral()

			}

			dependencies	{

						classpath("org.junit.platform:junit-platform-gradle-

plugin:${junitPlatformVersion}")

			}

}

repositories	{

			mavenCentral()

}

apply	plugin:	'java'

apply	plugin:	'eclipse'

apply	plugin:	'idea'

apply	plugin:	'org.junit.platform.gradle.plugin'

compileTestJava	{

			sourceCompatibility	=	1.8

			targetCompatibility	=	1.8

			options.compilerArgs	+=	'-parameters'

}

dependencies	{

			testCompile("org.junit.jupiter:junit-jupiter-api:${junitJupiterVersion}")

			testRuntime("org.junit.jupiter:junit-jupiter-engine:${junitJupiterVersion}")

}

We	use	the	command	gradle	test	to	run	our	Jupiter	test	from	the	command	line
with	Gradle:



Running	Jupiter	tests	with	Gradle



Legacy	tests	with	Maven
The	following	is	the	image	we	want	to	run	the		legacy	test	(JUnit	4	in	this
case)	inside	the	JUnit	Plaform:

package	io.github.bonigarcia;

import	static	org.junit.Assert.assertEquals;

import	org.junit.Test;

public	class	LegacyJUnit4Test	{

			@Test

			public	void	myFirstTest()	{

						String	message	=	"1+1	should	be	equal	to	2";

						System.out.println(message);

						assertEquals(message,	2,	1	+	1);

			}

}

To	that	aim,	in	Maven,	we	first	need	to	include	the	old	JUnit	4	dependency	in
our	pom.xml,	as	follows:

<dependencies>

			<dependency>

						<groupId>junit</groupId>

						<artifactId>junit</artifactId>

						<version>4.12</version>

						<scope>test</scope>

			</dependency>

</dependencies>

Then,	we	need	to	include	maven-surefire-plugin,	using	the	following
dependencies	for	the	plugin:	the	Test	Engine	(junit-vintage-engine)	and	the	Test
Launcher	(junit-platform-surefire-provider):

<build>

			<plugins>

						<plugin>

									<artifactId>maven-surefire-plugin</artifactId>

									<version>${maven-surefire-plugin.version}</version>

									<dependencies>

												<dependency>

															<groupId>org.junit.platform</groupId>

															<artifactId>junit-platform-surefire-provider</artifactId>

															<version>${junit.platform.version}</version>

												</dependency>

												<dependency>

																<groupId>org.junit.vintage</groupId>

																<artifactId>junit-vintage-engine</artifactId>

																<version>${junit.vintage.version}</version>

												</dependency>

									</dependencies>

						</plugin>

			</plugins>

</build>



The	execution	from	the	command	line	will	also	be	using	the	command	mvn
test:

Running	Legacy	tests	with	Maven



Legacy	tests	wih	Gradle
If	we	want	to	execute	the	same	test	presented	in	the	example	before
(io.github.bonigarcia.LegacyJUnit4Test),	but	this	time	using	Gradle,	we	need	to
include	the	following	in	our	build.gradle	file:

The	dependency	for	JUnit	4.12.
The	dependency	for	the	Test	Engine	(junit-vintage-engine).
The	plugin	for	the	Test	Launcher	(junit-platform-gradle-plugin).

Thus,	the	complete	source	of	build.gradle	would	be	as	follows:
buildscript	{

			repositories	{

						mavenCentral()

			}

			dependencies	{

						classpath("org.junit.platform:junit-platform-gradle-

plugin:${junitPlatformVersion}")

			}

}

repositories	{

			mavenCentral()

}

apply	plugin:	'java'

apply	plugin:	'eclipse'

apply	plugin:	'idea'

apply	plugin:	'org.junit.platform.gradle.plugin'

compileTestJava	{

			sourceCompatibility	=	1.8

			targetCompatibility	=	1.8

			options.compilerArgs	+=	'-parameters'

}

dependencies	{

			testCompile("junit:junit:${junitLegacy}")

			testRuntime("org.junit.vintage:junit-vintage-engine:${junitVintageVersion}")

}

The	execution	from	the	command	line	would	be	as	follows:



Running	Legacy	tests	with	Gradle



The	ConsoleLauncher
The	ConsoleLauncher	is	a	command-line	Java	application	that	allows	launching
the	JUnit	Platform	from	the	console.	For	example,	it	can	be	used	to	run
Vintage	and	Jupiter	tests	from	the	command	line.

An	executable	JAR	with	all	dependencies	included	is	published	in	the	central
Maven	repository	under	the	junit-platform-console-standalone	artifact.	The
standalone	Console	Launcher	can	be	executed	as	follows:

java	-jar	junit-platform-console-standalone-version.jar	<Options>

The	example	GitHub	repository	junit5-console-launcher	contains	a	simple	example
for	the	use	of	the	Console	Launcher.	As	depicted	in	the	following	picture,	a
run	configuration	entry	has	been	created	in	Eclipse,	running	the	main
class,	org.junit.platform.console.ConsoleLauncher.	Then,	the	test	class	name	is
passed	as	an	argument	using	the	option	--select-class	and	the	qualified	class
name	(in	this	example,	io.github.bonigarcia.EmptyTest).	After	that,	we	can	run	the
application,	obtaining	the	test	result	in	the	integrated	console	of	Eclipse:

https://github.com/bonigarcia/mastering-junit5/tree/master/junit5-console-launcher




Example	of	ConsoleLauncher	in	Eclipse



Jupiter	tests	in	JUnit	4
JUnit	5	has	been	designed	to	be	forward	and	backward	compatible.	On	the
one	hand,	the	Vintage	component	supports	running	legacy	code	on	JUnit	3
and	4.	On	the	other	hand,	JUnit	5	provides	a	JUnit	4	runner	that	allows	to	run
JUnit	5	in	IDEs	and	build	systems	that	support	JUnit	4,	but	does	not	yet
support	the	new	JUnit	Platform	5	directly.

Let’s	see	one	example.	Imagine	we	want	to	run	a	Jupiter	test	in	an	IDE	does
not	support	JUnit	5,	for	example,	an	old	version	of	Eclipse.	In	this	case,	we
need	to	annotate	our	Jupiter	test	with	@RunWith(JUnitPlatform.class).	The
JUnitPlatform	runner	is	a	JUnit	4-based	runner,	which	enables	to	run	any	test
whose	programming	model	is	supported	on	the	JUnit	Platform	in	a	JUnit	4
environment.	Therefore,	our	test	would	result	as	follows:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	org.junit.jupiter.api.Test;

import	org.junit.platform.runner.JUnitPlatform;

import	org.junit.runner.RunWith;

@RunWith(JUnitPlatform.class)

public	class	JUnit5CompatibleTest	{

			@Test	

			void	myTest()	{

						String	message	=	"1+1	should	be	equal	to	2";

						System.out.println(message);

						assertEquals(2,	1	+	1,	message);

			}

}

If	this	test	is	contained	in	a	Maven	project,	our	pom.xml	should	contain	the
following	dependencies:

<dependencies>

			<dependency>

						<groupId>org.junit.jupiter</groupId>

						<artifactId>junit-jupiter-api</artifactId>

						<version>${junit.jupiter.version}</version>

						<scope>test</scope>

				</dependency>

				<dependency>

							<groupId>org.junit.jupiter</groupId>

							<artifactId>junit-jupiter-engine</artifactId>

							<version>${junit.jupiter.version}</version>

							<scope>test</scope>

					</dependency>

					<dependency>

								<groupId>org.junit.platform</groupId>

								<artifactId>junit-platform-runner</artifactId>

								<version>${junit.platform.version}</version>



								<scope>test</scope>

					</dependency>

	</dependencies>

On	the	other	hand,	for	a	Gradle	project,	our	build.gradle	is	the	following:
buildscript	{

			repositories	{

						mavenCentral()

			}

			dependencies	{

						classpath("org.junit.platform:junit-platform-gradle-

plugin:${junitPlatformVersion}")

			}

}

repositories	{

			mavenCentral()

}

apply	plugin:	'java'

apply	plugin:	'eclipse'

apply	plugin:	'idea'

apply	plugin:	'org.junit.platform.gradle.plugin'

compileTestJava	{

			sourceCompatibility	=	1.8

			targetCompatibility	=	1.8

			options.compilerArgs	+=	'-parameters'

}

dependencies	{

			testCompile("org.junit.jupiter:junit-jupiter-api:${junitJupiterVersion}")

			testRuntime("org.junit.jupiter:junit-jupiter-engine:${junitJupiterVersion}")

			testCompile("org.junit.platform:junit-platform-runner:${junitPlatformVersion}")

}



IntelliJ
IntelliJ	2016.2+	has	been	the	first	IDE	which	supports	the	execution	of	Jupiter
tests	natively.	As	shown	in	the	following	screenshot,	any	Jupiter	test	can	be
executed	using	the	integrated	functions	of	the	IDE:

Running	a	Jupiter	test	in	IntelliJ	2016.2+



Eclipse
Eclipse	4.7	(Oxygen)	has	beta	support	for	JUnit	5.	Thanks	to	this,	Eclipse
provides	the	ability	of	running	Jupiter	tests	directly	in	Eclipse,	as	shown	in
the	following	screenshot:

Running	a	Jupiter	test	in	Eclipse	4.7+

Moreover,	Eclipse	4.7	(Oxygen)	provides	a	wizard	to	create	Jupiter	tests	in	a
simple	way,	as	shown	in	the	following	pictures:



Eclipse	wizard	to	create	Jupiter	tests



The	extension	model	of	JUnit	5
As	introduced	before,	Jupiter	is	the	name	given	to	the	new	programming
model	of	JUnit	5,	described	in	detail	in	chapter	3,	JUnit	5	standard	tests	and	chap
ter	4,	Simplifying	testing	with	advanced	JUnit	features,	together	with	the
extension	model.	The	extension	model	allows	to	extend	the	Jupiter
programming	model	with	custom	additions.	Thanks	to	this,	third-party
frameworks	(such	as	Spring	or	Mockito,	to	name	a	few)	can	achieve
interoperability	with	JUnit	5	in	a	seamless	way.	The	extensions	provided	by
these	frameworks	will	be	studied	in	chapter	5,	Integration	of	JUnit	5	with
external	frameworks.	In	the	current	section,	we	analyze	the	general
performance	of	the	extension	model	and	also	the	extensions	provided	out	of
the	box	in	JUnit	5.

In	contrast	to	former	extension	points	in	JUnit	4	(that	is,	test	runners	and
rules),	the	JUnit	5	extension	model	consists	of	a	single,	coherent	concept:	the
Extension	API.	This	API	allows	to	extend	the	core	functionality	of	JUnit	5
by	any	third	party	(tool	vendor,	developers,	and	so	on).	The	first	thing	we
need	to	understand	about	extensions	in	Jupiter	is	that	each	new	extension
implements	an	interface	called	Extension.	This	interface	is	a	marker	interface,
that	is,	a	Java	interface	with	no	field	or	methods:

package	org.junit.jupiter.api.extension;

import	static	org.apiguardian.api.API.Status.STABLE;

import	org.apiguardian.api.API;

/**

	*	Marker	interface	for	all	extensions.

	*

	*	@since	5.0

	*/

@API(status	=	STABLE,	since	=	"5.0")

public	interface	Extension	{

}

In	order	to	make	ease	the	creation	of	Jupiter	extensions,	JUnit	5	provides	a	set
of	extensions	points	which	allows	to	execute	custom	code	in	different	parts	of
the	test	life	cycle.	The	following	table	contains	a	summary	of	the	extension
points	in	Jupiter,	and	its	details	are	presented	in	the	next	sections:

Extension	point Implemented	by	extensions	which	want	to…

TestInstancePostProcessor
Provide	additional	behavior	just	after	the	test



instantiation

BeforeAllCallback
Provide	additional	behavior	before	all	tests	are
invoked	in	a	test	container

BeforeEachCallback
Provide	additional	behavior	to	tests	before	each	test	is
invoked

BeforeTestExecutionCallback
Provide	additional	behavior	to	tests	immediately
before	each	test	is	executed

TestExecutionExceptionHandler Handle	exceptions	thrown	during	test	execution

AfterAllCallback
Provide	additional	behavior	to	test	containers	after	all
tests	have	been	invoked

AfterEachCallback
Provide	additional	behavior	to	tests	after	each	test	has
been	invoked

AfterTestExecutionCallback
Provide	additional	behavior	to	tests	immediately	after
each	test	has	been	executed

ExecutionCondition Conditionate	the	test	execution	at	runtime

ParameterResolver Resolve	parameters	at	runtime

	

Once	we	created	an	extension,	in	order	to	use	it,	we	need	to	use	the	annotation
ExtendWith.	This	annotation	can	be	used	to	register	one	or	more	extensions.	It
can	be	declared	on	interfaces,	classes,	methods,	fields,	and	even	in	other
annotations:

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

public	class	MyTest	{

			@ExtendWith(MyExtension.class)

			@Test

			public	void	test()	{

					//	My	test	logic

			}

}



Test	lifecycle
There	are	a	set	of	extension	points	aimed	at	controlling	the	life	cycle	of	tests.
First	of	all,	the	TestInstancePostProcessor	can	be	used	to	execute	some	logic	after
the	test	instantiation.	After	that,	there	are	different	extensions	which	control
the	pre-test	stage:

The	BeforeAllCallback	defines	the	logic	executed	before	all	tests.
The	BeforeEachCallback	defines	the	logic	executed	before	a	test	method.
The	BeforeTestExecutionCallback	defines	the	logic	executed	immediately
before	a	test	method.

Similarly,	there	are	extensions	to	control	the	post-test	phases:

The	AfterAllCallback	defines	the	logic	executed	after	all	tests.
The	AfterEachCallback	defines	the	logic	executed	after	a	test	method.
The	AfterTestExecutionCallback	defines	the	logic	executed	immediately	after
a	test	method.

In	between	the	Before*	and	After*	callbacks,	there	is	an	extension	that	provides
a	way	for	collecting	exceptions:	the	TestExecutionExceptionHandler.

All	these	callbacks,	and	their	order	in	the	test	life	cycl	are	depicted	in	the
following	picture:

Lifecycle	of	extension	callbacks

Let’s	see	an	example.	We	created	an	extension	called	IgnoreIOExceptionExtension,
which	implements	TestExecutionExceptionHandler.	In	this	example,	the	extension



checks	whether	or	not	the	exception	is	IOException.	If	so,	the	exception	is
discarded:

package	io.github.bonigarcia;

import	java.io.IOException;

import	org.junit.jupiter.api.extension.ExtensionContext;

import	org.junit.jupiter.api.extension.TestExecutionExceptionHandler;

public	class	IgnoreIOExceptionExtension

			implements	TestExecutionExceptionHandler	{

		

			@Override

			public	void	handleTestExecutionException(ExtensionContext	context,

										Throwable	throwable)	throws	Throwable	{

						if	(throwable	instanceof	IOException)	{

									return;

						}

						throw	throwable;

			}

}

Consider	the	following	test	class,	which	contains	two	tests	(@Test).	The	first
one	is	annotated	with	@ExtendWith	and	our	custom	extension
(IgnoreIOExceptionExtension):

package	io.github.bonigarcia;

import	java.io.IOException;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

public	class	ExceptionTest	{

			@ExtendWith(IgnoreIOExceptionExtension.class)

			@Test

			public	void	firstTest()	throws	IOException	{

						throw	new	IOException("IO	Exception");

			}

			@Test

			public	void	secondTest()	throws	IOException	{

						throw	new	IOException("My	IO	Exception");

			}

}

When	executing	this	test	class,	the	first	test	is	succeeded	due	to	the	fact	that
the	IOException	has	been	internally	handled	by	our	extension.	On	the	other
hand,	the	second	will	fail	since	that	exception	is	not	handled.

The	execution	of	this	test	class	in	the	console	can	be	seen	in	the	next
screenshot.	Note	that	we	select	the	test	to	be	executed	using	the	Maven
command	mvn	test	-Dtest=ExceptionTest:



Output	of	ignore	exception	example



Conditional	extension	points
In	order	to	create	extensions	that	activate	or	deactivate	tests	depending	on	a
given	condition,	JUnit	5	provides	one	conditional	extension	point
callled	ExecutionCondition.	The	following	snippet	shows	the	declaration	of	this
extension	point:

package	org.junit.jupiter.api.extension;

import	static	org.apiguardian.api.API.Status.STABLE;

import	org.apiguardian.api.API;

@FunctionalInterface

@API(status	=	STABLE,	since	=	"5.0")

public	interface	ExecutionCondition	extends	Extension	{

			ConditionEvaluationResult	evaluateExecutionCondition									

					ExtensionContext	context);

}

The	extension	can	be	used	to	deactivate	either	all	tests	in	a	container	(likely	a
class)	or	individual	tests	(likely	a	test	method).	Examples	of	this	extension	are
provided	in	the	section	Conditional	Test	Execution	of	chapter	3,	JUnit	5
Standard	Tests.



Dependency	injection
The	ParameterResolver	extension	provides	dependency	injection	at	method	level.
In	this	example,	we	can	see	how	an	argument	is	injected	in	the	test	method
with	a	custom	implementation	of	ParameterResolver	called	MyParameterResolver.
Following	the	code,	we	can	see	that	this	resolver	will	simply	inject	hard-
coded	String	parameters	with	the	value	my	parameter:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.extension.ExtensionContext;

import	org.junit.jupiter.api.extension.ParameterContext;

import	org.junit.jupiter.api.extension.ParameterResolutionException;

import	org.junit.jupiter.api.extension.ParameterResolver;

public	class	MyParameterResolver	implements	ParameterResolver	{

				@Override

				public	boolean	supportsParameter(ParameterContext	parameterContext,

												ExtensionContext	extensionContext)

												throws	ParameterResolutionException	{

								return	true;

				}

				@Override

				public	Object	resolveParameter(ParameterContext	parameterContext,

												ExtensionContext	extensionContext)

												throws	ParameterResolutionException	{

								return	"my	parameter";

				}

}

Then,	this	parameter	resolver	can	be	used	in	a	test,	declaring	it	as	usual	using
the	annotation	@ExtendWith:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

public	class	DependencyInjectionTest	{

			@ExtendWith(MyParameterResolver.class)

			@Test

			public	void	test(Object	parameter)	{

						System.out.println("My	parameter	"	+	parameter);

			}

}

Finally,	if	we	execute	this	test	(for	example	using	Maven	and	the	command
line),	we	can	see	how	the	injected	parameter	is	logged	in	the	standard	output:



Output	of	dependency	injection	extension	example



Third-party	extensions
In	the	real	world,	extensions	typically	implement	several	of	the	previously
explained	extension	points.	For	example,	SpringExtension	(explained	in	detail	in	
chapter	5,	Integration	of	JUnit	5	with	external	frameworks)	implements	the
extensions	points	BeforeAllCallback,	TestInstancePostProcessor,	ParameterResolver,
among	others.	The	following	snippet	provides	the	structure	of	SpringExtension:

package	org.springframework.test.context.junit.jupiter;

import	org.junit.jupiter.api.extension.*;

public	class	SpringExtension	implements	BeforeAllCallback,					

			AfterAllCallback,

			TestInstancePostProcessor,	BeforeEachCallback,	AfterEachCallback,

			BeforeTestExecutionCallback,	AfterTestExecutionCallback,

			ParameterResolver	{

			@Override

			public	void	afterTestExecution(TestExtensionContext	context)	

				throws	Exception	{

						//	implementation

			}

			//	Rest	of	methods

}

A	list	of	existing	JUnit	5	extensions	(for	example,	Spring,
Selenium,	Docker,	and	others)	is	maintained	by	the	community
in	the	wiki	located	in	the	GitHub	site	of	the	JUnit	5	team:	https://gi
thub.com/junit-team/junit5/wiki/Third-party-Extensions.	Some	of	them	are	also
detailed	in	chapter	5,	Integration	of	JUnit	5	with	external
frameworks.

https://github.com/junit-team/junit5/wiki/Third-party-Extensions


Summary
This	chapter	provides	an	overview	of	the	JUnit	5	testing	framework.	Due	to
the	limitations	of	JUnit	4	(monolithic	architecture,	impossibility	of	compose
test	runners,	and	limitations	of	test	rules),	a	new	major	version	of	the
framework	was	needed.	In	order	to	carry	out	the	implementations,	the	JUnit
Lambda	project	started	a	crowdfunding	campaign	in	2015.	As	a	result,	the
JUnit	5	development	team	was	born,	and	the	GA	release	of	the	framework
was	released	on	September	10,	2017.

JUnit	5	was	designed	to	be	modern	(that	is,	using	Java	8	and	Java	9	compliant
from	the	very	beginning)	and	modular.	The	three	major	components	within
JUnit	5	are:	Jupiter	(new	programming	an	extension	model),	Platform
(foundation	for	any	testing	framework	executed	in	the	JVM),	and	Vintage
(integration	with	legacy	JUnit	3	and	4	tests).	At	the	time	of	this	writing,	JUnit
5	tests	can	be	executed	using	build	tools	(Maven	or	Gradle)	and	also	with
IDEs	(IntelliJ	2016.2+	or	Eclipse	4.7+).

The	extension	model	of	JUnit	5	allows	to	extend	the	core	functionality	of
JUnit	5	by	any	third	party.	In	order	to	create	JUnit	5	extensions,	we	need	to
implement	one	or	several	JUnit	extension	points	(such	as	BeforeAllCallback,
ParameterResolver,	or	ExecutionCondition,	among	others),	and	then	register	the
extension	in	our	tests	using	the	annotation	@ExtendWith.

In	the	next	chapter	3,	JUnit	5	Standard	Tests,	we	are	going	to	learn	the	basics	of
the	Jupiter	programming	model.	In	other	words,	we	are	going	to	learn	how
to	create	standard	JUnit	5	tests.



JUnit	5	Standard	Tests
Talk	is	cheap.	Show	me	the	code.

-	Linus	Torvalds

JUnit	5	provides	a	brand-new	programming	model	called	Jupiter.	We	can	see
this	programming	model	as	an	API	for	software	engineers	and	testers	which
allow	to	create	JUnit	5	tests.	These	tests	are	later	executed	on	the	JUnit
Platform.	As	we	will	discover,	the	Jupiter	programming	model	allows	to
create	many	different	types	of	tests.	This	chapter	tackles	the	basics	of	Jupiter.
To	that	aim,	this	chapter	is	structured	as	follows:

Test	lifecycle:	In	this	section,	we	analyze	the	structure	of	the	Jupiter
tests,	describing	the	annotations	involved	in	the	management	of	the	test
life	cycle	in	the	JUnit	5	programming	model.	Then,	we	discover	how	to
skip	tests,	and	also	how	to	annotate	tests	with	a	custom	display	name.
Assertions:	In	this	section,	first	we	present	a	brief	overview	of	the
verification	assets,	called	assertions	(also	known	as	predicates).	Second,
we	study	how	the	assertions	have	been	implemented	in	Jupiter.	Finally,
we	present	several	third-party	libraries	about	assertions,	providing	some
examples	for	Hamcrest.
Tagging	and	filtering	tests:	In	this	section,	first	we	will	learn	how	to
label	Jupiter	tests,	that	is,	how	to	create	tags	in	JUnit	5.	Then,	we	will
learn	how	to	filter	our	tests	using	Maven	and	Gradle.	Finally,	we	are
going	to	analyze	how	to	create	meta-annotations	using	Jupiter.
Conditional	test	execution:	In	this	section,	we	will	learn	how	to	disable
tests	based	on	a	given	condition.	After	that,	we	make	a	review	of	the	so-
called	assumptions	in	Jupiter,	which	are	a	mechanism	provided	out	of	the
box	by	Jupiter	to	run	tests	only	if	certain	conditions	are	as	expected.
Nested	tests:	This	section	presents	how	Jupiter	allows	to	express	the
relationship	among	a	group	of	tests,	called	nested	tests.
Repeated	tests:	This	section	reviews	how	Jupiter	provides	the	ability	to
repeat	a	test	a	specified	number	of	times.
Migration	from	JUnit	4	to	JUnit	5:	This	section	provides	a	set	of	hints
about	the	main	differences	between	JUnit	5	and	its	immediate	antecessor,
that	is,	JUnit	4.	Then,	this	section	presents	the	support	for	several	JUnit	4
rules	within	Jupiter	tests.



Test	lifecycle
As	we	saw	in	Chapter	1,	Retrospective	on	software	quality	and	Java	testing,	a
unit	test	case	is	composed	of	four	stages:

1.	 Setup	(optional):	First,	the	test	initializes	the	test	fixture	(before	the
picture	of	the	SUT).

2.	 Exercise:	Second,	the	test	interacts	with	the	SUT,	getting	some	outcome
from	it	as	a	result.

3.	 Verify:	Third,	the	outcome	from	the	system	under	test	is	compared	to	the
expected	value	using	one	or	several	assertions	(also	known	as
predicates).	As	a	result,	a	test	verdict	is	created.

4.	 Teardown	(optional):	Finally,	the	test	releases	the	test	fixture	to	put	the
SUT	back	into	the	initial	state.

In	JUnit	4,	there	were	different	annotations	to	control	these	test	phases.	JUnit
5	follows	the	same	approach,	that	is,	Java	annotations	are	used	to	identify
different	methods	within	Java	classes,	implementing	the	test	life	cycle.	In
Jupiter,	all	these	annotations	are	contained	in	the	package	org.junit.jupiter.api.

The	most	basic	JUnit	annotation	is	@Test,	which	identifies	the	methods	that
have	to	be	executed	as	tests.	Therefore,	a	Java	method	annotated	with
org.junit.jupiter.api.Test	will	be	treated	as	a	test.	The	difference	of	this
annotation	with	respect	to	JUnit	4’s	@Test	is	two	folded.	On	the	one	hand,	the
Jupiter	@Test	annotation	does	not	declare	any	attributes.	In	JUnit	4,		@Test	can
declare	the	test	timeout	(as	long	attribute	with	the	timeout	in	milliseconds),	on
the	other	hand,	in	JUnit	5,	neither	test	classes	nor	test	methods	need	to	be
public	(this	was	a	requirement	in	JUnit	4).

Take	a	look	at	the	following	Java	class.	Possibly,	it	is	the	simplest	test	case	we
can	create	with	Jupiter.	It	has	simply	a	method	with	the	@Test	annotation.	The
test	logic	(that	is	the	exercise	and	verify	stages	as	described	before)	would	be
contained	inside	the	method	myTest.

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Test;

class	SimpleJUnit5Test	{

				@Test

				void	mySimpleTest()	{

										//	My	test	logic	here

				}



}

The	Jupiter	annotations	(also	located	in	the	package	org.junit.jupiter.api)
aimed	to	control	the	setup	and	tear	down	stages	in	JUnit	5	tests	are	described
in	the	following	table:

JUnit	5
annotation Description JUnit	4’s

equivalence

@BeforeEach
Method	executed	before	each	@Test	in
the	current	class

@Before

@AfterEach
Method	executed	after	each	@Test	in	the
current	class

@After

@BeforeAll
Method	executed	before	all	@Test	in	the
current	class

@BeforeClass

@AfterAll
Method	executed	after	all	@Test	in	the
current	class

@AfterClass

Methods	annotated	with	these	annotations	(@BeforeEach,	@AfterEach,
@AfterAll,	and	@BeforeAll)	are	always	inherited.	

The	following	picture	depicts	the	order	of	execution	of	these	annotations	in	a
Java	class:

Jupiter	annotations	to	control	the	test	lyfecycle

Let’s	go	back	to	the	generic	structure	for	tests	we	saw	at	the	beginning	of	this
section.	Now,	we	are	able	to	map	the	Jupiter	annotations	to	control	the	test
lifecycle	with	the	different	parts	of	a	test	case.	As	illustrated	in	the	following



picture,	we	carry	out	the	setup	stage	by	annotating	methods	with	@BeforeAll	and
@BeforeEach.	Then,	we	carry	out	the	exercise	and	verify	stages	in	methods
annotated	with	@Test.	Finally,	we	carry	out	the	tear	down	process	in	the
methods	with	@AfterEach	and	@AfterAll.

Relationship	among	the	unit	test	cases	stages	and	the	Jupiter	annotations

Let’s	see	a	simple	example,	which	uses	all	these	annotations	in	a	single	Java
class.	This	example	defines	two	tests	(that	is,	two	methods	annotated	with
@Test),	and	we	define	additional	methods	for	the	rest	of	the	test	life	cycle	with
the	annotations	@BeforeAll,	@BeforeEach,	@AfterEach,	and	@AfterAll:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.AfterAll;

import	org.junit.jupiter.api.AfterEach;

import	org.junit.jupiter.api.BeforeAll;

import	org.junit.jupiter.api.BeforeEach;

import	org.junit.jupiter.api.Test;

class	LifecycleJUnit5Test	{

						@BeforeAll

						static	void	setupAll()	{

												System.out.println("Setup	ALL	TESTS	in	the	class");

						}

						@BeforeEach

						void	setup()	{

												System.out.println("Setup	EACH	TEST	in	the	class");

						}

						@Test

						void	testOne()	{

												System.out.println("TEST	1");

						}

						@Test

						void	testTwo()	{

												System.out.println("TEST	2");

						}

						@AfterEach

						void	teardown()	{

												System.out.println("Teardown	EACH	TEST	in	the	class");

						}

						@AfterAll

						static	void	teardownAll()	{

												System.out.println("Teardown	ALL	TESTS	in	the	class");

						}



}

If	we	run	this	test	class,	first	@BeforeAll	will	be	executed.	Then,	the	two	test
methods	will	be	executed	sequentially,	that	is,	the	first	one	and	then	the	other.
In	each	execution,	the	setup	method	annotated	with	@BeforeEach	will	be
executed	before	the	test,	and	then	the	@AfterEach	method.	The	following
screenshot	shows	an	execution	of	the	tests	using	Maven	and	the	command
line:

Execution	of	a	Jupiter	test	which	controls	its	lifecycle



Test	instance	lifecycle
In	order	to	provide	execution	in	isolation,	the	JUnit	5	framework	creates	a
new	test	instance	before	executing	the	actual	test	(that	is,	the	method
annotated	with	@Test).	This	per-method	test	instance	life	cycle	is	the	behavior
in	the	Jupiter	test	and	also	in	its	antecessors	(JUnit	3	and	4).	As	a	novelty,	this
default	behavior	can	be	changed	in	JUnit	5,	simply	by	annotating	a	test	class
with	@TestInstance(Lifecycle.PER_CLASS).	Using	this	mode,	the	test	instance	will	be
created	once	per	class,	instead	of	once	per	test	method.

This	per-class	behavior	implies	that	it	is	possible	to	declare	the	@BeforeAll	and
@AfterAll	methods	as	non-static.	This	is	beneficial	to	be	used	in	conjunction
with	some	advanced	capabilities,	such	as	nested	test	or	default	test	interfaces
(explained	in	the	next	chapter).

All	in	all,	and	taking	into	account	the	extension	callback	(as	explained	in	the
	The	extension	model	of	JUnit	5	section	of	Chapter	2,	What’s	new	in	JUnit	5),
the	relative	execution	order	of	user	code	and	extensions	is	depicted	in	the
following	picture:

Relative	execution	order	of	user	code	and	extensions



Skipping	tests
The	Jupiter	annotation	@Disabled	(located	in	the	package	org.junit.jupiter.api)
can	be	used	to	skip	tests.	It	can	be	used	at	class	level	or	method	level.	The
following	example	uses	the	annotation	@Disabled	at	method	level	and	therefore
it	forces	to	skip	the	test:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Disabled;

import	org.junit.jupiter.api.Test;

class	DisabledTest	{

				@Disabled

				@Test

				void	skippedTest()	{

				}

}

As	shown	in	the	following	screenshot,	when	we	execute	this	example,	the	test
will	be	counted	as	skipped:

Disabled	test	method	console	output

In	this	other	example,	the	annotation	@Disabled	is	placed	at	the	class	level	and
therefore	all	the	tests	contained	in	the	class	will	be	skipped.	Note	that	a
custom	message,	typically	with	the	reason	of	the	disabling,	can	be	specified
within	the	annotation:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Disabled;

import	org.junit.jupiter.api.Test;

@Disabled("All	test	in	this	class	will	be	skipped")

class	AllDisabledTest	{

				@Test

				void	skippedTestOne()	{

				}

				@Test

				void	skippedTestTwo()	{

				}



}

The	following	screenshot	shows	how	the	test	case	is	skipped	when	it	is
executed	(in	this	example	using	Maven	and	the	command	line):

Disabled	test	class	console	output



Display	names
JUnit	4	identified	tests	basically	with	the	name	of	the	method	annotated	with
@Test.	This	imposes	a	limitation	on	name	tests,	since	these	names	are
constrained	by	the	way	of	declaring	methods	in	Java.

To	overcome	this	problem,	Jupiter	provides	the	ability	of	declaring	a	custom
display	name	(different	to	the	test	name)	for	tests.	This	is	done	with	the
annotation	@DisplayName.	This	annotation	declares	a	custom	display	name	for	a
test	class	or	a	test	method.	This	name	will	be	displayed	by	test	runners	and
reporting	tools,	and	it	can	contain	spaces,	special	characters,	and	even	emojis.

Take	a	look	at	the	following	example.	We	are	annotating	the	test	class,	and
also	the	three	test	methods	declared	inside	the	class	with	a	custom	test	name
using	@DisplayName:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.api.Test;

@DisplayName("A	special	test	case")

class	DisplayNameTest	{

				@Test

				@DisplayName("Custom	test	name	containing	spaces")

				void	testWithDisplayNameContainingSpaces()	{

				}

				@Test

				@DisplayName("(╯°Д°)╯")
				void	testWithDisplayNameContainingSpecialCharacters()	{

				}

				@Test

				@DisplayName(" ")

				void	testWithDisplayNameContainingEmoji()	{

				}

}

As	a	result,	we	see	these	labels	when	executing	this	test	in	a	JUnit	5
compliant	IDE.	The	following	picture	shows	the	execution	of	the	example	on
IntelliJ	2016.2+:



Execution	of	a	test	case	using	@DisplayName	in	IntelliJ

On	the	other	hand,	the	display	name	can	be	also	seen	in	Eclipse	4.7	(Oxygen)
or	newer:

Execution	of	a	test	case	using	@DisplayName	in	Eclipse



Assertions
As	we	know,	the	general	structure	of	a	test	case	is	composed	of	four	stages:
setup,	exercise,	verify,	and	tear	down.	The	actual	test	happens	during	the
second	and	third	stage,	when	the	test	logic	interacts	with	the	system	under
test,	getting	some	kind	of	outcome	from	it.	This	outcome	is	compared	with
the	expected	result	in	the	verify	stage.	In	this	stage,	we	find	what	we	call
assertions.	In	this	section,	we	take	a	closer	look	at	them.

An	assertion	(also	known	as	a	predicate)	is	a	boolean	statement	typically	used
to	reason	about	software	correctness.	From	a	technical	point	of	view,	an
assertion	is	composed	of	three	parts	(see	the	image	after	the	list):

1.	 First,	we	find	the	expected	value,	which	comes	from	what	we	call	test
oracles.	A	test	oracle	is	a	reliable	source	of	expected	outputs,	for
example,	the	system	specification.

2.	 Second,	we	find	the	real	outcome,	which	comes	from	the	exercise	stage
made	by	the	test	against	the	SUT.

3.	 Finally,	these	two	values	are	compared	using	some	logic	comparator.
This	comparison	can	be	done	in	many	different	ways,	for	example,	we
can	compare	the	object	identity	(equals	or	not),	the	magnitude	(higher	or
lower	value),	and	so	on.	As	a	result,	we	obtain	a	test	verdict,	which,	in
the	end,	is	going	to	define	if	the	test	has	succeeded	or	failed.

Schematic	view	of	an	assertion



Jupiter	assertions
Let’s	move	on	to	the	JUnit	5	programming	model.	Jupiter	comes	with	many
of	the	assertion	methods	such	as	the	ones	in	JUnit	4,	and	also	adds	several
that	can	be	used	with	Java	8	lambdas.	All	JUnit	Jupiter	assertions	are	static
methods	in	the	Assertions	class	located	in	org.junit.jupiter	package.

The	following	picture	shows	the	complete	list	of	these	methods:



Complete	list	of	Jupiter	assertions	(class	org.junit.jupiter.Assertions)

The	following	table	reviews	the	different	types	of	basic	assertions	in	Jupiter:

Assertion Description

fail Fails	a	test	with	a	given	message	and/or	exception

assertTrue Asserts	that	a	supplied	condition	is	true

assertFalse Asserts	that	a	supplied	condition	is	false

assertNull Asserts	that	a	supplied	object	is	null

assertNotNull Asserts	that	a	supplied	object	is	not	null

assertEquals Asserts	that	two	supplied	objects	are	equal

assertArrayEquals Asserts	that	two	supplied	arrays	are	equal

assertIterableEquals Asserts	that	two	iterable	objects	are	deeply	equal

assertLinesMatch Asserts	that	two	lists	of	Strings	are	equals

assertNotEquals Asserts	that	two	supplied	objects	are	not	equal

assertSame Asserts	that	two	objects	are	the	same,	compared	with	==

assertNotSame Asserts	that	two	objects	are	different,	compared	with	!=

For	each	of	the	assertions	contained	in	the	table,	an	optional
failure	message	(String)	can	be	provided.	This	message	is
always	the	last	parameter	in	the	assertion	method.	This	is	a
small	difference	with	respect	to	JUnit	4,	in	which	this	message
was	the	first	parameter	in	the	method	invocation.

The	following	example	shows	a	test	using	the		assertEquals,	assertTrue,	and
assertFalse	assertion.	Note	that	we	are	importing	the	static	assertion	methods
at	the	beginning	of	the	class	in	order	to	improve	the	readability	of	the	test
logic.	In	the	example,	we	find	the	assertEquals	method,	in	this	case	comparing



two	primitive	types	(it	could	also	be	used	for	objects).	Second,	the	method
assertTrue	evaluates	if	a	boolean	expression	is	true.	Third,	the	method	assertFalse
evaluates	if	a	Boolean	expression	is	false.	In	this	case,	notice	that	the	message
is	created	as	a	Lamdba	expression.	This	way,	assertion	messages	are	lazily
evaluated	to	avoid	constructing	complex	messages	unnecessarily:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	static	org.junit.jupiter.api.Assertions.assertFalse;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	org.junit.jupiter.api.Test;

class	StandardAssertionsTest	{

				@Test

				void	standardAssertions()	{

										assertEquals(2,	2);

										assertTrue(true,

										"The	optional	assertion	message	is	now	the	last	parameter");

										assertFalse(false,	()	->	"Really	"	+	"expensive	"	+	"message"	

												+	".");

				}

}

The	following	parts	of	this	section	review	the	advance	assertions	provided	by
Jupiter:	assertAll,	assertThrows,	assertTimeout,	and	assertTimeoutPreemptively.



Group	of	assertions
An	important	Jupiter	assertion	is	assertAll.	This	method	allows	to	group
different	assertions	at	the	same	time.	In	a	grouped	assertion,	all	assertions	are
always	executed,	and	any	failures	will	be	reported	together.

The	method	assertAll	accepts	a	vargargs	of	lambda	expressions	(Executable…)	or
a	stream	of	those	(Stream<Executable>).	Optionally,	the	first	parameter	of	assertAll
can	be	a	String	message	aimed	to	label	the	assertion	group.

Let’s	see	an	example.	In	the	following	test,	we	are	grouping	a	couple	of
assertEquals	using	lambda	expressions:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertAll;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	org.junit.jupiter.api.Test;

class	GroupedAssertionsTest	{

				@Test

				void	groupedAssertions()	{

										Address	address	=	new	Address("John",	"Smith");

										//	In	a	grouped	assertion	all	assertions	are	executed,	and	any

										//	failures	will	be	reported	together.

										assertAll("address",	()	->	assertEquals("John",	

										address.getFirstName()),

														()	->	assertEquals("User",	address.getLastName()));

				}

}

When	executing	this	test,	all	assertions	of	the	group	will	be	evaluated.	Since
the	second	assertion	fails	(lastname	does	not	match),	one	failure	is	reported	in
the	final	verdict,	as	can	be	seen	in	the	following	screenshot:



Console	output	of	grouped	assertions	example



Asserting	exceptions
Another	important	Jupiter	assertion	is	assertThrows.	This	assertion	allows	to
verify	if	a	given	exception	is	raised	in	a	piece	of	code.	To	that	aim,	the
method	assertThrows	accepts	two	arguments.	First,	the	exception	class	expected,
and	second,	an	executable	object	(lambda	expression),	in	which	the	exception
is	supposed	to	happen:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	static	org.junit.jupiter.api.Assertions.assertThrows;

import	org.junit.jupiter.api.Test;

class	ExceptionTest	{

				@Test

				void	exceptionTesting()	{

										Throwable	exception	=	

												assertThrows(IllegalArgumentException.class,

												()	->	{

															throw	new	IllegalArgumentException("a	message");});

										assertEquals("a	message",	exception.getMessage());

				}

}

The	is	expecting		IllegalArgumentException	to	be	thrown,	and	this	is	actually
happening	inside	this	lambda	expression.	The	following	screenshot	shows
that	the	test	actually	succeeds:

Console	output	of	assertThrows	example



Asserting	timeouts
To	assess	timeouts	in	JUnit	5	tests,	Jupiter	provides	two	assertions:
assertTimeout	and	assertTimeoutPreemptively.	On	the	one	hand,	assertTimeout,	allows
us	to	verify	the	timeout	of	a	given	operation.	In	this	assertion,	the	expected
time	is	defined	using	the	class	Duration	of	the	standard	Java	package	java.time.

We	are	going	to	see	several	running	examples	to	clarify	the	use	of	this
assertion	method.	In	the	following	class,	we	find	two	tests	using	assertTimeout.
The	first	test	is	designed	to	be	succeeded,	due	to	the	fact	that	we	are	expecting
that	a	given	operation	takes	less	than	2	minutes,	and	we	are	doing	nothing
there.	On	the	other	side,	the	second	test	will	fail,	since	we	are	expecting	that	a
given	operation	takes	a	maximum	of	10	milliseconds,	and	we	are	forcing	it	to
last	100	milliseconds.

package	io.github.bonigarcia;

import	static	java.time.Duration.ofMillis;

import	static	java.time.Duration.ofMinutes;

import	static	org.junit.jupiter.api.Assertions.assertTimeout;

import	org.junit.jupiter.api.Test;

class	TimeoutExceededTest	{

				@Test

				void	timeoutNotExceeded()	{

										assertTimeout(ofMinutes(2),	()	->	{

														//	Perform	task	that	takes	less	than	2	minutes

										});

				}

				@Test

				void	timeoutExceeded()	{

										assertTimeout(ofMillis(10),	()	->	{

														Thread.sleep(100);

										});

				}

}

	When	we	execute	this	test,	the	second	test	is	declared	as	failed	because	the
timeout	has	been	exceeded	in	90	milliseconds:



Console	output	of	assertTimeout	first	example

Let’s	see	a	couple	more	tests	using	assertTimeout.	In	the	first	test,	assertTimeout
evaluates	a	piece	of	code	as	a	lambda	expression	in	a	given	timeout,	obtaining
its	result.	In	the	second	test,	assertTimeout	evaluates	a	method	in	a	given
timeout,	obtaining	its	result:

package	io.github.bonigarcia;

import	static	java.time.Duration.ofMinutes;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	static	org.junit.jupiter.api.Assertions.assertTimeout;

import	org.junit.jupiter.api.Test;

class	TimeoutWithResultOrMethodTest	{

				@Test

				void	timeoutNotExceededWithResult()	{

										String	actualResult	=	assertTimeout(ofMinutes(1),	()	->	{

														return	"hi	there";

										});

										assertEquals("hi	there",	actualResult);

				}

				@Test

				void	timeoutNotExceededWithMethod()	{

										String	actualGreeting	=	assertTimeout(ofMinutes(1),

														TimeoutWithResultOrMethodTest::greeting);

										assertEquals("hello	world!",	actualGreeting);

				}

				private	static	String	greeting()	{

										return	"hello	world!";

				}

}

In	both	cases,	the	tests	take	less	time	than	expected	and	therefore	both	of	them
are	succeeded:



Console	output	of	assertTimeout	second	example

The	other	Jupiter	assertion	for	timeouts	is	called	assertTimeoutPreemptively.	The
difference	with	assertTimeoutPreemptively	with	respect	to	assertTimeout	is	that
assertTimeoutPreemptively	does	not	wait	until	the	end	of	the	operation,	and	the
execution	is	aborted	when	the	expected	timeout	is	exceeded.

In	this	example,	the	test	will	fail	since	we	are	simulating	an	operation	which
lasts	100	milliseconds,	and	we	have	defined	a	timeout	of	10	milliseconds:

package	io.github.bonigarcia;

import	static	java.time.Duration.ofMillis;

import	static	org.junit.jupiter.api.Assertions.assertTimeoutPreemptively;

import	org.junit.jupiter.api.Test;

class	TimeoutWithPreemptiveTerminationTest	{

						@Test

						void	timeoutExceededWithPreemptiveTermination()	{

												assertTimeoutPreemptively(ofMillis(10),	()	->	{

																	Thread.sleep(100);

												});

						}

}

In	this	example,	when	the	timeout	of	10	ms	is	reached,	instantly	the	test	is
declared	as	a	failure:

Console	output	of	assertTimeoutPreemptively	example



Third-party	assertion	libraries
As	we	have	seen,	the	built-in	assertions	provided	out	of	the	box	for	Jupiter	are
sufficient	for	many	testing	scenarios.	Nevertheless,	there	are	times	when	more
additional	functionality,	such	as	matchers,	can	be	desired	or	required.	In	such
situations,	the	JUnit	team	recommends	the	use	of	the	following	third-party
assertion	libraries:

Hamcrest	(http://hamcrest.org/):	an	assertion	framework	to	write	matcher
objects	allowing	rules	to	be	defined	declaratively.
AssertJ	(http://joel-costigliola.github.io/assertj/):	fluent	assertions	for	Java.
Truth	(https://google.github.io/truth/):	an	assertions	Java	library	designed	to
make	test	assertions	and	failure	messages	more	readable.

In	this	section,	we	are	going	to	make	a	brief	review	of	Hamcrest.	This	library
provided	the	assertion	assertThat,	which	allows	to	create	readable	highly
configurable	assertions.	The	method	assertThat	accepts	two	arguments:	first	the
actual	object,	and	second	a	Matcher	object.	This	matcher	implements	the
interface	org.hamcrest.Matcher,	and	enables	a	partial	or	an	exact	match	for	an
expectation.	Hamcrest	provides	different	matcher	utilities,	such	as	is,	either,
or,	not,	and	hasItem.	The	Matcher	methods	use	the	builder	pattern,	allowing	to
combine	one	or	more	matchers	to	build	a	matcher	chain.

In	order	to	use	Hamcrest,	first	we	need	to	import	the	dependency	in	our
project.	In	a	Maven	project,	this	means	that	we	have	to	include	the	following
dependency	in	our	pom.xml	file:

<dependency>

						<groupId>org.hamcrest</groupId>

						<artifactId>hamcrest-core</artifactId>

						<version>${hamcrest.version}</version>

						<scope>test</scope>

</dependency>

If	we	are	using	Gradle,	we	need	to	add	the	equivalent	configuration	within	the
build.gradle	file:

dependencies	{

						testCompile("org.hamcrest:hamcrest-core:${hamcrest}")

}

As	usual,	it	is	recommended	using	the	latest	version	of
Hamcrest.	We	can	check	it	on	the	Maven	central	web	(http://search.
maven.org/).

http://hamcrest.org/
http://joel-costigliola.github.io/assertj/
https://google.github.io/truth/
http://search.maven.org/


The	following	example	demonstrates	how	to	use	Hamcrest	inside	a	Jupiter
test.	Concretely,	this	test	uses	the	assertion	assertThat	together	with	the
matchers	containsString,	equalTo,	and	notNullValue:

package	io.github.bonigarcia;

import	static	org.hamcrest.CoreMatchers.containsString;

import	static	org.hamcrest.CoreMatchers.equalTo;

import	static	org.hamcrest.CoreMatchers.notNullValue;

import	static	org.hamcrest.MatcherAssert.assertThat;

import	org.junit.jupiter.api.Test;

class	HamcrestTest	{

				@Test

				void	assertWithHamcrestMatcher()	{

										assertThat(2	+	1,	equalTo(3));

										assertThat("Foo",	notNullValue());

										assertThat("Hello	world",	containsString("world"));

				}

}

As	shown	in	the	following	screenshot,	this	test	is	executed	with	no	failure:

Console	output	of	example	using	the	Hamcrest	assertion	library



Tagging	and	filtering	tests
Test	classes	and	methods	can	be	tagged	in	the	JUnit	5	programming	model	by
means	of	the	annotation	@Tag	(package	org.junit.jupiter.api).	Those	tags	can
later	be	used	to	filter	test	discovery	and	execution.	In	the	following	example,
we	see	the	use	of	@Tag	at	class	level	and	also	at	method	level:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.Test;

@Tag("simple")

class	SimpleTaggingTest	{

						@Test

						@Tag("taxes")

						void	testingTaxCalculation()	{

						}

}

As	of	JUnit	5	M6,	the	label	for	tagging	tests	should	meet	the	following	syntax
rules:

A	tag	must	not	be	null	or	blank.
A	trimmed	tag	(that	is,	tags	in	which	leading	and	trailing	whitespace
have	been	removed)	must	not	contain	a	white	space.
A	trimmed	tag	must	not	contain	ISO	control	characters	nor	the	following
reserved	characters:	,,	(,	),	&,	|,	and	!.



Filtering	tests	with	Maven
As	we	already	know,	we	need	to	use		maven-surefire-plugin	in	a	Maven	project
to	execute	Jupiter	test.	Moreover,	this	plugin	allows	us	to	filter	the	test
execution	in	several	ways:	filtering	by	JUnit	5	tags	and	also	using	the	regular
inclusion/exclusion	support	of	maven-surefire-plugin.

In	order	to	filter	by	tags,	the	properties	includeTags	and	excludeTags	of	the	maven-
surefire-plugin	configuration	should	be	used.	Let’s	see	an	example	to
demonstrate	how.	Consider	the	following	tests	contained	in	the	same	Maven
project.	On	the	one	hand,	all	tests	in	this	class	are	tagged	with	the
	functional	word.

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.Test;

@Tag("functional")

class	FunctionalTest	{

				@Test

				void	testOne()	{

								System.out.println("Functional	Test	1");

				}

				@Test

				void	testTwo()	{

								System.out.println("Functional	Test	2");

				}

}

On	the	other	hand,	all	tests	in	the	second	class	are	tagged	as	non-functional	and
each	individual	test	is	also	labeled	with	more	tags	(performance,	security,
usability,	and	so	on):

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.Test;

@Tag("non-functional")

class	NonFunctionalTest	{

				@Test

				@Tag("performance")

				@Tag("load")

				void	testOne()	{

								System.out.println("Non-Functional	Test	1	(Performance/Load)");

				}

				@Test

				@Tag("performance")

				@Tag("stress")

				void	testTwo()	{



								System.out.println("Non-Functional	Test	2	(Performance/Stress)");

				}

				@Test

				@Tag("security")

				void	testThree()	{

								System.out.println("Non-Functional	Test	3	(Security)");

				}

				@Test

				@Tag("usability")

				void	testFour()	{

								System.out.println("Non-Functional	Test	4	(Usability)");

				}

}

As	described	before,	we	use	the	configuration	keywords	includeTags	and
excludeTags	in	the	Maven	pom.xml	file.	In	this	example,	we	include	the	test	with
the	tag	functional	and	exclude	non-functional:

				<build>

								<plugins>

												<plugin>

																<artifactId>maven-surefire-plugin</artifactId>

																<version>${maven-surefire-plugin.version}</version>

																<configuration>

																				<properties>

																								<includeTags>functional</includeTags>

																								<excludeTags>non-functional</excludeTags>

																				</properties>

																</configuration>

																<dependencies>

																				<dependency>

																								<groupId>org.junit.platform</groupId>

																								<artifactId>junit-platform-surefire-provider</artifactId>

																								<version>${junit.platform.version}</version>

																				</dependency>

																				<dependency>

																								<groupId>org.junit.jupiter</groupId>

																								<artifactId>junit-jupiter-engine</artifactId>

																								<version>${junit.jupiter.version}</version>

																				</dependency>

																</dependencies>

												</plugin>

								</plugins>

				</build>

As	a	result,	when	we	try	to	execute	all	the	tests	within	the	project,	only	two
will	be	executed	(those	with	the	tag	functional),	and	the	rest	are	not	recognized
as	tests:



Maven	execution	of	test	filtering	by	tags



Maven	regular	support
The	regular	inclusion/exclusion	support	of	the	Maven	plugin	can	still	be	used
to	select	which	tests	are	going	to	be	executed	by	maven-surefire-plugin.	To	that
aim,	we	use	the	keywords	includes	and	excludes	to	configure	the	test	name
pattern	used	to	filter	the	execution	by	the	plugin.	Notice	that	for	both
inclusions	and	exclusions,	regular	expressions	can	be	used	to	specify	a	pattern
of	the	test	filenames:

<configuration>

			<includes>

						<include>**/Test*.java</include>

						<include>**/*Test.java</include>

						<include>**/*TestCase.java</include>

			</includes>

</configuration>

<configuration>

			<excludes>

						<exclude>**/TestCircle.java</exclude>

						<exclude>**/TestSquare.java</exclude>

			</excludes>

</configuration>

These	three	patterns,	that	is,	the	Java	files	containing	the	word
Test	or	ending	with	TestCase,	are	included	by	default	by
a	maven-surefire	plugin.



Filtering	tests	with	Gradle
Let’s	move	now	to	Gradle.	As	we	already	know,	we	can	also	use	Gradle	to
run	JUnit	5	tests.	Regarding	the	filtering	process,	we	can	select	the	test	to	be
executed	based	on:

The	test	engine:	Using	the	keyword	engines	we	can	include	or	exclude
the	test	engine	to	be	used	(that	is	junit-jupiter	or	junit-vintage).
The	Jupiter	tags:	Using	the	keyword	tags.
The	Java	packages:	Using	the	keyword	packages.
The	class	name	patterns:	Using	the	keyword	includeClassNamePattern.

By	default,	all	engines	and	tags	are	included	in	the	test	plan.	Only	the
classname	containing	the	word	Tests	is	applied.	Let’s	see	a	working	example.
We	reuse	the	same	tests	presented	in	the	former	Maven	project,	but	this	time
in	a	Gradle	project:

junitPlatform	{

						filters	{

												engines	{

																		include	'junit-jupiter'

																		exclude	'junit-vintage'

												}

												tags	{

																		include	'non-functional'

																		exclude	'functional'

												}

												packages	{

																		include	'io.github.bonigarcia'

																		exclude	'com.others',	'org.others'

												}

												includeClassNamePattern	'.*Spec'

												includeClassNamePatterns	'.*Test',	'.*Tests'

						}

}

Notice	that	we	are	including	the	tags	non-functional	and	excluding
functional,	and	therefore	we	execute	four	tests:



Gradle	execution	of	test	filtering	by	tags



Meta-annotations
The	final	part	of	this	section	is	about	the	definition	of	meta-annotations.	The
JUnit	Jupiter	annotations	can	be	used	in	the	definition	of	other	annotations
(that	is,	can	be	used	as	meta-annotations).	That	means	that	we	can	define	our
own	composed	annotation	that	will	automatically	inherit	the	semantics	of	its
meta-annotations.	This	feature	is	very	convenient	to	create	our	custom	test
taxonomy	by	reusing	the	JUnit	5	annotation	@Tag.

Let’s	see	an	example.	Consider	the	following	classification	for	test	cases,	in
which	we	classify	all	tests	as	functional	and	non-functional,	and	then	we
make	another	level	under	the	non-functional	tests:

Example	taxonomy	for	tests	(functional	and	non-functional)

With	that	scheme	in	mind,	we	are	going	to	create	our	custom	meta-
annotations	for	leaves	of	that	tree	structure:	@Functional,	@Security,	@Usability,
@Accessiblity,	@Load,	and	@Stress.	Notice	that	in	each	annotation	we	are	using	one
or	more	@Tag	annotations,	depending	on	the	structure	previously	defined.	First,
we	can	see	the	declaration	of	@Functional:

package	io.github.bonigarcia;

import	java.lang.annotation.ElementType;

import	java.lang.annotation.Retention;

import	java.lang.annotation.RetentionPolicy;

import	java.lang.annotation.Target;

import	org.junit.jupiter.api.Tag;

@Target({	ElementType.TYPE,	ElementType.METHOD	})

@Retention(RetentionPolicy.RUNTIME)

@Tag("functional")

public	@interface	Functional	{

}

Then,	we	define	the	annotation	@Security	with	tags	non-functional	and	security:
package	io.github.bonigarcia;

import	java.lang.annotation.ElementType;



import	java.lang.annotation.Retention;

import	java.lang.annotation.RetentionPolicy;

import	java.lang.annotation.Target;

import	org.junit.jupiter.api.Tag;

@Target({	ElementType.TYPE,	ElementType.METHOD	})

@Retention(RetentionPolicy.RUNTIME)

@Tag("non-functional")

@Tag("security")

public	@interface	Security	{

}

Similarly,	we	define	the	annotation	@Load,	but	this	time	tagging	with	non-
functional,	performance,	and	load:

package	io.github.bonigarcia;

import	java.lang.annotation.ElementType;

import	java.lang.annotation.Retention;

import	java.lang.annotation.RetentionPolicy;

import	java.lang.annotation.Target;

import	org.junit.jupiter.api.Tag;

@Target({	ElementType.TYPE,	ElementType.METHOD	})

@Retention(RetentionPolicy.RUNTIME)

@Tag("non-functional")

@Tag("performance")

@Tag("load")

public	@interface	Load	{

}

Finally	we	create	the	annotation	@Stress	(with	tags	non-functional,	performance,
and	stress):

package	io.github.bonigarcia;

import	java.lang.annotation.ElementType;

import	java.lang.annotation.Retention;

import	java.lang.annotation.RetentionPolicy;

import	java.lang.annotation.Target;

import	org.junit.jupiter.api.Tag;

@Target({	ElementType.TYPE,	ElementType.METHOD	})

@Retention(RetentionPolicy.RUNTIME)

@Tag("non-functional")

@Tag("performance")

@Tag("stress")

public	@interface	Stress	{

}

Now,	we	can	use	our	annotations	to	tag	(and	later	filter)	tests.	For	instance,	in
the	following	example	we	are	using	the	annotation	@Functional	at	class	level:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Test;

@Functional

class	FunctionalTest	{

						@Test

						void	testOne()	{

												System.out.println("Test	1");

						}

						@Test



						void	testTwo()	{

												System.out.println("Test	2");

						}

}

We	can	also	out	annotations	at	method	level.	In	the	following	test,	we
annotate	the	different	tests	(methods)	with	different	annotations	(@Load,	@Stress,
@Security,	and	@Accessibility):

package	io.github.bonigarcia;

import	org.junit.jupiter.api.Test;

class	NonFunctionalTest	{

				@Test

				@Load

				void	testOne()	{

								System.out.println("Test	1");

				}

				@Test

				@Stress

				void	testTwo()	{

								System.out.println("Test	2");

				}

				@Test

				@Security

				void	testThree()	{

								System.out.println("Test	3");

				}

				@Test

				@Usability

				void	testFour()	{

								System.out.println("Test	4");

				}

}

All	in	all,	we	can	filter	the	test	by	simply	changing	the	included	tags.	On	the
one	hand,	we	can	filter	by	the	tag	functional.	Notice	that	in	this	case,	only	two
tests	are	executed.	The	following	snippet	shows	the	output	of	this	kind	of
filtering	using	Maven:

Filtering	test	by	tags	(functional)	using	Maven	and	the	command	line

On	the	other	hand,	we	can	also	filter	with	different	tags,	such	as	non-functional.



The	following	picture	shows	an	example	of	this	type	of	filtering,	this	time
using	Gradle.	As	usual,	we	can	play	with	these	examples	by	forking	the
GitHub	repository	(https://github.com/bonigarcia/mastering-junit5):

>

Filtering	test	by	tags	(non-functional)	using	Gradle	and	the	command	line

https://github.com/bonigarcia/mastering-junit5


Conditional	test	execution
In	order	to	establish	custom	conditions	for	test	execution,	we	need	to	use	the
JUnit	5	extension	model	(introduced	in	Chapter	2,	What’s	new	in	JUnit	5,	in	the
section	The	extension	model	of	JUnit	5).	Concretely,	we	need	to	use	the
conditional	extension	point	called	ExecutionCondition.	This	extension	can	be
used	to	deactivate	either	all	tests	in	a	class	or	individual	tests.

We	are	going	to	see	a	working	example	in	which	we	create	a	custom
annotation	to	disable	tests	based	on	the	operative	system.	First	of	all,	we
create	a	custom	utility	enumeration	to	select	one	operative	system	(WINDOWS,	MAC,
LINUX,	and	OTHER):

package	io.github.bonigarcia;

public	enum	Os	{

				WINDOWS,	MAC,	LINUX,	OTHER;

				public	static	Os	determine()	{

								Os	out	=	OTHER;

								String	myOs	=	System.getProperty("os.name").toLowerCase();

								if	(myOs.contains("win"))	{

												out	=	WINDOWS;

								}	

								else	if	(myOs.contains("mac"))	{

												out	=	MAC;

								}	

								else	if	(myOs.contains("nux"))	{

												out	=	LINUX;

								}

								return	out;

				}

}

Then,	we	create	an	extension	of	ExecutionCondition.	In	this	example,	the
evaluation	is	done	by	checking	whether	or	not	the	custom	annotation
@DisabledOnOs	is	present.	When	the	annotation	@DisabledOnOs	is	present,	the	value
of	the	operative	system	is	compared	with	the	current	platform.	Depending	on
the	result	of	that	condition,	the	test	is	disabled	or	enabled.

package	io.github.bonigarcia;

import	java.lang.reflect.AnnotatedElement;

import	java.util.Arrays;

import	java.util.Optional;

import	org.junit.jupiter.api.extension.ConditionEvaluationResult;

import	org.junit.jupiter.api.extension.ExecutionCondition;

import	org.junit.jupiter.api.extension.ExtensionContext;

import	org.junit.platform.commons.util.AnnotationUtils;

public	class	OsCondition	implements	ExecutionCondition	{

				@Override

				public	ConditionEvaluationResult	evaluateExecutionCondition(



												ExtensionContext	context)	{

										Optional<AnnotatedElement>	element	=	context.getElement();

										ConditionEvaluationResult	out	=	ConditionEvaluationResult

																.enabled("@DisabledOnOs	is	not	present");

										Optional<DisabledOnOs>	disabledOnOs	=	AnnotationUtils

																.findAnnotation(element,	DisabledOnOs.class);

										if	(disabledOnOs.isPresent())	{

													Os	myOs	=	Os.determine();

													if(Arrays.asList(disabledOnOs.get().value())

																	.contains(myOs))	{

													out	=	ConditionEvaluationResult

															.disabled("Test	is	disabled	on	"	+	myOs);

													}	

													else	{

															out	=	ConditionEvaluationResult

																.enabled("Test	is	not	disabled	on	"	+	myOs);

													}

											}

											System.out.println("-->	"	+	out.getReason().get());

											return	out;

				}

}

Moreover,	we	need	to	create	our	custom	annotation	@DisabledOnOs,	which	is	also
annotated	with	@ExtendWith	pointing	to	our	extension	point.

package	io.github.bonigarcia;

import	java.lang.annotation.ElementType;

import	java.lang.annotation.Retention;

import	java.lang.annotation.RetentionPolicy;

import	java.lang.annotation.Target;

import	org.junit.jupiter.api.extension.ExtendWith;

@Target({	ElementType.TYPE,	ElementType.METHOD	})

@Retention(RetentionPolicy.RUNTIME)

@ExtendWith(OsCondition.class)

public	@interface	DisabledOnOs	{

				Os[]	value();

}

Finally,	we	use	our	annotation	@DisabledOnOs	in	a	Jupiter	test.
import	org.junit.jupiter.api.Test;

import	static	io.github.bonigarcia.Os.MAC;

import	static	io.github.bonigarcia.Os.LINUX;

class	DisabledOnOsTest	{

				@DisabledOnOs({	MAC,	LINUX	})

				@Test

				void	conditionalTest()	{

								System.out.println("This	test	will	be	disabled	on	MAC	and	LINUX");

				}

}

If	we	execute	this	test	in	a	Windows	machine,	the	test	is	not	skipped,	as	we
can	see	in	this	snapshot:



Execution	of	conditional	test	example



Assumptions
In	this	part	of	this	section	is	about	the	so-called	assumptions.	Assumptions
allow	us	to	only	run	tests	if	certain	conditions	are	as	expected.	All	JUnit
Jupiter	assumptions	are	static	methods	in	the	class	Assumptions,	located	inside
the	org.junit.jupiter	package.	The	following	screenshot	shows	all	the	methods
of	this	class:

Methods	of	the	class	org.junit.jupiter.Assumptions

On	the	one	hand,	the	methods	assumeTrue	and	assumeFalse	can	be	used	to	skip
tests	whose	preconditions	are	not	met.	On	the	other	hand,	the	method
assumingThat	is	used	to	condition	the	execution	of	a	part	in	a	test:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.fail;

import	static	org.junit.jupiter.api.Assumptions.assumeFalse;

import	static	org.junit.jupiter.api.Assumptions.assumeTrue;

import	static	org.junit.jupiter.api.Assumptions.assumingThat;

import	org.junit.jupiter.api.Test;

class	AssumptionsTest	{

				@Test

				void	assumeTrueTest()	{

								assumeTrue(false);

								fail("Test	1	failed");

				}

				@Test

				void	assumeFalseTest()	{

								assumeFalse(this::getTrue);

								fail("Test	2	failed");

				}



				private	boolean	getTrue()	{

								return	true;

				}

				@Test

				void	assummingThatTest()	{

								assumingThat(false,	()	->	fail("Test	3	failed"));

				}

}

Notice	that	in	this	example,	the	two	first	tests	(assumeTrueTest	and
assumeFalseTest)	are	skipped	since	the	assumptions	are	not	met.	Nevertheless,	in
the	assummingThatTest	test,	only	this	part	of	the	test	(a	lambda	expression	in	this
case)	is	not	executed,	but	the	whole	test	is	not	skipped:

Execution	of	assumptions	test	example



Nested	tests
Nested	tests	give	the	test	writer	more	capabilities	to	express	the	relationship
and	order	in	a	group	of	tests.	JUnit	5	makes	it	effortless	to	nest	test	classes.
We	simply	need	to	annotate	inner	classes	with	@Nested	and	all	test	methods	in
there	will	be	executed	as	well,	going	from	the	regular	tests	(defined	in	the	top-
level	class)	to	the	tests	defined	in	each	of	the	inner	classes.

The	first	thing	we	need	to	take	into	account	is	that	only	non-static	nested
classes	(that	is	inner	classes)	can	serve	as	@Nested	tests.	Nesting	can	be
arbitrarily	deep,	and	the	setup	and	tear	down	for	each	test	(that	is,	@BeforeEach
and	@AfterEach	methods)	are	inherited	in	the	nested	tests.	Nevertheless,	inner
classes	cannot	define	the	@BeforeAll	and	@AfterAll	methods,	due	to	the	fact	that
Java	does	not	allow	static	members	in	inner	classes.	However,	this	restriction
can	be	avoided	using	the	annotation	@TestInstance(Lifecycle.PER_CLASS)	in	the	test
class.	As	described	in	the	section	Test	instance	lifecycle	in	this	chapter,	this
annotation	force	to	instance	a	test	instance	per	class,	instead	of	a	test	instance
per	method	(default	behavior).	This	way,	the	methods	@BeforeAll	and	@AfterAll
do	not	need	to	be	static	and	therefore	it	can	be	used	in	nested	tests.

Let’s	see	a	simple	example	composed	by	a	Java	class	with	two	levels	of	inner
classes,	that	is,	the	class	contains	two	nested	inner	classes	annotated	with
@Nested.	As	we	can	see,	there	are	tests	in	the	three	levels	of	the	class.	Notice
that	the	top	class	defined	a	setup	method	(@BeforeEach),	and	also	the	first	nested
class	(called	InnerClass1	in	the	example).	In	the	top-level	class,	we	define	a
single	test	(called	topTest),	and	in	each	nested	class	we	find	another	test	(called
innerTest1	and	innerTest2,	respectively):

package	io.github.bonigarcia;

import	org.junit.jupiter.api.BeforeEach;

import	org.junit.jupiter.api.Nested;

import	org.junit.jupiter.api.Test;

class	NestTest	{

				@BeforeEach

				void	setup1()	{

								System.out.println("Setup	1");

				}

				@Test

				void	topTest()	{

							System.out.println("Test	1");

				}

				@Nested

				class	InnerClass1	{



								@BeforeEach

								void	setup2()	{

												System.out.println("Setup	2");

								}

								@Test

								void	innerTest1()	{

												System.out.println("Test	2");

								}

								@Nested

								class	InnerClass2	{

												@Test

												void	innerTest2()	{

																System.out.println("Test	3");

												}

								}	

				}

}

If	we	execute	this	example,	we	can	trace	the	execution	of	the	nested	tests	by
simply	looking	to	the	console	traces.	Note	that	the	top	@BeforeEach	method
(called	setup1)	is	always	executed	before	each	test.	Therefore,	the	trace	Setup
1	is	always	present	in	the	console	before	the	actual	test	execution.	Each	test
also	writes	a	line	the	console.	As	we	can	see,	the	first	test	logs	Test	1.	After
that,	the	tests	defined	in	the	inner	classes	are	executed.	The	first	inner	class
executes	the	test	innerTest1,	but	after	that,	the	setup	method	of	the	top-level
class	and	the	first	inner	class	are	executed	(logging	Setup	1	and	Setup	2,
respectively).

Finally,	the	test	defined	in	the	last	inner	class	(innerTest2)	is	executed,	but	as
usual,	the	cascade	of	setup	methods	is	executed	before	the	test:

Console	output	of	the	execution	of	the	nested	test	example

Nested	tests	can	be	used	in	conjunction	with	the	display	name	(that	is,	the



annotation	@DisplayName)	to	help	to	produce	a	nicely	readable	test	output.	The
following	example	demonstrates	how.	This	class	contains	the	structure	to	test
the	implementation	of	a	stack,	that	is,	a	last-in-first-out	(LIFO)	collection.
The	class	is	designed	to	first	test	the	stack	when	it	is	just	instantiated	(the
method	isInstantiatedWithNew).	After	that,	the	first	inner	class	(WhenNew)	is
supposed	to	test	the	stack	as	an	empty	collection	(methods	isEmpty,
throwsExceptionWhenPopped	and	throwsExceptionWhenPeeked).	Finally,	the	second	inner
class	is	supposed	to	test	when	the	stack	is	not	empty	(methods	isNotEmpty,
returnElementWhenPopped,	and	returnElementWhenPeeked):

package	io.github.bonigarcia;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.api.Nested;

import	org.junit.jupiter.api.Test;

@DisplayName("A	stack	test")

	class	StackTest	{

					@Test

					@DisplayName("is	instantiated")

					void	isInstantiated()	{

					}

					@Nested

					@DisplayName("when	empty")

					class	WhenNew	{

									@Test

									@DisplayName("is	empty")

									void	isEmpty()	{

									}

									@Test

									@DisplayName("throws	Exception	when	popped")

									void	throwsExceptionWhenPopped()	{

									}

									@Test

									@DisplayName("throws	Exception	when	peeked")

									void	throwsExceptionWhenPeeked()	{

									}

									@Nested

									@DisplayName("after	pushing	an	element")

									class	AfterPushing	{

													@Test

													@DisplayName("it	is	no	longer	empty")

													void	isNotEmpty()	{

													}

													@Test

													@DisplayName("returns	the	element	when	popped")

													void	returnElementWhenPopped()	{

													}

													@Test

													@DisplayName("returns	the	element	when	peeked")

													void	returnElementWhenPeeked()	{

													}



									}

					}

	}

The	objective	of	this	type	of	test	is	two	folded.	On	the	one	hand,	the	class
structure	provides	an	order	for	the	execution	of	the	tests.	On	the	other	hand,
the	use	of	@DisplayName	improves	the	readability	of	the	test	execution.	We	can
see	that	when	the	test	is	executed	in	an	IDE,	concretely	in	IntelliJ	IDEA.

Execution	of	nested	test	using	@DisplayName	on	Intellij	IDEA



Repeated	tests
JUnit	Jupiter	provides	for	the	ability	to	repeat	a	test	a	specified	number	of
times	simply	by	annotating	a	method	with	@RepeatedTest,	specifying	the	total
number	of	repetitions	desired.	Each	repeated	test	behaves	exactly	as	a	regular
@Test	method.	Moreover,	each	repeated	test	preserves	the	same	lifecycle
callbacks	(@BeforeEach,	@AfterEach,	and	so	on).

The	following	Java	class	contains	a	test	that	is	going	to	be	repeated	five
times:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.RepeatedTest;

class	SimpleRepeatedTest	{

				@RepeatedTest(5)

				void	test()	{

								System.out.println("Repeated	test");

				}

}

Due	to	the	fact	that	this	test	only	writes	a	line	(Repeated	test)	in	the	standard
output,	when	executing	this	test	in	the	console,	we	will	see	that	trace	five
times:

Execution	of	repeated	test	in	the	console

In	addition	to	specifying	the	number	of	repetitions,	a	custom	display	name
can	be	configured	for	each	repetition	via	the	name	attribute	of	the	@RepeatedTest
annotation.	The	display	name	can	be	a	pattern	composed	of	a	combination	of
static	text	and	dynamic	placeholders.	The	following	are	currently	supported:

{displayName}:	This	is	the	name	of	the	@RepeatedTest	method.



{currentRepetition}:	This	is	the	current	repetition	count.
{totalRepetitions}:	This	is	the	total	number	of	repetitions.

The	following	example	shows	a	class	with	three	repeated	tests	in	which	the
display	name	is	configured	with	the	property	name	of	@RepeatedTest:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.api.RepeatedTest;

import	org.junit.jupiter.api.TestInfo;

class	TunningDisplayInRepeatedTest	{

				@RepeatedTest(value	=	2,	name	=	"{displayName}	

				{currentRepetition}/{totalRepetitions}")

				@DisplayName("Repeat!")

				void	customDisplayName(TestInfo	testInfo)	{

								System.out.println(testInfo.getDisplayName());

				}

				@RepeatedTest(value	=	2,	name	=	RepeatedTest.LONG_DISPLAY_NAME)

				@DisplayName("Test	using	long	display	name")

				void	customDisplayNameWithLongPattern(TestInfo	testInfo)	{

								System.out.println(testInfo.getDisplayName());

				}

				@RepeatedTest(value	=	2,	name	=	RepeatedTest.SHORT_DISPLAY_NAME)

				@DisplayName("Test	using	short	display	name")

				void	customDisplayNameWithShortPattern(TestInfo	testInfo)	{

								System.out.println(testInfo.getDisplayName());

				}

}

In	this	test,	the	display	name	for	these	repeated	tests	will	be	as	follows:

For	the	test	customDisplayName,	the	display	name	will	follow	the	long
display	format:

Repeat	1	out	of	2.
Repeat	2	out	of	2.

For	the	test	customDisplayNameWithLongPattern,	the	display	name	will	follow
the	long	display	format:

Repeat!	1/2.
Repeat!	2/2.

For	the	test	customDisplayNameWithShortPattern,	the	display	name	in	this	test
will	follow	the	short	display	format:

Test	using	long	display	name	::	repetition	1	of	2.
Test	using	long	display	name	::	repetition	2	of	2.



Execution	of	repeated	test	example	in	conjunction	with	@DisplayName



Migration	from	JUnit	4	to	JUnit	5
JUnit	5	does	not	support	JUnit	4	features,	such	as	Rules	and	Runners,
natively.	Nevertheless,	JUnit	5	provides	a	gentle	migration	path	via	the	JUnit
Vintage	test	engine,	which	allows	us	to	execute	legacy	test	cases	(including
JUnit	4	but	also	JUnit	3)	on	the	top	of	the	JUnit	Platform.

The	following	table	can	be	used	to	summarize	the	main	differences	between
JUnit	4	and	5:

Feature JUnit	4 JUnit	5

Annotations
package

org.junit org.junit.jupiter.api

Declaring	a	test @Test @Test

Setup	for	all	tests @BeforeClass @BeforeAll

Setup	per	test @Before @BeforeEach

Tear	down	per	test @After @AfterEach

Tear	down	for	all
tests

@AfterClass @AfterAll

Tagging	and
filtering

@Category @Tag

Disable	a	test
method	or	class

@Ignore @Disabled

Nested	tests NA @Nested

Repeated	test Using
custom	rule

@Repeated

Dynamic	tests NA @TestFactory



Test	templates NA @TestTemaplate

Runners @RunWith
This	feature	is	superseded	by	the	extension
model	(@ExtendWith)

Rules @Rule	and
@ClassRule

This	feature	is	superseded	by	the	extension
model	(@ExtendWith)



Rule	support	in	Jupiter
As	described	before,	Jupiter	does	not	support	JUnit	4	rules	natively.
Nevertheless,	the	JUnit	5	team	realized	that	JUnit	4	rules	are	widely	adopted
in	many	test	codebases	nowadays.	In	order	to	provide	a	seamless	migration
from	JUnit	4	to	JUnit	5,	the	JUnit	5	team	implemented	the	junit-jupiter-
migrationsupport	module.	If	this	module	is	going	to	be	used	in	a	project,	the
module	dependency	should	be	imported.	Examples	for	Maven	are	shown
here:

<dependency>

			<groupId>org.junit.jupiter</groupId>

			<artifactId>junit-jupiter-migrationsupport</artifactId>

			<version>${junit.jupiter.version}</version>

			<scope>test</scope>

</dependency>

The	Gradle	declaration	for	this	dependency	is	like	this:
dependencies	{

						testCompile("org.junit.jupiter:junit-jupiter-

						migrationsupport:${junitJupiterVersion}")

}

The	rule	support	in	JUnit	5	is	limited	to	those	rules	semantically	compatible
with	the	Jupiter	extension	model,	including	the	following	rules:

junit.rules.ExternalResource	(including	org.junit.rules.TemporaryFolder).
junit.rules.Verifier	(including	org.junit.rules.ErrorCollector).
junit.rules.ExpectedException.

In	order	to	enable	these	rules	in	Jupiter	tests,	the	test	class	should	be
annotated	with	the	class-level	annotation	@EnableRuleMigrationSupport	(located	in
the	package	org.junit.jupiter.migrationsupport.rules).	Let	us	see	several
examples.	First,	the	following	test	case	defines	and	uses	a	TemporaryFolder	JUnit
4	rule	within	a	Jupiter	test:

package	io.github.bonigarcia;

import	java.io.IOException;

import	org.junit.Rule;

import	org.junit.jupiter.api.AfterEach;

import	org.junit.jupiter.api.BeforeEach;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.migrationsupport.rules.EnableRuleMigrationSupport;

import	org.junit.rules.TemporaryFolder;

@EnableRuleMigrationSupport

class	TemporaryFolderRuleTest	{

				@Rule



				TemporaryFolder	temporaryFolder	=	new	TemporaryFolder();

				@BeforeEach

				void	setup()	throws	IOException	{

								temporaryFolder.create();

				}

				@Test

				void	test()	{

								System.out.println("Temporary	folder:	"	+									

												temporaryFolder.getRoot());

				}

				@AfterEach

				void	teardown()	{

								temporaryFolder.delete();

				}

}

When	executing	this	test,	the	path	of	the	temporary	folder	will	be	logged	on
the	standard	output:

Execution	of	Jupiter	test	using	a	JUnit	4	TemporaryFolder	rule

The	following	test	demonstrates	the	use	of	the	ErrorCollector	rule	in	a	Jupiter
test.	Notice	that	the	collector	rule	allows	the	execution	of	a	test	to	continue
after	one	or	more	problems	are	found:

package	io.github.bonigarcia;

import	static	org.hamcrest.CoreMatchers.equalTo;

import	org.junit.Rule;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.migrationsupport.rules.EnableRuleMigrationSupport;

import	org.junit.rules.ErrorCollector;

@EnableRuleMigrationSupport

class	ErrorCollectorRuleTest	{

				@Rule

				public	ErrorCollector	collector	=	new	ErrorCollector();

				@Test

				void	test()	{

								collector.checkThat("a",	equalTo("b"));

								collector.checkThat(1,	equalTo(2));

								collector.checkThat("c",	equalTo("c"));

				}

}



These	problems	are	reported	together	at	the	end	of	the	test:

Execution	of	Jupiter	test	using	a	JUnit	4	ErrorCollector	rule

Finally,	the	ExpectedException	rule	allows	us	to	configure	a	test	to	anticipate	a
given	exception	to	be	thrown	within	the	test	logic:

package	io.github.bonigarcia;

import	org.junit.Rule;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.migrationsupport.rules.EnableRuleMigrationSupport;

import	org.junit.rules.ExpectedException;

@EnableRuleMigrationSupport

class	ExpectedExceptionRuleTest	{

				@Rule

				ExpectedException	thrown	=	ExpectedException.none();

				@Test

				void	throwsNothing()	{

				}

				@Test

				void	throwsNullPointerException()	{

								thrown.expect(NullPointerException.class);

								throw	new	NullPointerException();

				}

}

In	this	example,	even	when	the	second	test	raises	a	NullPointerException,	the	test
will	be	marked	as	having	succeeded	since	that	exception	was	expected.



Execution	of	Jupiter	test	using	a	JUnit	4	ExpectedException	rule



Summary
In	this	chapter,	we	introduced	the	basics	of	the	brand-new	programming
model	of	the	JUnit	5	framework,	known	as	Jupiter.	This	programming	model
provides	a	rich	API	that	can	be	used	by	practitioners	to	create	test	cases.	The
most	basic	element	of	Jupiter	is	the	annotation	@Test,	which	identifies	the
methods	in	Java	classes	treated	as	tests	(that	is	logic	which	exercises	and
verifies	a	SUT).	Moreover,	there	are	different	annotations	that	can	be	used	to
control	the	test	life	cycle,	namely,	@BeforeAll,	@BeforeEach,	@AfterEach	,	and
@AfterAll.	Other	useful	Jupiter	annotations	are	@Disabled	(to	skip	tests),
@DisplayName	(to	provide	a	test	name),	@Tag	(to	label	and	filter	tests).

Jupiter	provides	a	rich	set	of	assertions,	which	are	static	methods	in	the	class
Assertions	used	to	verify	if	the	outcome	obtained	from	the	SUT	corresponds
with	some	expected	value.	We	can	impose	conditions	for	the	test	execution	in
several	ways.	On	the	one	hand,	we	can	use	Assumptions	to	only	run	tests	(or	a
part	of	those)	if	certain	conditions	are	as	expected.

We	have	learned	how	nested	tests	can	be	created	simple	annotating	inner	Java
classes	with	@Nested.	This	can	be	used	to	create	test	executions	following	an
order	given	the	nested	classes	relationship.	We	have	also	studied	how	easy	is
to	created	repeated	test	using	the	JUnit	5	programming	model.	The	annotation
@RepeatedTest	is	used	to	that	aim,	providing	the	ability	to	repeat	a	test	a
specified	number	of	times.	Finally,	we	have	seen	how	Jupiter	provides
support	for	several	legacy	JUnit	4	test	rules,	including	ExternalResource,
Verifier,	and	ExpectedException.

In	the	chapter	4,	Simplifying	Testing	With	Advanced	JUnit	Features,	we	continue
discovering	the	JUnit	programming	model.	Concretely,	we	review	the
advance	features	of	JUnit	5,	namely,	dependency	injection,	dynamic	tests,	test
interfaces,	test	templates,	parameterized	tests,	compatibility	of	JUnit	5	and
Java	9.	Finally,	we	review	some	of	the	planned	features	in	the	backlog	for
JUnit	5.1,	not	implemented	yet	at	the	time	of	this	writing.



Simplifying	Testing	With	Advanced
JUnit	Features

Simplicity	is	the	ultimate	sophistication.
-	Leonardo	da	Vinci

So	far,	we	have	discovered	the	basics	of	Jupiter,	the	brand-new	programming
model	provided	by	the	JUnit	5	framework.	Moreover,	Jupiter	provides	a	rich
range	of	possibilities	which	allows	to	create	different	types	of	test	cases.	In
this	chapter,	we	review	these	advanced	features.	To	that	aim,	this	chapter	is
structured	as	follows:

Dependency	injection:	This	section	first	takes	a	look	at	dependency
injection	for	constructors	and	methods	in	test	classes.	Then,	it	reviews
the	three	parameter	resolvers	provided	out	of	the	box	in	Jupiter.	These
resolvers	allow	to	inject	objects	of	TestInfo,	RepetitionInfo,	and	TestReporter
inside	tests.
Dynamic	tests:	This	section	discusses	how	dynamic	tests	are
implemented	in	JUnit	5,	using	the	methods	dynamicTest	and	stream.
Test	interfaces:	The	section	reviews	the	Jupiter	annotations	that	can	be
declared	on	test	interfaces	and	default	methods.
Test	templates:	JUnit	5	introduces	the	concept	of	a	template	for	tests
cases.	These	templates	will	be	invoked	multiple	times,	depending	on	the
invocation	contexts.
Parameterized	tests:	In	the	same	way	as	JUnit	4,	JUnit	5	provides
capabilities	to	create	tests	driven	by	different	input	data,	that	is,	a
parametrized	test.	We	will	discover	that	the	support	for	this	kind	of	test
has	been	significantly	enhanced	in	the	Jupiter	programming	model.
Java	9:	On	September	21,	2017,	Java	9	released.	As	we	will	discover,
JUnit	5	has	been	implemented	to	be	compatible	with	Java	9,	with	special
emphasis	on	the	modularity	feature	of	Java	9.



Dependency	injection
In	former	JUnit	versions,	test	constructors	and	methods	were	not	allowed	to
have	parameters.	One	of	the	major	changes	in	JUnit	5	is	that	both	test
constructors	and	methods	are	now	allowed	to	include	parameters.	This	feature
enables	the	dependency	injection	for	constructors	and	methods.

As	introduced	in	Chapter	2,	What’s	New	In	JUnit	5	of	this	book,	the	extension
model	has	an	extension	that	provides	dependency	injections	for	Jupiter	tests,
called	ParameterResolver,	which	defines	an	API	for	test	extensions	that	wish	to
dynamically	resolve	parameters	at	runtime.

If	a	test	constructor	or	a	method	annotated	with	@Test,	@TestFactory,	@BeforeEach,
@AfterEach,	@BeforeAll,	or	@AfterAll	accepts	a	parameter,	that	parameter	is
resolved	at	runtime	by	a	resolver	(object	with	parent	class	ParameterResolver).
There	are	three	built-in	resolvers	registered	automatically	in	JUnit	5:
TestInfoParameterResolver,	and	RepetitionInfoParameterResolver,
TestReporterParameterResolver.	We	review	each	one	of	these	resolvers	in	this
section.



TestInfoParameterResolver
Given	a	test	class,	if	a	method	parameter	is	of	type	TestInfo,	the	JUnit	5
resolver	TestInfoParameterResolver	supplies	an	instance	of	TestInfo	corresponding
to	the	current	test	as	the	value	for	the	declared	parameter.	The	TestInfo	object
is	used	to	retrieve	information	about	the	current	test,	such	as	the	test	display
name,	the	test	class,	the	test	method,	or	associated	tags.

TestInfo	acts	as	a	drop-in	replacement	for	the	TestName	rule	from
JUnit	4.

The	class	TestInfo	is	placed	in	the	package	org.junit.jupiter.api	and	offers	the
following	API:

String	getDisplayName()	:	This	returns	the	display	name	of	the	test	or
container.
Set<String>	getTags()	:	This	gets	the	set	of	all	tags	for	the	current	test	or
container.
Optional<Class<?>>	getTestClass()	:	This	gets	the	class	associated	with	the
current	test	or	container,	if	available.
Optional<Method>	getTestMethod()	:	This	gets	the	method	associated	with	the
current	test,	if	available.

TestInfo	API

Let’s	see	an	example.	Notice	that	in	the	following	class,	both	the	methods
annotated	with	@BeforeEach	and	@Test	accepts	a	parameter	of	TestInfo.	This
parameter	is	injected	by	TestInfoParameterResolver:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.BeforeEach;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.TestInfo;

class	TestInfoTest	{



				@BeforeEach

				void	init(TestInfo	testInfo)	{

								String	displayName	=	testInfo.getDisplayName();

								System.out.printf("@BeforeEach	%s	%n",	displayName);

				}

				@Test

				@DisplayName("My	test")

				@Tag("my-tag")

				void	testOne(TestInfo	testInfo)	{

								System.out.println(testInfo.getDisplayName());

								System.out.println(testInfo.getTags());

								System.out.println(testInfo.getTestClass());

								System.out.println(testInfo.getTestMethod());

				}

				@Test

				void	testTwo()	{

				}

}

Therefore,	in	the	body	of	each	method,	we	are	able	to	use	the	TestInfo	API	to
get	the	test	information	at	runtime,	as	the	following	screenshot	demonstrates:

Console	output	of	dependency	injection	of	TestInfo	objects



RepetitionInfoParameterResolver
The	second	resolver	provided	out	of	the	box	in	JUnit	5	is	called
RepetitionInfoParameterResolver.	Given	a	test	class,	if	a	method	parameter	in	a
@RepeatedTest,	@BeforeEach,	or	@AfterEach	method	is	of	type	RepetitionInfo,	the
RepetitionInfoParameterResolver	will	supply	an	instance	of	RepetitionInfo.

RepetitionInfo	can	be	used	to	retrieve	information	about	the	current	repetition
and	the	total	number	of	repetitions	for	the	corresponding	@RepeatedTest.	The
API	of	RepetitionInfo	offers	two	methods,	as	shown	in	the	screenshot	after	the
list:

int	getCurrentRepetition():	Gets	the	current	repetition	of	the	corresponding
@RepeatedTest	method
int	getTotalRepetitions():	Gets	the	total	number	of	repetitions	of	the
corresponding	@RepeatedTest	method

RepetitionInfo	API

The	class	here	contains	a	simple	example	for	the	use	of	RepetitionInfo:
package	io.github.bonigarcia;

import	org.junit.jupiter.api.RepeatedTest;

import	org.junit.jupiter.api.RepetitionInfo;

class	RepetitionInfoTest	{

				@RepeatedTest(2)

				void	test(RepetitionInfo	repetitionInfo)	{

								System.out.println("**	Test	"	+	

												repetitionInfo.getCurrentRepetition()

												+	"/"	+	repetitionInfo.getTotalRepetitions());

				}

}

As	can	be	seen	in	the	test	output,	we	are	able	to	read	the	information	about	the
repeated	test	at	runtime:



The	console	output	of	dependency	injection	of	RepetitionInfo	objects.



TestReporterParameterResolver
The	last	built-in	resolver	in	JUnit	5	is	TestReporterParameterResolver.	Again,	given
a	test	class,	if	a	method	parameter	is	of	type	TestReporter,	the
TestReporterParameterResolver		supplies	an	instance	of	TestReporter.

TestReporter	is	used	to	publish	additional	data	about	the	test	execution.	The
data	can	be	consumed	through	the	method	reportingEntryPublished,	and	then,	it
can	be	requested	by	IDEs	or	included	in	test	reports.	Each	TestReporter	object
stores	information	as	a	map,	that	is,	a	key-value	collection:

TestReporter	API

This	test	provides	a	simple	example	of	TestReporter.	As	we	can	see,	we	use	the
injected	testReporter	object	to	add	custom	information	using	key-value	pairs:

package	io.github.bonigarcia;

import	java.util.HashMap;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.TestReporter;

class	TestReporterTest	{

				@Test

				void	reportSingleValue(TestReporter	testReporter)	{

								testReporter.publishEntry("key",	"value");

				}

				@Test

				void	reportSeveralValues(TestReporter	testReporter)	{

								HashMap<String,	String>	values	=	new	HashMap<>();

								values.put("name",	"john");

								values.put("surname",	"doe");

								testReporter.publishEntry(values);

				}

}



Dynamic	tests
As	we	know,	in	JUnit	3,	we	identified	tests	by	parsing	method	names	and
checking	whether	they	started	with	the	word	test.	Then,	in	JUnit	4,	we
identified	tests	by	collecting	methods	annotated	with	@Test.	Both	of	these
techniques	share	the	same	approach:	tests	are	defined	at	compile	time.	This
concept	is	what	we	call	static	testing.

Static	tests	are	considered	a	limited	approach,	especially	for	the	common
scenario	in	which	the	same	test	is	supposed	to	be	executed	for	a	variety	of
input	data.	In	JUnit	4,	this	limitation	was	addressed	in	several	ways.	A	very
simple	solution	to	the	problem	is	to	loop	the	input	test	data	and	exercising	the
same	test	logic	(JUnit	4	example	here).	Following	this	approach,	one	test	is
executed	until	the	first	assertion	fails:

package	io.github.bonigarcia;

import	org.junit.Test;

public	class	MyTest	{

				@Test

				public	void	test()	{

								String[]	input	=	{	"A",	"B",	"C"	};

								for	(String	s	:	input)	{

												exercise(s);

								}

				}

				private	void	exercise(String	s)	{

								System.out.println(s);

				}

}

A	more	elaborate	solution	is	to	use	the	JUnit	4	support	for	parameterized
tests,	using	the	parameterized	runner.	This	approach	does	not	create	tests	at
runtime	either,	it	simply	repeats	the	same	test	several	times	depending	on	the
parameters:

package	io.github.bonigarcia;

import	java.util.Arrays;

import	java.util.Collection;

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.junit.runners.Parameterized;

import	org.junit.runners.Parameterized.Parameter;

import	org.junit.runners.Parameterized.Parameters;

@RunWith(Parameterized.class)

public	class	ParameterizedTest	{

				@Parameter(0)



				public	Integer	input1;

				@Parameter(1)

				public	String	input2;

				@Parameters(name	=	"My	test	#{index}	--	input	data:	{0}	and	{1}")

				public	static	Collection<Object[]>	data()	{

								return	Arrays

											.asList(new	Object[][]	{	{	1,	"hello"	},	{	2,	"goodbye"	}	});

				}

				@Test

				public	void	test()	{

								System.out.println(input1	+	"	"	+	input2);

				}

}

We	can	see	the	execution	of	the	preceding	example	in	the	Eclipse	IDE:

Execution	of	JUnit	4’s	parameterized	test	in	Eclipse

On	the	other	hand,	JUnit	5	allows	to	generate	test	at	runtime	by	a	factory
method	that	is	annotated	with	@TestFactory.	In	contrast	to	@Test,	a	@TestFactory
method	is	not	a	test	but	a	factory.	A	@TestFactory	method	must	return	a	Stream,
Collection,	Iterable,	or	Iterator	of	DynamicTest	instances.	These	DynamicTest
instances	are	executed	lazily,	enabling	dynamic	generation	of	test	cases.

In	order	to	create	a	dynamic	test,	we	can	use	the	static	method	dynamicTest	of
the	class	DynamicTest	located	in	the	org.junit.jupiter.api	package.	If	we	inspect
the	source	code	of	this	class,	we	can	see	that	a	DynamicTest	is	composed	of	a
display	name	in	form	of	the	String	and	one	executable	object,	which	can	be
provided	as	lambda	expressions	or	as	method	references.

Let’s	see	several	examples	of	dynamic	tests.	In	the	following	example,	the
first	dynamic	test	will	fail,	due	to	the	fact	we	are	not	returning	the	expected
collection	of	DynamicTests.	The	next	three	methods	are	very	simple	examples
that	demonstrate	the	generation	of	Collection,	Iterable,	and	Iterator	of	DynamicTest
instances:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	static	org.junit.jupiter.api.DynamicTest.dynamicTest;

import	java.util.Arrays;



import	java.util.Collection;

import	java.util.Iterator;

import	java.util.List;

import	org.junit.jupiter.api.DynamicTest;

import	org.junit.jupiter.api.TestFactory;

class	CollectionTest	{

				//	Warning:	this	test	will	raise	an	exception

				@TestFactory

				List<String>	dynamicTestsWithInvalidReturnType()	{

								return	Arrays.asList("Hello");

				}

				@TestFactory

				Collection<DynamicTest>	dynamicTestsFromCollection()	{

								return	Arrays.asList(

																dynamicTest("1st	dynamic	test",	()	->	

																					assertTrue(true)),

																dynamicTest("2nd	dynamic	test",	()	->	assertEquals(4,	2	

																					*	2)));

				}

				@TestFactory

				Iterable<DynamicTest>	dynamicTestsFromIterable()	{

								return	Arrays.asList(

																dynamicTest("3rd	dynamic	test",	()	->	

																				assertTrue(true)),

																dynamicTest("4th	dynamic	test",	()	->	assertEquals(4,	2	

																				*	2)));

				}

				@TestFactory

				Iterator<DynamicTest>	dynamicTestsFromIterator()	{

								return	Arrays.asList(

																dynamicTest("5th	dynamic	test",	()	->	

																					assertTrue(true)),

																dynamicTest("6th	dynamic	test",	()	->	assertEquals(4,	2	

																					*	2))).iterator();

				}

}

These	examples	do	not	really	exhibit	dynamic	behavior,	but	merely
demonstrate	the	supported	return	types.	Note	that	the	first	test	is	going	to	fail
due	to	JUnitException:



Console	output	of	the	first	example	for	dynamic	test	execution

The	following	example	demonstrates	how	easy	it	is	to	generate	dynamic	tests
for	a	given	set	of	input	data:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.DynamicTest.dynamicTest;

import	java.util.stream.Stream;

import	org.junit.jupiter.api.DynamicTest;

import	org.junit.jupiter.api.TestFactory;

class	DynamicExampleTest	{

				@TestFactory

				Stream<DynamicTest>	dynamicTestsFromStream()	{

								Stream<String>	inputStream	=	Stream.of("A",	"B",	"C");

								return	inputStream.map(

																input	->	dynamicTest("Display	name	for	input	"	+	input,	

																()	->	{

																					System.out.println("Testing	"	+	input);

																}));

				}

}

Notice	that,	in	the	end,	three	tests	were	executed,	and	these	three	tests	were
created	at	runtime	by	JUnit	5:

Console	output	of	the	second	example	for	dynamic	test	execution



There	is	another	possibility	to	create	dynamic	tests	in	JUnit	5,	using	the	static
method	stream	of	the	class	DynamicTest.	This	method	needs	an	input	generator,	a
function	that	generates	a	display	name	based	on	an	input	value,	and	a	test
executor.

Let’s	see	another	example.	We	create	a	test	factory,	providing	the	input	data
as	an	Iterator,	a	display	name	function	using	a	lambda	expression,	and	finally,
a	test	executor	implemented	with	another	lambda	expression.	In	this	example,
the	test	executor	basically	asserts	whether	or	not	the	input	integer	is	even	or
odd:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	static	org.junit.jupiter.api.DynamicTest.stream;

import	java.util.Arrays;

import	java.util.Iterator;

import	java.util.function.Function;

import	java.util.stream.Stream;

import	org.junit.jupiter.api.DynamicTest;

import	org.junit.jupiter.api.TestFactory;

import	org.junit.jupiter.api.function.ThrowingConsumer;

class	StreamExampleTest	{

				@TestFactory

				Stream<DynamicTest>	streamTest()	{

								//	Input	data

								Integer	array[]	=	{	1,	2,	3	};

								Iterator<Integer>	inputGenerator	=	Arrays.asList(array).iterator();

								//	Display	names

								Function<Integer,	String>	displayNameGenerator	=	(

																input)	->	"Data	input:"	+	input;

								//	Test	executor

								ThrowingConsumer<Integer>	testExecutor	=	(input)	->	{

												System.out.println(input);

												assertTrue(input	%	2	==	0);

								};

								//	Returns	a	stream	of	dynamic	tests

								return	stream(inputGenerator,	displayNameGenerator,	

												testExecutor);

				}

}

The	test	will	fail	for	odd	inputs.	As	we	can	see,	two	out	of	three	tests	will	fail:



Console	output	of	dynamic	test	execution	(example	three)



Test	interfaces
In	JUnit	5,	there	are	different	rules	relative	to	the	use	of	annotations	in	Java
interfaces.	First	of	all,	we	need	to	be	aware	that	@Test,	@TestFactory,	@BeforeEach,
and	@AfterEach	can	be	declared	on	interface	default	methods.

Default	methods	is	a	feature	of	Java	introduced	in	version	8.
These	methods	(declared	using	the	reserve	keyword	default)
allows	to	define	a	default	implementation	for	a	given	method
within	a	Java	interface.	This	capability	can	be	useful	for
backward	compatibility	with	existing	interfaces.

The	second	rule	regarding	JUnit	5	and	interfaces	is	that	@BeforeAll	and	@AfterAll
can	be	declared	on	static	methods	in	a	test	interface.	Moreover,	if	the	test
class,	which	implements	a	given	interface,	is	annotated	with
@TestInstance(Lifecycle.PER_CLASS),	the	methods	@BeforeAll	and	@AfterAll	declared
on	the	interface	do	not	need	to	be	static,	but	default	methods.

The	third	and	final	rule	concerning	interfaces	in	JUnit	5	is	@ExtendWith	and	@Tag
can	be	declared	on	test	interfaces	to	configure	extensions	and	tags.

Let’s	see	some	simple	examples.	In	the	following	class,	we	are	creating	an
interface,	not	a	class.	In	this	interface,	we	use	the	annotations	@BeforeAll,
@AfterAll,	@BeforeEach,	and	@AfterEach.	On	the	one	hand,	we	define	@BeforeAll,
@AfterAll	as	static	methods.	On	the	other	hand,	we	are	defining	@BeforeEach	and
@AfterEach	as	Java	8	default	methods:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.AfterAll;

import	org.junit.jupiter.api.AfterEach;

import	org.junit.jupiter.api.BeforeAll;

import	org.junit.jupiter.api.BeforeEach;

import	org.junit.jupiter.api.TestInfo;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

public	interface	TestLifecycleLogger	{

				static	final	Logger	log	=	LoggerFactory

												.getLogger(TestLifecycleLogger.class.getName());

				@BeforeAll

				static	void	beforeAllTests()	{

								log.info("beforeAllTests");

				}

				@AfterAll

				static	void	afterAllTests()	{

								log.info("afterAllTests");

				}



				@BeforeEach

				default	void	beforeEachTest(TestInfo	testInfo)	{

								log.info("About	to	execute	{}",	testInfo.getDisplayName());

				}

				@AfterEach

				default	void	afterEachTest(TestInfo	testInfo)	{

								log.info("Finished	executing	{}",	testInfo.getDisplayName());

				}

}

We	are	using	the	library	Simple	Logging	Facade	for	Java
(SLF4J)	in	this	example.	Take	a	look	at	the	code	on	GitHub	(https
://github.com/bonigarcia/mastering-junit5)	for	details	on	the	declaration	of
dependencies.

In	this	example,	we	are	using	the	annotation	TestFactory	to	define	a	default
method	in	a	Java	interface:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	static	org.junit.jupiter.api.DynamicTest.dynamicTest;

import	java.util.Arrays;

import	java.util.Collection;

import	org.junit.jupiter.api.DynamicTest;

import	org.junit.jupiter.api.TestFactory;

interface	TestInterfaceDynamicTestsDemo	{

				@TestFactory

				default	Collection<DynamicTest>	dynamicTestsFromCollection()	{

								return	Arrays.asList(

																dynamicTest("1st	dynamic	test	in	test	interface",

																								()	->	assertTrue(true)),

																dynamicTest("2nd	dynamic	test	in	test	interface",

																								()	->	assertTrue(true)));

				}

}

Finally,	we	use	the	annotation	@Tag	and	@ExtendWith	in	another	interface:
package	io.github.bonigarcia;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.extension.ExtendWith;

@Tag("timed")

@ExtendWith(TimingExtension.class)

public	interface	TimeExecutionLogger	{

}

All	in	all,	we	can	use	these	interfaces	in	our	Jupiter	tests:
package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	org.junit.jupiter.api.Test;

https://github.com/bonigarcia/mastering-junit5


class	TestInterfaceTest	implements	TestLifecycleLogger,	

								TimeExecutionLogger,	

								TestInterfaceDynamicTestsDemo	{

				@Test

				void	isEqualValue()	{

								assertEquals(1,	1);

				}

}

In	this	test,	the	fact	of	implementing	all	the	previously	defined	interfaces	will
provide	the	logging	capabilities	implemented	in	the	default	methods:

Console	output	of	test	implementing	several	interfaces



Test	templates
A	@TestTemplate	method	is	not	a	regular	test	case	but	a	template	for	test	cases.
Method	annotated	like	this	will	be	invoked	multiple	times,	depending	on	the
invocation	context	returned	by	the	registered	providers.	Thus,	test	templates
are	used	together	with	a	registered	TestTemplateInvocationContextProvider
extension.

Let	see	a	simple	example	of	a	test	template.	In	the	following	snippet,	we	can
see	a	method	annotated	with	@TestTemplate,	and	also	declaring	an	extension	of
the	type	MyTestTemplateInvocationContextProvider:

package	io.github.bonigarcia;

import	org.junit.jupiter.api.TestTemplate;

import	org.junit.jupiter.api.extension.ExtendWith;

class	TemplateTest	{

				@TestTemplate

				@ExtendWith(MyTestTemplateInvocationContextProvider.class)

				void	testTemplate(String	parameter)	{

								System.out.println(parameter);

				}

}

The	required	provided	implements	the	Jupiter	interface
TestTemplateInvocationContextProvider.	Inspecting	the	code	of	this	class,	we	can
see	how	two	String	parameters	are	provided	to	the	test	template	(in	this	case,
the	value	for	these	parameters	are	parameter-1	and	parameter-2):

package	io.github.bonigarcia;

import	java.util.Collections;

import	java.util.List;

import	java.util.stream.Stream;

import	org.junit.jupiter.api.extension.Extension;

import	org.junit.jupiter.api.extension.ExtensionContext;

import	org.junit.jupiter.api.extension.ParameterContext;

import	org.junit.jupiter.api.extension.ParameterResolver;

import	org.junit.jupiter.api.extension.TestTemplateInvocationContext;

import	org.junit.jupiter.api.extension.TestTemplateInvocationContextProvider;

public	class	MyTestTemplateInvocationContextProvider

								implements	TestTemplateInvocationContextProvider	{

				@Override

				public	boolean	supportsTestTemplate(ExtensionContext	context)	{

								return	true;

				}

				@Override

				public	Stream<TestTemplateInvocationContext>	

								provideTestTemplateInvocationContexts(

							ExtensionContext	context)	{



								return	Stream.of(invocationContext("parameter-1"),

																invocationContext("parameter-2"));

				}

				private	TestTemplateInvocationContext	invocationContext(String	parameter)	{

								return	new	TestTemplateInvocationContext()	{

												@Override

												public	String	getDisplayName(int	invocationIndex)	{

																return	parameter;

												}

												@Override

												public	List<Extension>	getAdditionalExtensions()	{

																return	Collections.singletonList(new	ParameterResolver()	{

																				@Override

																				public	boolean	supportsParameter(

																												ParameterContext	parameterContext,

																												ExtensionContext	extensionContext)	{

																								return	parameterContext.getParameter().getType()

																													.equals(String.class);

																				}

																				@Override

																				public	Object	resolveParameter(

																												ParameterContext	parameterContext,

																												ExtensionContext	extensionContext)	{

																								return	parameter;

																				}

																});

												}

								};

				}

}

When	the	test	is	executed,	each	invocation	of	the	test	template	behaves	like	a
regular	@Test.	In	this	example,	the	test	is	only	writing	the	parameter	in	the
standard	output.

Console	output	of	test	template	example



Parameterized	tests
Parameterized	tests	are	a	special	kinds	of	tests	in	which	the	data	input	is
injected	in	the	test	in	order	to	reuse	the	same	test	logic.	This	concept	was
already	addressed	in	JUnit	4,	as	explained	in	Chapter	1,	Retrospective	On
Software	Quality	And	Java	Testing.	As	we	would	expect,	parameterized	tests
are	also	implemented	in	JUnit	5.

First	of	all,	in	order	to	implement	a	parameterized	test	in	Jupiter,	we	need	to
add	the	junit-jupiter-params	to	our	project.	When	using	Maven,	that	means
adding	the	following	dependency:

<dependency>

				<groupId>org.junit.jupiter</groupId>

				<artifactId>junit-jupiter-params</artifactId>

				<version>${junit.jupiter.version}</version>

				<scope>test</scope>

</dependency>

As	usual,	as	a	general	rule,	it	is	recommended	to	use	the	latest
version	of	the	artifacts.	To	find	out	that,	we	can	check	out	the
Maven	central	repository	(http://search.maven.org/).

When	using	Gradle,	the	junit-jupiter-params	dependency	can	be	declared	as
follows:

dependencies	{

						testCompile("org.junit.jupiter:junit-jupiter-

						params:${junitJupiterVersion}")

}

Then,	we	need	to	use	the	annotation	@ParameterizedTest	(located	in	the	package
org.junit.jupiter.params)	to	declare	a	method	within	a	Java	class	as	a
parameterized	test.	This	type	of	test	behaves	exactly	the	same	as	a	regular
@Test,	meaning	that	all	the	life	cycle	callbacks	(@BeforeEach,	@AfterEach,	and	so
on)	and	extensions	continue	working	in	the	same	way.

Nevertheless,	the	use	of	@ParameterizedTest	is	not	enough	to	implement	a
parameterized	test.	Together	with	@ParameterizedTest,	we	need	to	specify	at	least
one	argument	provider.	As	we	will	discover	in	this	section,	JUnit	5
implements	different	annotations	to	provide	data	input	(that	is,	parameters	for
tests)	from	different	sources.	These	argument	providers	(implemented	as
annotations	in	JUnit	5)	are	summarized	in	the	following	table	(each	of	these
annotations	are	located	in	the	package	org.junit.jupiter.params.provider):

Arguments

http://search.maven.org/


provider
annotation

Description

@ValueSource Used	to	specify	an	array	of	literal	values	of	String,	int,	long,	or
double

@EnumSource

	
Argument	source	for	constants	of	a	specified	enumeration
(java.lang.Enum)

@MethodSource
Provides	access	to	values	returned	by	static	methods	of	the	class
in	which	this	annotation	is	declared

@CsvSource
Argument	source	which	reads	comma-separated	values	(CSV)
from	its	attribute

@CsvFileSource
Argument	source	which	is	used	to	load	CSV	files	from	one	or
more	classpath	resources

@ArgumentsSource

Used	to	specify	a	custom	argument	provider	(that	is,	a	Java	class
that	implements	the
interface)	org.junit.jupiter.params.provider.ArgumentsProvider)



@ValueSource
The	annotation	@ValueSource	is	used	in	conjunction	with	@ParameterizedTest	to
specify	a	parameterized	test	in	which	the	argument	source	is	an	array	of	literal
values	of	String,	int,	long,	or	double.	These	values	are	specified	inside	the
annotation,	using	the	elements	strings,	ints,	longs,	or	doubles.	Consider	the
following	example:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.ValueSource;

class	ValueSourceStringsParameterizedTest	{

				@ParameterizedTest

				@ValueSource(strings	=	{	"Hello",	"World"	})

				void	testWithStrings(String	argument)	{

						System.out.println("Parameterized	test	with	(String)	parameter:		"													

								+	argument);

						assertNotNull(argument);

				}

}

The	method	of	this	class	(testWithStrings)	defines	a	parameterized	test	in	which
an	array	of	String	is	specified.	Due	to	the	fact	that	two	String	arguments	are
specified	in	the	annotation	@ValueSource	(in	this	example	"Hello"	and	"World"),	the
test	logic	will	be	exercised	twice,	once	per	value.	This	data	is	injected	in	the
test	method	using	the	argument	of	the	method,	in	this	case	through	the	String
variable	named	argument.	All	in	all,	when	executing	this	test	class,	the	output
will	be	as	follows:

Execution	of	a	parameterized	test	using	@ValueSource	and	String	argument	provider

We	can	also	use	integer	primitive	types	(int,	long,	and	double)	within	the
@ValueSource	annotation.	The	following	example	demonstrates	how.	The
methods	of	this	example	class	(named	testWithInts,	testWithLongs,	and
testWithDoubles)	use	the	annotation	@ValueSource	to	define	the	arguments	in	the
form	of	integer	values,	using	the	primitive	types	int,	long,	and	double,



respectively.	To	that	aim,	the	elements	ints,	longs,	and	doubles	of	@ValueSource
need	to	be	specified:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.ValueSource;

class	ValueSourcePrimitiveTypesParameterizedTest	{

			@ParameterizedTest

				@ValueSource(ints	=	{	0,	1	})

				void	testWithInts(int	argument)	{

								System.out.println("Parameterized	test	with	(int)	argument:	"	+	

												argument);

								assertNotNull(argument);

				}

				@ParameterizedTest

				@ValueSource(longs	=	{	2L,	3L	})

				void	testWithLongs(long	argument)	{

								System.out.println(

								"Parameterized	test	with	(long)	

														argument:	"	+	argument);

								assertNotNull(argument);

				}

				@ParameterizedTest

				@ValueSource(doubles	=	{	4d,	5d	})

				void	testWithDoubles(double	argument)	{

								System.out.println("Parameterized	test	with	(double)

														argument:	"	+	argument);

								assertNotNull(argument);

				}

}

As	can	be	seen	in	the	picture	here,	each	test	is	executed	twice,	since	in	each
@ValueSource	annotation	we	specify	two	different	input	parameters	(type	int,
long,	and	double,	respectively).

Execution	of	a	parameterized	test	using	@ValueSource	and	primitive	types



@EnumSource
The	annotation	@EnumSource	allows	to	specify	a	parameterized	test	in	which	the
argument	source	is	a	Java	enumeration	class.	By	default,	each	value	of	the
enumeration	will	be	used	to	feed	the	parameterized	test,	one	at	a	time.

For	example,	in	the	following	test	class,	the	method	testWithEnum	is	annotated
with	@ParameterizedTest	in	conjunction	with	@EnumSource.	As	we	can	see,	the	value
of	this	annotation	is	TimeUnit.class,	which	is	a	standard	Java	annotation
(package	java.util.concurrent)	used	to	represent	time	duration.	The	possible
values	defined	in	this	enumeration	are	NANOSECONDS,	MICROSECONDS,	MILLISECONDS,
SECONDS,	MINUTES,	HOURS,	and	DAYS:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	java.util.concurrent.TimeUnit;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.EnumSource;

class	EnumSourceParameterizedTest	{

				@ParameterizedTest

				@EnumSource(TimeUnit.class)

				void	testWithEnum(TimeUnit	argument)	{

								System.out.println("Parameterized	test	with	(TimeUnit)									

												argument:	"	+	argument);

								assertNotNull(argument);

				}

}

Therefore,	the	execution	of	this	test	will	be	carried	out	seven	times,	that	is,
one	per	TimeUnit	enumeration	value.	We	can	check	this	in	the	trace	of	the
output	console	when	executing	the	test:



Execution	of	parameterized	test	using	@EnumSource	and	TimeUnit.class

Moreover,	the	@EnumSource	annotation	allows	to	filter	the	members	of	the
enumeration	in	several	ways.	To	implement	this	selection,	the	following
elements	can	be	specified	within	a	@EnumSource	annotation:

mode:	Constant	value	which	determines	the	type	of	filtering.	This	is
defined	as	an	enumeration	in	the	inner	class
org.junit.jupiter.params.provider.EnumSource.Mode,	and	the	possible	values	are:

INCLUDE:	Used	to	select	those	values	whose	names	are	supplied	via
the	names	element.	This	is	the	default	option.
EXCLUDE:	Used	to	select	all	values	except	those	supplied	with	the	names
element.
MATCH_ALL:	Used	to	select	those	values	whose	names	match	the
patterns	in	names	element.
MATCH_ANY:	Used	to	select	those	values	whose	names	match	any
pattern	in	the	names	element.

names:	The	array	of	string	which	allows	to	select	a	group	of	enum	constants.
The	criteria	for	inclusion/exclusion	is	directly	linked	to	the	value	of
mode.	In	addition,	this	element	also	allows	to	define	regular	expressions
to	select	the	names	of	enum	constants	to	be	matched.

Consider	the	following	example.	In	this	class,	there	are	three	parameterized
tests.	First	one,	named	testWithFilteredEnum,	uses	the	class	TimeUnit	to	feed	the
@EnumSource	argument	provider.	Moreover,	the	enum	constant	set	is	filtered
using	the	element	names.	As	we	can	see,	only	the	constant	"DAYS"	and	"HOURS"
will	be	used	to	feed	this	test	(take	into	account	that	the	default	mode	is
INCLUDE):

package	io.github.bonigarcia;



import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	static	org.junit.jupiter.params.provider.EnumSource.Mode.EXCLUDE;

import	static	org.junit.jupiter.params.provider.EnumSource.Mode.MATCH_ALL;

import	java.util.concurrent.TimeUnit;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.EnumSource;

class	EnumSourceFilteringParameterizedTest	{

				@ParameterizedTest

				@EnumSource(value	=	TimeUnit.class,	names	=	{	"DAYS",	"HOURS"	})

				void	testWithFilteredEnum(TimeUnit	argument)	{

								System.out.println("Parameterized	test	with	some	(TimeUnit)	

												argument:	"+	argument);

								assertNotNull(argument);

				}

				@ParameterizedTest

				@EnumSource(value	=	TimeUnit.class,	mode	=	EXCLUDE,	names	=	{	

				"DAYS",	"HOURS"	})

				void	testWithExcludeEnum(TimeUnit	argument)	{

								System.out.println("Parameterized	test	with	excluded	(TimeUnit)	

												argument:	"	+	argument);

								assertNotNull(argument);

				}

				@ParameterizedTest

				@EnumSource(value	=	TimeUnit.class,	mode	=	MATCH_ALL,	names	=	

				"^(M|N).+SECONDS$")

				void	testWithRegexEnum(TimeUnit	argument)	{

								System.out.println("Parameterized	test	with	regex	filtered	

												(TimeUnit)	argument:	"	+	argument);

								assertNotNull(argument);

				}

}

Thus,	when	executing	this	class	in	the	console,	the	output	we	obtain	is	the
following.	Regarding	the	first	test,	we	can	see	that	only	traces	for	"DAYS"	and
"HOURS"	are	present:

Execution	of	parameterized	test	using	@EnumSource	using	filtering	capabilities



Consider	now	the	second	test	method,	named	testWithExcludeEnum.	This	test	is
exactly	the	same	as	before	with	a	difference:	the	mode	here	is	EXCLUSION
(instead	of	INCLUSION,	chosen	by	default	in	the	previous	test).	All	in	all,	in	the
execution	(see	screenshot	before)	when	can	see	that	this	test	is	executed	five
times,	per	one	of	the	enum	constant	different	to	DAYS	and	HOURS.	To	check	that,
track	the	traces	with	the	sentence	"Parameterized	test	with	excluded	(TimeUnit)
argument".

The	third	and	last	method	of	this	class	(called	testWithRegexEnum)	defines	an
inclusion	mode,	MATCH_ALL,	using	a	regular	expression	to	filter	the	enumeration
(in	this	case,	it	is	also	TimeUnit).	The	concrete	regular	expression	used	in	this
example	is	^(M|N).+SECONDS$,	which	means	that	only	will	be	included	in	those
enum	constants	starting	with	M	or	N	and	ending	with	SECONDS.	As	can	be	checked
in	the	execution	screenshot,	there	are	three	TimeUnit	constants	matching	these
conditions:	NANOSECONDS,	MICROSECONDS,	and	MILISECONDS.



@MethodSource
The	annotation	@MethodSource	allows	to	define	the	name	of	the	static	method	in
which	the	arguments	for	the	test	are	provided	as	a	Java	8	Stream.	For	instance,
in	the	following	example,	we	can	see	a	parameterized	test	in	which	the
argument	provider	is	a	static	method	called	stringProvider.	In	this	example,	this
method	returns	a	Stream	of	String‘s	and	therefore	the	argument	of	the	test
method	(callled	testWithStringProvider)	accepts	one	String	argument:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	java.util.stream.Stream;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.MethodSource;

class	MethodSourceStringsParameterizedTest	{

				static	Stream<String>	stringProvider()	{

								return	Stream.of("hello",	"world");

				}

				@ParameterizedTest

				@MethodSource("stringProvider")

				void	testWithStringProvider(String	argument)	{

								System.out.println("Parameterized	test	with	(String)	argument:	"

											+	argument);

								assertNotNull(argument);

				}

}

When	running	the	example,	we	can	see	how	the	test	is	execute	twice,	once	per
String	contained	in	the	Stream.

Execution	of	a	parameterized	test	using	@MethodSource	and	String	argument	provider

The	type	of	the	objects	contained	in	the	Stream	is	not	required	to	be	String.	In
fact,	this	type	can	be	anything.	Let’s	consider	another	example,	in	which
@MethodSource	is	linked	to	a	static	method,	which	returns	as	Stream	of	custom
objects.	In	this	example,	this	type	is	named	Person,	and	here	it	is	implemented



as	an	inner	class	with	two	properties	(name	and	surname).
package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	java.util.stream.Stream;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.MethodSource;

class	MethodSourceObjectsParameterizedTest	{

				static	Stream<Person>	personProvider()	{

								Person	john	=	new	Person("John",	"Doe");

								Person	jane	=	new	Person("Jane",	"Roe");

								return	Stream.of(john,	jane);

				}

				@ParameterizedTest

				@MethodSource("personProvider")

				void	testWithPersonProvider(Person	argument)	{

								System.out.println("Parameterized	test	with	(Person)	argument:	"	+	

																argument);

								assertNotNull(argument);

				}

				static	class	Person	{

								String	name;

								String	surname;

								public	Person(String	name,	String	surname)	{

												this.name	=	name;

												this.surname	=	surname;

								}

								public	String	getName()	{

												return	name;

								}

								public	void	setName(String	name)	{

												this.name	=	name;

								}

								public	String	getSurname()	{

												return	surname;

								}

								public	void	setSurname(String	surname)	{

												this.surname	=	surname;

								}

								@Override

								public	String	toString()	{

												return	"Person	[name="	+	name	+	",	surname="	+	surname	+	"]";

								}

				}

}

As	the	following	screenshot	shows,	when	executing	this	example,	the
parameterized	test	is	exercise	twice,	once	per	Person	objects	contained	in	the
Stream	("John	Doe"	and	"Jane	Roe").



Execution	of	parameterized	test	using	@MethodSource	and	custom	object	argument	provider

We	can	also	use	@MethodSource	to	specify	argument	providers	which	contain
integer	primitive	types,	concretely	of	int,	double,	and	long.	The	following	class
contains	an	example.	We	can	see	three	parameterized	tests.	The	first	one
(named	testWithIntProvider)	uses	the	annotation	@MethodSource	to	link	with	the
static	method	intProvider.	In	the	body	of	this	method,	we	use	the	standard	Java
class	IntStream	to	return	an	Stream	of	int	values.	The	second	and	third	test
(called	testWithDoubleProvider	and	testWithLongProvider)	are	quite	similar,	but	using
a	Stream	of	double	and	long	values,	respectively:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	java.util.stream.DoubleStream;

import	java.util.stream.IntStream;

import	java.util.stream.LongStream;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.MethodSource;

class	MethodSourcePrimitiveTypesParameterizedTest	{

				static	IntStream	intProvider()	{

								return	IntStream.of(0,	1);

				}

				@ParameterizedTest

				@MethodSource("intProvider")

				void	testWithIntProvider(int	argument)	{

								System.out.println("Parameterized	test	with	(int)	argument:	"	+	

												argument);

								assertNotNull(argument);

				}

				static	DoubleStream	doubleProvider()	{

								return	DoubleStream.of(2d,	3d);

				}

				@ParameterizedTest

				@MethodSource("doubleProvider")

				void	testWithDoubleProvider(double	argument)	{

								System.out.println(

												"Parameterized	test	with	(double)	argument:	"	+	argument);

								assertNotNull(argument);

				}

				static	LongStream	longProvider()	{



								return	LongStream.of(4L,	5L);

				}

				@ParameterizedTest

				@MethodSource("longProvider")

				void	testWithLongProvider(long	argument)	{

								System.out.println(

												"Parameterized	test	with	(long)	argument:	"	+	argument);

								assertNotNull(argument);

			}

}

Thus,	when	executing	this	class,	there	will	be	six	tests	executed	(three
parameterized	tests	with	two	arguments	each).

In	the	following	screenshot,	we	can	check	this	by	following	the	traces	written
by	each	test	to	the	standard	output:

Execution	of	parameterized	test	using	@MethodSource	and	primitive	types	argument	provider

Finally,	with	regards	to	@MethodSource	parameterized	tests,	it	is	worth	it	to	know
that	the	method	providers	are	allowed	to	return	a	Stream	of	different	types
(objects	or	primitive	types).	This	is	very	convenient	for	real-world	test	cases.
For	example,	the	following	class	implements	a	parameterized	test	in	which
the	argument	provider	is	a	method	returning	arguments	of	mixed	types:	String
and	int.	These	parameters	are	injected	in	the	test	as	method	arguments	(called
first	and	second	in	the	example).

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotEquals;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	java.util.stream.Stream;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.Arguments;

import	org.junit.jupiter.params.provider.MethodSource;

class	MethodSourceMixedTypesParameterizedTest	{

				static	Stream<Arguments>	stringAndIntProvider()	{

								return	Stream.of(Arguments.of("Mastering",	10),

												Arguments.of("JUnit	5",	20));

				}



				@ParameterizedTest

				@MethodSource("stringAndIntProvider")

				void	testWithMultiArgMethodSource(String	first,	int	second)	{

								System.out.println("Parameterized	test	with	two	arguments:	

												(String)	"	+	first	+	"	and	(int)	"	+	second);

								assertNotNull(first);

								assertNotEquals(0,	second);

				}

}

As	usual,	there	will	be	test	executions	as	entries	contained	in	the	Stream.	In
this	case,	there	are	two:	"Mastertering"	and	10,	and	then	"JUnit	5"	and	20.

Execution	of	parameterized	test	using	@MethodSource	with	different	types	of	arguments



@CsvSource	and	@CsvFileSource
Another	way	to	specify	the	source	of	arguments	for	parameterized	tests	is
using	comma-separated	values	(CSV).	This	can	be	done	using	the	annotation
@CsvSource,	which	allows	to	embed	CSV	content	as	String	in	the	value	of	the
annotation.

Consider	the	following	example.	It	contains	a	Jupiter	parameterized	test
(named	testWithCsvSource),	which	is	using	the	annotation	@CsvSource.	This
annotation	contains	an	array	of	Strings.	In	each	element	of	the	array,	we	can
see	there	is	a	different	value	separated	by	commas.

The	content	of	the	CSV	is	automatically	converted	to	String	and
int.	To	find	out	more	about	the	implicit	type	conversion	made	in
parameters	by	JUnit	5,	take	a	look	to	the	section	Argument
conversion	in	this	chapter.

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotEquals;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.CsvSource;

class	CsvSourceParameterizedTest	{

				@ParameterizedTest

				@CsvSource({	"hello,	1",	"world,	2",	"'happy,	testing',	3"	})

				void	testWithCsvSource(String	first,	int	second)	{

								System.out.println("Parameterized	test	with	(String)	"	+	first

												+	"	and	(int)	"	+	second);

								assertNotNull(first);

								assertNotEquals(0,	second);

				}

}

All	in	all,	when	executing	this	test	class,	there	will	be	three	single	tests,	each
per	entry	in	the	array.	Each	execution	will	be	invoked,	passing	two	arguments
to	the	test.	The	first	one	is	named	first	and	its	type	is	String,	and	second	one	is
called	second	and	its	type	is	int.



Execution	of	parameterized	test	using	@CsvSource

If	the	amount	of	CSV	data	is	big,	it	might	be	more	convenient	using	the
annotation	@CsvFileSource	instead.	This	annotation	allows	to	feed	the
parameterized	test	with	a	CSV	file	located	in	the	classpath	of	the	project.	In
the	following	example,	we	use	the	file	input.csv:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotEquals;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.CsvFileSource;

class	CsvFileSourceParameterizedTest	{

				@ParameterizedTest

				@CsvFileSource(resources	=	"/input.csv")

				void	testWithCsvFileSource(String	first,	int	second)	{

								System.out.println("Yet	another	parameterized	test	with	

												(String)	"	+	first	+	"	and	(int)	"	+	second);

								assertNotNull(first);

								assertNotEquals(0,	second);

				}

}

Internally,	the	annotation	@CsvFileSource	locates	the	file	using	the	method
getResourceAsStream()	of	the	standard	Java	class	java.lang.Class.	Therefore,	the
path	of	the	file	is	interpreted	as	a	path	local	to	the	package	class	we	are
calling	it	from.	Since	our	resource	is	located	in	the	root	of	the	classpath	(in
the	example	it	is	located	in	the	folder	src/test/resources),	we	need	to	locate	it	as
/input.csv.



Location	and	content	of	input.csv	in	the	example	with	@CsvFileSource

The	following	screenshot	shows	the	output	of	the	test	when	it	is	executed	with
Maven.	Since	the	CSV	has	three	rows	of	data,	there	are	three	test	executions,
each	one	with	two	parameters	(first	one	as	String	and	second	one	as	int):

Execution	of	parameterized	test	using	@CsvFileSource



@ArgumentsSource
The	last	annotation	aimed	to	specify	the	source	of	arguments	for
parameterized	tests	in	JUnit	5	is	@ArgumentsSource.	With	this	annotation,	we	can
specify	a	custom	(and	reusable	in	different	tests)	class,	which	will	contain	the
parameters	for	the	test.	This	class	must	implement	the	interface
org.junit.jupiter.params.provider.ArgumentsProvider.

Let’s	see	an	example.	The	following	class	implements	a	Jupiter	parameterized
test,	in	which	the	arguments	source	will	be	defined	in	the	class
CustomArgumentsProvider1:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.ArgumentsSource;

class	ArgumentSourceParameterizedTest	{

				@ParameterizedTest

				@ArgumentsSource(CustomArgumentsProvider1.class)

				void	testWithArgumentsSource(String	first,	int	second)	{

								System.out.println("Parameterized	test	with	(String)	"	+	first

													+	"	and	(int)	"	+	second);

								assertNotNull(first);

								assertTrue(second	>	0);

				}

}

This	class	(named	CustomArgumentsProvider1)	has	been	implemented	on	our	side,
and	due	to	the	fact	that	it	implements	the	interface	ArgumentsProvider,	must
override	the	method	provideArguments,	in	which	the	actual	definition	of
parameters	for	the	test	is	implemented.	Looking	at	the	code	of	the	example,
we	can	see	that	this	method	returns	a	Stream	of	Arguments.	In	this	example,	we
are	returning	a	couple	of	entries	in	the	Stream,	each	one	with	two	arguments
(String	and	int,	respectively):

package	io.github.bonigarcia;

import	java.util.stream.Stream;

import	org.junit.jupiter.api.extension.ExtensionContext;

import	org.junit.jupiter.params.provider.Arguments;

import	org.junit.jupiter.params.provider.ArgumentsProvider;

public	class	CustomArgumentsProvider1	implements	ArgumentsProvider	{

				@Override

				public	Stream<?	extends	Arguments>	provideArguments(

												ExtensionContext	context)	{

								System.out.println("Arguments	provider	to	test	"



												+	context.getTestMethod().get().getName());

								return	Stream.of(Arguments.of("hello",	1),	

												Arguments.of("world",	2));

				}

}

Notice	also	that	this	argument	has	an	argument	of	type	ExtensionContext
(package	org.junit.jupiter.api.extension).	This	argument	is	very	useful	to	know
the	context	in	which	the	test	is	executed.	As	illustrated	in	the	screenshot	here,
ExtensionContext	API	offers	different	methods	to	find	out	different	attributes	of
the	test	instance	(test	method	name,	display	name,	tags,	and	so	on).

In	our	example	(CustomArgumentsProvider1),	the	context	is	used	to	write	the	test
method	name	in	the	standard	output:

ExtensionContext	API

Thus,	when	executing	this	example,	we	can	see	two	tests	being	executed.
Moreover,	we	can	check	the	log	trace	with	the	test	method,	thanks	to	the
ExtensionContext	object	inside,	out	ArgumentsProvider	instance:

Execution	of	parameterized	test	using	@ArgumentsSource

Several	argument	sources	can	be	applied	to	the	same	parameterized	test.	In
fact,	this	can	be	done	in	two	different	ways	in	the	Jupiter	programming



model:

Using	several	annotation	of	@ArgumentsSource	together	with	the	same
@ParameterizedTest.	This	can	be	done	since	@ArgumentsSource	is	a
java.lang.annotation.Repeatable	annotation.
Using	the	annotation	@ArgumentsSources	(notice	the	source	is	plural	here).
This	annotation	is	simply	a	container	for	one	or	more	@ArgumentsSource.	The
following	class	shows	a	simple	example:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.ArgumentsSource;

import	org.junit.jupiter.params.provider.ArgumentsSources;

class	ArgumentSourcesParameterizedTest	{

				@ParameterizedTest

				@ArgumentsSources({	

				@ArgumentsSource(CustomArgumentsProvider1.class),

				@ArgumentsSource(CustomArgumentsProvider2.class)	})

				void	testWithArgumentsSource(String	first,	int	second)	{

								System.out.println("Parameterized	test	with	(String)	"	+	first

												+	"	and	(int)	"	+	second);

								assertNotNull(first);

								assertTrue(second	>	0);

				}

}

Supposing	that	the	second	argument	provider	(CustomArgumentsProvider2.class)
specifies	two	or	more	sets	of	argument,	when	executing	the	test	class	there
will	be	four	test	executions:

Execution	of	parameterized	test	using	@ArgumentsSources



Argument	conversion
To	support	use	cases	such	as	@CsvSource	and	@CsvFileSource,	Jupiter	provides	a
number	of	built-in	implicit	converters.	Moreover,	these	converters	can	be
implemented	based	on	specific	needs	by	means	of	explicit	converters.	This
section	covers	both	types	of	conversions.



Implicit	conversion
Internally,	JUnit	5	handles	a	set	of	rules	for	the	conversion	of	parameters	from
String	to	the	actual	argument	type.	For	example,	if	@ParameterizedTests	declares	a
parameter	of	type	TimeUnit,	but	the	declared	source	is	a	String,	internally	this
String	will	be	converted	to	TimeUnit.	The	following	table	summarizes	the	rules
of	implicit	conversions	in	JUnit	5	for	parameterized	test	arguments:

Target	Type Example

boolean/Boolean "false"	->	false

byte/Byte "1"	->	(byte)	1

char/Character "a"	->	'a'

short/Short "2"	->	(short)	2

int/Integer "3"	->	3

long/Long "4"	->	4L

float/Float "5.0"	->	5.0f

double/Double "6.0"	->	6.0d

Enum	subclass "SECONDS"	->	TimeUnit.SECONDS

java.time.Instant "1970-01-01T00:00:00Z"	->	Instant.ofEpochMilli(0)

java.time.LocalDate "2017-10-24"	->	LocalDate.of(2017,	10,	24)

java.time.LocalDateTime "2017-03-14T12:34:56.789"	->	LocalDateTime.of(2017,	3,	14,	12,
34,	56,	789_000_000)

java.time.LocalTime "12:34:56.789"	->	LocalTime.of(12,	34,	56,	789_000_000)



java.time.OffsetDateTime
"2017-03-14T12:34:56.789Z"	->	OffsetDateTime.of(2017,	3,	14,	12,
34,	56,	789_000_000,	ZoneOffset.UTC)

java.time.OffsetTime "12:34:56.789Z"	->	OffsetTime.of(12,	34,	56,	789_000_000,
ZoneOffset.UTC)

java.time.Year "2017"	->	Year.of(2017)

java.time.YearMonth "2017-10"	->	YearMonth.of(2017,	10)

java.time.ZonedDateTime "2017-10-24T12:34:56.789Z"	->	ZonedDateTime.of(2017,	10,	24,	12,
34,	56,	789_000_000,	ZoneOffset.UTC)

The	following	example	shows	several	examples	of	implicit	conversion.	The
first	test	(testWithImplicitConversionToBoolean)	declares	a	String	source	as	"true",
but	then,	the	expected	argument	type	is	Boolean.	Similarly,	the	second	test
("testWithImplicitConversionToInteger")	makes	an	implicit	conversion	from	String
to	Integer.	The	third	test	(testWithImplicitConversionToEnum)	converts	the	input
String	to	TimeUnit	(enumeration),	and	finally	the	fourth	test
(testWithImplicitConversionToLocalDate)	produces	a	conversion	to	LocalDate:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	java.time.LocalDate;

import	java.util.concurrent.TimeUnit;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.ValueSource;

class	ImplicitConversionParameterizedTest	{

				@ParameterizedTest

				@ValueSource(strings	=	"true")

				void	testWithImplicitConversionToBoolean(Boolean	argument)	{

								System.out.println("Argument	"	+	argument	+	"	is	a	type	of	"

												+	argument.getClass());

								assertTrue(argument);

				}

				@ParameterizedTest

				@ValueSource(strings	=	"11")

				void	testWithImplicitConversionToInteger(Integer	argument)	{

								System.out.println("Argument	"	+	argument	+	"	is	a	type	of	"

												+	argument.getClass());

								assertTrue(argument	>	10);

				}

				@ParameterizedTest

				@ValueSource(strings	=	"SECONDS")

				void	testWithImplicitConversionToEnum(TimeUnit	argument)	{

								System.out.println("Argument	"	+	argument	+	"	is	a	type	of	"

												+	argument.getDeclaringClass());

								assertNotNull(argument.name());

				}



				@ParameterizedTest

				@ValueSource(strings	=	"2017-07-25")

				void	testWithImplicitConversionToLocalDate(LocalDate	argument)	{

								System.out.println("Argument	"	+	argument	+	"	is	a	type	of	"

												+	argument.getClass());

								assertNotNull(argument);

				}

}

We	can	check	the	actual	type	of	the	argument	in	the	console.	Each	test	writes
a	line	in	the	standard	output	with	the	value	and	the	type	of	each	argument:

Execution	of	parameterized	tests	using	implicit	argument	conversion



Explicit	conversion
If	the	implicit	conversion	provided	by	JUnit	5	is	not	enough	to	cover	our
needs,	we	can	use	the	explicit	conversion	capability.	Thanks	to	this	feature,
we	can	specify	a	class	which	is	going	to	make	the	custom	conversion	of
parameter	types.	This	custom	converter	is	identified	with	the	annotation
@ConvertWith,	referring	to	the	argument	to	be	converted	with.	Consider	the
following	example.	This	parameterized	test	declares	a	custom	converter	for	its
test	method	argument:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	java.util.concurrent.TimeUnit;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.converter.ConvertWith;

import	org.junit.jupiter.params.provider.EnumSource;

class	ExplicitConversionParameterizedTest	{

				@ParameterizedTest

				@EnumSource(TimeUnit.class)

				void	testWithExplicitArgumentConversion(

												@ConvertWith(CustomArgumentsConverter.class)	String	

												argument)	{

										System.out.println("Argument	"	+	argument	+	"	is	a	type	of	"

														+	argument.getClass());

										assertNotNull(argument);

				}

}

Our	custom	converted	is	a	class	that	extends	the	JUnit	5’s
SimpleArgumentConverter.	This	class	overrides	the	method	convert,	in	which	the
actual	conversion	takes	place.	In	the	example,	we	simply	transform	whatever
argument	source	to	String.

package	io.github.bonigarcia;

import	org.junit.jupiter.params.converter.SimpleArgumentConverter;

public	class	CustomArgumentsConverter	extends	SimpleArgumentConverter	{

				@Override

				protected	Object	convert(Object	source,	Class<?>	targetType)	{

										return	String.valueOf(source);

				}

}

All	in	all,	when	the	test	is	executed,	the	seven	enumeration	constants	defined
in	TimeUnit	will	be	passed	as	arguments	to	the	test,	prior	conversion	to	String	in
CustomArgumentsConverter:



Execution	of	parameterized	tests	using	explicit	argument	conversion



Custom	names
The	last	feature	related	with	parameterized	tests	in	JUnit	5	has	to	do	with	the
display	name	of	each	execution	of	tests.	As	we	learned,	a	parameterized	test	is
usually	executed	as	several	single	tests.	Therefore,	for	the	shake	of
traceability,	it	is	good	practice	to	link	each	test	execution	with	the	argument
source.

To	that	aim,	the	annotation	@ParameterizedTest	accepts	an	element	called	name	in
which	we	can	specify	a	custom	name	(String)	for	the	test	execution.	Moreover,
in	this	String,	we	can	use	several	built-in	placeholders,	as	described	in	the
following	table:

Placeholder Description

{index} Current	invocation	index	(first	one	is	1,	second	is	2,	…)

{arguments} Comma-separated	arguments	complete	list

{0},	{1},	… Value	for	an	individual	argument	(first	one	is	0,	second	is	2,	…)

	

Let’s	see	a	simple	example.	The	following	class	contains	a	parameterized	test
whose	arguments	are	defined	using	a	@CsvSource	annotation.	The	test	method
accepts	two	arguments	(String	and	int).	In	addition,	we	are	specifying	the
element	name	of	the	annotation	@ParameterizedTest	with	a	custom	message,
using	the	placeholders	for	the	current	test	invocation	({index})	and	also	for	the
values	of	each	argument:	the	first	one	({0})	and	the	second	one	({1}):

package	io.github.bonigarcia;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.CsvSource;

class	CustomNamesParameterizedTest	{

				@DisplayName("Display	name	of	test	container")

				@ParameterizedTest(name	=	"[{index}]	first	argument=\"{0}\",	second																	

							argument={1}")

				@CsvSource({	"mastering,	1",	"parameterized,	2",	"tests,	3"	})

				void	testWithCustomDisplayNames(String	first,	int	second)	{

								System.out.println("Testing	with	parameters:	"	+	first	+	"	and	"	+							

											second);

				}



}

When	executing	this	test	in	an	IDE	(IntelliJ	in	the	following	screenshot),	we
can	see	how	the	display	name	is	different	for	each	test	execution:

Execution	of	parameterized	tests	using	custom	names	in	IntelliJ	IDE



Java	9
Java	9	was	released	for	General	Availability	(GA)	on	September	21,	2017.
There	are	many	new	features	shipped	with	Java	9.	Among	them,	modularity	is
the	defining	feature	for	Java	9.

So	far,	there	has	been	a	problem	of	modularity	in	Java,	especially	significant
for	large	codebases.	Every	public	class	can	be	accessed	by	any	other	class	in
the	classpath,	leading	to	inadvertent	usage	of	classes.	In	addition,	the
classpath	presents	potential	problems,	such	as	the	inability	to	know	whether
or	not	there	are	duplicated	JARs.	To	solve	these	problems,	Java	9	provides	the
Java	Platform	Module	System,	which	allows	to	create	modular	JAR	files.
This	type	of	modules	contains	an	additional	module	descriptor	called	module-
info.java.	The	content	of	such	files	is	quite	simple:	it	declares	dependencies	to
other	modules	using	the	keyword	requires,	and	exports	its	own	packages	with
the	keyword	exports.	All	non-exported	packages	are	encapsulated	in	the
module	by	default,	for	example:

module	mymodule	{

		exports	io.github.bonigarcia;

		requires	mydependency;

}

We	can	represent	the	relationship	between	these	modules	as	follows:

Example	of	relationship	between	modules	in	Java	9

Other	new	capabilities	of	Java	9	are	summarized	in	the	following	list:

The	use	modules	allow	to	create	a	minimal	runtime	JDK	optimized	for
the	given	application,	instead	of	using	a	fully	JDK	installation.	This	can
be	achieve	using	the	tool	the	jlink	shipped	with	JDK	9.
Java	9	provides	an	interactive	environment	to	execute	Java	code,	directly
from	the	shell.	This	type	of	utility	is	commonly	known	as	Read-Eval-
Print-Loop	(REPL),	which	is	called	JShell	in	JDK	9.
Collection	factory	methods,	Java	9	provides	the	capability	of	creating



collections	(for	example,	lists	or	sets)	and	populates	them	in	a	single
line:

						Set<Integer>	ints	=	Set.of(1,	2,	3);

						List<String>	strings	=	List.of("first",	"second");

Stream	API	improvements:	Streams	was	introduced	in	Java	8,	and	they
allow	to	create	declarative	pipelines	of	transformations	on	collections.	In
Java	9,	the	methods	dropWhile,	takeWhile,	and	ofNullable	are	added	to	the
Stream	API.
Private	interface	methods:	Java	8	provides	default	methods	on
interfaces.	The	limitation	so	far	is	that	default	methods	in	Java	8	must	be
public.	Now,	in	Java	9,	these	default	methods	can	be	also	private,
helping	to	structure	better	their	implementation.
HTTP/2:	Java	9	supports	out	of	the	box,	version	2	of	HTTP	and	also
WebSockets.
Multi	release	JARs:	This	feature	allows	to	create	alternative	versions	of
classes,	depending	on	the	version	of	the	JRE	executing	the	JAR.	To	that
aim,	under	the	folder	META-INF/versions/<java-version>,	we	can	specify
different	versions	of	compiled	classes,	which	will	used	only	when	the
JRE	version	matches	the	version.
Improved	Javadoc:	Last	but	not	least,	Java	9	allows	to	create	HTML5
compliant	Javadoc	with	an	integrated	search	capability.



JUnit	5	and	Java	9	compatibility
Since	M5,	all	JUnit	5	artifacts	are	shipped	with	compiled	module	descriptors
for	Java	9,	declared	in	its	JAR	manifest	(file	MANIFEST.MF).	For	example,	the
content	of	the	manifest	for	the	artifact	junit-jupiter-api	M6	is	the	following:

Manifest-Version:	1.0

Implementation-Title:	junit-jupiter-api

Automatic-Module-Name:	org.junit.jupiter.api

Build-Date:	2017-07-18

Implementation-Version:	5.0.0-M6

Built-By:	JUnit	Team

Specification-Vendor:	junit.org

Specification-Title:	junit-jupiter-api

Implementation-Vendor:	junit.org

Build-Revision:	3e6482ab8b0dc5376a4ca4bb42bef1eb454b6f1b

Build-Time:	21:26:15.224+0200

Created-By:	1.8.0_131	(Oracle	Corporation	25.131-b11)

Specification-Version:	5.0.0

With	regards	to	Java	9,	the	interesting	thing	is	the	declaration	Automatic-Module-
Name.	This	allows	to	test	modules	to	require	the	JUnit	5	module	simply	by
adding	the	following	lines	to	its	module	descriptor	file	(module-info.java):

module	foo.bar	{

						requires	org.junit.jupiter.api;

}



Beyond	JUnit	5.0
JUnit	5.0	GA	(General	Availability)	was	released	on	September	10,	2017.
Furthermore,	JUnit	is	a	living	project,	and	new	features	are	planned	for	the
next	release,	that	is,	5.1	(with	no	release	agenda	scheduled	at	the	time	of
writing).	The	backlog	for	the	next	release	of	JUnit	5	can	be	seen	on	GitHub:	ht
tps://github.com/junit-team/junit5/milestone/3.	Among	other,	the	following	features	are
planned	for	JUnit	5.1:

Scenario	tests:	This	feature	has	to	do	with	the	capability	of	ordering
different	test	methods	within	a	class.	To	do	that,	the	following
annotations	are	planned:

@ScenarioTest:	A	class-level	annotation	used	to	denote	that	a	test	class
contains	steps	that	make	up	a	single	scenario	test.
@Step:	A	method-level	annotation	used	to	denote	that	a	test	method	is
a	single	step	within	the	scenario	test.
Support	for	parallel	tests	execution:	Concurrency	is	one	of	the	main
aspects	to	be	improved	in	JUnit	5.1,	and	therefore	the	support	of	out
of	the	box	concurrent	test	execution	is	planned.

Mechanism	for	terminating	dynamic	tests	early:	This	is	an	enhancement
of	the	JUnit	5.0	support	for	dynamic	tests,	introducing	a	timeout	to	stop
the	execution	before	it	terminates	itself	(to	avoid	uncontrolled	non-
deterministic	executions).
Several	improvements	in	test	reporting,	such	as	capturing	stdout/stderr
and	include	in	test	reports,	provide	reliable	way	to	get	the	class
(classname)	of	executed	test	methods,	or	specify	the	order	of	tests	in	test
reports,	among	others.

https://github.com/junit-team/junit5/milestone/3


Summary
This	chapter	contains	a	comprehensive	summary	of	the	advance	capabilities
to	write	rich	Jupiter	tests	driven	by	examples.	First,	we	have	learned	that
parameters	can	be	injected	in	constructor	and	methods	in	test	classes.	JUnit	5
provides	three	parameter	resolvers	out	of	the	box,	namely	resolver	for
parameters	of	the	type	TestInfo	(to	retrieve	information	about	the	current	test),
resolver	for	parameters	of	the	type	RepetitionInfo	(to	retrieve	information	about
the	current	repetition),	and	resolver	for	parameters	of	the	type	TestReporter	(to
publish	additional	data	about	the	current	test	run).

Another	new	feature	implemented	in	Jupiter	is	the	concept	of	dynamic	tests.
So	far	in	JUnit	3	and	4,	tests	are	defined	at	compile	time	(that	is	static	tests).
Jupiter	introduces	the	annotation	@TestFactory	that	allows	to	generate	test	at
runtime.	Another	new	concept	provided	by	the	Jupiter	programming	model
are	the	test	templates.	These	templates	re	defined	using	the
annotation	@TestTemplate	and	are	not	regular	test	cases	but	rather	a	template	for
test	cases.

JUnit	5	implements	an	enhancement	support	for	parameterized	tests.	In	order
to	implement	this	type	of	tests,	the	annotation	@ParameterizedTest	must	be	used.
Together	with	this	annotation,	an	argument	provider	should	be	also	specified.
To	that	aim,	several	annotations	are	provided	in	Jupiter:	@ValueSource,
@EnumSource,	@MethodSource,	@CsvSource,	@CsvFileSource,	and	@ArgumentSource.

In	the	chapter	5,	Integration	Of	JUnit	5	With	External	Frameworks,	we	are
going	to	learn	how	JUnit	5	interacts	with	external	frameworks.	Concretely,	we
are	going	to	review	several	JUnit	5	extension,	which	provides	capabilities	to
use	Mockito,	Spring,	Selenium,	Cucumber,	or	Docker.	Moreover,	we	present
a	Gradle	plugin,	which	allows	to	execute	tests	within	an	Android	project.
Finally,	we	find	out	how	to	use	several	REST	libraries	(for	example,	REST
Assured	or	WireMock)	to	test	RESTful	services.



Integration	Of	JUnit	5	With
External	Frameworks

If	I	have	seen	further	than	others,	it	is	by	standing	upon	the	shoulders	of
giants.

-	Isaac	Newton

	

As	described	in	Chapter	2,	What’s	New	in	JUnit,	the	extension	model	of	JUnit	5
allows	us	to	extend	the	core	functionality	of	JUnit	5	by	a	third	party	(tool
vendor,	developers,	and	so	on).	In	the	Jupiter	extension	model,	an	extension
point	is	a	callback	interface	that	the	extension	implements	and	then	registers
(activates)	in	the	JUnit	5	framework.	As	we	will	discover	in	this	chapter,	the
JUnit	5	extension	model	can	be	used	to	provide	seamless	integration	with
existing	third-party	frameworks.	Concretely,	in	this	chapter,	we	review	JUnit
5	extension	for	the	following	technologies:

Mockito:	Mock	(test	double)	unit	testing	framework.
Spring:	A	Java	framework	for	building	enterprise	applications.
Selenium:	A	testing	framework	to	automate	the	navigation	and
assessment	of	web	applications.
Cucumber:	Testing	framework	which	allows	us	to	create	acceptance
tests	written	following	a	Behavior-Driven	Development	(BDD)	style.
Docker:	A	software	technology	which	allows	us	to	pack	and	run	any
application	as	a	lightweight	and	portable	container.

Moreover,	we	discover	that	the	JUnit	5	extension	model	is	not	the	only	way	to
integrate	with	the	external	world.	Concretely,	we	study	how	JUnit	5	can	be
used	together	with	the	following:

Android	(mobile	operating	system	based	on	Linux):	We	can	run	Jupiter
tests	in	an	Android	project	using	a	Gradle	plugin	for	JUnit	5.
REST	(architectural	style	for	designing	distributed	systems):	We	can
interact	and	verify	REST	services	simply	using	third-party	libraries	(such
as	REST	Assured	or	WireMock),	or	using	the	fully	integrated	approach
of	Spring	(tests	together	with	the	service	implementation).



Mockito
Mockito	(http://site.mockito.org/)	is	an	open	source	mock	unit	testing	framework
for	Java,	first	released	in	April	2008.	Of	course,	Mockito	is	not	the	only	mock
framework	for	Java;	there	are	others,	such	as	the	following:

EasyMock	(http://easymock.org/).
JMock	(http://www.jmock.org/).
PowerMock	(http://powermock.github.io/).
JMockit	(http://jmockit.org/).

We	can	say	that,	at	the	time	of	writing,	Mockito	is	the	preferred	mock
framework	in	Java	tests	for	the	most	developers	and	testers.	To	justify	that
claim,	we	use	the	following	screenshot,	which	shows	the	evolution	of	the
terms	Mockito,	EasyMock,	JMock,	PowerMock,	and	JMockit	in	Google
Trends	(https://trends.google.com/)	from	2004	to	2017.	At	the	beginning	of	this
period,	we	can	see	there	was	a	significant	interest	on	EasyMock	and	JMock;
nevertheless,	Mockito	was	more	in	demand	compared	with	the	rest	of	the
frameworks:

http://site.mockito.org/
http://easymock.org/
http://www.jmock.org/
http://powermock.github.io/
http://jmockit.org/
https://trends.google.com/


Google	Trends	evolution	of	Mockito,	EasyMock,	JMock,	PowerMock,	and	JMockit



Mockito	in	a	nutshell
As	introduced	in	Chapter	1,	Retrospective	on	Software	Quality	and	Java	Testing,
there	are	different	levels	of	software	testing,	such	as	unit,	integration,	system,
or	acceptance.	Regarding	unit	tests,	they	should	be	executed	in	isolation	for	a
single	piece	of	software,	for	example,	an	individual	class.	The	objective	in
this	level	of	tests	is	to	verify	the	functionality	of	the	unit	and	not	of	its
dependencies.

In	other	words,	we	want	to	test	what	is	known	as	the	System	Under	Test
(SUT)	but	not	its	Depended-On	Components	(DOCs).	To	achieve	this
isolation,	we	use	typically	test	doubles	to	replace	these	DOCs.	Mock	objects
are	a	kind	of	test	double,	which	are	programmed	with	expectations	about	the
real	DOC.

In	few	words,	Mockito	is	a	testing	framework	that	allows	mock	object
creation,	stubbing,	and	verification.	To	that	aim,	Mockito	provides	an	API	to
isolate	the	SUT	and	its	DOCs.	Generally	speaking,	using	Mockito	involves
three	different	steps:

1.	 Mocking	objects:	In	order	to	isolate	our	SUT,	we	use	the	Mockito	API
to	create	mocks	of	its	associated	DOC(s).	This	way,	we	guarantee	that
the	SUT	is	not	depending	on	its	real	DOC(s),	and	our	unit	test	is	actually
focused	on	the	SUT.

2.	 Setting	expectations:	The	differential	aspect	of	mocks	object	with
respect	to	other	test	doubles	(such	as	stub)	is	that	mock	objects	can	be
programmed	with	custom	expectations	according	to	the	needs	of	the	unit
test.	This	process	in	the	Mockito	jargon	is	known	as	stubbing	methods,
in	which	these	methods	belong	to	the	mocks.	By	default,	mock	objects
mimic	the	behavior	of	real	objects.	In	practical	terms,	it	means	that	mock
objects	return	appropriate	dummy	values	such	as	false	for	Boolean	types,
null	for	objects,	0	for	integer	or	long	return	types,	and	so	on.	Mockito
allows	us	to	change	this	behavior	with	a	rich	API,	which	allows	stubbing
to	return	a	specific	value	when	a	method	is	called.

When	a	mock	object	is	not	programmed	with	any	expectation
(that	is,	it	has	no	stubbing	method),	technically	speaking,	it	is
not	a	mock	object	but	a	dummy	object	(take	a	look	at	Chapter	1,
Retrospective	on	Software	Quality	and	Java	Testing	for	the



definition).

3.	 Verification:	At	the	end	of	the	day,	we	are	creating	tests,	and	thus,	we
need	to	implement	some	kind	of	verification	for	the	SUT.	Mockito
provides	a	powerful	API	to	carry	out	different	types	of	verifications.
With	this	API,	we	assess	the	interactions	with	the	SUT	and	DOCs,
verifying	the	invocation	order	with	a	mock,	or	capturing	and	verifying
the	argument	passed	to	a	stubbed	method.	Furthermore,	the	verification
capabilities	of	Mockito	can	be	complemented	with	the	built-in	assertion
capabilities	of	JUnit	or	using	a	third-party	assertion	library	(for	example,
Hamcrest,	AssertJ,	or	Truth).	See	section	Assertions	within	Chapter	3,
JUnit	5	Standard	Tests.

The	following	table	summarizes	the	Mockito	APIs	grouped	by	the
aforementioned	phases:

Mockito	API Description Phase

@Mock

This	annotation	identifies	a
mock	object	to	be	created
by	Mockito.	This	is	used
typically	for	DOC(s).

1.Mocking
objects

@InjectMocks

This	annotation	identifies
the	object	in	which	the
mocks	are	going	to	be
injected.	This	is	used
typically	to	the	unit	we
want	to	test,	that	is,	our
SUT.

1.Mocking
objects

@Spy

In	addition	to	mocks,
Mockito	allows	us	to	create
spy	objects	(that	is,	a
partial	mock
implementation,	since	they
use	the	real	implementation
in	non-stubbed	methods).

1.Mocking
objects

Mockito.when(x).thenReturn(y)

Mockito.doReturn(y).when(x)

These	methods	allow	us	to
specify	the	value	(y)	that
should	be	returned	by	the

2.Setting
expectations
(stubbing



stubbed	method	(x)	of	a
given	mock	object.

methods)

Mockito.when(x).thenThrow(e)

Mockito.doThrow(e).when(x)

These	methods	allow	us	to
specify	the	exception	(e)
that	should	be	thrown	when
calling	a	stubbed	method
(x)	of	a	given	mock	object.

2.Setting
expectations
(stubbing
methods)

Mockito.when(x).thenAnswer(a)

Mockito.doAnswer(a).when(x)

Unlike	returning	a
hardcoded	value,	a
dynamic	user-defined	logic
(Answer	a)	is	executed	when
a	given	method	(x)	of	the
mock	is	invoked.

2.Setting
expectations
(stubbing
methods)

Mockito.when(x).thenCallRealMethod()

Mockito.doCallRealMethod().when(x)

This	method	allows	us	the
real	implementation	of	a
method	instead	the	mocked
one.

2.Setting
expectations
(stubbing
methods)

Mockito.doNothing().when(x)

When	using	a	spy,	the
default	behavior	is	calling
the	real	methods	of	the
object.	In	order	to	avoid	the
execution	of	a	void	method
x,	this	method	is	used.

2.Setting
expectations
(stubbing
methods)

BDDMockito.given(x).willReturn(y)

BDDMockito.given(x).willThrow(e)

BDDMockito.given(x).willAnswer(a)

BDDMockito.given(x).willCallRealMethod()

Behaviour-driven
development	is	a	test
methodology	in	which	tests
are	specified	in	terms	of
scenarios	and	implemented
as	given	(initial	context),
when	(event	occurs),	and
then	(ensure	some
outcomes).	Mockito
supports	this	type	of	tests
through	the	class	BDDMockito.
The	behavior	of	the
stubbed	methods	(x)	is
equivalent	to
Mockito.when(x).

2.Setting
expectations
(stubbing
methods)



Mockito.verify()

This	method	verifies	the
invocation	of	mock	objects.
This	verification	can	be
optionally	enhanced	using
the	following	methods:

times(n):	The	stubbed
method	is	invoked
exactly	n	times.
never():	The	stubbed
method	is	never
called.
atLeastOnce():	The
stubbed	method	is
invoked	at	least	once.
atLeast(n):	The
stubbed	method	is
called	at	least	n	times.
atMost(n):	The	stubbed
method	is	called	at
the	most	n	times.
only():	A	mock	fails	if
any	other	method	is
called	on	the	mock
object.
timeout(m):	This
method	is	called	in	m
milliseconds	at	the
most.

3.Verification

Mockito.verifyZeroInteractions()

Mockito.verifyNoMoreInteractions()

These	two	methods	verify
that	a	stubbed	method	has
no	interactions.	Internally,
they	use	the	same
implementation.

3.Verification

@Captor

This	annotation	allows	us
to	define	an	ArgumentChaptor
object,	aimed	to	verify	the
arguments	passed	to	a
stubbed	method.

3.Verification

It	facilitates	verifying



Mockito.inOrder whether	interactions	with	a
mock	were	performed	in	a
given	order.

3.Verification

	

The	use	of	the	different	annotations	depicted	in	preceding	the	table	(@Mock,
@InjectMocks,	@Spy,	and	@Captor)	is	optional,	although	it	is	recommendable	for	the
shake	of	test	readability.	In	other	words,	there	are	alternatives	to	the	use	of
annotation	using	different	Mockito	classes.	For	instance,	in	order	to	create	a
Mock,	we	can	use	the	annotation	@Mock	as	follows:

@Mock

MyDoc	docMock;

The	alternative	to	this	would	be	using	the	method	Mockito.mock,	as	follows:
MyDoc	docMock	=	Mockito.mock(MyDoc.class)

The	following	sections	contains	comprehensive	examples	using	the	Mockito
APIs	described	in	preceding	table	within	Jupiter	tests.



JUnit	5	extension	for	Mockito
At	the	time	of	this	writing,	there	is	no	official	JUnit	5	extension	to	use
Mockito	in	Jupiter	tests.	Nevertheless,	the	JUnit	5	team	provides	a	simple
ready	to	use	Java	class	implementing	a	simple	but	effective	extension	for
Mockito.	This	class	can	be	found	in	the	JUnit	5	user	guide	(http://junit.org/junit5/do
cs/current/user-guide/),	and	its	code	is	the	following:

import	static	org.mockito.Mockito.mock;

import	java.lang.reflect.Parameter;

import	org.junit.jupiter.api.extension.ExtensionContext;

import	org.junit.jupiter.api.extension.ExtensionContext.Namespace;

import	org.junit.jupiter.api.extension.ExtensionContext.Store;

import	org.junit.jupiter.api.extension.ParameterContext;

import	org.junit.jupiter.api.extension.ParameterResolver;

import	org.junit.jupiter.api.extension.TestInstancePostProcessor;

import	org.mockito.Mock;

import	org.mockito.MockitoAnnotations;

public	class	MockitoExtension

								implements	TestInstancePostProcessor,	ParameterResolver	{

				@Override

				public	void	postProcessTestInstance(Object	testInstance,

												ExtensionContext	context)	{

								MockitoAnnotations.initMocks(testInstance);

				}

				@Override

				public	boolean	supportsParameter(ParameterContext	parameterContext,

							ExtensionContext	extensionContext)	{

						return	

							parameterContext.getParameter().isAnnotationPresent(Mock.class);

				}

				@Override

				public	Object	resolveParameter(ParameterContext	parameterContext,

												ExtensionContext	extensionContext)	{

								return	getMock(parameterContext.getParameter(),	extensionContext);

				}

				private	Object	getMock(Parameter	parameter,

												ExtensionContext	extensionContext)	{

								Class<?>	mockType	=	parameter.getType();

								Store	mocks	=	extensionContext

																.getStore(Namespace.create(MockitoExtension.class,	

																mockType));

								String	mockName	=	getMockName(parameter);

								if	(mockName	!=	null)	{

												return	mocks.getOrComputeIfAbsent(mockName,

																				key	->	mock(mockType,	mockName));

								}	else	{

												return	mocks.getOrComputeIfAbsent(mockType.getCanonicalName(),

																				key	->	mock(mockType));

								}

				}

				private	String	getMockName(Parameter	parameter)	{

								String	explicitMockName	=	

																parameter.getAnnotation(Mock.class).name()

http://junit.org/junit5/docs/current/user-guide/


																.trim();

								if	(!explicitMockName.isEmpty())	{

												return	explicitMockName;

								}	else	if	(parameter.isNamePresent())	{

												return	parameter.getName();

								}

								return	null;

				}

}

This	extension	(among	others)	is	planned	to	be	released	in	the
open	source	project	JUnit	Pioneer	(http://junit-pioneer.org/).	This
project	is	maintained	by	Nicolai	Parlog,	Java	developer	and
author	of	the	blog	CodeFX	(https://blog.codefx.org/).

Inspecting	the	preceding	class,	we	can	check	that	it	is	simply	a	use	case	of	the
Jupiter	extension	model	(described	in	chapter	2,	What’s	New	In	JUnit	5,	of	this
book),	which	implements	the	extensions	callback	TestInstancePostProcessor	and
ParameterResolver.	Thanks	to	the	first,	after	the	test	case	is	instantiated,	the
postProcessTestInstance	method	is	invoked,	and	in	the	body	of	this	method,	the
initialization	of	mocks	is	carried	out:

MockitoAnnotations.initMocks(testInstance)

This	has	the	same	effect	that	using	the	JUnit	4	runner	for
Mockito:	@RunWith(MockitoJUnitRunner.class).

In	addition,	this	extension	also	implements	the	interface	ParameterResolver.	That
means	that	dependency	injection	at	method	level	will	be	allowed	in	tests,
which	register	the	extension	(@ExtendWith(MockitoExtension.class)).	In	particular,
the	annotation	will	inject	mock	objects	for	test	parameters	annotated	with
@Mock	(located	in	package	org.mockito).

Let’s	see	some	examples	to	clarify	the	use	of	this	extension	together	with
Mockito.	As	usual,	we	can	find	the	source	code	of	this	examples	on	the
GitHub	repository	https://github.com/bonigarcia/mastering-junit5.	A	copy	of	the
preceding	extension	(MockitoExtension)	is	contained	in	the	project	junit5-mockito.
To	guide	these	examples,	we	implement	a	typical	use	case	in	software
applications:	the	login	of	a	user	in	a	software	system.

In	this	use	case,	we	suppose	that	a	user	interacts	with	a	system	made	up	by
three	classes:

LoginController:	The	class	which	receives	the	request	from	the	user,
returning	a	response	as	a	result.	This	request	is	dispatched	to	the
LoginService	component.
LoginService:	This	class	implements	the	functionality	of	the	use	case.	To

http://junit-pioneer.org/
https://blog.codefx.org/
https://github.com/bonigarcia/mastering-junit5


that	aim,	it	needs	to	confirm	whether	or	not	the	user	is	authenticated	in
the	system.	To	that,	it	needs	to	read	the	persistence	layer,	implemented	in
the	LoginRepository	class.
LoginRepository:	This	class	allows	to	access	the	persistence	layer	of	the
system,	typically	implemented	by	means	of	a	database.	This	class	can
also	be	called	Data	Access	Object	(DAO).

In	terms	of	composition,	the	relationship	of	these	three	classes	are	is
following:

Login	use	case	class	diagram	(composition	relationship	among	the	classes)

The	sequence	diagram	of	the	two	basic	operations	involved	in	the	use	case
(login	and	logout)	is	depicted	in	the	following	chart:

Login	use	case	sequence	diagram

We	implement	this	example	with	several	simple	Java	classes.	First,	the
LoginController	uses	the	LoginService	by	composition:

package	io.github.bonigarcia;

public	class	LoginController	{

				public	LoginService	loginService	=	new	LoginService();

				public	String	login(UserForm	userForm)	{

								System.out.println("LoginController.login	"	+	userForm);

								try	{

												if	(userForm	==	null)	{

																return	"ERROR";

												}	else	if	(loginService.login(userForm))	{

																return	"OK";

												}	else	{

																return	"KO";

												}

								}	catch	(Exception	e)	{

												return	"ERROR";

								}

				}



				public	void	logout(UserForm	userForm)	{

								System.out.println("LoginController.logout	"	+	userForm);

								loginService.logout(userForm);

				}

}

The	UserForm	object	is	a	simple	Java	class,	sometimes	called	Plain-Old	Java
Object	(POJO),	with	two	properties	username	and	password:

package	io.github.bonigarcia;

public	class	UserForm	{

				public	String	username;

				public	String	password;

				public	UserForm(String	username,	String	password)	{

								this.username	=	username;

								this.password	=	password;

				}

				//	Getters	and	setters

				@Override

				public	String	toString()	{

								return	"UserForm	[username="	+	username	+	",	password="	+	password

																+	"]";

				}

}

Then,	the	service	depends	on	the	repository	(LoginRepository)	for	data	access.	In
this	example,	the	service	also	implements	a	user	registry	using	a	Java	list	in
which	the	authenticated	users	are	stored:

package	io.github.bonigarcia;

import	java.util.ArrayList;

import	java.util.List;

public	class	LoginService	{

				private	LoginRepository	loginRepository	=	new	LoginRepository();

				private	List<String>	usersLogged	=	new	ArrayList<>();

				public	boolean	login(UserForm	userForm)	{

								System.out.println("LoginService.login	"	+	userForm);

								//	Preconditions

								checkForm(userForm);

								//	Same	user	cannot	be	logged	twice

								String	username	=	userForm.getUsername();

								if	(usersLogged.contains(username))	{

												throw	new	LoginException(username	+	"	already	logged");

								}

								//	Call	to	repository	to	make	logic

								boolean	login	=	loginRepository.login(userForm);

								if	(login)	{

												usersLogged.add(username);

								}

								return	login;

				}



				public	void	logout(UserForm	userForm)	{

								System.out.println("LoginService.logout	"	+	userForm);

								//	Preconditions

								checkForm(userForm);

								//	User	should	be	logged	beforehand

								String	username	=	userForm.getUsername();

								if	(!usersLogged.contains(username))	{

												throw	new	LoginException(username	+	"	not	logged");

								}

								usersLogged.remove(username);

				}

				public	int	getUserLoggedCount()	{

								return	usersLogged.size();

				}

				private	void	checkForm(UserForm	userForm)	{

								assert	userForm	!=	null;

								assert	userForm.getUsername()	!=	null;

								assert	userForm.getPassword()	!=	null;

				}

}

Finally,	the	LoginRepository	is	as	follows.	For	the	sake	of	simplicity,	instead	of
accessing	a	real	database,	this	component	implements	a	map	in	which	the
credentials	of	the	hypothetical	user	of	the	system	are	stored	(where	key=
username,	and	value=password):

package	io.github.bonigarcia;

import	java.util.HashMap;

import	java.util.Map;

public	class	LoginRepository	{

				Map<String,	String>	users;

				public	LoginRepository()	{

								users	=	new	HashMap<>();

								users.put("user1",	"p1");

								users.put("user2",	"p3");

								users.put("user3",	"p4");

				}

				public	boolean	login(UserForm	userForm)	{

								System.out.println("LoginRepository.login	"	+	userForm);

								String	username	=	userForm.getUsername();

								String	password	=	userForm.getPassword();

								return	users.keySet().contains(username)

																&&	users.get(username).equals(password);

				}

}

Now,	we	are	going	to	test	our	system	using	JUnit	5	and	Mockito.	First	of	all,
we	test	the	controller	component.	Since	we	are	doing	unit	tests,	we	need	to
isolate	the	LoginController	login	from	the	rest	of	the	system.	To	do	that,	we	need
to	mock	its	dependencies,	in	this	example,	the	LoginService	component.	Using
the	SUT/DOC	terminology	explained	at	the	beginning,	in	this	test,	our	SUT	is



the	class	LoginController	and	its	DOC	is	the	class	LoginService.

To	implement	our	test	with	JUnit	5,	first	we	need	to	register	the
MockitoExtension	with	@ExtendWith.	Then,	we	declare	the	SUT	with	@InjectMocks
(class	LoginController)	and	its	DOC	with	@Mock	(class	LoginService).	We	implement
two	tests	(@Test).	First	one	(testLoginOk)	specifies	when	the	method	login	of
mock	loginService	is	called,	this	method	should	return	true.	After	that,	the	SUT
is	actually	exercised,	and	its	response	is	verified	(in	this	case,	the	returned
String	must	be	OK).	Moreover,	the	Mockito	API	is	used	again	to	assess	that	no
more	interactions	with	the	mock	LoginService	is	done.	The	second	test
(testLoginKo)	is	equivalent,	but	stubbing	the	method	login	to	return	false	and
therefore	the	response	of	the	SUT	(LoginController)	must	be	KO	in	this	case:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	static	org.mockito.Mockito.verify;

import	static	org.mockito.Mockito.verifyNoMoreInteractions;

import	static	org.mockito.Mockito.verifyZeroInteractions;

import	static	org.mockito.Mockito.when;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.mockito.InjectMocks;

import	org.mockito.Mock;

import	io.github.bonigarcia.mockito.MockitoExtension;

@ExtendWith(MockitoExtension.class)

class	LoginControllerLoginTest	{

				//	Mocking	objects

				@InjectMocks

				LoginController	loginController;

				@Mock

				LoginService	loginService;

				//	Test	data

				UserForm	userForm	=	new	UserForm("foo",	"bar");

				@Test

				void	testLoginOk()	{

								//	Setting	expectations	(stubbing	methods)

								when(loginService.login(userForm)).thenReturn(true);

								//	Exercise	SUT

								String	reseponseLogin	=	loginController.login(userForm);

								//	Verification

								assertEquals("OK",	reseponseLogin);

								verify(loginService).login(userForm);

								verifyNoMoreInteractions(loginService);

				}

				@Test

				void	testLoginKo()	{

								//	Setting	expectations	(stubbing	methods)

								when(loginService.login(userForm)).thenReturn(false);

								//	Exercise	SUT

								String	reseponseLogin	=	loginController.login(userForm);



								//	Verification

								assertEquals("KO",	reseponseLogin);

								verify(loginService).login(userForm);

								verifyZeroInteractions(loginService);

				}

}

If	we	execute	this	test,	simply	inspecting	the	traces	on	the	standard	output	we
can	check	that	the	SUT	have	been	actually	executed.	In	addition,	we	assure
that	the	verification	stage	has	been	succeeded	in	both	tests	since	both	of	them
have	passed:

Execution	of	unit	test	of	LoginControllerLoginTest	with	JUnit	5	and	Mockito

Let’s	move	now	to	other	example	in	which	the	negative	scenarios	(that	is,
error	situations)	are	tested	for	the	component	LoginController.	The	following
class	contains	two	tests,	first	one	(testLoginError)	is	devoted	to	assess	the
response	of	the	system	(it	should	be	ERROR)	when	a	null	form	is	used.	In	the
second	test	(testLoginException),	we	program	the	method	login	of	the	mock
loginService	to	raise	an	exception	when	any	form	is	used	first.	Then,	we
exercise	the	SUT	(LoginController)	and	assess	that	the	response	is	actually	an
ERROR:

Note	that	we	are	using	the	argument	matcher	any	(provided	out
of	the	box	by	Mockito)	when	setting	the	expectations	for	the
mock	method.

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	static	org.mockito.ArgumentMatchers.any;

import	static	org.mockito.Mockito.when;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.mockito.InjectMocks;

import	org.mockito.Mock;

import	io.github.bonigarcia.mockito.MockitoExtension;

@ExtendWith(MockitoExtension.class)

class	LoginControllerErrorTest	{

				@InjectMocks

				LoginController	loginController;

				@Mock



				LoginService	loginService;

				UserForm	userForm	=	new	UserForm("foo",	"bar");

				@Test

				void	testLoginError()	{

								//	Exercise

								String	response	=	loginController.login(null);

								//	Verify

								assertEquals("ERROR",	response);

				}

				@Test

				void	testLoginException()	{

								//	Expectation

								when(loginService.login(any(UserForm.class)))

																.thenThrow(IllegalArgumentException.class);

								//	Exercise

								String	response	=	loginController.login(userForm);

								//	Verify

								assertEquals("ERROR",	response);

				}

}

Again,	when	running	the	tests	in	the	shell,	we	can	confirm	that	both	of	tests
are	correctly	executed	and	the	SUT	is	exercised:

Execution	of	unit	test	of	LoginControllerErrorTest	with	JUnit	5	and	Mockito

Let’s	see	an	example	using	the	BDD	style.	To	that	aim,	the	class	BDDMockito	is
used.	Notice	that	the	static	method	given	of	this	class	is	imported	in	the
example.	Then,	four	tests	are	implemented.	In	fact,	these	four	tests	are	exactly
the	same	implemented	in	the	previous	examples	(LoginControllerLoginTest	and
LoginControllerErrorTest),	but	this	time	using	the	BDD	style	and	a	more	compact
style	(one-liner	commands).

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	static	org.mockito.ArgumentMatchers.any;

import	static	org.mockito.BDDMockito.given;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.mockito.InjectMocks;

import	org.mockito.Mock;

import	io.github.bonigarcia.mockito.MockitoExtension;



@ExtendWith(MockitoExtension.class)

class	LoginControllerBDDTest	{

				@InjectMocks

				LoginController	loginController;

				@Mock

				LoginService	loginService;

				UserForm	userForm	=	new	UserForm("foo",	"bar");

				@Test

				void	testLoginOk()	{

								given(loginService.login(userForm)).willReturn(true);

								assertEquals("OK",	loginController.login(userForm));

				}

				@Test

				void	testLoginKo()	{

								given(loginService.login(userForm)).willReturn(false);

								assertEquals("KO",	loginController.login(userForm));

				}

				@Test

				void	testLoginError()	{

								assertEquals("ERROR",	loginController.login(null));

				}

				@Test

				void	testLoginException()	{

								given(loginService.login(any(UserForm.class)))

																.willThrow(IllegalArgumentException.class);

								assertEquals("ERROR",	loginController.login(userForm));

				}

}

The	execution	of	this	test	class	supposes	that	four	tests	are	executed.	As
shown	in	the	following	screenshot,	all	of	them	pass:

Execution	of	unit	test	of	LoginControllerBDDTest	with	JUnit	5	and	Mockito

Let’s	move	now	to	the	next	component	of	our	system:	LoginService.	In	the
following	example,	we	aim	to	unit	test	that	component,	and	thus	first	we	use
the	annotation	@InjectMocks	to	inject	the	SUT	in	our	test.	Then,	the	DOC
(LoginRepository)	is	mocked	using	the	annotation	@Mock.	The	class	contains	three



tests.	The	first	(testLoginOk)	is	devoted	to	verify	the	answer	of	the	SUT	when	a
correct	form	is	received.	The	second	test	(testLoginKo)	verifies	the	opposite
scenario.	Finally,	the	third	test	also	verifies	an	error	situation	of	the	system.
The	implementation	of	this	service	keeps	a	registry	of	the	users	logged,	and
will	not	allowed	to	login	the	same	user	twice.	For	this	reason,	we
implemented	a	test	(testLoginTwice),	which	verifies	that	the	exception
LoginException	is	raised	when	the	same	user	tries	to	login	twice:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertFalse;

import	static	org.junit.jupiter.api.Assertions.assertThrows;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	static	org.mockito.ArgumentMatchers.any;

import	static	org.mockito.Mockito.atLeast;

import	static	org.mockito.Mockito.times;

import	static	org.mockito.Mockito.verify;

import	static	org.mockito.Mockito.when;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.mockito.InjectMocks;

import	org.mockito.Mock;

import	io.github.bonigarcia.mockito.MockitoExtension;

@ExtendWith(MockitoExtension.class)

class	LoginServiceTest	{

				@InjectMocks

				LoginService	loginService;

				@Mock

				LoginRepository	loginRepository;

				UserForm	userForm	=	new	UserForm("foo",	"bar");

				@Test

				void	testLoginOk()	{

								when(loginRepository.login(any(UserForm.class))).thenReturn(true);

								assertTrue(loginService.login(userForm));

								verify(loginRepository,	atLeast(1)).login(userForm);

				}

				@Test

				void	testLoginKo()	{

								when(loginRepository.login(any(UserForm.class))).thenReturn(false);

								assertFalse(loginService.login(userForm));

								verify(loginRepository,	times(1)).login(userForm);

				}

				@Test

				void	testLoginTwice()	{

								when(loginRepository.login(userForm)).thenReturn(true);

								assertThrows(LoginException.class,	()	->	{

												loginService.login(userForm);

												loginService.login(userForm);

								});

				}

}

As	usual,	the	execution	of	the	test	in	shell	gives	us	an	idea	of	how	things	have
gone.	We	can	check	that	the	login	service	has	been	exercised	four	times	(since



in	the	third	test,	we	did	twice).	But	due	to	the	fact	that	the	LoginException	was
expected,	that	test	is	succeeded	(as	well	the	other	two):

Execution	of	unit	test	of	LoginServiceTest	with	JUnit	5	and	Mockito

The	following	class	provides	a	simple	example	for	capturing	the	argument	of
a	mock	object.	We	define	a	class	property	of	type	ArgumentCaptor<UserForm>,
which	is	annotated	with	@Captor.	Then,	in	the	body	of	the	test,	the	SUT
(LoginService	in	this	case)	is	exercised	and	the	argument	of	the	method	login
are	captured.	Finally,	the	value	of	this	argument	is	assessed:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	static	org.mockito.Mockito.verify;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.mockito.ArgumentCaptor;

import	org.mockito.Captor;

import	org.mockito.InjectMocks;

import	org.mockito.Mock;

import	io.github.bonigarcia.mockito.MockitoExtension;

@ExtendWith(MockitoExtension.class)

class	LoginServiceChaptorTest	{

				@InjectMocks

				LoginService	loginService;

				@Mock

				LoginRepository	loginRepository;

				@Captor

				ArgumentCaptor<UserForm>	argCaptor;

				UserForm	userForm	=	new	UserForm("foo",	"bar");

				@Test

				void	testArgumentCaptor()	{

								loginService.login(userForm);

								verify(loginRepository).login(argCaptor.capture());

								assertEquals(userForm,	argCaptor.getValue());

				}

}



Once	again,	in	the	console,	we	check	that	the	SUT	was	exercised	and	the	test
is	declared	as	successful:

Execution	of	unit	test	of	LoginServiceChaptorTest	with	JUnit	5	and	Mockito

The	last	example	we	see	in	this	chapter	related	to	Mockito	has	to	do	with	the
use	of	an	spy.	As	introduced	before,	by	default,	an	spy	uses	the	real
implementation	in	non-stubbed	methods.	Therefore,	if	we	do	not	stub
methods	in	an	spy	object,	what	we	get	is	the	real	object	in	our	test.	This	is
what	happens	in	the	next	example.	As	we	can	see,	we	are	using	the
LoginService	as	our	SUT,	and	then	we	spy	the	object	LoginRepository.	Due	to	the
fact	that	in	the	body	of	the	tests	we	are	not	programming	expectations	in	the
spy	object,	we	are	assessing	the	real	system	in	the	test.

All	in	all,	the	test	data	is	prepared	to	get	a	login	correct	(using	username	as
user	and	password	as	p1,	which	is	present	in	the	hardcoded	values	in	the	real
implementation	of	LoginRepository),	and	then	some	dummy	values	for	an
unsuccessful	login:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertFalse;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.mockito.InjectMocks;

import	org.mockito.Spy;

import	io.github.bonigarcia.mockito.MockitoExtension;

@ExtendWith(MockitoExtension.class)

class	LoginServiceSpyTest	{

				@InjectMocks

				LoginService	loginService;

				@Spy

				LoginRepository	loginRepository;

				UserForm	userOk	=	new	UserForm("user1",	"p1");

				UserForm	userKo	=	new	UserForm("foo",	"bar");

				@Test

				void	testLoginOk()	{

								assertTrue(loginService.login(userOk));

				}

				@Test



				void	testLoginKo()	{

								assertFalse(loginService.login(userKo));

				}

}

In	the	shell,	we	can	check	that	both	tests	were	correctly	executed,	and	in	this
case,	the	real	components	(both	LoginService	and	LoginRepository)	were	actually
exercised:

Execution	of	unit	test	of	LoginServiceSpyTest	with	JUnit	5	and	Mockito

These	examples	demonstrate	several	of	the	capabilities	of
Mockito,	but	of	course	not	all.	For	further	information,	visit	the
official	Mockito	reference	at	http://site.mockito.org/.

http://site.mockito.org/


Spring
Spring	(https://spring.io/)	is	an	open	source	Java	framework	for	building
enterprise	applications.	It	was	first	written	by	Rod	Johnson	together	with	his
book	Expert	One-on-One	J2EE	Design	and	Development	in	October	2002.
The	original	motivation	of	Spring	was	getting	rid	of	the	complexity	of	J2EE,
providing	a	light-weight	infrastructure	aimed	to	ease	the	development	of
enterprise	application	using	simple	POJOs	as	building	blocks.

https://spring.io/


Spring	in	a	nutshell
The	core	technology	of	the	Spring	Framework	is	known	as	Inversion	of
Control	(IoC),	which	is	the	process	of	instantiating	objects	outside	the	class
in	which	these	objects	are	actually	used.	These	objects	are	known	as	beans	or
components	in	the	Spring	jargon	and	are	created	as	singleton	objects	by
default.	The	entity	in	charge	of	the	creation	of	beans	is	known	as	the	Spring
IoC	container.	This	is	achieved	by	Dependency	Injection	(DI),	which	is	the
process	of	providing	dependencies	of	one	object	instead	of	constructing	them
itself.

IoC	and	DI	are	often	used	interchangeably.	Nevertheless,	as
depicted	in	the	paragraph	earlier,	these	concepts	are	not	exactly
the	same	(IoC	is	achieved	through	DI).

As	depicted	in	the	next	part	of	this	section,	Spring	is	a	modular	framework.
The	core	functionally	of	Spring	(that	is,	IoC)	is	provided	in	the	spring-context
module.	This	module	provides	the	ability	of	creating	application	context,
that	is,	the	Spring’s	DI	container.	There	are	many	different	ways	to	define
application	contexts	in	Spring.	Two	of	the	most	significant	types	are	the
following:

AnnotationConfigApplicationContext:	Application	context,	which	accepts
annotated	classes	to	identify	the	Spring	beans	to	be	executed	in	the
container.	In	this	type	of	context,	beans	are	identified	by	annotating	plain
classes	with	the	annotation	@Component.	It	is	not	the	only	one	to	declare	a
class	as	a	Spring	bean.	There	are	further	stereotypes	annotations:
@Controller	(stereotype	for	presentation	layer,	used	in	the	web	module,
MVC),	@Repository	(stereotype	for	the	persistence	layer,	used	in	the	data
access	module,	called	Spring	Data),	and	@Service	(used	in	the	service
layer).	These	three	annotations	are	used	to	separate	the	layers	of	an
application.	Finally,	classes	annotated	with	@Configuration	allows	to	define
Spring	beans	by	annotating	methods	with	@Bean	(the	object	returned	by
these	methods	will	be	Spring	beans	living	in	the	container):

Spring	stereotypes	used	to	define	beans



ClassPathXmlApplicationContext:	Application	context,	which	accepts	bean
definitions	declared	in	an	XML	file	located	in	the	project	classpath.

The	annotation-based	context	configuration	was	introduced	in
Spring	2.5.	The	Spring	IoC	container	is	totally	decoupled	from
the	format	in	which	configuration	metadata	(that	is,	bean
definition)	is	actually	written.	Nowadays	many	developers	chose
annotation-based	configuration	rather	than	XML	based.	For	this
reason,	in	this	book,	we	are	going	to	use	only	annotation-based
context	configuration	in	the	examples.

Let’s	see	a	simple	example.	First	of	all,	we	need	to	include	the	spring-context
dependency	in	our	project.	For	example,	as	a	Maven	dependency:

<dependency>

				<groupId>org.springframework</groupId>

				<artifactId>spring-context</artifactId>

				<version>${spring-context.version}</version>

</dependency>

Then,	we	create	an	executable	Java	class	(that	is,	with	a	main	method).	Notice
that	in	this	class	there	is	one	annotation	at	class	level:	@ComponentScan.	This	is	a
very	important	annotation	in	Spring,	since	it	allows	to	declare	the	package	in
which	Spring	will	look	for	beans	definition	in	the	form	of	annotations.	If
specific	packages	are	not	defined	(just	like	in	the	example),	scanning	will
occur	from	the	package	of	the	class	that	declares	this	annotation	(in	the
example	the	package	io.github.bonigarcia).	In	the	body	of	the	main	method,	we
create	the	Spring	application	context	with	AnnotationConfigApplicationContext.
From	that	context,	we	get	the	Spring	component	whose	class	is
MessageComponent,	and	we	write	the	result	of	its	getMessage()	method	on	the
standard	output:

package	io.github.bonigarcia;

import	org.springframework.context.annotation.AnnotationConfigApplicationContext;

import	org.springframework.context.annotation.ComponentScan;

@ComponentScan

public	class	MySpringApplication	{

				public	static	void	main(String[]	args)	{

								try	(AnnotationConfigApplicationContext	context	=	new	

																AnnotationConfigApplicationContext(

																MySpringApplication.class))	{

												MessageComponent	messageComponent	=	context

																				.getBean(MessageComponent.class);

												System.out.println(messageComponent.getMessage());

								}

				}

}

The	bean	MessageComponent	is	defined	in	the	following	class.	Notice	that	it	is



declared	as	the	Spring	component	simply	using	the	annotation	@Component	at
class	level.	Then,	in	this	example,	we	are	injecting	another	Spring	component
called	MessageService	using	the	class	constructor:

package	io.github.bonigarcia;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Component;

@Component

public	class	MessageComponent	{

				private	MessageService	messageService;

				public	MessageComponent(MessageService	messageService)	{

							this.messageService	=	messageService;

				}

				public	String	getMessage()	{

								return	messageService.getMessage();

				}

}

At	this	point,	it	is	worth	reviewing	the	different	manners	to	carry	out
dependency	injection	of	Spring	components:

1.	 Field	injection:	The	injected	component	is	a	class	field	annotated	with
@Autowired,	just	like	the	example	before.	As	a	benefit,	this	kind	of	injection
removes	clutter	code	such	as	setter	methods	or	constructor	parameters.

2.	 Setter	injection:	The	injected	component	is	declared	as	a	field	in	the
class,	and	then	a	setter	for	this	field	is	created	and	annotated	with
@Autowired.

3.	 Constructor	injection:	The	dependency	is	injected	in	the	class
constructor,	which	is	annotated	with	@Autowired	(3-a	in	the	diagram	here).
This	is	the	way	shown	in	the	example	earlier.	As	of	Spring	4.3,	it	is	not
required	anymore	to	annotate	the	constructor	with	@Autowired	to	carry	out
the	injection	(3-b).

The	latest	way	of	injection	(3-b)	was	several	benefits,	such	as
the	promotion	of	testability	without	the	need	of	reflection
mechanism	(implemented,	for	example,	by	mocking	library).	In
addition,	it	can	make	developers	to	think	over	the	design	of	the
class,	since	many	injected	dependencies	suppose	many
constructor	parameters,	and	this	should	be	avoided	(God	object
anti-pattern).



Different	ways	of	dependency	injection	(Autowired)	in	Spring

The	last	component	in	our	example	is	named	MessageService.	Note	that	is	also	a
Spring	component,	this	time	annotated	with	@Service	to	remark	its	service
nature	(from	a	functional	perspective,	it	would	be	the	same	than	annotating
the	class	with	@Component):

package	io.github.bonigarcia;

import	org.springframework.stereotype.Service;

@Service

public	class	MessageService	{

				public	String	getMessage()	{

								return	"Hello	world!";

				}

}

Now,	if	we	execute	the	main	class	of	this	example	(called	MySpringApplication,
see	the	source	code	here),	we	create	an	annotation-based	application	context
with	a	try	with	resources	(this	way	the	application	context	will	be	closed	at
the	end).	The	Spring	IoC	container	will	create	two	beans:	MessageService	and
MessageComponet.	Using	the	application	context,	we	seek	the	bean	MessageComponet
and	invoke	its	method	getMessage,	which	is	finally	written	in	the	standard
output:

package	io.github.bonigarcia;



import	org.springframework.context.annotation.AnnotationConfigApplicationContext;

import	org.springframework.context.annotation.ComponentScan;

@ComponentScan

public	class	MySpringApplication	{

				public	static	void	main(String[]	args)	{

								try	(AnnotationConfigApplicationContext	context	=	new	

																AnnotationConfigApplicationContext(

																MySpringApplication.class))	{

												MessageComponent	messageComponent	=	context

																				.getBean(MessageComponent.class);

												System.out.println(messageComponent.getMessage());

								}

				}

}



Spring	modules
The	Spring	framework	is	modular,	allowing	developers	to	use	only	the	needed
modules	provided	by	the	framework.	The	complete	list	of	this	modules	can	be
found	on	https://spring.io/projects.	The	following	table	summarizes	some	of	the
most	important	ones:

Spring
project Logo Description

Spring
Framework

Provides	core	support	for	DI,	transaction
management,	web	applications	(Spring
MCV),	data	access,	messaging,	and	so	on.

Spring	IO
Platform

Brings	together	the	core	Spring	APIs	into	a
cohesive	and	versioned	foundational	platform
for	modern	applications.

Spring
Boot

Simplifies	the	creation	of	standalone,
production-grade	Spring-based	applications
with	the	minimal	configuration.	It	follows	the
convention-over-configuration	approach.

Spring
Data

Simplifies	data	access	by	means	of
comprehensive	APIs	to	work	with	the
relational	databases,	NoSQL,	map-reduce
algorithms,	and	so	on.

Spring
Cloud

Provides	a	set	of	libraries	and	common
patterns	for	building	and	deploying
distributed	systems	and	microservices.

https://spring.io/projects


Spring
Security

Provides	customizable	authentication	and
authorization	capabilities	for	Spring-based
applications.

Spring
Integration

Provides	a	lightweight,	POJO-based
messaging	for	Spring-based	applications	to
integrate	with	external	systems.

Spring
Batch

Provides	a	lightweight	framework	designed	to
enable	the	development	of	robust	batch
applications	for	operations	of	enterprise
systems.



Introduction	to	Spring	Test
Spring	a	module	called	spring-test,	which	supports	unit	and	integration	testing
of	Spring	components.	Among	other	features,	this	module	provides	the	ability
to	create	Spring	application	context	for	testing	purposes	or	create	mock
objects	that	to	test	our	code	in	isolation.	There	are	different	annotations
supporting	this	testing	capabilities.	A	list	of	the	most	significant	one	is	the
following:

@ContextConfiguration:	This	annotation	is	used	to	determine	how	to	load	and
configure	an	ApplicationContext	for	integration	tests.	For	example,	it	allows
to	load	the	application	context	from	annotated	classes	(using	the	element
classes)	or	bean	definitions	declared	in	XML	files	(using	the	element
locations).
@ActiveProfiles:	This	annotation	is	used	to	instruct	the	container	about
which	definition	profiles	should	be	active	during	the	application	context
loading	(for	example,	development	and	test	profiles).
@TestPropertySource:	This	annotation	is	used	to	configure	the	locations	of
the	properties	files	and	the	inline	properties	to	be	added.
@WebAppConfiguration:	This	annotation	is	used	to	instruct	the	Spring	context
that	ApplicationContext	loaded	is	WebApplicationContext.

In	addition,	the	spring-test	module	offers	several	capabilities	to	carry	out
different	actions	typically	required	in	tests,	namely:

The	org.springframework.mock.web	package	contains	a	set	of	Servlet	API
mock	objects,	useful	for	testing	web	contexts.	For	instance,	the	object
MockMvc	allows	to	perform	HTTP	requests	(POST,	GET,	PUT,	DELETE,	and	so	on)
and	verify	the	response	(status	code,	content	type,	or	response	body).
The	org.springframework.mock.jndi	package	contains	an	implementation	of
the	Java	Naming	and	Directory	Interface	(JNDI)	SPI,	which	can	be
used	to	set	up	a	simple	JNDI	environment	for	tests.	For	instance,	using
the	class	SimpleNamingContextBuilder	we	can	make	a	JNDI	data	source
available	in	our	tests.
The	org.springframework.test.jdbc	package	contains	the	class	JdbcTestUtils,
which	is	a	collection	of	JDBC	utility	functions	aimed	to	simplify
standard	database	access.
The	org.springframework.test.util	package	contains	the	class



ReflectionTestUtils,	which	is	a	collection	of	utility	methods	to	set	a	non-
public	field	or	invoke	a	private/protected	setter	method	when	testing	the
application	code.



Testing	Spring	Boot	applications
As	introduced	before,	Spring	Boot	is	a	project	of	the	Spring	portfolio	aimed
to	simplify	the	development	of	Spring	applications.	The	main	benefits	of
using	Spring	Boot	are	summarized	as	follows:

A	Spring	Boot	application	is	just	a	Spring	ApplicationContext	in	which	the
principal	convention	over	configuration	is	used.	Thank	to	this,	it	is	faster
to	get	started	with	the	Spring	development.
The	annotation	@SpringBootApplication	is	used	to	identify	the	main	class	in	a
Spring	Boot	project.
A	range	of	non-functional	features	are	provided	out	of	the	box:
embedded	servlet	containers	(Tomcat,	Jetty,	and	Undertow),	security,
metrics,	health	checks,	or	externalized	configuration.
A	creation	of	standalone	running	applications	that	just	run	using	the
command	java	-jar	(even	for	web	applications).
Spring	Boot	command	line	interface	(CLI)	allows	to	run	Groovy
scripts	for	quickly	prototyping	with	Spring.
Spring	Boot	works	in	the	same	way	as	any	standard	Java	library,	that	is,
to	use	it,	we	simply	need	to	add	the	appropriate	spring-boot-*.jar	in	our
project	classpath	(typically	using	build	tools	such	as	Maven	or	Gradle).
Spring	Boot	provides	a	number	of	starters	aimed	to	ease	the	process	of
adding	the	different	libraries	to	the	classpath.	The	following	table
contains	several	of	those	starters:

Name Description

spring-boot-

starter Core	starter,	including	auto-configuration	support	and	logging

spring-boot-

starter-batch Starter	for	using	Spring	Batch

spring-boot-

starter-cloud-

connectors

Starter	for	using	Spring	Cloud	Connectors,	which	simplifies
connecting	to	services	in	Cloud	platforms	like	Cloud	Foundry
and	Heroku

spring-boot-

starter-data-jpa Starter	for	using	Spring	Data	JPA	with	Hibernate



spring-boot-

starter-

integration

Starter	for	using	Spring	Integration

spring-boot-

starter-jdbc Starter	for	using	JDBC	with	the	Tomcat	JDBC	connection	pool

spring-boot-

starter-test

Starter	for	testing	Spring	Boot	applications	with	libraries,
including	JUnit,	Hamcrest,	and	Mockito

spring-boot-

starter-

thymeleaf

Starter	for	building	MVC	web	applications	using	Thymeleaf
views

spring-boot-

starter-web

Starter	for	building	web,	including	REST,	applications	using
Spring	MVC.	Uses	Tomcat	as	the	default	embedded	container

spring-boot-

starter-

websocket

Starter	for	building	WebSocket	applications	using	Spring
Framework’s	WebSocket	support

For	complete	information	about	Spring	Boot	visit	the	official
reference:	https://projects.spring.io/spring-boot/.

Spring	Boot	provides	different	capabilities	to	simplify	the	tests.	For	instance,
it	provides	the	@SpringBootTest	annotation,	which	is	used	at	classlevel	in	test
classes.	This	annotation	will	create	ApplicationContext	for	these	tests	(similarly
to	@ContextConfiguration	but	for	Spring	Boot	based	applications).	As	we	have
seen	in	the	section	before,	in	the	spring-test	module,	we	use	the	annotation
@ContextConfiguration(classes=…	)	to	specify,	which	bean	definition	(Spring
@Configuration)	to	be	loaded.	When	testing	Spring	Boot	applications	this	is
often	not	required.	Spring	Boot’s	tests	annotations	will	search	the	primary
configuration	automatically	if	not	explicitly	define	one.	The	search	algorithm
works	up	from	the	package	that	contains	the	test	until	it	finds	a
@SpringBootApplication	annotated	class.

Spring	Boot	also	facilitates	the	use	of	mocks	for	Spring	components.	To	that,
the	annotation	@MockBean	is	provided.	This	annotation	allows	defining	a
Mockito	mock	for	a	bean	inside	our	ApplicationContext.	It	can	be	new	beans,	but
also	to	it	can	replace	a	single	existing	bean	definition.	Mock	beans	are
automatically	reset	after	each	test	method.	This	method	is	usually	known	as
in-container	testing,	in	counterpart	to	out-of-container,	in	which	a	mock
library	(example,	Mockito)	is	used	to	unit	test	the	Spring	components	in
isolation	and	without	the	need	of	a	Spring	ApplicationContext.	For	example	of
both	types	of	unit	tests	for	Spring	applications	is	shown	in	the	next	section.

https://projects.spring.io/spring-boot/


JUnit	5	extension	for	Spring
In	order	to	integrate	the	spring-test	capabilities	into	JUnit	5’s	Jupiter
programming	model,	SpringExtension	has	been	developed.	This	extension	is	part
of	the	spring-test	module,	as	of	Spring	5.	Let’s	see	several	examples	of	JUnit	5
and	Spring	5	together.

Let’s	suppose	we	want	to	make	an	integration	in-container	test	of	the	Spring
application	described	in	the	former	section,	made	up	of	three	classes:
MySpringApplication,	MessageComponent,	and	MessageService.	As	we	have	learned,	in
order	to	implement	a	Jupiter	test	against	this	application,	we	need	to	make	the
following	steps:

1.	 Annotate	our	test	class	with	@ContextConfiguration	to	specify	which
ApplicationContext	needs	to	be	loaded.

2.	 Annotate	our	test	class	with	@ExtendWith(SpringExtension.class)	to	enable
spring-test	into	Jupiter.

3.	 Inject	the	Spring	component	we	want	to	assess	in	our	test	class.
4.	 Implement	our	test	(@Test).

For	example:
package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.test.context.ContextConfiguration;

import	org.springframework.test.context.junit.jupiter.SpringExtension;

@ExtendWith(SpringExtension.class)

@ContextConfiguration(classes	=	{	MySpringApplication.class	})

class	SimpleSpringTest	{

				@Autowired

				public	MessageComponent	messageComponent;

				@Test

				public	void	test()	{

								assertEquals("Hello	world!",	messageComponent.getMessage());

				}

}

This	is	a	very	simple	example	in	which	the	Spring	component	called
MessageComponent	is	assessed.	When	this	test	is	started,	our	ApplicationContext	is
initiated	with	and	all	our	Spring	components	inside.	After	that,	in	this



example,	the	bean	MessageComponent	is	injected	in	the	test,	which	is	assessed
simply	calling	the	method	getMessage()	and	verifying	its	response.

It	is	worth	to	review	which	dependencies	are	needed	for	this	test.	When	using
Maven,	these	dependencies	are	the	following:

				<dependencies>

								<dependency>

												<groupId>org.springframework</groupId>

												<artifactId>spring-context</artifactId>

												<version>${spring.version}</version>

								</dependency>

								<dependency>

												<groupId>org.springframework</groupId>

												<artifactId>spring-test</artifactId>

												<version>${spring.version}</version>

												<scope>test</scope>

								</dependency>

								<dependency>

												<groupId>org.junit.jupiter</groupId>

												<artifactId>junit-jupiter-api</artifactId>

												<version>${junit.jupiter.version}</version>

												<scope>test</scope>

								</dependency>

				</dependencies>

On	the	other	side,	if	we	use	Gradle,	the	dependencies	clause	would	be	as
follows:

dependencies	{

				compile("org.springframework:spring-context:${springVersion}")

				testCompile("org.springframework:spring-test:${springVersion}")

				testCompile("org.junit.jupiter:junit-jupiter-api:${junitJupiterVersion}")

				testRuntime("org.junit.jupiter:junit-jupiter-engine:${junitJupiterVersion}")

}

Note	that	in	both	cases	the	spring-context	dependency	is	needed	to	implement
the	application,	and	then	we	need	spring-test	and	junit-jupiter	to	test	it.	In
order	to	implement	the	equivalent	application	and	test,	but	this	time	using
Spring	Boot,	first	we	would	need	to	change	our	pom.xml	(when	using	Maven):

<project	xmlns="http://maven.apache.org/POM/4.0.0"	

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	

http://maven.apache.org/xsd/maven-4.0.0.xsd">

				<modelVersion>4.0.0</modelVersion>

				<groupId>io.github.bonigarcia</groupId>

				<artifactId>junit5-spring-boot</artifactId>

				<version>1.0.0</version>

				<parent>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-parent</artifactId>

								<version>2.0.0.M3</version>

				</parent>

				<properties>

								<junit.jupiter.version>5.0.0</junit.jupiter.version>

								<junit.platform.version>1.0.0</junit.platform.version>

								<java.version>1.8</java.version>

								<maven.compiler.target>${java.version}</maven.compiler.target>

								<maven.compiler.source>${java.version}</maven.compiler.source>

								<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>



								<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

				</properties>

				<dependencies>

								<dependency>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-starter</artifactId>

								</dependency>

								<dependency>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-starter-test</artifactId>

												<scope>test</scope>

								</dependency>

								<dependency>

												<groupId>org.junit.jupiter</groupId>

												<artifactId>junit-jupiter-api</artifactId>

												<version>${junit.jupiter.version}</version>

												<scope>test</scope>

								</dependency>

				</dependencies>

				<build>

								<plugins>

												<plugin>

																<artifactId>maven-surefire-plugin</artifactId>

																<dependencies>

																				<dependency>

																								<groupId>org.junit.platform</groupId>

																								<artifactId>junit-platform-surefire-provider</artifactId>

																								<version>${junit.platform.version}</version>

																				</dependency>

																				<dependency>

																								<groupId>org.junit.jupiter</groupId>

																								<artifactId>junit-jupiter-engine</artifactId>

																								<version>${junit.jupiter.version}</version>

																				</dependency>

																</dependencies>

												</plugin>

												<plugin>

																<groupId>org.springframework.boot</groupId>

																<artifactId>spring-boot-maven-plugin</artifactId>

																<executions>

																				<execution>

																								<goals>

																												<goal>repackage</goal>

																								</goals>

																				</execution>

																</executions>

												</plugin>

								</plugins>

				</build>

				<repositories>

								<repository>

												<id>spring-milestones</id>

												<url>https://repo.spring.io/libs-milestone</url>

								</repository>

				</repositories>

				<pluginRepositories>

								<pluginRepository>

												<id>spring-milestones</id>

												<url>https://repo.spring.io/milestone</url>

								</pluginRepository>

				</pluginRepositories>

</project>



Or	our	build.gradle	(when	using	Gradle):
buildscript	{

				ext	{

								springBootVersion	=	'2.0.0.M3'

								junitPlatformVersion	=	'1.0.0'

				}

				repositories	{

								mavenCentral()

								maven	{

												url	'https://repo.spring.io/milestone'

								}

				}

				dependencies	{

								classpath("org.springframework.boot:spring-boot-gradle-

plugin:${springBootVersion}")

								classpath("org.junit.platform:junit-platform-gradle-

plugin:${junitPlatformVersion}")

				}

}

repositories	{

				mavenCentral()

				maven	{

								url	'https://repo.spring.io/libs-milestone'

				}

}

apply	plugin:	'java'

apply	plugin:	'eclipse'

apply	plugin:	'idea'

apply	plugin:	'org.springframework.boot'

apply	plugin:	'io.spring.dependency-management'

apply	plugin:	'org.junit.platform.gradle.plugin'

jar	{

				baseName	=	'junit5-spring-boot'

				version	=	'1.0.0'

}

compileTestJava	{

				sourceCompatibility	=	1.8

				targetCompatibility	=	1.8

				options.compilerArgs	+=	'-parameters'

}

dependencies	{

				compile('org.springframework.boot:spring-boot-starter')

				testCompile("org.springframework.boot:spring-boot-starter-test")

				testCompile("org.junit.jupiter:junit-jupiter-api:${junitJupiterVersion}")

				testRuntime("org.junit.jupiter:junit-jupiter-engine:${junitJupiterVersion}")

}

In	order	to	transform	our	raw	Spring	application	into	Spring	Boot,	our
components	(in	the	example	called	MessageComponent	and	MessageService)	would	be
exactly	the	same,	but	our	main	class	would	change	a	bit	(see	here).	Notice
that	we	use	the	annotation	@SpringBootApplication	at	class	level,	implementing
the	main	method	with	the	typically	bootstrapping	mechanism	of	Spring	Boot.
Just	for	logging	purposes,	we	are	implementing	a	method	annotated	with
@PostConstruct.	This	method	will	be	triggered	just	before	the	application	context
is	started:



package	io.github.bonigarcia;

import	javax.annotation.PostConstruct;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.boot.SpringApplication;

import	org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public	class	MySpringBootApplication	{

				final	Logger	log	=	LoggerFactory.getLogger(MySpringBootApplication.class);

				@Autowired

				public	MessageComponent	messageComponent;

				@PostConstruct

				private	void	setup()	{

								log.info("***	{}	***",	messageComponent.getMessage());

				}

				public	static	void	main(String[]	args)	throws	Exception	{

								new	SpringApplication(MySpringBootApplication.class).run(args);

				}

}

The	implementation	of	the	test	would	be	straightforward.	The	only	change	we
need	to	do	is	to	annotate	the	test	with	@SpringBootTest	instead	of
@ContextConfiguration	(Spring	Boot	automatically	looks	for	and	starts	our
ApplicationContext):

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.boot.test.context.SpringBootTest;

import	org.springframework.test.context.junit.jupiter.SpringExtension;

@ExtendWith(SpringExtension.class)

@SpringBootTest

class	SimpleSpringBootTest	{

				@Autowired

				public	MessageComponent	messagePrinter;

				@Test

				public	void	test()	{

								assertEquals("Hello	world!",	messagePrinter.getMessage());

				}

}

Executing	the	test	in	the	console,	we	can	see	that	actually	the	application	is
started	before	the	test	(notice	the	unmistakable	spring	ASCII	banner	at	the
beginning).

After	that,	our	test	uses	the	ApplicationContext	to	verify	one	Spring	component,
and	as	a	result	the	test	is	succeeded:



Execution	of	test	using	Spring	Boot

To	finish	with	this	part,	we	see	a	simple	web	application	implemented	with
Spring	Boot.	With	respect	to	the	dependencies,	the	only	change	we	need	to	do
is	to	include	the	started	spring-boot-starter-web	(instead	of	the	generic	spring-
boot-starter).	That’s	it,	we	can	start	implementing	our	Spring-based	web
application.

We	are	going	to	implement	a	very	simple	@Controller,	that	is,	the	Spring	bean,
which	handles	the	request	from	the	browsers.	In	our	example,	the	only	URL
mapped	by	the	controller	is	the	default	resource	/:

package	io.github.bonigarcia;

import	static	org.springframework.web.bind.annotation.RequestMethod.GET;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Controller;

import	org.springframework.web.bind.annotation.RequestMapping;

@Controller

public	class	WebController	{

				@Autowired

				private	PageService	pageService;

				@RequestMapping(value	=	"/",	method	=	GET)

				public	String	greeting()	{

								return	pageService.getPage();

				}

}

This	component	injects	a	service	called	PageService,	responsible	of	returning
the	actual	page	to	be	loaded	in	response	to	the	request	to	/.	The	content	of	this
service	is	also	very	simple:

package	io.github.bonigarcia;

import	org.springframework.stereotype.Service;

@Service

public	class	PageService	{

				public	String	getPage()	{

								return	"/index.html";

				}

}



By	convention	(we	are	using	Spring	Boot	here),	the	static	resource	for	Spring-
based	web	applications	are	located	in	a	folder	called	static	within	the	project
classpath.	Following	the	structure	of	Maven/Gradle	project,	this	folder	is
located	in	the	src/main/resources	path	(see	screenshot	below).	Note	that	there	are
two	pages	there	(we	switch	from	one	to	the	other	in	the	tests,	stay	tuned):

Content	of	the	example	project	junit5-spring-boot-web

Let’s	move	on	not	the	interesting	part:	the	tests.	We	are	implementing	three
Jupiter	tests	in	this	project.	The	first	one	is	devoted	to	verify	a	direct	call	to
the	page	/index.html.	As	depicted	before,	this	test	needs	to	use	the	Spring
extension	(@ExtendWith(SpringExtension.class))	and	be	declared	as	Spring	Boot	test
(@SpringBootTest).	To	carry	out	the	request	to	web	application,	we	use	an
instance	of	the	MockMvc,	verifying	the	response	in	several	ways	(HTTP	response
code,	content-type,	and	response	content	body).	This	instance	is	automatically
configured	using	the	Spring	Boot	annotation	@AutoConfigureMockMvc.

Out	of	Spring	Boot,	instead	of	using	@AutoConfigureMockMvc,	the
object	MockMvc	can	be	created	using	a	builder	class	called
MockMvcBuilders.	In	this	case,	the	application	context	is	used	as
parameter	for	that	builder.

package	io.github.bonigarcia;

import	static	org.hamcrest.core.StringContains.containsString;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.springframework.beans.factory.annotation.Autowired;



import	

org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;

import	org.springframework.boot.test.context.SpringBootTest;

import	org.springframework.test.context.junit.jupiter.SpringExtension;

import	org.springframework.test.web.servlet.MockMvc;

@ExtendWith(SpringExtension.class)

@SpringBootTest

@AutoConfigureMockMvc

class	IndexTest	{

				@Autowired

				MockMvc	mockMvc;

				@Test

				void	testIndex()	throws	Exception	{

								mockMvc.perform(get("/index.html")).andExpect(status().isOk())

																.andExpect(content().contentType("text/html")).andExpect(

																								content().string(containsString("This	is	index	

																								page")));

				}

}

Again,	running	this	test	in	the	shell,	we	check	that	the	application	is	actually
executed.	By	default,	the	embedded	Tomcat	listens	the	port	8080.	After	that,
test	is	executed	successfully:

Console	output	of	in-container	first	test

Second	test	is	similar,	but	as	a	differential	factor	it	uses	the	test	capability
@MockBean	to	override	a	spring	component	(in	this	example,	PageService)	by	a
mock.	In	the	body	of	the	test,	first	we	stub	the	method	getPage	of	the	mock	to
change	the	default	response	of	the	component	to	redirect:/page.html.	As	a
result,	when	requesting	the	resource	/	in	the	test	with	the	object	MockMvc,	we
will	obtain	an	HTTP	302	response	(redirect)	to	the	resource	/page.html	(which
is	actually	an	existing	page,	as	shown	in	the	project	screenshot):

package	io.github.bonigarcia;

import	static	org.mockito.Mockito.doReturn;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.redirectedUrl;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;



import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	

org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;

import	org.springframework.boot.test.context.SpringBootTest;

import	org.springframework.boot.test.mock.mockito.MockBean;

import	org.springframework.test.context.junit.jupiter.SpringExtension;

import	org.springframework.test.web.servlet.MockMvc;

@ExtendWith(SpringExtension.class)

@SpringBootTest

@AutoConfigureMockMvc

class	RedirectTest	{

				@MockBean

				PageService	pageService;

				@Autowired

				MockMvc	mockMvc;

				@Test

				void	test()	throws	Exception	{

								doReturn("redirect:/page.html").when(pageService).getPage();

								mockMvc.perform(get("/")).andExpect(status().isFound())

																.andExpect(redirectedUrl("/page.html"));

				}

}

Similarly,	in	the	shell	we	can	confirm	that	the	test	starts	the	Spring	application
and	then	it	is	executed	correctly:

Console	output	of	in-container	second	test

The	last	test	in	this	project	is	an	example	of	an	out-of-container	test.	In	the
previous	test	examples,	the	Spring	context	was	used	within	the	test.	On	the
other	side,	the	following	relies	completely	in	Mockito	to	exercise	the
components	of	the	system,	this	time	without	starting	the	Spring	application
context.	Note	that	we	are	using	the	MockitoExtension	extension	here,	using	the
component	WebController	as	our	SUT	(@InjectMocks)	and	the	component
PageService	as	DOC	(@Mock):

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;



import	static	org.mockito.Mockito.times;

import	static	org.mockito.Mockito.verify;

import	static	org.mockito.Mockito.when;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.mockito.InjectMocks;

import	org.mockito.Mock;

import	io.github.bonigarcia.mockito.MockitoExtension;

@ExtendWith(MockitoExtension.class)

class	OutOfContainerTest	{

				@InjectMocks

				private	WebController	webController;

				@Mock

				private	PageService	pageService;

				@Test

				void	test()	{

								when(pageService.getPage()).thenReturn("/my-page.html");

								assertEquals("/my-page.html",	webController.greeting());

								verify(pageService,	times(1)).getPage();

				}

}

This	time,	in	the	execution	of	the	test,	we	do	not	see	spring	traces	since	the
application	container	was	not	started	before	executing	the	test:

Console	output	of	out-of-container	test



Selenium
Selenium	(http://www.seleniumhq.org/)	is	an	open	source	web	testing	framework,
since	its	inception	in	2008	has	established	itself	as	the	de	facto	web
automation	library.	In	the	next	section,	we	are	going	to	review	the	main
features	of	Selenium	and	how	to	use	it	from	JUnit	5	tests.

http://www.seleniumhq.org/


Selenium	in	a	nutshell
Selenium	is	composed	by	different	projects.	First,	we	found	the	Selenium
IDE.	It	is	a	Firefox	plugin	implementing	the	Record	and	Playback	(R&P)
pattern	for	web	applications.	Thus,	it	allows	to	record	manual	interactions
with	Firefox	and	the	playback	that	recording	in	an	automated	fashion.

The	second	project	was	named	Selenium	Remote	Control	(RC).	This
component	was	capable	of	driving	different	types	of	browser	automatically
using	different	programming	languages,	such	as	Java,	C#,	Python,	Ruby,	PHP,
Perl,	or	JavaScript.	This	component	injected	a	JavaScript	library	(called
Selenium	Core)	in	the	SUT.	This	library	was	controlled	with	an	intermediate
component	called	Selenium	RC	Server	which	receives	requests	from	the	test
code	(see	the	following	figure).	Selenium	RC	had	important	security
problems	due	to	same-origin	policy.

For	that	reason,	it	was	deprecated	on	2016	in	favor	of	Selenium	WebDriver:

Selenium	RC	schema

We	review	Selenium	RC	just	to	introduce	Selenium	WebDriver.
Nowadays,	Selenium	RC	is	deprecated	and	its	use	is	highly
discouraged.

From	a	functional	point	of	view,	Selenium	WebDriver	is	equivalent	to	RC
(that	is,	allows	to	control	browsers	using	code).	As	a	differential	aspect,
Selenium	WebDriver	makes	calls	to	the	browser	using	each	browser’s	native
support	for	automation.	The	language	bindings	provided	by	Selenium
WebDriver	(labeled	as	Test	in	next	figure)	communicates	with	and	a	browser-
specific	binary,	which	acts	as	a	bridge	between	real	browser.	For	instance,	this
binary	is	called	chromedriver	(https://sites.google.com/a/chromium.org/chromedriver/)	for
Chrome	and	geckodriver	(https://github.com/mozilla/geckodriver)	for	Firefox.	The

https://sites.google.com/a/chromium.org/chromedriver/
https://github.com/mozilla/geckodriver


communication	between	the	Test	and	the	driver	is	done	with	JSON	messages
over	HTTP	using	the	so-called	JSON	Wire	Protocol.

This	mechanism,	originally	proposed	by	the	WebDriver	team	is	standardized
in	the	W3C	WebDriver	API	(https://www.w3.org/TR/webdriver/):

Selenium	WebDriver	schema

The	last	project	of	the	Selenium	portfolio	is	called	Selenium	Grid.	It	can	be
seen	as	extension	of	Selenium	WebDriver,	since	it	allows	distributing	browser
execution	on	remote	machines.	There	are	a	number	of	Nodes,	each	running	on
different	operating	systems	and	with	different	browsers.	The	Hub	server
keeps	a	track	of	the	nodes	and	proxies	requests	to	them	(see	figure	below):

Selenium	Grid	schema

The	following	table	summarizes	the	main	features	of	the	WebDriver	API:

WebDriver	feature	and
description Example

WebDriver	object	creation:

It	allows	to	create	WebDriver
instances,	which	are	used	from
the	test	code	to	control	a
browser	remotely.

WebDriver	driver	=	new	FirefoxDriver();

WebDriver	driver	=	new	ChromeDriver();

WebDriver	driver	=	new	OperaDriver();

https://www.w3.org/TR/webdriver/


Navigation:

It	allows	to	navigate	to	a	given
URL.

driver.get("http://junit.org/junit5/");

Locate	elements:

It	allows	to	identify	elements
with	a	web	page	(WebElement)
using	different	strategies:	by
id,	name,	class	name,	CSS
selector,	link	text,	tag	name,	or
XPath

WebElement	webElement	=	

driver.findElement(By.id("id"));

driver.findElement(By.name("name"));

driver.findElement(By.className("class"));

driver.findElement(By.cssSelector("cssInput"));

driver.findElement(By.linkText("text"));

driver.findElement(By.tagName("tag	name"));

driver.findElement(By.xpath("/html/body/div[4]"));

Interact	with	elements:

From	a	given	WebElement,	we
can	carry	out	different	types	of
automated	interaction,	such	as
click	elements,	type	text	or
clear	input	fields,	read
attributes,	and	so	on.

webElement.click();

webElement.sendKeys("text");

webElement.clear();

String	text	=	webElement.getText();

String	href	=	webElement.getAttribute("href");

String	css	=	webElement.getCssValue("css");

Dimension	dim	=	webElement.getSize();

boolean	enabled	=	webElement.isEnabled();

boolean	selected	=	webElement.isSelected();

boolean	displayed	=	webElement.isDisplayed();

Handle	waits:

WebDriver	can	handle	wait
both	explicit	and	implicitly.

//	Explicit

WebDriverWait	wait	=	new	WebDriverWait(driver,	

30);

wait.until(ExpectedConditions);

//	Implicit	wait

driver.manage().timeouts().implicitlyWait(30,	

SECONDS);

XPath	(XML	Path	Language)	is	a	language	to	build	expressions
to	parse	and	process	XML-like	documents	(for	example,	HTML)



JUnit	5	extension	for	Selenium
In	order	to	simplify	the	use	of	Selenium	WebDriver	in	JUnit	5,	the	open
source	JUnit	5	extension	called	selenium-jupiter	can	be	used.	This	extension	has
been	built	using	the	dependency	injection	capability	provided	by	the
extension	model	of	JUnit	5.	Thanks	to	this	feature,	different	types	objects	can
be	injected	in	JUnit	5	in	@Test	methods	as	parameters.	Concretely,	selenium-
jupiter	allows	to	inject	subtypes	of	the	WebDriver	interface	(for	example,
ChromeDriver,	FirefoxDriver,	and	so	on).

Using	selenium-jupiter	is	very	easy.	First,	we	need	to	import	the	dependency	in
our	project	(typically	as	test	dependency).	In	Maven,	it	is	done	as	follows:

<dependency>

								<groupId>io.github.bonigarcia</groupId>

								<artifactId>selenium-jupiter</artifactId>

								<version>${selenium-jupiter.version}</version>

								<scope>test</scope>

</dependency>

selenium-jupiter	depends	on	several	libraries,	which	are	added	in	our	project	as
transitive	dependencies,	namely:

Selenium-java	(org.seleniumhq.selenium:selenium-java):	Java	library	for
Selenium	WebDriver.
WebDriverManager	(io.github.bonigarcia:webdrivermanager):	Java	library	for
automatic	Selenium	WebDriver	binaries	management	in	runtime	for	Java
(https://github.com/bonigarcia/webdrivermanager).
Appium	(io.appium:java-client):	Java	client	for	Appium,	testing	framework
that	extends	Selenium	to	automate	testing	of	native,	hybrid,	and	mobile
web	apps	(http://appium.io/).

Once	selenium-jupiter	is	included	in	our	project,	we	need	to	declare	selenium-
jupiter	extension	in	our	JUnit	5	test,	simply	annotating	it	with
@ExtendWith(SeleniumExtension.class).	Then,	we	need	to	include	one	or	more
parameters	in	our	@Test	methods	whose	types	implement	the	WebDriver
interface,	and	selenium-jupiter	control	the	lifecycle	of	the	WebDriver	object
internally.	He	WebDriver	subtypes	supported	by	selenium-jupiter	are	the
following:

ChromeDriver:	This	is	used	to	control	Google	Chrome	browser.
FirefoxDriver:	This	is	used	to	control	Firefox	browser.

https://github.com/bonigarcia/webdrivermanager
http://appium.io/


EdgeDriver:	This	is	used	to	control	Microsoft	Edge	browser.
OperaDriver:	This	is	used	to	control	Opera	browser.
SafariDriver:	This	is	used	to	control	Apple	Safari	browser	(only	possible
in	OSX	El	Capitan	or	greater).
HtmlUnitDriver:	This	is	used	to	control	HtmlUnit	(headless	browser,	that	is,
a	browser	without	GUI).
PhantomJSDriver:	This	is	used	to	control	PhantomJS	(another	headless
browser).
InternetExplorerDriver:	This	is	used	to	control	Microsoft	Internet	Explorer.
Although	this	browser	is	supported,	Internet	Explorer	is	deprecated	(in
favor	of	Edge)	and	its	use	is	highly	discouraged.
RemoteWebDriver:	This	is	used	to	control	remote	browsers	(Selenium	Grid).
AppiumDriver:	This	is	used	to	control	mobile	devices	(Android	and	iOS).

Consider	the	following	class,	which	uses	selenium-jupiter	,	that	is,	declaring	the
Selenium	extension	using	@ExtendWith(SeleniumExtension.class).	This	example
defines	three	tests,	which	are	going	be	executed	using	local	browsers.	First
one	(named	testWithChrome)	uses	Chrome	as	browsers.	To	that	aim,	and	thanks
to	the	dependency	injection	feature	of	selenium-jupiter,	the	method	simply
needs	to	declare	a	method	argument	using	the	type	ChromeDriver.	Then,	in	the
body	of	the	test,	the	WebDriver	API	is	invoked	in	that	object.	Note	that	this	test
simple	opens	a	web	page	and	asserts	that	the	title	is	as	expected.	Next,	test
(testWithFirefoxAndOpera)	is	similar,	but	this	time	using	two	different	browsers	at
the	same	time:	Firefox	(using	an	instance	of	FirefoxDriver)	and	Opera	(using	an
instance	of	OperaDriver).	The	third	and	last	test	(testWithHeadlessBrowsers)	declares
and	uses	two	headless	browsers	(HtmlUnit	and	PhantomJS):

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertNotNull;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.openqa.selenium.chrome.ChromeDriver;

import	org.openqa.selenium.firefox.FirefoxDriver;

import	org.openqa.selenium.htmlunit.HtmlUnitDriver;

import	org.openqa.selenium.opera.OperaDriver;

import	org.openqa.selenium.phantomjs.PhantomJSDriver;

@ExtendWith(SeleniumExtension.class)

public	class	LocalWebDriverTest	{

				@Test

				public	void	testWithChrome(ChromeDriver	chrome)	{

								chrome.get("https://bonigarcia.github.io/selenium-jupiter/");

								assertTrue(chrome.getTitle().startsWith("selenium-jupiter"));

				}

				@Test

				public	void	testWithFirefoxAndOpera(FirefoxDriver	firefox,



												OperaDriver	opera)	{

								firefox.get("http://www.seleniumhq.org/");

								opera.get("http://junit.org/junit5/");

								assertTrue(firefox.getTitle().startsWith("Selenium"));

								assertTrue(opera.getTitle().equals("JUnit	5"));

				}

				@Test

				public	void	testWithHeadlessBrowsers(HtmlUnitDriver	htmlUnit,

												PhantomJSDriver	phantomjs)	{

								htmlUnit.get("https://bonigarcia.github.io/selenium-jupiter/");

								phantomjs.get("https://bonigarcia.github.io/selenium-jupiter/");

								assertTrue(htmlUnit.getTitle().contains("JUnit	5	extension"));

								assertNotNull(phantomjs.getPageSource());

				}

}

In	order	to	execute	properly	this	test	class,	the	required
browsers	(Chrome,	Firefox,	and	Opera)	should	be	installed
beforehand	running	it.	On	the	other	hand,	the	headless	browsers
(HtmlUnit	and	PhantomJS)	are	consumed	as	Java	dependencies,
and	so	there	is	no	need	to	install	them	manually.

Let’s	see	another	example,	this	time	using	remote	browsers	(that	is,	Selenium
Grid).	Again,	this	class	uses	the	selenium-jupiter	extension.	The	test
(testWithRemoteChrome)	declares	a	single	parameter	called	remoteChrome,	of	type
RemoteWedbrider.	This	argument	is	annotated	with	@DriverUrl	and
@DriverCapabilities,	specifying	the	Selenium	Server	(or	Hub)	URL	and	the
required	capabilities	respectively.	Regarding	the	capabilities,	we	are
configuring	to	use	a	Chrome	browser	version	59:

To	run	this	test	properly,	a	Selenium	Server	should	up	and
running	in	the	localhost,	and	a	node	(Chrome	59)	needs	to	be
registered	in	the	Hub.

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.openqa.selenium.remote.RemoteWebDriver;

@ExtendWith(SeleniumExtension.class)

public	class	RemoteWebDriverTest	{

				@Test

				void	testWithRemoteChrome(

												@DriverUrl("http://localhost:4444/wd/hub")	

												@DriverCapabilities(capability	=	{

																			@Capability(name	=	"browserName",	value	="chrome"),

																			@Capability(name	=	"version",	value	=	"59")	})	

																			RemoteWebDriver	remoteChrome)

												throws	InterruptedException	{

								remoteChrome.get("https://bonigarcia.github.io/selenium-				

												jupiter/");

								assertTrue(remoteChrome.getTitle().contains("JUnit	5	

												extension"));



				}

}

In	the	last	example	of	this	section,	we	use	AppiumDriver.	Concretely,	we	set	up
as	capabilities	the	use	of	a	Chrome	browser	in	an	Android	emulated	device
(@DriverCapabilities).	Again,	this	emulator	needs	to	be	up	and	running	in	the
machine	running	the	test	beforehand:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertTrue;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.openqa.selenium.By;

import	org.openqa.selenium.WebElement;

import	org.openqa.selenium.remote.DesiredCapabilities;

import	io.appium.java_client.AppiumDriver;

@ExtendWith(SeleniumExtension.class)

public	class	AppiumTest	{

				@DriverCapabilities

				DesiredCapabilities	capabilities	=	new	DesiredCapabilities();

				{

								capabilities.setCapability("browserName",	"chrome");

								capabilities.setCapability("deviceName",	"Android");

				}

				@Test

				void	testWithAndroid(AppiumDriver<WebElement>	android)	{

								String	context	=	android.getContext();

								android.context("NATIVE_APP");

								android.findElement(By.id("com.android.chrome:id/terms_accept"))

																.click();

								android.findElement(By.id("com.android.chrome:id/negative_button"))

																.click();

								android.context(context);

								android.get("https://bonigarcia.github.io/selenium-jupiter/");

								assertTrue(android.getTitle().contains("JUnit	5	extension"));

				}

}

For	further	examples	of	selenium-jupiter,	visit	https://bonigarcia.github.i
o/selenium-jupiter/.

https://bonigarcia.github.io/selenium-jupiter/


Cucumber
Cucumber	(https://cucumber.io/)	is	testing	framework	aimed	to	automate
acceptance	tests	written	following	a	Behavior-Driven	Development	(BDD)
style.	Cucumber	has	been	written	in	Ruby,	although	implementations	for
other	languages	(including	Java,	JavaScript,	and	Python)	are	available.

https://cucumber.io/


Cucumber	in	a	nutshell
Cucumber	executes	tests	specified	written	in	language	called	Gherkin.	It	is	a
plaint-text	natural	language	(for	example,	English	or	one	of	other	60+
languages	supported	by	Cucumber)	with	a	given	structure.	Gherkin	has	been
designed	to	be	used	by	non-programmers,	typically	customers,	business
analysis,	managers,	and	so	on.

The	extension	for	Gherkin	files	is	.feature.

In	a	Gherkin	file,	non-blank	lines	can	start	with	a	keyword,	followed	by	text
in	natural	language.	The	main	keywords	are	the	following:

Feature:	High-level	description	of	the	software	feature	to	be	tested.	It
can	be	seen	as	a	use	case	description.
Scenario:	Concrete	example	that	illustrates	a	business	rule.	Scenarios
follow	the	same	pattern:

Describe	initial	context.
Describe	an	event.
Describe	the	expected	outcome.

These	actions	are	known	in	the	Gherkin	jargon	as	steps,	which	are
mainly	Given,	When,	or	Then:

There	are	two	additional	steps:	And	(used	for	logical	and	for
different	steps)	and	But	(used	in	for	negative	form	of	And).

Given:	Preconditions	and	initial	state	before	the	start	of	a	test.
When:	Actions	taken	by	a	user	during	a	test.
Then:	Outcome	from	actions	taken	in	the	When	clause.
Background:	To	avoid	repeat	steps	in	different	scenarios,	the	keyword
background	allows	to	declared	these	steps,	which	are	reused	in
subsequent	scenarios.
Scenario	Outline:	Scenarios	in	which	steps	are	marked	with	variables
(using	the	symbols	<	and	>).
Examples:	A	scenario	outline	declaration	is	always	followed	by	one	or
more	examples	sections,	which	is	a	container	table	with	values	for	the



declared	variables	in	the	Scenario	Outline.

When	one	line	does	not	start	with	a	keyword,	that	line	is	not
interpreted	by	Cucumber.	It	is	used	to	custom	description.

Once	we	defined	our	features	to	be	tested	we	need	what	it	is	called	steps
definition,	which	allows	to	translate	plain	text	Gherkin	into	actions	that
actually	exercise	our	SUT.	In	Java,	it	can	be	easily	done	by	annotations	to
annotate	methods	for	the	step	implementation:	@Given,	@Then,	@When,	@And,	and
@But.	The	string	value	of	each	step	can	contain	regular	expression	which	are
mapped	as	fields	in	the	method.	See	an	example	in	the	next	section.



JUnit	5	extension	for	Cucumber
The	latest	versions	of	the	Cucumber	artifacts	for	Java	incorporates	a	JUnit	5
extension	for	Cucumber.	This	section	contains	a	complete	example	of	a
feature	defined	in	Gherkin	and	the	JUnit	5	to	execute	it	with	Cucumber.	As
usual,	the	source	code	of	this	example	is	hosted	on	GitHub	(https://github.com/boni
garcia/mastering-junit5).

The	structure	of	the	project	containing	this	example	is	as	follows:

JUnit	5	with	Cucumber	project	structure	and	content

First	of	all,	we	need	to	create	our	Gherkin	file,	which	is	aimed	to	test	a	simple
calculator	system.	This	calculator	will	be	the	SUT	or	our	test.	The	content	of
our	feature	file	is	as	follows:

Feature:	Basic	Arithmetic

		Background:	A	Calculator

				Given	a	calculator	I	just	turned	on

		Scenario:	Addition

				When	I	add	4	and	5

				Then	the	result	is	9

		Scenario:	Substraction

				When	I	substract	7	to	2

				Then	the	result	is	5

		Scenario	Outline:	Several	additions

				When	I	add	<a>	and	<b>

				Then	the	result	is	<c>

		Examples:	Single	digits

				|	a	|	b	|	c		|

https://github.com/bonigarcia/mastering-junit5


				|	1	|	2	|	3		|

				|	3	|	7	|	10	|

Then,	we	need	to	implement	our	steps	definition.	As	described	earlier,	we	use
annotations	and	regular	expression	to	map	the	text	contained	in	the	Gherkin
file	to	the	actual	exercise	of	SUT	depending	on	the	step:

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	cucumber.api.java.en.Given;

import	cucumber.api.java.en.Then;

import	cucumber.api.java.en.When;

public	class	CalculatorSteps	{

				private	Calculator	calc;

				@Given("^a	calculator	I	just	turned	on$")

				public	void	setup()	{

								calc	=	new	Calculator();

				}

				@When("^I	add	(\\d+)	and	(\\d+)$")

				public	void	add(int	arg1,	int	arg2)	{

								calc.push(arg1);

								calc.push(arg2);

								calc.push("+");

				}

				@When("^I	substract	(\\d+)	to	(\\d+)$")

				public	void	substract(int	arg1,	int	arg2)	{

								calc.push(arg1);

								calc.push(arg2);

								calc.push("-");

				}

				@Then("^the	result	is	(\\d+)$")

				public	void	the_result_is(double	expected)	{

								assertEquals(expected,	calc.value());

				}

}

Of	course,	we	still	need	to	implement	our	JUnit	5	test.	To	achieve	the
integration	of	Cucumber	and	JUnit	5,	the	Cucumber	extension	needs	to	be
registered	in	our	class	by	means	of	@ExtendWith(CucumberExtension.class).
Internally,	CucumberExtension	implements	the	ParameterResolver	callback	of	the
Jupiter	extension	model.	The	objective	is	to	inject	the	corresponding	tests	of
the	Cucumber	feature	as	Jupiter	DynamicTest	objects	in	the	tests.	Notice	in	the
example	how	a	@TestFactory	is	used.

Optionally,	we	can	annotate	our	test	class	with	@CucumberOptions.	This	annotation
allows	to	configure	the	Cucumber	settings	for	our	test.	The	allowed	elements
for	this	annotation	are:

plugin:	Built-in	formatter:	pretty,	progress,	JSON,	usage,	among	others.



Default:	{}.
dryRun:	Checks	if	all	steps	have	definitions.	Default:	false.
features:	Paths	of	the	features	files.	Default:	{}.
glue:	Paths	for	step	definitions.	Default:	{}.
tags:	Tags	in	the	features	to	be	executed.	Default	{}.
monochrome:	Displays	console	output	in	a	readable	way.	Default:	false.
format:	Reports	formatter	to	be	used.	Default:	{}.
strict:	Fails	if	there	are	undefined	or	pending	steps.	Default:	false.

package	io.github.bonigarcia;

import	java.util.List;

import	java.util.stream.Collectors;

import	java.util.stream.Stream;

import	org.junit.jupiter.api.DynamicTest;

import	org.junit.jupiter.api.TestFactory;

import	org.junit.jupiter.api.extension.ExtendWith;

import	cucumber.api.CucumberOptions;

import	cucumber.api.junit.jupiter.CucumberExtension;

@CucumberOptions(plugin	=	{	"pretty"	})

@ExtendWith(CucumberExtension.class)

public	class	CucumberTest	{

				@TestFactory

				public	Stream<DynamicTest>	runCukes(Stream<DynamicTest>	scenarios)	{

								List<DynamicTest>	tests	=	scenarios.collect(Collectors.toList());

								return	tests.stream();

				}

}

At	this	point,	we	are	able	to	execute	our	Cucumber	suite	with	JUnit	5.	In	the
following	example	we	see	the	output	when	running	the	test	with	Gradle:



Execution	of	JUnit	5	using	Cucumber	with	Gradle



Docker
Docker	(https://www.docker.com/)	is	an	open	source	software	technology,	which
allows	to	pack	and	run	any	application	as	a	lightweight	and	portable
container.	It	provides	a	command-line	program,	a	background	daemon,	and	a
set	of	remote	services	that	simplifies	the	life	cycle	of	containers.

https://www.docker.com/


Docker	in	a	nutshell
Historically,	UNIX-style	operating	systems	used	the	term	jail	to	describe
modified	isolated	runtime	environments.	The	Linux	Containers	(LXC)
project	started	in	2008	and	brought	together	cgroups,	kernel	namespaces,	or
chroot	(among	others)	to	provide	complete	isolation	execution.	The	problem
with	LXC	is	the	difficulty,	and	for	that	reason,	the	Docker	technology
emerged.

Docker	hides	in	underlying	complexity	of	the	aforementioned	resource
isolation	features	of	the	Linux	kernel	(cgroups,	kernel	namespaces,	and	so	on)
to	allow	independent	containers	to	run	within	a	single	Linux	instance.	Docker
provides	a	high-level	API,	which	allows	to	pack,	ship	and	run	any	application
as	a	container.

In	Docker,	a	container	contains	an	application	and	its	dependencies	together.
Multiple	containers	can	run	on	the	same	machine	and	share	the	same	OS
kernel	with	other	containers.	Each	container	is	running	as	isolated	process	in
user	space.

Unlike	virtual	machines	(VMs),	in	Docker	containers	there	is	no	need	of
using	a	hypervisor,	which	is	the	software	that	allows	to	create	and	runs	VM
(example;	VirtualBox,	VMware,	QEMU	or	Virtual	PC).

The	architecture	of	VM	and	container	are	depicted	in	the	following	diagram:

Virtual	machine	versus	container

The	Docker	platform	has	two	components:	the	Docker	Engine,	which	is



responsible	for	creating	and	running	containers;	and	the	Docker	Hub	(https://hub
.docker.com/),	a	cloud	service	for	distributing	containers.	The	Docker	Hub
provides	an	enormous	number	of	public	container	images	for	download.	The
Docker	Engine	is	a	client-server	application	composed	by	three	major
components:

A	server	implemented	as	a	daemon	process	(the	dockerd	command).
A	REST	API,	which	specifies	interfaces	that	programs	can	use	to	talk	to
the	daemon	and	instruct	it	what	to	do.
A	command	line	interface	(CLI)	client	(the	docker	command).

https://hub.docker.com/


JUnit	5	extension	for	Docker
Nowadays,	containers	are	changing	the	way	we	develop,	distribute,	and	run
software.	This	is	especially	interesting	for	Continuous	Integration	(CI)
testing	environment,	in	which	the	convergence	with	Docker	has	a	direct
impact	on	the	improvement	of	efficiency.

Regarding	JUnit	5,	at	the	moment	of	this	writing	there	is	an	open	source	JUnit
5	extension	for	Docker,	named	JUnit5-Docker	(https://faustxvi.github.io/junit5-
docker/).	This	extension	acts	as	client	of	the	Docker	engine	and	allows	to	start	a
Docker	container	(downloaded	from	the	Docker	Hub),	before	running	the
tests	of	a	class.	That	container	is	stopped	at	the	end	of	the	tests.	In	order	to	use
JUnit5-Docker,	first	we	need	to	add	the	dependency	in	our	project.	In	Maven:

<dependency>

			<groupId>com.github.faustxvi</groupId>

			<artifactId>junit5-docker</artifactId>

			<version>${junit5-docker.version}</version>

			<scope>test</scope>

</dependency>

In	Gradle:
dependencies	{

				testCompile("com.github.faustxvi:junit5-docker:${junitDockerVersion}")

}

The	use	of	JUnit5-Docker	is	quite	straightforward.	We	simply	need	to
annotate	our	test	class	with	@Docker.	The	elements	available	in	this	annotation
are	the	following:

image:	Docker	image	to	be	started.
ports:	Port	mapping	for	the	Docker	container.	This	is	required	since	at
least	one	port	must	be	visible	for	the	container	to	be	useful.
environments:	Optional	environment	variables	to	pass	to	the	docker
container.	Default:	{}.
waitFor:	Optional	log	to	wait	for	before	running	the	tests.	Default:
@WaitFor(NOTHING).
newForEachCase:	Boolean	flag,	which	determines	if	the	container	should	be
recreated	for	each	test	case.	This	value	will	be	false	if	it	should	be
created	only	once	for	the	test	class.	Default:	true.

Consider	the	following	example.	This	test	class	uses	the	@Docker	annotation	to
start	a	MySql	container	(container	image	MySQL)	and	the	beginning	of	each

https://faustxvi.github.io/junit5-docker/


test.	The	internal	container	port	is	3306,	which	will	be	mapped	to	the	host	port
8801.	Then,	several	environment	attributes	are	defined	(MySql	root	password,
default	database,	and	user	name	and	password).	The	execution	of	the	test	will
not	start	until	the	trace	mysqld:	ready	for	connections	appears	in	the	container
log	(which	indicates	that	the	MySql	instance	is	up	and	running).	In	the	body
of	the	test,	we	start	a	JDBC	connection	against	the	MySQL	instance	running
in	the	container.

This	test	has	been	executed	in	a	Windows	machine.	For	that
reason,	the	host	of	the	JDBC	URL	is	192.168.99.100,	which	is
the	IP	for	the	Docker	Machine.	It	is	a	tool	which	allows	to
install	Docker	Engine	on	virtual	hosts,	such	as	Windows	or	Mac
(https://docs.docker.com/machine/).	In	a	Linux	machine,	this	IP	could	be
127.0.0.1	(localhost).

package	io.github.bonigarcia;

import	static	org.junit.jupiter.api.Assertions.assertFalse;

import	java.sql.Connection;

import	java.sql.DriverManager;

import	org.junit.jupiter.api.Test;

import	com.github.junit5docker.Docker;

import	com.github.junit5docker.Environment;

import	com.github.junit5docker.Port;

import	com.github.junit5docker.WaitFor;

@Docker(image	=	"mysql",	ports	=	@Port(exposed	=	8801,	inner	=	3306),	environments	

=	{

								@Environment(key	=	"MYSQL_ROOT_PASSWORD",	value	=	"root"),

								@Environment(key	=	"MYSQL_DATABASE",	value	=	"testdb"),

								@Environment(key	=	"MYSQL_USER",	value	=	"testuser"),

								@Environment(key	=	"MYSQL_PASSWORD",	value	=	"secret"),	},	

												waitFor	=	@WaitFor("mysqld:	ready	for	connections"))

public	class	DockerTest	{

				@Test

			void	test()	throws	Exception	{

								Class.forName("com.mysql.jdbc.Driver");

								Connection	connection	=	DriverManager.getConnection(

																"jdbc:mysql://192.168.99.100:8801/testdb",	"testuser",

																"secret");

								assertFalse(connection.isClosed());

								connection.close();

				}

}

The	execution	of	this	test	in	the	Docker	Windows	terminal	is	as	follows:

https://docs.docker.com/machine/


Execution	of	test	using	JUnit5-Docker	extension



Android
Android	(https://www.android.com/)	is	an	open	source	mobile	operating	system
based	on	a	modified	version	of	Linux.	It	was	originally	developed	by	a	startup
named	Android,	acquired	and	championed	by	Google	in	2005.

According	to	the	report	by	Gartner	Inc.	(American	IT	research	and	advisory
company),	in	2017	Android	and	iOS	account	more	than	99%	of	global
smartphone	sales,	as	shown	in	the	following	chart:

Smartphone	operative	system	market.	Picture	created	by	www.statista.com.

https://www.android.com/


Android	in	a	nutshell
Android	is	a	Linux-based	software	stack	divided	into	several	layers.	Those
layers,	from	down	to	top	are	the	following:

Linux	kernel:	This	is	the	foundation	of	the	Android	platform.	This	layer
contains	all	the	low-level	device	drivers	for	the	various	hardware
components	of	an	Android	device.
Hardware	Abstraction	Layer	(HAL):	This	layer	provides	standard
interfaces	that	expose	hardware	capabilities	to	the	higher-level	Java	API
framework.
Android	Runtime	(ART):	It	provides	a	runtime	environment	for	.dex
files,	a	bytecode	format	designed	for	minimal	memory	footprint.	ART
was	the	first	release	on	Android	5.0	(see	table	below).	Prior	to	that
version,	Dalvik	was	the	Android	runtime.
Native	C/C++	libraries:	This	layer	contains	native	libraries	written	in	C
and	C++,	such	as	OpenGL	ES	for	high-performance	2D	and	3D	graphics
processing.
Java	API	framework:	The	entire	feature-set	of	Android	is	available	for
developers	through	APIs	written	in	Java.	These	APIs	are	the	building
block	for	creating	Android	apps,	for	instance:	the	View	System	(for	apps
UIs),	the	Resource	Manager	(for	I18N,	graphics,	layouts),	the
Notification	Manager	(for	custom	alerts	in	the	status	bar),	the	Activity
Manager	(to	manage	the	apps	lifecycle),	or	the	Content	Provider	(to
enable	apps	access	data	from	other	apps,	such	as	the	Contacts,	and	so
on).
Apps:	Android	comes	with	a	set	of	core	apps,	such	as	Phone,	Contacts,
Browser,	and	so	on.	In	addition,	many	others	apps	can	be	downloaded
and	installed	from	Google	Play	(formerly	Android	Market):



Android	layered	architecture

Android	has	gone	through	quite	a	number	of	updates	since	its	first	release,	as
described	in	the	following	table:

Android
version Codename API

level
Linux	kernel
version Release	date

1.5 Cupcake 3 2.6.27
April	30,	2009

	

1.6 Donut 4 2.6.29
September	15,
2009

	

2.0,	2.1

	
Eclair 5,	6,	7 2.6.29 October	26,

2009

2.2 Froyo 8 2.6.32 May	20,	2010

2.3 Gingerbread 9,	10 2.6.35
December	6,
2010



3.0,	3.1,	3.2 Honeycomb
11,	12,
13 2.6.36

February	22,
2011

4.0 Ice	Cream
Sandwich 14,	15 3.0.1 October	18,

2011

4.1,	4.2,	4.3 Jelly	Bean 16,	17,
18

3.0.31,	3.0.21,
3.4.0 July	9,	2012

4.4

	
KitKat 19,	20 3.10 October	31,

2013

5.0,	5.1 Lollipop 21,	22 3.16.1 November	12,
2014

6.0

	
Marshmallow 23 3.18.10 October	5,	2015

7.0,	7.1 Nougat 24,	25 4.4.1 August	22,
2016

8.0 Android	O 26 TBA TBA

	

From	a	developer	point	of	view,	Android	provides	a	rich	application
framework,	which	allows	to	build	apps	for	mobile	devices.	Android	apps	are
written	in	the	Java	programming	language.	The	Android	Software
Development	Kit	(SDK)	compile	out	Java	code	along	with	any	data	and
resource	files	into	an	.apk	(Android	package)	file,	which	contains	can	be
installed	in	Android-powered	devices,	such	as	smartphones,	tablets,	smart
TVs,	or	smartwatches.

For	complete	information	about	Android	development,	visit	https:/
/developer.android.com/.

Android	Studio	is	the	official	IDE	for	Android	development.	It	is	built	based
on	IntelliJ	IDEA.	In	Android	Studio,	the	build	process	of	Android	projects	is
managed	by	the	Gradle	build	system.	During	the	Android	Studio	installation,
two	additional	tools	can	be	also	installed:

https://developer.android.com/


Android	SDK:	This	contains	all	of	the	packages	and	tools	required	to
develop	Android	apps.	The	SDK	Manager	allows	to	download	and
install	SDK	for	different	versions	(see	the	preceding	table).
Android	Virtual	Device	(AVD):	This	is	an	emulator	that	allows	us	to
model	an	actual	device.	The	AVD	Manager	allows	to	download	and
install	different	emulated	Android	virtual	devices	grouped	into	four
categories:	phones,	tables,	TV,	and	wears.



Gradle	plugin	for	JUnit	5	in
Android	projects
At	the	time	of	this	writing,	there	is	no	official	support	for	JUnit	5	in	Android
projects.	To	solve	this	problem,	an	open	source	Gradle	plugin	named	android-
junit5	has	been	created	(https://github.com/aurae/android-junit5).	To	use	this	plugin,
first	we	need	to	specify	the	proper	dependency	in	our	build.gradle	file:

buildscript	{

				dependencies	{

								classpath	"de.mannodermaus.gradle.plugins:android-junit5:1.0.0"

				}

}

In	order	to	use	this	plugin	in	our	project,	we	need	to	extend	our	project
capabilities	using	the	clause	apply	plugin	in	our	build.gradle	file:

apply	plugin:	"com.android.application"

apply	plugin:	"de.mannodermaus.android-junit5"

dependencies	{

				testCompile	junitJupiter()

}

The	android-junit5	plugin	configures	the	junitPlatform	task,	attaching
automatically	attaches	both	the	Jupiter	and	Vintage	engines	during	the	test
execution	phase.	As	an	example,	consider	the	following	project	example,	as
usual	hosted	on	GitHub	(https://github.com/bonigarcia/mastering-junit5/tree/master/junit5-andr
oid).	The	following	is	a	screenshot	of	this	project	imported	in	Android	Studio:

https://github.com/aurae/android-junit5
https://github.com/bonigarcia/mastering-junit5/tree/master/junit5-android


Android	project	compatible	with	JUnit	5	on	IntelliJ

Now,	we	are	going	to	create	an	Android	JUnit	run	configuration	of	Android
Studio.	As	can	be	seen	in	the	screenshot,	we	use	the	option	All	in	package
referred	to	the	package	containing	the	tests	(io.github.bonigarcia.myapplication	in
this	example):



Android	JUnit	run	configuration

If	we	launch	the	aforementioned	run	configuration,	all	the	tests	of	the	project
will	be	executed.	These	tests	can	use	the	JUnit	4	programming	model
(Vintage)	and	even	the	JUnit	5	(Jupiter)	in	a	seamless	way:

Execution	on	Jupiter	and	Vintage	tests	within	an	Android	project	in	IntelliJ



REST
Roy	Fielding	is	an	American	computer	scientist	born	in	1965.	He	is	one	of	the
authors	of	the	HTTP	protocol	and	the	co-authors	of	the	Apache	Web	server.	In
the	year	2000,	Fielding	coined	the	term	REST	(short	for	REpresentational
State	Transfer)	in	his	doctoral	dissertation	entitled	Architectural	Styles	and	the
Design	of	Network-based	Software	Architecture.	REST	is	an	architectural
style	for	designing	distributed	systems.	It’s	not	a	standard,	but	rather	a	set	of
constraints.	REST	is	commonly	used	in	conjunction	with	HTTP.	On	the	one
hand,	the	implementations	which	follows	the	strict	principles	of	REST	are
often	referred	as	RESTful.	On	the	other	hand,	those	which	follow	a	loose
adherence	of	such	principles	are	called	RESTlike.



REST	in	a	nutshell
REST	follows	a	client-server	architecture.	The	server	is	in	charge	of	handling
a	set	of	services,	listening	for	requests	made	by	clients.	The	communication
between	client	and	server	must	be	stateless,	meaning	that	server	do	not	store
any	record	from	the	clients	and	therefore	each	request	done	from	the	client
must	contain	all	the	information	required	for	the	server	to	process	it
separately.

The	building	blocks	of	REST	architectures	are	named	resources.	Resources
define	the	type	of	information	that	is	going	to	be	transferred.	Resources
should	be	identified	in	a	unique	way.	In	HTTP,	the	way	to	access	the	resource
it	to	provide	its	full	URL,	also	known	as	API	endpoint.	Each	resource	has	a
representation,	which	is	a	machine-readable	explanation	of	the	current	state	of
a	resource.	Nowadays,	representations	are	usually	with	JSON,	but	it	can	be
done	in	other	formats	such	as	XML	or	YAML.

Once	we	identified	the	resources	and	the	representation	format,	we	need	to
specify	what	can	be	done	with	them,	that	is,	the	actions.	Actions	could
potentially	be	anything,	although	there	is	a	set	of	common	actions	that	any
resource-oriented	system	should	provide:	CRUD	(create,	retrieve,	update,	and
delete)	actions.	REST	actions	can	be	mapped	to	the	HTTP	methods	(so-called
verbs),	as	follows:

GET:	Reads	a	resource.
POST:	Sends	a	new	resource	to	the	server.
PUT:	Updates	a	given	resource.
DELETE:	Deletes	a	resource.
PATCH:	update	partially	a	resource.
HEAD:	Asks	if	a	given	resource	exists	without	returning	any	of	its
representations.
OPTIONS:	Retrieves	a	list	of	available	verbs	on	a	given	resource.

In	REST,	it	is	important	the	notion	of	idempotency.	For	example,	GET,	DELETE,	or
PUT	are	said	to	be	idempotent,	since	the	effect	of	these	requests	should	be	the
same	whether	the	command	is	sent	one	or	several	times.	On	the	other	hand,
POST	is	not	idempotent,	since	it	creates	a	different	resource	each	time	it	is
requested.

REST,	when	based	on	HTTP	can	benefit	on	standard	HTTP	status	codes.	A



status	code	is	a	number	that	summarizes	the	response	associated	to	it.	The
typical	HTTP	status	code	reused	in	REST	are:

200	OK:	The	request	went	fine	and	the	content	requested	was	returned.
Normally	used	on	GET	requests.
201	Created:	The	resource	was	created.	Useful	on	responses	to	POST	or
PUT	requests.
204	No	content:	The	action	was	successful,	but	there	is	no	content	returned.
Useful	for	actions	that	do	not	require	a	response	body,	such	as	a
DELETE.
301	Moved	permanently:	This	resource	was	moved	to	another	location	and	the
location	is	returned.
400	Bad	request:	The	request	issued	has	problems	(for	example,	lacking
some	required	parameters).
401	Unauthorized:	Useful	for	authentication	when	the	requested	resource	is
not	accessible	to	the	user	owning	the	request.
403	Forbidden:	The	resource	is	not	accessible,	but	unlike	401,
authentication	will	not	affect	the	response.
404	Not	found:	The	URL	provided	does	not	identify	any	resource.
405	Method	not	allowed.	The	HTTP	verb	used	on	a	resource	is	not
allowed.	(for	example,	a	PUT	on	a	read-only	resource).
500	Internal	server	error:	A	generic	error	code	when	an	unexpected
condition	in	the	server	side.

The	following	picture	shows	an	example	of	client-server	interaction	with
REST.	The	body	of	the	HTTP	messages	uses	JSON	both	for	requests	and
responses:



REST	sequence	diagram	example



Using	REST	test	libraries	with
Jupiter
REST	APIs	are	becoming	more	and	more	pervasive	nowadays.	For	that
reason,	a	proper	strategy	for	assessing	REST	services	is	desirable.	In	this
section,	we	are	going	to	learn	how	to	use	several	test	libraries	in	our	JUnit	5
tests.

First	of	all,	we	can	use	the	open	source	library	REST	Assured	(http://rest-assured.i
o/).	REST	Assured	allows	the	validation	of	REST	services	by	means	of	a
fluent	API	inspired	in	dynamic	languages	such	as	Ruby	or	Groovy.	To	use
REST	Assured	in	our	test	project,	we	simply	need	to	add	the	proper
dependency	in	Maven:

<dependency>

			<groupId>io.rest-assured</groupId>

			<artifactId>rest-assured</artifactId>

			<version>${rest-assured.version}</version>

			<scope>test</scope>

</dependency>

or	in	Gradle:
dependencies	{

				testCompile("io.rest-assured:rest-assured:${restAssuredVersion}")

}

After	that,	we	can	use	the	REST	Assured	API.	The	following	class	contains
two	test	examples.	First	sends	a	request	to	the	free	online	REST	service	http://ec
ho.jsontest.com/.	Then	verifies	if	the	response	code	and	the	body	content	are	as
expected.	The	second	test	consumes	another	free	online	REST	service	(http://ser
vices.groupkt.com/)	and	also	verifies	the	response:

package	io.github.bonigarcia;

import	static	io.restassured.RestAssured.given;

import	static	org.hamcrest.Matchers.equalTo;

import	org.junit.jupiter.api.Test;

public	class	PublicRestServicesTest	{

				@Test

				void	testEchoService()	{

								String	key	=	"foo";

								String	value	=	"bar";

								given().when().get("http://echo.jsontest.com/"	+	key	+	"/"	+	value)

																.then().assertThat().statusCode(200).body(key,	

																equalTo(value));

				}

				@Test

http://rest-assured.io/
http://echo.jsontest.com/
http://services.groupkt.com/


				void	testCountryService()	{

								given().when()

																.get("http://services.groupkt.com/country/get/iso2code/ES")

																.then().assertThat().statusCode(200)

																.body("RestResponse.result.name",	equalTo("Spain"));

				}

}

Running	this	test	in	console	with	Maven,	we	can	check	that	both	tests
succeed:

Execution	of	test	using	REST	Assured

In	the	second	example,	we	are	going	to	study,	in	addition	to	the	test,	we	are
also	going	to	implement	the	server	side,	that	is,	the	REST	service
implementation.	To	that	aim,	we	are	going	to	use	Spring	MVC	and	Spring
Boot,	previously	introduced	on	this	chapter	(see	section	Spring).

The	implementation	of	REST	services	in	Spring	is	quite	straightforward.
First,	we	simply	need	to	annotate	a	Java	class	with	@RestController.	In	the	body
of	this	class,	we	need	to	add	methods	annotated	with	@RequestMapping.	These
methods	will	listen	to	the	different	URLs	(endpoints)	implemented	in	our
REST	API.	The	accepted	elements	for	the	@RequestMapping	are:

value:	This	is	the	path	mapping	URL.
method:	This	finds	the	HTTP	request	methods	to	map	to.
params:	This	finds	parameters	of	the	mapped	request,	narrowing	the
primary	mapping.
headers:	his	finds	the	headers	of	the	mapped	request.
consumes:	This	finds	consumable	media	types	of	the	mapped	request.
produces:	This	finds	producible	media	types	of	the	mapped	request.

As	can	be	seen	inspecting	the	code	of	the	following	class,	our	service
example	implements	three	different	operations:	GET	/books	(to	read	all	book	in
the	system),	GET	/book/{index}	(to	read	a	book	given	its	identifier),	and	POST	/book
(to	create	a	book).

package	io.github.bonigarcia;

import	java.util.List;



import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.http.HttpStatus;

import	org.springframework.http.ResponseEntity;

import	org.springframework.web.bind.annotation.PathVariable;

import	org.springframework.web.bind.annotation.RequestBody;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.bind.annotation.RequestMethod;

import	org.springframework.web.bind.annotation.RestController;

@RestController

public	class	MyRestController	{

				@Autowired

				private	LibraryService	libraryService;

				@RequestMapping(value	=	"/books",	method	=	RequestMethod.GET)

				public	List<Book>	getBooks()	{

								return	libraryService.getBooks();

				}

				@RequestMapping(value	=	"/book/{index}",	method	=	RequestMethod.GET)

				public	Book	getTeam(@PathVariable("index")	int	index)	{

								return	libraryService.getBook(index);

				}

				@RequestMapping(value	=	"/book",	method	=	RequestMethod.POST)

				public	ResponseEntity<Boolean>	addBook(@RequestBody	Book	book)	{

								libraryService.addBook(book);

								return	new	ResponseEntity<Boolean>(true,	HttpStatus.CREATED);

				}

}

Since	we	are	implementing	a	Jupiter	test	for	Spring,	we	need	to	use	the
SpringExtension	and	also	the	SpringBootTest	annotation.	As	a	novelty,	we	are	going
to	inject	a	test	component	provided	by	spring-test,	named	TestRestTemplate.

This	component	is	a	wrapper	of	the	standard	Spring’s	RestTemplate	object,
which	allows	to	implement	REST	clients	in	a	seamless	way.	In	our	test,	it
requests	to	our	service	(which	is	started	before	executing	the	tests),	and
responses	are	used	to	verify	the	outcome.

Notice	that	the	object	MockMvc	(explained	in	the	section	Spring)
could	be	also	used	to	test	REST	services.	The	difference	with
respect	to	TestRestTemplate	is	that	the	former	is	used	to	test	from
the	client-side	(that	is,	response	code,	body,	content	type,	and	so
on),	while	the	the	latter	is	used	to	test	the	service	from	the	server
side.	For	instance,	in	the	example	here,	the	responses	to	the
service	calls	(getForEntity	and	postForEntity)	are	Java	objects,
whose	scope	is	only	the	server	side	(in	the	client	side,	this
information	is	serialized	as	JSON).

package	io.github.bonigarcia;

import	static	org.junit.Assert.assertEquals;

import	static	

org.springframework.boot.test.context.SpringBootTest.WebEnvironment.RANDOM_PORT;

import	static	org.springframework.http.HttpStatus.CREATED;



import	static	org.springframework.http.HttpStatus.OK;

import	java.time.LocalDate;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.boot.test.context.SpringBootTest;

import	org.springframework.boot.test.web.client.TestRestTemplate;

import	org.springframework.http.ResponseEntity;

import	org.springframework.test.context.junit.jupiter.SpringExtension;

@ExtendWith(SpringExtension.class)

@SpringBootTest(webEnvironment	=	RANDOM_PORT)

class	SpringBootRestTest	{

				@Autowired

				TestRestTemplate	restTemplate;

				@Test

				void	testGetAllBooks()	{

								ResponseEntity<Book[]>	responseEntity	=	restTemplate

																.getForEntity("/books",	Book[].class);

								assertEquals(OK,	responseEntity.getStatusCode());

								assertEquals(3,	responseEntity.getBody().length);

				}

				@Test

				void	testGetBook()	{

								ResponseEntity<Book>	responseEntity	=	restTemplate

																.getForEntity("/book/0",	Book.class);

								assertEquals(OK,	responseEntity.getStatusCode());

								assertEquals("The	Hobbit",	responseEntity.getBody().getName());

				}

				@Test

				void	testPostBook()	{

								Book	book	=	new	Book("I,	Robot",	"Isaac	Asimov",

																LocalDate.of(1950,	12,	2));

								ResponseEntity<Boolean>	responseEntity	=	restTemplate

																.postForEntity("/book",	book,	Boolean.class);

								assertEquals(CREATED,	responseEntity.getStatusCode());

								assertEquals(true,	responseEntity.getBody());

								ResponseEntity<Book[]>	responseEntity2	=	restTemplate

																.getForEntity("/books",	Book[].class);

								assertEquals(responseEntity2.getBody().length,	4);

				}

}

As	shown	in	the	screenshot	below,	our	Spring	application	is	started	before
running	our	tests,	which	are	executed	successfully:



Output	of	Jupiter	test	using	TestRestTemplate	to	verify	a	REST	service.

To	conclude	this	section,	we	see	an	example	in	which	the	library	WireMock	(h
ttp://wiremock.org/)	is	used.	This	library	allows	to	mock	REST	services,	that	is,	a
so-called	HTTP	mock	server.	This	mock	server	captures	incoming	requests	to
the	service,	providing	stubbed	responses.	This	capability	is	very	useful	to	test
a	system	which	consumes	a	REST	service,	but	the	service	is	not	available
during	the	tests	(or	we	can	test	the	component	that	calls	the	service	in
isolation).

As	usual,	we	see	an	example	to	demonstrate	its	usage.	Let’s	suppose	we	have
a	system	which	consumes	a	remote	REST	service.	To	implement	a	client	for
that	service	we	use	Retrofit	2	(http://square.github.io/retrofit/),	which	is	a	highly
configurable	HTTP	client	for	Java.	We	define	the	interface	to	consume	this
service	as	illustrated	in	the	class	below.	Notice	that	the	service	exposes	three
endpoints	aimed	to	read	a	remote	file	(open	file,	read	stream,	and	close
stream):

package	io.github.bonigarcia;

import	okhttp3.ResponseBody;

import	retrofit2.Call;

import	retrofit2.http.POST;

import	retrofit2.http.Path;

public	interface	RemoteFileApi	{

				@POST("/api/v1/paths/{file}/open-file")

				Call<ResponseBody>	openFile(@Path("file")	String	file);

				@POST("/api/v1/streams/{streamId}/read")

				Call<ResponseBody>	readStream(@Path("streamId")	String	streamId);

				@POST("/api/v1/streams/{streamId}/close")

				Call<ResponseBody>	closeStream(@Path("streamId")	String	streamId);

}

http://wiremock.org/
http://square.github.io/retrofit/


Then	we	implement	the	class	which	consumes	the	REST	service.	In	this
example,	it	is	a	simple	Java	class	which	connects	to	the	remote	service	given
its	URL	passed	as	constructor	parameter:

package	io.github.bonigarcia;

import	java.io.IOException;

import	okhttp3.ResponseBody;

import	retrofit2.Call;

import	retrofit2.Response;

import	retrofit2.Retrofit;

import	retrofit2.adapter.rxjava.RxJavaCallAdapterFactory;

import	retrofit2.converter.gson.GsonConverterFactory;

public	class	RemoteFileService	{

				private	RemoteFileApi	remoteFileApi;

				public	RemoteFileService(String	baseUrl)	{

								Retrofit	retrofit	=	new	Retrofit.Builder()

																.addCallAdapterFactory(RxJavaCallAdapterFactory.create())

																.addConverterFactory(GsonConverterFactory.create())

																.baseUrl(baseUrl).build();

								remoteFileApi	=	retrofit.create(RemoteFileApi.class);

				}

				public	byte[]	getFile(String	file)	throws	IOException	{

								Call<ResponseBody>	openFile	=	remoteFileApi.openFile(file);

								Response<ResponseBody>	execute	=	openFile.execute();

								String	streamId	=	execute.body().string();

								System.out.println("Stream	"	+	streamId	+	"	open");

								Call<ResponseBody>	readStream	=	remoteFileApi.readStream(streamId);

								byte[]	content	=	readStream.execute().body().bytes();

								System.out.println("Received	"	+	content.length	+	"	bytes");

								remoteFileApi.closeStream(streamId).execute();

								System.out.println("Stream	"	+	streamId	+	"	closed");

								return	content;

				}

}

Finally,	we	implement	a	JUnit	5	test	to	verify	our	service.	Notce	that	we	are
creating	the	mock	server	(new	WireMockServer)	and	stubbing	the	REST	service
calls	using	the	static	methods	stubFor(...)	provided	by	WireMock	in	the	setup
of	the	test	(@BeforeEach).	Since	in	this	case,	the	SUT	is	very	simple	and	it	has	no
DOCs,	we	directly	instantiate	the	class	RemoteFileService	also	in	the	setup	of
each	test,	using	the	mock	server	URL	as	constructor	argument.	Finally,	we
test	our	service	(which	uses	the	mock	server)	simply	exercising	the	object
called	wireMockServer,	in	this	example,	by	calling	to	the	method	getFile	and
assessing	its	output.

package	io.github.bonigarcia;

import	static	com.github.tomakehurst.wiremock.client.WireMock.aResponse;

import	static	com.github.tomakehurst.wiremock.client.WireMock.configureFor;

import	static	com.github.tomakehurst.wiremock.client.WireMock.post;

import	static	com.github.tomakehurst.wiremock.client.WireMock.stubFor;



import	static	com.github.tomakehurst.wiremock.client.WireMock.urlEqualTo;

import	static	com.github.tomakehurst.wiremock.core.WireMockConfiguration.options;

import	static	org.junit.jupiter.api.Assertions.assertEquals;

import	java.io.IOException;

import	java.net.ServerSocket;

import	org.junit.jupiter.api.AfterEach;

import	org.junit.jupiter.api.BeforeEach;

import	org.junit.jupiter.api.Test;

import	com.github.tomakehurst.wiremock.WireMockServer;

public	class	RemoteFileTest	{

				RemoteFileService	remoteFileService;

				WireMockServer	wireMockServer;

				//	Test	data

				String	filename	=	"foo";

				String	streamId	=	"1";

				String	contentFile	=	"dummy";

				@BeforeEach

				void	setup()	throws	Exception	{

								//	Look	for	free	port	for	SUT	instantiation

								int	port;

								try	(ServerSocket	socket	=	new	ServerSocket(0))	{

												port	=	socket.getLocalPort();

								}

								remoteFileService	=	new	RemoteFileService("http://localhost:"	+	

													port);

								//	Mock	server

								wireMockServer	=	new	WireMockServer(options().port(port));

								wireMockServer.start();

								configureFor("localhost",	wireMockServer.port());

								//	Stubbing	service

								stubFor(post(urlEqualTo("/api/v1/paths/"	+	filename	+	"/open-

											file"))

											.willReturn(aResponse().withStatus(200).withBody(streamId)));

								stubFor(post(urlEqualTo("/api/v1/streams/"	+	streamId	+	

											"/read"))

											.willReturn(aResponse().withStatus(200).withBody(contentFile)));

								stubFor(post(urlEqualTo("/api/v1/streams/"	+	streamId	+	/close"))

											.willReturn(aResponse().withStatus(200)));

				}

				@Test

				void	testGetFile()	throws	IOException	{

								byte[]	fileContent	=	remoteFileService.getFile(filename);

								assertEquals(contentFile.length(),	fileContent.length);

				}

				@AfterEach

				void	teardown()	{

								wireMockServer.stop();

				}

}

Executing	the	test	in	the	console,	in	the	traces	we	can	see	how	the	internal
HTTP	server	controlled	by	WireMock	is	started	before	the	test	execution.
Then,	the	three	REST	operations	(open	stream,	read	bytes,	close	stream)	are
executed	by	the	test,	and	finally	the	mock	server	is	disposed:



Execution	of	test	using	a	mock	REST	server	using	WireMock



Summary
This	section	provides	a	detailed	insight	of	how	JUnit	5	can	be	used	in
conjunction	with	third-party	frameworks,	libraries,	and	platforms.	Thanks	to
the	Jupiter	extension	model,	developers	can	create	extensions	which	allows
seamless	integration	with	external	frameworks	to	JUnit	5.	First,	we	have	seen
the	MockitoExtension,	an	extension	provided	by	the	JUnit	5	team	to	use
Mockito	(a	notorious	mock	framework	for	Java)	in	Jupiter	tests.	Then,	we
have	used	the	SpringExtension,	which	is	the	official	extension	provided	in	the
version	5	of	the	Spring	Framework.	This	extension	integrates	Spring	into	the
JUnit	5	programming	model.	This	way,	we	are	able	to	use	Spring’s
application	contexts	(that	is,	the	Spring’s	DI	container)	in	our	tests.

We	have	also	reviewed	the	SeleniumExtension	implemented	by	selenium-
jupiter,	an	open	source	project	providing	a	JUnit	5	extension	for	Selenium
WebDriver	(testing	framework	for	web	applications).	Thank	to	thins
extension,	we	can	use	different	browsers	to	interact	automatically	with	web
applications	and	emulated	mobile	devices	(using	Appium).	Then,	we	have
seen	the	CucumberExtension,	allows	to	specify	JUnit	5	acceptance	tests
following	a	BDD	style	using	the	Gherkin	language.	Finally,	we	have	seen
how	the	open	source	JUnit5-Docker	extension	can	be	used	to	start	Docker
containers	(downloading	the	image	from	Docker	Hub)	before	the	execution	of
our	JUnit	5	tests.

Moreover,	we	discovered	that	the	extension	model	is	not	the	only	way	of
interacting	with	external	technologies	by	JUnit	tests.	For	example,	in	order	to
run	Jupiter	tests	in	an	Android	project,	we	can	use	the	android-junit5	plugin.	On
the	other	hand,	even	though	there	is	no	custom	extension	for	assessing	REST
services	using	JUnit	5,	the	integration	with	such	libraries	is	strait	forward:	we
simply	need	to	include	the	proper	dependency	in	our	project	and	use	it	in	our
tests	(for	example,	REST	Assured,	Spring,	or	WireMock).



From	Requirements	To	Test	Cases
Program	testing	can	be	used	to	show	the	presence	of	bugs,	but	never	to	show

their	absence!
-	Edsger	Dijkstra

This	chapter	provides	a	base	of	knowledge	aimed	to	help	software	engineers
to	write	meaningful	test	cases.	The	starting	point	for	this	process	is	the
understanding	of	the	requirements	of	the	system	being	tested.	Without	that
information,	it	is	not	feasible	to	design	nor	implement	valuable	tests.	After
that,	several	actions	might	be	executed	before	the	actual	coding	of	the	tests,
namely,	test	planning	and	test	design.	Once	we	start	the	test	coding	process,
we	need	to	have	in	mind	a	set	of	principles	to	write	code	right,	and	also	a	set
of	anti-patterns	and	bad	smells	to	be	avoided.	All	this	information	is	provided
in	this	chapter	in	form	of	the	following	sections:

The	importance	of	requirements:	This	section	provides	a	general
overview	of	the	software	development	process,	started	by	the	statement
of	some	needs	to	be	covered	by	a	software	system,	and	followed	by
several	stages,	typically	including	analysis,	design,	implementation,	and
tests.
Test	planning:	A	document	called	test	plan	can	be	generated	at	the
beginning	of	a	software	project.	This	section	reviews	the	structure	of	a
test	plan	according	to	the	IEEE	829	Standard	for	Test	Documentation.
As	we	will	discover,	the	complete	statement	of	a	test	plan	is	a	very	fine-
grained	process,	especially	recommended	for	large	projects	in	which	the
communication	among	the	team	is	a	key	aspect	for	the	success	of	the
project.
Test	design:	Before	starting	the	coding	of	the	tests,	it	is	always	a	good
practice	to	think	about	the	blueprint	of	these	tests.	In	this	section,	we
review	the	major	aspects	to	be	taken	into	consideration	to	design
properly	our	tests.	We	put	the	accent	on	the	test	data	(expected	outcome),
which	feed	the	test	assertions.	In	this	regard,	we	review	some	black-box
data	generation	techniques	(equivalence	partitioning	and	boundary
analysis)	and	white-box	(test	coverage).
Software	testing	principles:	This	section	provides	a	set	of	best-practices
which	can	help	us	write	our	tests.
Test	anti-patterns:	Finally,	the	opposite	side	is	also	reviewed:	what	are



the	patterns	and	code	smells	to	be	avoided	when	writing	our	test	cases.



The	importance	of	requirements
Software	systems	are	built	to	satisfy	some	kind	of	need	to	a	group	of
consumers	(final	users	or	customer).	Understanding	those	needs	is	one	of
most	challenging	problems	in	software	engineering	due	to	the	fact	that	it	is
quite	common	that	consumer	needs	are	nebulous	(especially	in	the	early
stages	of	the	project).	Moreover,	it	is	also	common	that	these	needs	can	be
deeply	changed	throughout	the	project	lifetime.	Fred	Brooks,	a	well-known
software	engineer,	and	computer	scientist,	defines	this	problem	in	his	seminal
book	The	Mythical	Man-Month	(1975):

The	hardest	single	part	of	building	a	software	system	is	deciding	precisely
what	to	build.	No	other	part	of	the	conceptual	work	is	as	difficult	as
establishing	the	detailed	technical	requirements	…	No	other	part	of	the	work
so	cripples	the	resulting	system	if	done	wrong.	No	other	part	is	as	difficult	to
rectify	later.

In	any	case,	consumer’s	needs	are	the	touchstone	for	any	software	project.
From	these	needs,	a	list	of	features	can	emerge.	We	define	a	feature	as	a	high-
level	description	of	a	software	system	functionality.	From	each	feature,	one	or
more	requirements	(functional	and	non-functional)	should	be	derived.	A
requirement	is	everything	that	be	true	about	the	software,	in	order	to	meet	the
consumer’s	expectations.	Scenarios	(real-life	examples	rather	than	abstract
descriptions)	can	be	useful	for	adding	details	to	the	requirements	description.
The	group	of	requirements	and/or	list	of	features	of	the	software	system	are
often	known	as	specification.

In	software	engineering,	the	stage	of	defining	the	requirements	is	called
requirements	elicitation.	In	this	stage,	software	engineers	need	to	clarify
what	problem	they	are	trying	to	solve.	At	the	end	of	this	phase,	it	is	a
common	practice	to	start	the	modeling	of	the	system.	To	that	aim,	a	modeling
language	(typically	UML)	is	employed	to	create	a	group	of	diagrams.	The
UML	diagrams,	which	typically	fits	in	the	elicitation	stage	is	the	use	case
diagram	(model	of	the	functionality	of	the	system	and	its	relationship	with	the
involved	actors).

Modeling	is	not	always	carried	out	in	all	software	projects.	For
example,	agile	methodologies	are	more	based	on	the	principle	of
sketching	rather	than	in	a	formal	modeling	strategy.

After	elicitation,	requirements	should	be	refined	in	the	analysis	stage.	In	this



phase,	the	stated	requirements	are	analysed	in	order	to	resolve	incomplete,
ambiguous	of	contradictory	issues.	As	a	result,	in	this	stage	it	is	likely	to
continue	modeling,	using	for	example	high-level	class	diagrams	not	linked	to
any	specific	technology	yet.	Once	the	analysis	is	clear	(that	is,	the	what	of	the
system),	we	need	to	find	out	how	to	implement	it.	This	stage	is	known	as
design.	In	the	design	phase,	the	guidelines	of	the	project	should	be
established.	To	that	aim,	an	architecture	of	the	software	system	is	typically
derived	from	the	requirements.	Again,	the	modeling	techniques	are	broadly
employed	to	carry	out	different	aspects	of	the	design.	There	is	a	bunch	of
UML	diagrams	that	can	be	used	at	this	point,	including	structural	diagrams
(component,	deployment,	object,	package,	and	profile	diagram)	and
behavioral	diagrams	(activity,	communication,	sequence,	or	state	diagram).
From	the	design,	the	actual	implementation	(that	is,	coding)	can	start.

The	amount	of	modeling	carried	out	in	the	design	stage	varies	significantly
depending	on	different	factors,	including	the	type	and	size	of	the	company
producing	the	software	(multinationals,	SMEs,	governmental,	and	so	on),	the
development	process	(waterfall,	spiral,	prototyping,	agile,	and	so	on),	the	type
of	project	(enterprise,	open	source,	and	so	on),	the	type	of	software	(custom
made	software,	commercial	off-the-shelf,	and	so	on),	and	even	the
background	of	the	people	involved	(experience,	career,	and	so	on).	All	in	all,
the	designs	need	to	be	understood	as	a	way	of	communication	between	the
different	roles	of	software	engineers	participating	in	the	project.	Typically,	the
bigger	the	project,	the	more	necessary	a	fine-grained	design	based	on	different
modeling	diagrams	is.

Concerning	tests,	in	order	to	make	a	proper	test	plan	(see	next	section	for
further	details),	again	we	need	to	use	the	requirements	elicitation	data,	that	is,
the	list	of	requirements	and/or	features.	In	other	words,	in	order	to	verify	our
system,	we	need	to	to	know	beforehand	what	we	expect	from	it.	Using	the
classic	definition	proposed	by	Barry	Boehm	(see	chapter	1,	Retrospective	On
Software	Quality	And	Java	Testing),	verification	is	used	to	answer	the
question	Are	we	building	the	product	right?	To	that,	we	need	to	know	the
requirements,	or	at	least,	the	desired	features.	In	addition	to	verification,	it
would	be	desirable	to	carry	out	some	validation	(according	to	Boehm:	Are	we
building	the	right	product?).	This	is	necessary	since	sometimes	there	is	a	gap
between	what	has	been	specified	(the	features	and	requirements)	and	the	real
needs	of	the	consumer.	Therefore,	validation	is	a	high-level	assessment
method,	and	to	carry	out	it,	the	final	consumer	can	be	involved	(validating	the
software	system	once	it	is	deployed).	All	these	ideas	are	depicted	in	the
following	picture:



Software	engineering	generic	development	process

There	is	no	universal	workflow	for	the	terms	presented	so	far
(communication,	requirement	elicitation,	analysis,	design,
implementation/test,	and	deployment).	In	the	preceding	diagram,
it	follows	a	linear	process	flows,	nevertheless,	in	practice,	it	can
follow	an	iterative,	evolutionary,	or	parallel	workflow.

To	illustrate	the	potential	problems	involved	in	the	different	phases	in
software	engineer	(analysis,	design,	implementation,	and	so	on),	it	is	worth	to
review	the	classical	cartoon	How	project	really	works?	The	original	source	of
this	picture	is	unknown	(there	are	versions	dating	back	to	the	1960s).	In	2007,
a	site	called	Project	Cartoon	emerged	(http://www.projectcartoon.com/),	allowing	to
customize	the	original	cartoon	with	new	scenes.	The	following	chart	is	the
version	1.5	of	the	cartoon	provided	on	that	site:

http://www.projectcartoon.com/


How	projects	really	work,	version	1.5	(illustrated	created	by	www.projectcartoon.com)

If	we	think	about	this	picture,	we	discover	that	the	root	of	the	problems	comes
from	the	requirements,	badly	explained	by	the	customer	at	the	beginning,	and
worst	understood	by	the	project	leader.	From	that	point,	the	whole	software
engineering	process	turns	into	the	Chinese	whispers	children	game.	To	solve
all	these	problems	is	out	of	the	scope	of	this	book,	but	as	a	good	start,	we
need	to	take	special	care	in	the	requirements,	which	guide	the	whole	process,
including,	of	course,	the	tests.

http://www.projectcartoon.com


Test	planning
A	first	step	in	the	testing	path	can	be	the	generation	of	a	document	called	test
plan,	which	is	the	blueprint	to	conduct	software	testing.	This	document
describes	the	objective,	scope,	approach,	focus,	and	distribution	of	the	testing
efforts.	The	process	of	preparing	such	document	is	a	useful	way	to	think
about	the	needs	to	verify	of	a	software	system.	Again,	this	document	is
especially	useful	when	the	size	of	the	SUT	and	the	involved	team	is	large,	due
to	the	fact	that	the	separation	of	work	in	different	roles	makes	the
communication	a	potential	deterrent	for	the	success	of	the	project.

A	way	to	create	a	test	plan	is	to	follow	the	IEEE	829	Standard	for	Test
Documentation.	Although	this	standard	might	be	too	much	formal	for	the
most	of	software	projects,	it	might	be	worth	to	review	the	guidelines	proposed
in	this	standard,	and	use	the	parts	needed	(if	any)	in	our	software	projects.
The	steps	proposed	in	IEEE	829	are	the	following:

1.	 Analyze	the	product:	This	part	reinforces	the	idea	of	extracting	the
understanding	the	requirements	of	the	system	from	the	consumer	needs.
As	already	explained,	it	is	not	possible	to	test	a	software	if	no
information	about	it	is	available.

2.	 Design	the	test	strategy:	This	part	of	the	plan	contains	several	parts,
including:

Define	scope	of	testing,	that	is,	the	system	components	to	be	tested
(in	scope)	and	those	parts	which	do	not	(out	of	scope).	As	explained
later,	exhaustive	testing	is	not	feasible,	and	we	need	to	choose
carefully	what	is	going	to	be	tested.	This	is	not	a	simple	choice,	and
it	can	be	determined	by	different	factors,	such	as	precise	customer
requests,	project	budget	and	timing,	and	skills	of	the	involved
software	engineers.
Identify	testing	type,	that	is,	which	levels	of	tests	should	be
conducted	(unit,	integration,	system,	acceptance)	and	which	test
strategy	(black	box,	white	box,	non-functional).
Document	risks,	that	is,	potential	problems	which	might	cause
different	issues	in	the	project.

3.	 Define	the	test	objectives:	In	this	part	of	the	plan,	the	list	of	features	to
be	tested	are	listed	together	with	the	target	of	testing	each	one.

4.	 Define	the	test	criteria:	These	criteria	are	typically	made	up	by	two



parts,	namely:
Suspension	criteria,	for	instance	the	percentage	of	failed	tests	in
which	the	development	of	new	features	is	suspended	until	the	team
solves	all	the	failures.
Exit	criteria,	for	example,	the	percentage	of	critical	tests	that	should
be	passed	to	proceed	to	next	phase	of	development.

5.	 Resource	planning:	This	part	of	the	plan	is	devoted	to	summarize	the
resources	required	to	carry	out	the	testing	activities.	It	could	be
personnel,	equipment,	or	infrastructure.

6.	 Plan	test	environment:	It	consists	of	the	software	and	hardware	setup
on	which	test	are	going	to	be	executed.

7.	 Schedule	and	estimation:	In	this	phase,	managers	are	supposed	to	break
out	the	whole	project	into	small	tasks	estimating	the	efforts	(person-
month).

8.	 Determine	test	deliverables:	Determine	all	the	documents	that	has	to	be
maintained	to	support	the	testing	activities.

As	can	be	seen,	test	planning	is	a	complex	task,	typically	carried	out	in	large
projects	by	managers.	In	the	rest	of	this	chapter	we	continue	discovering	how
to	write	test	cases,	but	hereinafter	from	a	point	of	view	closest	to	the	actual
test	coding.



Test	design
In	order	to	design	properly	a	test,	we	need	to	define	specifically	what	needs	to
be	implemented.	To	that	aim,	it	is	important	to	remember	what	is	the	generic
structure	of	a	test,	already	explained	in	chapter	1,	Retrospective	On	Software
Quality	And	Java	Testing.	Therefore,	for	each	test	we	need	to	define:

What	is	test	fixture,	that	is,	the	required	state	in	the	SUT	to	carry	out	the
test?	This	is	done	at	the	beginning	of	the	test	in	the	stage	called	setup.	At
the	end	of	the	test,	the	test	fixture	might	be	released	in	the	stage	called
teardown.
What	is	the	SUT,	and	if	we	are	doing	unit	tests,	which	are	its	DOC(s)?
Unit	test	should	be	in	isolation	and	therefore	we	need	to	define	test
doubles	(typically	mocks	or	spies)	for	the	DOC(s).
What	are	the	assertions?	This	a	key	part	of	tests.	Without	assertions,	we
cannot	claim	that	a	test	is	actually	made.	In	order	to	design	assertion,	it	is
worth	to	recall	which	is	its	generic	structure.	In	short,	an	assertion
consists	in	the	comparison	of	some	expected	value	(test	data)	and	the
actual	outcome	obtained	from	the	SUT.	If	any	of	the	assertions	is
negative,	the	test	will	be	declared	as	failed	(test	verdict):

Test	cases	and	assertions	general	schema

Test	data	plays	a	crucial	role	in	the	testing	process.	The	source	of	test	data	is



often	called	test	oracles,	and	typically	can	be	extracted	from	the	requirements.
Nevertheless,	there	are	some	others	commonly	used	sources	for	tests	oracles,
for	example:

A	different	program,	which	produces	the	expected	output	(inverse
relationship).
A	heuristic	or	statistical	oracle	that	provides	approximate	results.
Values	based	on	the	experience	of	human	experts.

Moreover,	test	data	can	be	derived,	depending	on	the	underlying	testing
technique.	When	using	black-box	testing,	that	is,	exercise	some	specific
requirement	based	using	some	input	and	expecting	some	output,	different
techniques	can	be	employed,	such	as	equivalence	partitioning	or	boundary
analysis.	On	the	other	side,	if	we	are	using	white-box	testing,	the	structure	is
the	basis	for	our	test	and	therefore	the	test	coverage	will	be	key	to	select	the
test	input	which	maximizes	these	coverage	rates.	In	the	following	sections,
these	techniques	are	reviewed.



Equivalence	partitioning
Equivalence	partitioning	(also	known	as	equivalence	class	partitioning)	is	a
black-box	technique	(that	is,	it	relies	in	the	requirements	of	the	system)	aimed
to	reduce	the	number	of	tests	that	should	be	executed	against	a	SUT.	This
technique	was	first	defined	by	Glenford	Myers	in	1978	as:

“A	technique	that	partitions	the	input	domain	of	a	program	into	a	finite
number	of	classes	[sets],	it	then	identifies	a	minimal	set	of	well-selected	test
cases	to	represent	these	classes.”

In	other	words,	equivalence	partitioning	provides	a	criteria	to	answer	the
question	How	many	tests	do	we	need?	The	idea	is	to	divide	all	possible	input
test	data	(which	often	is	a	enormous	number	of	combinations)	in	a	set	of
values	for	which	we	assume	to	be	processed	in	the	same	way	by	the	SUT.	We
call	equivalence	classes	to	these	sets	of	values.	The	idea	is	that	testing	one
representative	value	within	the	equivalence	class	is	consider	sufficient
because	it	is	assumed	that	all	the	values	are	processed	in	the	same	way	by	the
SUT.	

Typically,	the	equivalence	classes	for	a	given	SUT	can	be	grouped	in	two
types:	valid	and	invalid	inputs.	The	equivalence	partitioning	testing	theory
ensures	that	only	one	test	case	of	each	partition	is	needed	to	evaluate	the
behavior	of	the	program	for	the	related	partition	(both	the	valid	and	the
invalid	classes).	The	following	process	describes	how	to	systematically	carry
out	the	equivalence	partitioning	for	a	given	SUT:

1.	 First,	we	determine	the	domain	of	all	possible	valid	inputs	for	a	SUT.	To
find	out	these	values,	we	rely	on	the	specification	(features	or	functional
requirements).	Our	SUT	is	supposed	to	process	these	values	(valid
equivalence	class)	correctly.

2.	 If	our	specification	establishes	that	some	elements	of	the	equivalence
class	are	processed	differently,	they	should	assigne	to	another
equivalence	class.

3.	 The	values	outside	this	domain	can	be	seen	as	another	equivalence	class,
this	time	for	invalid	inputs.

4.	 For	every	single	equivalence	class,	a	representative	value	is	chosen.	This
decision	is	an	heuristic	process	typically	based	on	the	tester	experience.

5.	 For	every	test	input,	the	proper	test	output	is	also	selected,	and	with	these



values	we	will	be	able	to	complete	our	test	case	(test	exercise	and
assertions).



Boundary	analysis
As	any	programmer	knows,	faults	often	appear	at	the	boundary	of	a
equivalence	class	(for	example,	the	initial	value	of	an	array,	the	maximum
value	for	a	given	range,	and	so	on).	Boundary	value	analysis	is	a	method,
which	complements	equivalence	partitioning	by	looking	at	the	boundaries	of
the	test	input.	It	was	defined	by	the	National	Institute	of	Standards	and
Technology	(NIST)	in	1981	as:

“A	selection	technique	in	which	test	data	are	chosen	to	lie	along	‘boundaries’
of	the	input	domain	[or	output	range]	classes,	data	structures,	and	procedure
parameters.”

All	in	all,	to	apply	boundary	value	analysis	in	our	tests,	we	need	to	evaluate
our	SUT	exactly	in	the	borders	of	our	equivalence	class.	Therefore,	typically
two	tests	cases	are	derived	using	this	approach:	the	upper	and	the	lower
boundary	of	the	equivalence	class.



Test	coverage
Test	coverage	is	the	rate	of	code	in	SUT	that	is	exercised	for	any	of	their	tests.
Test	coverage	is	very	useful	to	finding	untested	parts	of	our	SUT.	Therefore,	it
can	be	the	perfect	white	box	technique	(structural)	to	complement	the	black
box	(functional).	As	a	general	rule,	a	test	coverage	rate	of	80%	or	above	is
considered	reasonable.

There	are	different	Java	libraries,	which	allows	to	make	test	coverage	in	a
simple	manner,	for	instance:

Cobertura	(http://cobertura.github.io/cobertura/):	It	is	an	open	source	reporting
tool,	which	can	be	executed	using	Ant,	Maven,	or	directly	using	the
command	line.
EclEmma	(http://www.eclemma.org/):	It	is	an	open	source	code	coverage	tool
for	Eclipse.	As	of	Eclipse	4.7	(Oxygen),	EclEmma	is	integrated	out	of
the	box	in	the	IDE.	The	following	screenshot	shows	an	example	on	how
EclEmma	highlights	the	code	coverage	on	a	Java	class	in	Eclipse:

Test	coverage	with	EclEmma	in	Eclipse	4.7	(Oxygen)

http://cobertura.github.io/cobertura/
http://www.eclemma.org/


JaCoCo	(http://www.jacoco.org/jacoco/):	It	is	an	open	source	code	coverage
library	created	by	the	EclEmma	team	based	on	other	old	coverage	library
called	EMMA	(http://emma.sourceforge.net/).	JaCoCo	is	available	as	a
Maven	dependency.
Codecov	(https://codecov.io/):	It	is	a	cloud	solution	offering	a	friendly	code
coverage	web	dashboard.	It	is	free	for	open	source	projects.

http://www.jacoco.org/jacoco/
http://emma.sourceforge.net/
https://codecov.io/


Software	testing	principles
Exhaustive	testing	is	the	name	given	to	a	test	approach,	which	uses	all
possible	combinations	of	test	inputs	to	verify	a	software	system.	This
approach	is	only	applicable	to	tiny	software	systems	or	components	with	a
close	finite	number	of	possible	of	operations	and	allowed	data.	In	the	majority
of	software	systems,	it	is	not	feasible	to	verify	every	possible	permutation	and
input	combination,	and	therefore	exhaustive	testing	is	just	a	theoretical
approach.

For	that	reason,	it	is	said	that	the	absence	of	defects	in	a	software	system
cannot	be	proved.	This	was	stated	by	the	computer	science	pioneer	Edsger	W.
Dijkstra	(see	quote	at	beginning	of	this	chapter).	Thus,	testing	is,	at	best,
sampling,	and	it	must	be	carried	out	in	any	software	project	to	reduce	the	risk
of	system	failures	(see	chapter	1,	Retrospective	On	Software	Quality	And	Java
Testing,	to	recall	the	software	defect	taxonomy).	Since	we	cannot	test
everything,	we	need	to	test	properly.	In	this	section,	we	review	a	set	of	best
practices	to	write	effective	and	efficient	test	cases,	namely:

Tests	should	be	simple:	The	software	engineer	writing	the	test	(call	him
or	her	tester,	programmer,	developer,	or	whatever)	should	avoid
attempting	to	test	his	or	her	program.	In	regards	to	testing,	the	right
answer	to	the	question	Who	watches	the	watchmen?	Should	be	nobody.
Our	test	logic	should	be	simple	enough	to	avoid	any	kind	of	meta-
testing,	since	this	would	lead	to	a	recursive	problem	out	of	any	logic.
Indirectly,	if	we	keep	tests	simple,	we	also	obtain	another	desirable
feature:	tests	will	be	easy	to	maintain.
Do	not	implement	simple	tests:	One	thing	is	make	simple	tests,	and
another	very	different	stuff	is	to	implement	dummy	code,	such	as	getter
or	setters.	As	introduced	before,	test	is	at	best	sampling,	and	we	cannot
waste	precious	time	in	assessing	such	kind	of	part	of	our	codebase.
Easy	to	read:	The	first	step	is	to	provide	a	meaningful	name	for	our	test
method.	In	addition,	thanks	to	the	JUnit	5	@DisplayName	annotation,	we	can
provide	a	rich	textual	description,	which	defines	without	Java	naming
constraints	the	goal	of	the	test.
Single	responsibility	principle:	This	is	a	general	principle	of	computer
programming	that	states	that	every	class	should	have	responsibility	of	a
single	functionality.	It	is	closely	related	to	the	metric	of	cohesion.	This



principle	is	very	important	to	be	accomplished	when	coding	tests:	a
single	test	should	be	only	referred	to	a	given	system	requirement.
Test	data	is	key:	As	described	in	the	section	before,	the	expected
outcome	from	the	SUT	is	a	central	part	of	the	tests.	The	correct
management	of	these	data	is	critical	to	create	effective	tests.	Fortunately,
JUnit	5	provides	a	rich	toolbox	to	handle	test	data	(see	section
Parameterized	tests	in	chapter	4,	Simplifying	Testing	With	Advanced	JUnit
Features).
Unit	test	should	be	executed	very	fast:	A	commonly	accepted	rule	of
thumb	for	the	duration	of	unit	test	is	that	a	unit	test	should	last	a	second
at	the	most.	To	accomplish	that	goal,	it	is	also	required	that	unit	test
isolates	properly	the	SUT,	doubling	properly	its	DOCs.
Test	must	be	repeatable:	Defects	should	be	reproduced	as	many	times
as	required	for	developers	to	find	the	cause	of	the	bug.	This	is	the	theory,
but	unfortunately	this	is	not	always	applicable.	For	example,	in	multi-
threaded	SUT	(	a	real-time	or	server-side	software	systems),	race
conditions	are	likely	to	occur.	In	those	situations,	non-deterministic
defects	(often	called	heisenbugs)	might	be	experienced.
We	should	test	positive	and	the	negative	scenarios:	This	mean	that	we
need	to	write	tests	with	for	input	condition	that	assess	the	expected
outcome,	but	we	also	need	to	verify	what	the	program	is	not	supposed	to
do.	In	addition	to	meet	its	requirements,	programs	must	be	tested	to
avoid	unwanted	side	effects.
Testing	cannot	be	done	only	for	the	sake	of	coverage:	Just	because	all
parts	of	the	code	have	been	touched	by	some	tests,	we	cannot	assure	that
those	parts	have	been	thoroughly	tested.	For	that	to	be	true,	tests	have	to
analyzed	in	terms	of	reduction	of	risks.



The	psychology	of	testing
From	a	psychological	point	of	view,	the	objective	of	testing	should	be
executing	a	software	system	with	the	intent	of	finding	defects.	Understanding
the	motivation	of	that	claim	can	make	the	difference	in	the	success	of	our
tests.

Human	beings	tend	to	be	goal	oriented.	If	we	carry	out	tests	to	demonstrate
that	a	program	has	no	errors,	we	will	tend	to	implement	tests	selecting	test
data	with	a	low	probability	of	causing	program	failures.	On	the	other	hand,	if
the	objective	is	to	demonstrate	that	a	program	has	errors,	we	will	increase	the
probability	of	finding	them,	adding	more	value	to	the	program	than	the	former
approach.	For	that	reason,	testing	is	often	considered	as	a	destructive	process,
since	testers	are	supposed	to	prove	that	the	SUT	has	errors.

Moreover,	trying	to	demonstrate	that	errors	are	present	in	the	software	is	a
goal	feasible,	while	trying	to	demonstrate	their	absence,	as	explained	before,
it	is	impossible.	Again,	psychology	studies	tell	us	that	people	perform	poorly
when	they	know	that	a	task	is	infeasible.



Test	anti-patterns
In	software	design,	a	pattern	is	a	reusable	solution	to	solve	recurring
problems.	There	are	a	bunch	of	them,	including	for	example	singleton,
factory,	builder,	facade,	proxy,	decorator,	or	adapter,	to	name	a	few.	Anti-
patterns	are	also	patterns,	but	undesirable	ones.	Concerning	to	testing,	it	is
worth	to	know	some	of	these	anti-patterns	to	avoid	them	in	our	tests:

Second	class	citizens:	Test	code	containing	a	lot	of	duplicated	code,
making	it	hard	to	maintain.
The	free	ride	(also	known	as	Piggyback):	Instead	of	writing	a	new
method	to	verify	another	feature/requirement,	a	new	assertion	is	added	to
an	existing	test.
Happy	path:	It	only	verifies	expected	results	without	testing	for
boundaries	and	exceptions.
The	local	hero:	A	test	dependent	to	some	specific	local	environment.
This	anti-pattern	can	be	summarized	in	the	phrase	It	works	in	my
machine.
The	hidden	dependency:	A	test	that	requires	some	existing	data
populated	somewhere	before	the	test	runs.
Chain	gang:	Tests	that	must	be	run	in	a	certain	order,	for	example,
changing	the	SUT	to	a	state	expected	by	the	next	one.
The	mockery:	A	unit	test	that	contains	too	much	test	doubles	that	the
SUT	is	not	even	tested	at	all,	instead	of	returning	data	from	test	doubles.
The	silent	catcher:	A	test	that	passes	even	if	an	unintended	exception
actually	occurs.
The	inspector:	A	test	that	violates	encapsulation	that	any	refactor	in	the
SUT	requires	reflecting	those	changes	in	the	test.
Excessive	setup:	A	test	that	requires	a	huge	setup	in	order	to	start	the
exercise	stage.
Anal	probe:	A	test	which	has	to	use	unhealthy	ways	to	perform	its	task,
such	as	reading	private	fields	using	reflection.
The	test	with	no	name:	Test	methods	name	with	no	clear	indicator
about	what	it	is	being	tested	(for	example,	identifier	in	a	bug	tracking
tool).
The	slowpoke:	A	unit	test	which	lasts	over	few	seconds.
The	flickering	test:	A	test	which	contains	race	conditions	within	the
proper	test,	making	it	to	fail	from	time	to	time.



Wait	and	see:	A	test	that	needs	to	wait	a	specific	amount	of	time	(for
example,	Thread.sleep())	before	it	can	verify	some	expected	behavior.
Inappropriately	shared	fixture:	Tests	that	use	a	test	fixture	without
even	need	the	setup/teardown.
The	giant:	A	test	class	that	contains	a	huge	number	of	tests	methods
(God	Object).
Wet	floor:	A	test	that	creates	persisted	data	but	it	is	not	clean	up	at	when
finished.
The	cuckoo:	A	unit	test	which	establishes	some	kind	of	fixture	before
the	actual	test,	but	then	the	test	discards	somehow	the	fixture.
The	secret	catcher:	A	test	that	is	not	making	any	assertion,	relying	on
an	exception	to	be	thrown	and	reporting	by	the	testing	framework	as	a
failure.
The	environmental	vandal:	A	test	which	requires	the	use	of	given
environment	variables	(for	instance,	a	free	port	number	to	allows
simultaneous	executions).
Doppelganger:	Copying	parts	of	the	code	under	test	into	a	new	class	to
make	visible	for	the	test.
The	mother	hen:	A	fixture	which	does	more	than	the	test	needs.
The	test	it	all:	Tests	that	should	not	break	the	Single	Responsibility
Principle.
Line	hitter:	A	test	without	any	kind	of	real	verification	of	the	SUT.
The	conjoined	twins:	Tests	that	are	called	unit	tests	but	are	really
integration	tests	since	there	is	no	isolation	between	the	SUT	and	the
DOC(s).
The	liar:	A	test	that	does	not	test	what	was	supposed	to	test.



Code	smells
Code	smells	(also	known	as	bad	smell	when	referred	to	software)	are
undesirable	symptoms	within	the	source	code.	Code	smells	are	not
problematic	per	se,	but	they	can	evidence	some	kind	of	issue	nearby.

As	described	in	previous	sections,	tests	should	be	simple	and	easy	to	read.
With	that	promises,	code	smells	should	be	present	in	our	tests	under	no
circumstances.	All	in	all,	generic	code	smells	might	be	avoided	in	our	tests.
Some	of	the	most	common	code	smells	are	the	following:

Duplicated	code:	Cloned	code	is	always	a	bad	idea	in	software,	since	it
breaks	the	principle	Don’t	Repeat	Yourself	(DRY).	This	problem	is
even	worst	in	tests,	since	test	logic	must	be	crystal	clear.
High	complexity:	Too	many	branches	or	loops	may	be	potentially
simplified	into	smaller	pieces.
Long	method:	A	method	that	has	grown	too	large	is	always	problematic,
and	it	is	a	very	bad	symptom	when	this	method	is	a	test.
Unappropriated	naming	convention:	Variables,	class,	and	method
names	should	be	concise.	It	is	considered	a	bad	smell	to	use	very	long
identifiers,	but	also	use	excessive	short	(or	meaningless)	ones.



Summary
The	starting	point	for	the	test	design	should	be	the	list	of	requirements.	If
these	requirements	have	not	been	formally	elicited,	at	least	we	need	to	know
the	SUT	features,	which	reflects	the	software	needs.	From	this	point,	several
strategies	can	be	carried	out.	As	usual,	there	is	no	unique	path	to	reach	our
goal,	which	in	the	end	should	be	reducing	the	risks	of	the	project.

This	chapter	reviewed	a	process	aimed	to	create	effective	and	efficient	tests
cases.	This	process	involves	the	analysis	of	requirements,	definition	of	a	test
plan,	design	of	test	cases,	and	finally	writing	the	test	cases.	We	should	be
aware	that,	even	though	software	testing	is	technical	task,	it	involves	some
important	considerations	of	human	psychology.	These	factors	should	be
known	by	software	engineers	and	testers	in	order	to	follow	know	best
practices	and	also	avoiding	common	mistakes.

In	chapter	7,	Testing	management,	we	are	going	to	understand	how	software
testing	activities	are	managed	in	a	living	software	project.	To	that,	first	we
review	when	and	how	to	carry	out	testing	in	the	common	software
development	processes,	such	as	waterfall,	spiral,	iterative,	spiral,	agile,	or
test-driven	development.	Then,	the	server-side	infrastructure	(such	as	Jenkins
or	Travis)	aimed	to	automate	the	software	development	process	in	the	context
of	JUnit	5	is	reviewed.	Finally,	we	learn	how	to	keep	track	of	the	defects
found	with	the	Jupiter	tests	using	the	so-called	issue	tracking	systems	and	test
reporting	libraries.



Testing	Management
The	important	thing	is	not	to	stop	questioning.

-	Albert	Einstein

This	is	the	final	chapter	of	the	book,	and	its	objective	is	to	guide	how	to
understand	when	and	how	software	testing	activities	are	managed	in	a	living
software	project.	To	that	aim,	this	chapter	is	structured	into	the	following
sections:

Software	development	processes:	In	this	section	we	study	when	tests
are	executed	in	different	methodologies:	Behavior-Driven
Development	(BDD),	Test-Driven	Development	(TDD),	Test-First
Development	(TFD)	and	Test-Last	Development	(TLD).
Continuous	Integration	(CI):	In	this	section,	we	will	discover	CI,	the
software	development	practice,	in	which	the	process	of	build,	test,	and
integration	is	carried	out	continuously.	The	common	trigger	of	this
process	is	usually	the	commit	of	new	changes	(patches)	to	a	source	code
repository	(for	example,	GitHub).	In	addition,	in	this	section,	we	will
learn	how	to	extend	CI,	reviewing	the	concept	of	Continuous	Delivery
and	Continuous	Deployment.	Finally,	we	present	two	of	the	most
important	build	server	nowadays:	Jenkins	and	Travis	CI.
Test	reporting:	In	this	section,	we	will	first	discover	the	XML	format	in
which	the	xUnit	framework	usually	reports	the	execution	of	tests.	The
problem	with	this	format	is	that	it	is	not	human	readable.	For	this	reason,
there	are	tools	which	covert	this	XML	into	a	friendlier	format,	typically
HTML.	We	review	two	alternatives:	Maven	Surefire	Report	and	Allure.
Defect	tracking	systems:	In	this	section,	we	review	several	issue
trackes:	JIRA,	Bugzilla,	Redmine,	MantisBT,	and	GitHub	issues.
Static	analysis:	In	this	section,	on	the	one	hand	we	review	several
automated	analysis	tools	(linters)	such	as	Checkstyle,	FindBugs,	PMD,
and	SonarQube.	On	the	other	side,	we	describe	several	peer	review	tools,
such	as	Collaborator,	Crucible,	Gerrit,	and	GitHub	pull	requests	reviews.
Putting	all,	pieces	together:	To	conclude	the	book,	in	the	final	section
we	present	a	complete	example	application	in	which	different	types	of
tests	(unit,	integration,	and	end-to-end)	are	performed	using	some	of	the
main	concepts	presented	along	this	book.



Software	development	processes
In	software	engineering,	the	software	development	process	(also	known	as	the
software	development	life	cycle)	is	the	name	given	to	the	workflow	for	the
activities,	actions,	and	tasks	required	to	create	software	systems.	As
introduced	in	Chapter	6,	From	Requirements	to	Test	Cases,	the	usual	phases	in
any	software	development	process	are:

Definition	of	what:	Requirements	elicitation,	analysis	and	use	case
modeling.
Definition	of	how:	The	system	architecture	and	modeling	of	structural
and	behavioral	diagrams.
The	actual	software	development	(coding).
The	set	of	activities	that	makes	the	software	available	for	use	(release,
installation,	activation,	and	so	on).

The	timing	in	which	tests	are	designed	and	implemented	in	the	overall
software	development	process	results	in	different	test	methodologies,	namely
(see	diagram	after	the	list):

Behavior-Driven	Development	(BDD):	At	the	beginning	of	the	analysis
phase,	conversations	between	the	software	consumer	(final	user	or
costumer)	and	some	of	the	development	team	(typically,	project	leader,
manager,	or	analysts)	took	place.	These	conversations	are	used	to
concretize	scenarios	(that	is,	concrete	examples	to	build	up	a	common
understanding	of	the	system	features).	These	examples	form	the	basis	to
develop	acceptance	tests	using	tools	such	as	Cucumber	(for	more	details
about	it,	take	a	look	to	Chapter	5,	Integration	of	JUnit	5	with	external
frameworks.)	The	description	of	acceptance	tests	in	BDD	(for	example,
using	Gherkin	in	Cucumber)	produces	both	automated	tests	and
documentation	that	accurately	describe	the	application	features.	The
BDD	approach	is	naturally	aligned	with	iterative	or	Agile
methodologies,	since	it	is	very	difficult	to	define	requirements	upfront,
and	these	evolve	as	the	team	learns	more	about	the	project.

The	term	agile	was	popularized	with	the	inception	of	the	Agile
manifesto	in	2001	(http://agilemanifesto.org/).	It	was	written	by	17
software	practitioners	(Kent	Beck,	James	Grenning,	Robert	C.

http://agilemanifesto.org/


Martin,	Mike	Beedle,	Jim	Highsmith,	Steve	Mellor,	Arie	van
Bennekum,	Andrew	Hunt,	Ken	Schwaber,	Alistair	Cockburn,	Ron
Jeffries,	Jeff	Sutherland,	Ward	Cunningham,	Jon	Kern,	Dave
Thomas,	Martin	Fowler,	and	Brian	Marick),	and	includes	a	list
of	12	principles	to	guide	an	iterative	and	people-centric
software	development	process.	Based	on	these	principles,
several	software	development	frameworks	emerged,	such	as
SCRUM,	Kanban,	or	extreme	programming	(XP).

Test-Driven	Development	(TDD):	TDD	is	a	methodology	in	which
tests	are	designed	and	implemented	before	the	actual	software	design.
The	idea	is	to	convert	the	requirements	obtained	in	the	analysis	stage	to
specific	test	cases.	Then,	the	software	is	designed	and	implemented	to
pass	these	tests.	TDD	is	part	of	the	XP	methodology.
Test-First	Development	(TFD):	In	this	methodology,	tests	are
implemented	after	the	design	stage,	but	before	the	actual	implementation
of	the	SUT.	This	allows	to	assure	that	the	software	units	have	been
understood	correctly	before	its	actual	implementation.	This	methodology
is	followed	in	the	Unified	Process,	which	is	a	popular	iterative	and
incremental	software	development	process.	The	Rational	Unified
Process	(RUP)	is	a	well-known	framework	implementation	of	the
Unified	Process.	In	addition	to	TFD,	RUP	also	supports	other
methodologies	such	as	TDD	and	TLD.

Test-Last	Development	(TLD):	In	this	methodology,	the
implementation	of	the	test	is	carried	out	after	the	implementation	of	the
actual	software	(SUT).	This	test	methodology	is	followed	by	classic
software	development	processes,	such	as	waterfall	(sequential),
incremental	(multi-waterfall)	or	spiral	(risk-oriented	multi-waterfall).

Test	methodologies	during	the	software	development	processes

There	is	no	universal	accepted	definitions	of	the	terms	presented
so	far.	These	concepts	are	subject	to	continuous	evolution	and
debate,	just	like	the	software	engineering	itself.	Consider	this	to
be	a	proposal,	which	fits	into	a	large	number	of	software



projects.

Regarding	who	is	responsible	for	coding	the	tests,	there	is	a	universally
accepted	consensus.	It	is	broadly	recommended	that	unit	tests	should	be
written	by	SUT	developers.	In	some	cases,	especially	in	small	teams,	these
developers	are	also	responsible	for	other	kinds	of	tests.

In	addition,	the	role	of	an	independent	test	group	(often	called	testers	or	a	QA
team)	is	also	a	common	practice,	especially	in	large	teams.	One	of	the
objective	of	this	role	separation	is	to	remove	the	conflict	of	interests	that	may
be	present	otherwise.	We	cannot	forget	that	testing	is	understood	as	a
destructive	activity	from	a	physiological	point	of	view	(the	objective	is
finding	defects).	This	independent	test	group	is	usually	in	charge	on	the
integration,	system,	and	non-functional	tests.	In	this	case,	both	groups	of
engineers	should	work	closely;	while	tests	are	conducted,	developers	should
be	available	to	correct	faults	and	minimize	future	errors.

Finally,	high-level	acceptance	tests	are	usually	conducted	in	heterogeneous
groups	involving	non-programmers	(customers,	business	analysis,	managers,
and	so	on)	together	with	software	engineers	or	testers	(for	example,	for
implement	the	step	definition	in	Cucumber).



Continuous	Integration
The	concept	of	CI	was	first	coined	on	1991	by	Grady	Booch	(American
software	engineer,	best	known	for	the	development	of	UML	together	with
Ivar	Jacobson	and	James	Rumbaugh).	The	Extreme	Programming	(XP)
methodology	adopted	this	term,	making	it	very	popular.	According	to	Martin
Fowler,	CI	is	defined	as	follows:

Continuous	Integration	is	a	software	development	practice	where	members	of
a	team	integrate	their	work	frequently,	usually	each	person	integrates	at	least
daily	-	leading	to	multiple	integrations	per	day.	Each	integration	is	verified	by
an	automated	build	(including	test)	to	detect	integration	errors	as	quickly	as
possible.

In	CI	systems,	we	can	identify	different	parts.	First,	we	need	a	source	code
repository,	which	is	a	file	archive	to	host	the	source	code	of	our	software
project,	typically	using	a	version	control	system.	Nowadays,	the	preferred
version	control	system	is	Git	(originally	developed	by	Linus	Torvalds)	over
older	solutions,	such	as	CVS	or	SVN.	At	the	moment	of	this	writing,	the
leading	version	control	repository	is	GitHub	(https://github.com/),	which	as	its
name	indicates	it	is	based	on	Git.	Besides,	there	are	other	alternatives,	such	as
GitLab	(https://gitlab.com),	BitBucket	(https://bitbucket.org/),	or	SourceForge	(https://sou
rceforge.net/).	The	latter	was	the	leading	forge	in	the	past,	but	is	nowadays	less
used.

A	copy	of	the	source	code	repository	is	synchronized	in	the	local	environment
of	developers.	The	coding	work	is	done	against	this	local	copy.	Developers
are	supposed	to	commit	new	changes	(known	as	patches)	to	the	remote
repository	in	a	daily	basis.	Frequent	commits	allow	to	avoid	conflict	errors
due	to	the	mutual	modification	of	the	same	parts	of	a	given	file.

The	basic	idea	of	CI	is	that	every	commit	should	execute	the	build	and	test	the
software	with	the	new	changes.	For	that	reason,	we	need	a	server-side
infrastructure	which	automates	this	process.	This	infrastructure	is	known	as
build	server	(or	directly	CI	server).	Two	of	the	most	important	build	servers
nowadays	are	Jenkins	and	Travis	CI.	Details	of	both	of	them	are	provided	in
next	subsections.	As	a	result	of	the	build	process,	the	build	server	should
notify	the	result	of	the	process	to	the	origin	developer.	If	tests	were
successful,	the	patch	is	merged	in	the	codebase:

https://github.com/
https://gitlab.com
https://bitbucket.org/
https://sourceforge.net/


Continuous	Integration	process

Close	to	CI,	the	term	DevOps	has	gained	momentum.	DevOps	comes	from
development	and	operations,	and	it	is	the	name	given	to	a	software
development	process	that	emphasizes	the	communication	and	collaboration
different	teams	in	a	project	software:	development	(software	engineering),	QA
(quality	assurance),	and	operations	(infrastructure).	The	term	DevOps	is	also
referred	to	a	job	position,	typically	in	charge	of	the	setup,	monitoring	an
operation	of	the	build	servers:

DevOps	are	in	between	development,	operations	and	QA

As	shown	in	the	next	figure,	the	concept	of	CI	can	be	extended	to:

Continuous	Delivery:	When	the	CI	pipeline	finish	correctly,	at	least	a
release	of	software	will	be	deployed	to	a	test	environment	(for	instance,
deploying	an	SNAPSHOT	artifact	to	a	Maven	archiver).	In	this	phase,
acceptance	tests	can	also	be	executed.
Continuous	Deployment:	As	the	final	step	in	the	automation	toolchain,
the	release	of	the	software	can	be	released	to	a	production	environment
(for	example,	deploying	a	web	application	to	the	production	server	for
each	commit,	which	achieves	to	pass	the	complete	pipeline).



Continuous	Integration,	Continuous	Delivery,	and	Continuous	Deployment	chain



Jenkins
Jenkins	(https://jenkins.io/)	is	an	open	source	build	server	which	supports
building,	deploying,	and	automating	any	project.	Jenkins	has	been	developed
in	Java,	and	it	can	be	managed	easily	using	its	web	interface.	The	global
configuration	of	a	Jenkins	instance	includes	information	about	JDK,	Git,
Maven,	Gradle,	Ant,	and	Docker.

Jenkins	was	originally	developed	as	the	Hudson	project	by	Sun
Microsystems	in	2004.	After	the	acquisition	of	Sun	by	Oracle,
the	Hudson	project	was	forked	to	an	open	source	project,
renamed	to	Jenkins.	Both	names	(Hudson	and	Jenkins)	were
meant	to	sound	like	stereotypical	English	butler	names.	The	idea
is	they	help	developers	carry	out	tedious	tasks,	just	like	a	helpful
butler.

In	Jenkins,	builds	are	typically	triggered	by	new	commits	in	version	control
systems.	In	addition,	builds	can	be	started	by	other	mechanisms,	such	as
scheduled	cron	task	or	even	manually	using	the	Jenkins	interface.

Jenkins	is	highly	extensible	thanks	to	its	plugin	architecture.	Thanks	to	those,
Jenkins	has	been	extended	to	a	rich	plugin	ecosystem	made	by	vast	number	of
third-party	frameworks,	libraries,	systems,	and	so	on.	This	is	maintained	by
the	open	source	community.	The	Jenkins	plugin	portfolio	is	available	on	https://
plugins.jenkins.io/.

At	the	heart	of	Jenkins,	we	find	the	concept	of	job.	A	job	is	a	runnable	entity
monitored	by	Jenkins.	As	shown	in	the	screenshot	here,	a	Jenkins	job	is
composed	of	four	groups:

Source	code	management:	This	is	the	URL	of	the	source	code
repository	(Git,	SVN,	and	so	on)
Build	trigger:	This	is	the	mechanism	starting	the	build	process,	such	as
new	changes	in	the	source	code	repository,	external	scripts,	periodically,
and	so	on.
Build	environment:	Optional	setup,	for	example,	delete	workspace
before	build	start,	abort	the	build	when	stuck,	and	so	on.
Collection	of	steps	of	the	jobs:	These	steps	can	be	done	with	Maven,
Gradle,	Ant,	or	shell	commands.	After	those,	post-build	actions	can	be
configured,	for	example,	to	archive	an	artifact,	to	publish	JUnit	test

https://jenkins.io/
https://plugins.jenkins.io/


report	(we	will	describe	this	feature	later	in	this	chapter),	email
notifications,	and	so	on.

Jenkins	job	configuration

Another	interesting	way	of	configuring	a	job	is	using	a	Jenkins	pipeline,
which	is	the	description	of	the	build	workflow	using	the	Pipeline	DSL	(a
domain-specific	language	based	on	Groovy).	A	Jenkins	pipeline	description	is
typically	stored	in	a	file	called	Jenkinsfile,	which	can	be	under	the	control	of
the	source	code	repository.	In	short,	a	Jenkins	pipeline	is	declarative	chain	of
stages	composed	of	steps.	For	example:

pipeline	{

				agent	any

				stages	{

								stage('Build')	{

												steps	{

																sh	'make'

												}

								}

								stage('Test')	{

												steps	{



																sh	'make	check'

																junit	'reports/**/*.xml'

												}

								}

								stage('Deploy')	{

												steps	{

																sh	'make	publish'

												}

								}

				}

}



Travis	CI
Travis	CI	(https://travis-ci.org/)	is	a	distributed	build	server	used	to	build	and	test
software	projects	hosted	on	GitHub.	Travis	supports	open	source	projects
with	no	charge.

The	configuration	of	Travis	CI	is	done	using	a	file	named	.travis.yaml.	The
content	of	this	file	is	structured	using	different	keywords,	including:

language:	Project	language,	that	is,	java,	node_js,	ruby,	python,	or	php
among	others	(the	complete	list	is	available	on	https://docs.travis-ci.com/user/lan
guages/).
sudo:	Flag	value	to	set	if	superuser	privileges	are	needed	(for	example	to
install	Ubuntu	packages).
dist:	Builds	can	be	executed	on	Linux	environments	(Ubuntu	Precise
12.04	or	Ubuntu	Trusty	14.04).
addons:	Declarative	shortcuts	to	basic	operations	of	the	apt-get	commands.
install:	First	part	of	the	Travis	build	life	cycle,	in	which	the	installation
of	the	required	dependencies	is	done.	This	part	can	be	optionally
initiated	using	before_install.
script:	Actual	execution	of	the	build.	This	phase	can	be	optionally
surrounded	by	before_script	and	after_script.
deploy:	Finally,	the	deployment	of	the	build	can	be	optionally	made	in	this
phase.	This	stage	has	its	own	life	cycle	controlled	with	before_deploy	and
after_deploy.

YAML	is	lightweight	markup	language	used	broadly	for
configuration	files	due	to	its	minimalist	syntax.	It	was	originally
defined	as	Yet	Another	Markup	Language,	but	then	it	was
repurposed	to	YAML	Ain’t	Markup	Language	to	distinguish	its
purpose	as	data	oriented.

The	following	snippet	shows	an	example	of	.travis.yaml:
language:	java

sudo:	false

dist:	trusty

addons:

				firefox:	latest

				apt:

								packages:

												-	google-chrome-stable

				sonarcloud:

https://travis-ci.org/
https://docs.travis-ci.com/user/languages/


								organization:	"bonigarcia-github"

								token:

												secure:	"encripted-token"

before_script:

				-	export	DISPLAY=:99.0

				-	sh	-e	/etc/init.d/xvfb	start	&

				-	sleep	3

script:

				-	mvn	test	sonar:sonar

				-	bash	<(curl	-s	https://codecov.io/bash)

Travis	CI	provides	a	web	dashboard	in	which	we	can	check	the	status	of	the
current	and	past	build	generated	in	the	projects	using	Travis	CI	of	our	GitHub
account:

Travis	CI	dashboard



Test	reporting
From	its	initial	versions,	the	JUnit	testing	framework	introduced	an	XML	file
format	to	report	the	execution	of	test	suites.	Over	the	years,	this	XML	format
has	become	a	de	facto	standard	for	reporting	test	results,	broadly	adopted	in
the	xUnit	family.

These	XML	can	be	processed	by	different	programs	to	display	the	results	in	a
human-friendly	format.	This	is	for	example	what	build	servers	do.	For
example,	Jenkins	implements	a	tool	called	JUnitResultArchiver,	which	parses	to
HTML	the	XML	files	resulting	from	the	test	execution	of	a	job.

Despite	the	fact	that	this	XML	format	has	become	pervasive,	there	is	no
universal	formal	definition	for	it.	JUnit	test	executors	(for	example,	Maven,
Gradle,	and	so	on)	usually	use	its	own	XSD	(XML	Schema	Definition).	For
instance,	the	structure	of	this	XML	report	in	Maven	(http://maven.apache.org/surefire/
maven-surefire-plugin/)	is	as	depicted	in	the	following	diagram.	Note	that	a	test
suite	is	composed	by	a	set	of	properties	and	a	set	of	test	cases.	Each	test	case
can	be	declared	as	a	failure	(test	with	some	assertion	failed),	skipped	(test
ignored),	and	an	error	(test	with	an	unexpected	exception).	If	none	of	these
states	appear	in	the	body	of	the	test	suite,	then	the	test	is	interpreted	as
successful.	Finally,	for	each	test	case	the	XML	also	stores	the	standard	output
(system-out)	and	the	standard	error	output	(system-err):

Schema	representation	for	Maven	Surefire	XML	reports

http://maven.apache.org/surefire/maven-surefire-plugin/


The	rerunFailure	is	a	custom	state	implemented	by	Maven
Surefire	for	retrying	flaky	(intermittent)	tests	(http://maven.apache.org/
surefire/maven-surefire-plugin/examples/rerun-failing-tests.html).

With	regards	to	JUnit	5,	the	Maven	and	Gradle	plugins	used	to	run	Jupiter
tests	(maven-surefire-plugin	and	junit-platform-gradle-plugin	respectively)	write	the
results	of	the	test	execution	following	this	XML	format.	In	the	following
sections,	we	are	going	to	see	how	to	transform	this	XML	output	to	a	human
readable	HTML	report.

http://maven.apache.org/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html


Maven	Surefire	Report
By	default,	maven-surefire-plugin	generates	the	XML	resulting	from	a	test	suite
execution	as	${basedir}/target/surefire-reports/TEST-*.xml.	This	XML	output	can
be	easily	parsed	to	HTML	using	the	plugin	maven-surefire-report-plugin.	To	that,
we	simply	need	to	declare	this	plugin	in	the	reporting	clause	of	our	pom.xml,	as
follows:

<reporting>

				<plugins>

								<plugin>

												<groupId>org.apache.maven.plugins</groupId>

												<artifactId>maven-surefire-report-plugin</artifactId>

												<version>${maven-surefire-report-plugin.version}</version>

								</plugin>

				</plugins>

</reporting>

This	way,	when	we	invoque	the	Maven	lifecycle	for	documentation	(mvn	site),
an	HTML	page	with	the	test	result	will	be	included	in	the	general	report.

See	an	example	of	the	report,	made	using	the	project	junit5-reporting	within	the
GitHub	repository	examples	(https://github.com/bonigarcia/mastering-junit5):

https://github.com/bonigarcia/mastering-junit5


HTML	report	generated	by	maven-surefire-report-plugin



Allure
Allure	(http://allure.qatools.ru/)	is	a	light-weight	open	source	framework	for
generating	test	reports	for	different	programming	languages,	including	Java,
Python,	JavaScript,	Ruby,	Groovy,	PHP,	.NET,	and	Scala.	Generaliy	speaking,
Allure	uses	the	XML	test	output	and	transforms	it	in	an	HTML5-rich	report.

Allure	provides	support	for	JUnit	5	projects.	This	can	be	done	using	both
Maven	and	Gradle.	Regarding	Maven,	we	need	to	do	register	a	listener	in
maven-surefire-plugin.	This	listener	will	be	the	class	AllureJunit5	(located	in	the
library	io.qameta.allure:allure-junit5),	which	is	basically	a	implementation	of
the	JUnit	5’s	TestExecutionListener.	As	described	in	chapter	2,	What’s	New	In
JUnit	5,	TestExecutionListener	is	part	of	the	Launcher	API,	and	it	is	used	to
receive	events	about	the	test	execution.	All	in	all,	this	listener	allows	to	Allure
to	compile	the	test	information,	while	it	is	generated	in	the	JUnit	platform.
This	information	is	stored	as	JSON	files	by	Allure.	After	that,	we	can	use	the
plugin	io.qameta.allure:allure-maven	to	generate	the	HTML5	from	these	JSON
files.	The	commands	are:

mvn	test

mvn	allure:serve

The	content	of	our	pom.xml	should	contain	the	following:
<dependencies>

				<dependency>

								<groupId>io.qameta.allure</groupId>

								<artifactId>allure-junit5</artifactId>

								<version>${allure-junit5.version}</version>

								<scope>test</scope>

				</dependency>

				<dependency>

								<groupId>org.junit.jupiter</groupId>

								<artifactId>junit-jupiter-api</artifactId>

								<version>${junit.jupiter.version}</version>

								<scope>test</scope>

				</dependency>

</dependencies>

<build>

				<plugins>

								<plugin>

												<artifactId>maven-surefire-plugin</artifactId>

												<version>${maven-surefire-plugin.version}</version>

												<configuration>

																<properties>

																				<property>

																								<name>listener</name>

																								<value>io.qameta.allure.junit5.AllureJunit5</value>

																				</property>

																</properties>

																<systemProperties>

																				<property>

http://allure.qatools.ru/


																								<name>allure.results.directory</name>

																								<value>${project.build.directory}/allure-results</value>

																				</property>

																</systemProperties>

												</configuration>

												<dependencies>

																<dependency>

																				<groupId>org.junit.platform</groupId>

																				<artifactId>junit-platform-surefire-provider</artifactId>

																				<version>${junit.platform.version}</version>

																</dependency>

																<dependency>

																				<groupId>org.junit.jupiter</groupId>

																				<artifactId>junit-jupiter-engine</artifactId>

																				<version>${junit.jupiter.version}</version>

																</dependency>

												</dependencies>

								</plugin>

								<plugin>

												<groupId>io.qameta.allure</groupId>

												<artifactId>allure-maven</artifactId>

												<version>${allure-maven.version}</version>

								</plugin>

				</plugins>

</build>

The	same	process	can	be	done	using	Gradle,	this	time	using	the	equivalent
plugin,	io.qameta.allure:allure-gradle.	All	in	all,	the	content	of	our	build.gradle
file	should	contain:

buildscript	{

				repositories	{

								jcenter()

								mavenCentral()

				}

				dependencies	{

								classpath("org.junit.platform:junit-platform-gradle-

plugin:${junitPlatformVersion}")

								classpath("io.qameta.allure:allure-gradle:${allureGradleVersion}")

				}

}

apply	plugin:	'io.qameta.allure'

dependencies	{

				testCompile("org.junit.jupiter:junit-jupiter-api:${junitJupiterVersion}")

				testCompile("io.qameta.allure:allure-junit5:${allureJUnit5Version}")

				testRuntime("org.junit.jupiter:junit-jupiter-engine:${junitJupiterVersion}")

}

The	following	picture	shows	several	screenshots	of	the	Allure	report
generated	using	the	above-mentioned	steps	(the	final	result	is	the	same	using
Maven	or	Gradle).	The	project	of	this	example	is	called	junit5-allure,	as	usual
hosted	in	GitHub.



Allure	reports	generated	in	a	JUnit	5	project



Defect-tracking	systems
A	defect-tracking	system	(also	known	as	bug	tracking	system,	bug	tracker,	or
issue	tracker)	is	a	software	system	that	keeps	track	of	reported	software
defects	in	software	projects.	The	main	benefits	of	this	kind	of	systems	is	to
provide	a	centralized	overview	of	development	management,	bug	reporting,
and	even	feature	request.	It	is	also	common	to	maintain	a	list	of	pending
items,	often	called	backlog.

There	are	a	bunch	of	defect-tracking	systems	available,	both	proprietary	and
open	source.	In	this	section,	we	make	a	brief	of	several	of	the	most	well-
known:

JIRA	(https://www.atlassian.com/software/jira):	It	is	a	proprietary	defect-tracking
system	created	by	Atlasian.	In	addition	to	bug	and	issue	tracking,	it
provides	managements	capabilities	such	as	SCRUM	and	Kanban	boards,
a	language	to	query	issues	(JIRA	Query	Language),	integration	with
external	systems	(for	example,	GitHub,	Bitbucket),	and	an	add-ons
mechanism	to	extend	JIRA	with	plugins	from	the	Atlasian	Marketplace	(
https://marketplace.atlassian.com/).
Bugzilla	(https://www.bugzilla.org/):	It	is	an	open	source	web-based,	defect-
tracking	system	developed	by	the	Mozilla	Foundation.	Among	its
features,	we	can	find	a	database	designed	to	improve	performance	and
scalability,	query	mechanism	for	searching	defects,	integrated	e-mail
capabilities,	and	user	roles	management.
Redmine	(http://www.redmine.org/):	It	is	an	open	source,	web-based	defect-
tracking	system.	It	provides	wikis,	forums,	time	tracking,	role-based
access	control,	or	Gantt	charts	for	project	management.
MantisBT	(https://www.mantisbt.org/):	It	is	another	open	source,	web-based
defect	tracking	system	designed	to	be	simple	but	effective.	Among	its
features,	we	can	highlight	its	event-driven	plugin	system	to	allows
extensions	both	official	that	third-party,	multi-channel	notification
system	(e-mail,	RSS	feed,	Twitter	plugin,	and	so	on),	or	role-based
access	control.
GitHub	issues	(https://guides.github.com/features/issues/):	It	is	the	tracking
system	integrated	in	each	GitHub	repository.	The	approach	of	GitHub
issues	is	to	provide	a	generic	tracking	system	for	defects,	task
scheduling,	discussions,	and	even	feature	request	using	GitHub	issues.

https://www.atlassian.com/software/jira
https://marketplace.atlassian.com/
https://www.bugzilla.org/
http://www.redmine.org/
https://www.mantisbt.org/
https://guides.github.com/features/issues/


Each	issue	can	be	categorized	using	a	customizable	label	system,
participators	management,	and	notifications.



Static	analysis
This	book,	which	is	finishing	soon,	has	been	focused	on	software	testing.	No
surprises,	JUnit	is	about	testing.	But	as	we	seen	in	Chapter	1,	Retrospective	on
software	quality	and	Java	testing,	although	software	testing	is	the	most
commonly	performed	activities	within	Verification	&	Validation	(V&V),	it
is	not	the	only	type.	The	other	important	group	of	activities	is	static	analysis,
in	which	there	is	no	execution	of	the	software	testing.

There	are	different	activities	that	can	be	categorized	as	static	analysis.	Among
them,	the	automated	software	analysis	is	an	alternative	quite	inexpensive	in
terms	of	required	effort,	and	it	can	help	to	increase	the	internal	code	quality
significantly.	In	this	chapter,	we	are	going	to	review	several	automated
software	analysis	tools,	known	as	linters,	namely:

Checkstyle	(http://checkstyle.sourceforge.net/):	It	analyzes	Java	code	following
different	rules,	such	as	missing	Javadoc	comments,	the	use	of	magic
numbers,	naming	conventions	of	variables	and	methods,	method’s
argument	length	and	line	lengths,	the	use	of	imports,	the	spaces	between
some	characters,	the	good	practices	of	class	construction,	or	duplicated
code.	It	can	be	used	as	Eclipse	or	IntelliJ	plugin,	among	others.
FindBugs	(http://findbugs.sourceforge.net/):	It	looks	for	three	types	of	errors
within	Java	code:

Correctness	bug:	Apparent	coding	mistake	(for	example,	class
defines	equal(Object)	instead	of	equals(Object).
Bad	practice:	Violations	of	recommended	best	practices	(dropped
exceptions,	misuse	of	finalize,	and	so	on).
Dodgy	errors:	Confusing	code	or	written	in	a	way	that	leads	to	error
(for	example,	class	literal	never	used,	switch	fall	through,
unconfirmed	type	casts,	and	redundant	null	check.

PMD	(https://pmd.github.io/):	It	is	a	cross-language	static	code	analyzer,
including	Java,	JavaScript,	C++,	C#,	Go,	Groovy,	Perl,	PHP,	among
others.	It	has	a	lot	of	plugins,	including	Maven,	Gradle,	Eclipse,	IntelliJ,
and	Jenkins.
SonarQube	(https://www.sonarqube.org/):	It	(formerly	just	Sonar)	is	a	web-
based,	open	source	continuous	quality	assessment	dashboard.	It	supports
a	wide	variety	of	languages,	including	Java,	C/C++,	Objective-C,	C#,
and	many	others.	Offers	reports	on	duplicated	code,	code	smells,	code

http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/
https://pmd.github.io/
https://www.sonarqube.org/


coverage,	complexity	and	security	vulnerabilities.	SonarQube	has	a
distributed	flavor	called	SonarCloud	(https://sonarcloud.io/).	It	can	be	used
for	free	in	open	source	projects,	providing	a	seamless	integration	with
Travis	CI	through	a	few	lines	of	configuration	in	.travis.yml	(see	the
following	snippet),	including	the	SonarCloud	organization	identifier	and
secure	token.	These	parameters	can	be	obtained	in	the	SonarCloud	web
administration	panel,	after	associating	out	SonarCloud	account	with
GitHub.

addons:

				sonarcloud:

								organization:	"bonigarcia-github"

								token:

												secure:	"encrypted-token"

After	that,	we	simply	need	to	call	SonarCloud,	using	Maven	or	using	Gradle:
script:

				-	mvn	test	sonar:sonar

script:

				-	gradle	test	sonarQube

The	following	picture	shows	the	SonarCloud	dashboard	for	the	example
application	Rate	my	cat!,	described	in	the	last	section	of	this	chapter:

https://sonarcloud.io/


SonarCloud	report	for	the	application	Rate	my	cat!

Another	analysis	static	technique	highly	adopted	in	many	software	projects	is
peer	review.	This	method	is	quite	expensive	in	terms	of	time	and	effort
required,	but	when	correctly	applied,	it	allows	to	maintain	very	good	levels	of
internal	code	quality.	Nowadays	there	is	a	wide	range	of	tools	aimed	to	ease
the	peer	review	process	of	software	codebase.	Among	others,	we	find	the
following:

Collaborator	(https://smartbear.com/product/collaborator/):	Peer	code	(and
documentation)	review	propriety	tool	created	by	the	company
SmartBear.
Crucible	(https://www.atlassian.com/software/crucible):	On-premises	code	review
propriety	tool	for	enterprise	products,	created	by	Atlassian.
Gerrit	(https://www.gerritcodereview.com/):	Web-based	code	collaboration	open
source	tool.	It	can	be	used	with	GitHub	repository	through	GerritHub	(htt
p://gerrithub.io/).
GitHub	pull	request	reviews	(https://help.github.com/articles/about-pull-request-revi
ews/):	In	GitHub,	a	pull	request	is	a	method	for	submitting	contributions
in	third-party	repositories.	As	part	of	the	collaborative	tools	provided	by
GitHub,	pull	requests	allows	reviews	and	comments	in	a	easy	and
integrated	fashion.

https://smartbear.com/product/collaborator/
https://www.atlassian.com/software/crucible
https://www.gerritcodereview.com/
http://gerrithub.io/
https://help.github.com/articles/about-pull-request-reviews/


Putting	all	pieces	together
In	this	last	section	of	the	book,	we	are	going	to	review	some	of	the	major
aspects	covered	in	this	book	with	a	practical	example.	To	that	aim,	a	complete
application	is	developed	together	with	different	types	of	tests	implemented
with	JUnit	5.



Features	and	requirements
The	history	of	our	application	begins	with	a	hypothetical	person,	which	loves
cats.	This	person	owns	a	clowder,	and	he/she	would	like	to	get	feedback	about
them	from	the	external	world.	For	that	reason,	this	person	(we	can	him/her
our	client	from	now	on)	contacts	with	us	to	implement	a	web	application
which	satisfies	his/her	needs.	The	name	for	that	application	will	be	“Rate	my
cat!”.	In	a	conversation	with	the	client,	we	elicit	a	following	list	of	features
for	the	application	to	be	developed:

F1:	Each	user	shall	rate	a	list	of	cats	by	watching	its	name	and	picture.
F2:	The	rate	shall	be	done	once	per	user	using	a	star	mechanism	(from
0.5	to	5	stars	per	cat)	and	optionally	comments	could	be	included	per	cat.

As	part	of	the	analysis	phase	in	our	development	process,	those	features	are
refined	as	a	list	of	functional	requirements	(FR)	as	follows:

FR1:	The	application	presents	a	list	of	cats	(composed	by	name	and
picture)	to	the	end	user.
FR2:	Each	cat	can	be	rated	individually.
FR3:	The	range	for	rating	cats	is	an	interval	from	0.5	to	5	(stars).
FR4:	Optionally	to	the	numeric	rate	per	cat,	users	shall	include	some
comments.
FR5:	Each	end	user	only	shall	rate	each	cat	(comments	and/or	stars)
once.



Design
Since	our	application	is	quite	simple,	we	decide	to	stop	the	analysis	phase
here,	without	modeling	our	requirements	as	use	cases.	Instead,	we	move	on
making	a	high-level	architectural	design	of	the	web	application	using	the
classical	three-tier	model:	presentation,	application	(or	business)	logic,	and
data	tier.	Regarding	the	application	logic,	as	the	following	picture	depicts,	two
components	are	needed.	First	one,	called	CatService	is	charge	of	all	the	rating
actions	as	described	in	the	requirements	list.	Second	one,	called	CookiesServices
is	needed	to	handle	HTTP	Cookies,	needed	to	implement	FR5:

High-level	architectural	design	for	the	application	Rate	my	cat!

At	this	stage,	in	the	development,	we	are	able	to	decide	the	major
technologies	implied	in	the	implementation	our	application:

Spring	5:	This	will	be	the	foundation	framework	for	our	application.
Concretely,	we	use	Spring	MVC	through	Spring	Boot	to	simplify	the
creation	of	our	web	application.	Moreover,	we	use	Spring	Data	JPA
using	a	simple	H2	database	to	persist	the	application	data,	and
Thymeleaf	(http://www.thymeleaf.org/)	as	template	engine	(for	views	in	MVC).
Finally,	we	also	use	the	Spring	Test	module	to	make	in-container
integration	tests	in	an	easy	way.
JUnit	5:	Of	course,	we	cannot	use	a	different	testing	framework	than
JUnit	5	for	our	tests	cases.	Moreover,	to	improve	the	readability	of	our
assertions	we	use	Hamcrest.
Mockito:	In	order	to	implement	unit	test	cases,	we	will	use	the	Mockito
framework,	isolating	the	SUT	from	its	DOCs	in	several	out-of-container
unit	tests.
Selenium	WebDriver:	We	will	also	implement	different	end-to-end	tests
using	Selenium	WebDriver	to	exercise	our	web	application	from	JUnit	5

http://www.thymeleaf.org/


tests.
GitHub:	Our	source	code	repository	will	be	hosted	in	a	public	GitHub
repository.
Travis	CI:	Our	test	suite	will	be	executed	each	time	a	new	patch	is
committed	to	our	GitHub	repository.
Codecov:	To	track	the	code	coverage	of	our	test	suite	we	will	use
Codecov.
SonarCloud:	To	provide	a	complete	assessment	of	the	internal	quality	of
our	source	code,	we	complement	our	test	process	with	some	automatic
static	analysis	using	SonarCloud.

The	screenshot	here	shows	the	application	GUI	in	action.	It	is	not	the	main
objective	of	this	section	to	dig	deeper	in	the	implementation	specifics	of	the
application.	Visit	the	GitHub	repository	of	the	application	on	https://github.com/bo
nigarcia/rate-my-cat	for	details	about	it.

Screenshot	of	the	application	Rate	my	cat!

The	pictures	used	to	implement	this	example	have	been
downloaded	from	the	free	images	gallery	available	on	https://pixab
ay.com/.

https://github.com/bonigarcia/rate-my-cat
https://pixabay.com/


Tests
Let’s	focus	now	on	the	JUnit	5	tests	of	this	application.	We	implement	three
types	of	tests:	unit,	integration,	and	end	to	end.	As	introduced	before,	for	the
unit	test,	we	use	Mockito	to	exercise	the	SUT	in	isolation.	We	decide	to	unit
test	the	two	major	components	of	our	application	(CatService	and
CookiesServices)	using	Java	classes	containing	different	JUnit	5	tests.

Consider	the	first	test	(called	RateCatsTest).	As	can	be	seen	the	code,	in	this
class	we	are	defining	the	class	CatService	as	the	SUT	(using	the	annotation
@InjectMocks)	and	the	class	CatRepository	(which	is	used	by	CatService	with
dependency	injection)	as	the	DOC	(using	the	annotation	@Mock).	The	first	test
of	this	class	(testCorrectRangeOfStars)	is	an	example	of	parameterized	JUnit	5
tests.	The	objective	of	this	test	if	to	assess	the	rate	method	inside	CatService
(method	rateCate).	In	order	to	select	the	test	data	(input)	for	this	test,	we	follow
a	black-box	strategy	and	therefore	we	use	the	information	of	the	requirements
definition.	Concretely,	FR3	states	the	range	of	stars	to	be	used	in	the	rating
mechanism	for	cats.	Following	a	boundary	analysis	approach,	we	select	the
edges	of	the	input	range,	that	is,	0.5	and	5.	The	second	test	case
(testCorrectRangeOfStars)	also	tests	the	same	method	(rateCat),	but	this	time	the
test	evaluates	the	SUT	response	when	out-of-range	inputs	exercise	the	SUT
(negative	test	scenario).	Then,	two	more	tests	are	implemented	in	this	class,
this	time	aimed	to	assess	FR4	(that	is,	using	also	comments	to	rate	cats).
Notice	that	we	are	using	the	JUnit	5	@Tag	annotation	to	identify	each	test	with
its	corresponding	requirement:

package	io.github.bonigarcia.test.unit;

import	static	org.hamcrest.CoreMatchers.equalTo;

import	static	org.hamcrest.MatcherAssert.assertThat;

import	static	org.hamcrest.text.IsEmptyString.isEmptyString;

import	static	org.junit.jupiter.api.Assertions.assertThrows;

import	static	org.mockito.ArgumentMatchers.any;

import	static	org.mockito.Mockito.when;

import	java.util.Optional;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.junit.jupiter.params.ParameterizedTest;

import	org.junit.jupiter.params.provider.ValueSource;

import	org.mockito.InjectMocks;

import	org.mockito.Mock;

import	io.github.bonigarcia.Cat;

import	io.github.bonigarcia.CatException;

import	io.github.bonigarcia.CatRepository;

import	io.github.bonigarcia.CatService;



import	io.github.bonigarcia.mockito.MockitoExtension;

@ExtendWith(MockitoExtension.class)

@DisplayName("Unit	tests	(black-box):	rating	cats")

@Tag("unit")

class	RateCatsTest	{

				@InjectMocks

				CatService	catService;

				@Mock

				CatRepository	catRepository;

				//	Test	data

				Cat	dummy	=	new	Cat("dummy",	"dummy.png");

				int	stars	=	5;

				String	comment	=	"foo";

				@ParameterizedTest(name	=	"Rating	cat	with	{0}	stars")

				@ValueSource(doubles	=	{	0.5,	5	})

				@DisplayName("Correct	range	of	stars	test")

				@Tag("functional-requirement-3")

				void	testCorrectRangeOfStars(double	stars)	{

								when(catRepository.save(dummy)).thenReturn(dummy);

								Cat	dummyCat	=	catService.rateCat(stars,	dummy);

								assertThat(dummyCat.getAverageRate(),	equalTo(stars));

				}

				@ParameterizedTest(name	=	"Rating	cat	with	{0}	stars")

				@ValueSource(ints	=	{	0,	6	})

				@DisplayName("Incorrect	range	of	stars	test")

				@Tag("functional-requirement-3")

				void	testIncorrectRangeOfStars(int	stars)	{

								assertThrows(CatException.class,	()	->	{

												catService.rateCat(stars,	dummy);

								});

				}

				@Test

				@DisplayName("Rating	cats	with	a	comment")

				@Tag("functional-requirement-4")

				void	testRatingWithComments()	{

								when(catRepository.findById(any(Long.class)))

												.thenReturn(Optional.of(dummy));

								Cat	dummyCat	=	catService.rateCat(stars,	comment,	0);

								assertThat(catService.getOpinions(dummyCat).iterator().next()

											.getComment(),	equalTo(comment));

				}

				@Test

				@DisplayName("Rating	cats	with	empty	comment")

				@Tag("functional-requirement-4")

				void	testRatingWithEmptyComments()	{

								when(catRepository.findById(any(Long.class)))

												.thenReturn(Optional.of(dummy));

								Cat	dummyCat	=	catService.rateCat(stars,	dummy);

								assertThat(catService.getOpinions(dummyCat).iterator().next()

												.getComment(),	isEmptyString());

				}

}

Next,	unit	test	evaluates	the	cookies	service	(FR5).	To	that	aim,	the	following
test	use	the	class	CookiesService	as	SUT,	and	this	time	we	are	going	to	mock	the
standard	Java	object,	which	manipulates	the	HTTP	Cookies,	that	is,
javax.servlet.http.HttpServletResponse.	Inspecting	the	source	code	of	this	test



class,	we	can	see	that	the	first	test	method	(called	testUpdateCookies)	exercise
the	service	method	updateCookies,	verifying	whether	or	not	the	format	of	the
cookies	is	as	expected.	Next	two	tests	(testCheckCatInCookies	and
testCheckCatInEmptyCookies)	evaluates	the	method	isCatInCookies	of	the	service
using	a	positive	strategy	(that	is	the	input	cat	corresponds	with	the	format	of
the	cookie)	and	a	negative	one	(the	opposite	case).	Finally,	the	last	two	tests
(testUpdateOpinionsWithCookies	and	testUpdateOpinionsWithEmptyCookies)	exercise	the
method	updateOpinionsWithCookiesValue	of	the	SUT	following	the	same	approach,
that	is,	checking	the	response	of	the	SUT	using	a	valid	and	empty	cookie.	All
these	tests	have	been	implemented	following	a	white-box	strategy,	since	its
test	data	and	logic	relies	completely	in	the	specific	internal	logic	of	the	SUT
(in	this	case	how	the	cookies	are	formatted	and	managed).

This	test	does	not	follow	pure	white-box	approach	in	the	sense	of
its	objective	is	to	exercise	all	the	possible	paths	within	the	SUT.
It	can	be	seen	as	white-box	in	the	sense	of	it	has	been	designed
directly	linked	to	the	implementation	rather	than	the
requirements.

package	io.github.bonigarcia.test.unit;

import	static	org.hamcrest.CoreMatchers.containsString;

import	static	org.hamcrest.CoreMatchers.equalTo;

import	static	org.hamcrest.CoreMatchers.not;

import	static	org.hamcrest.MatcherAssert.assertThat;

import	static	org.hamcrest.collection.IsEmptyCollection.empty;

import	static	org.mockito.ArgumentMatchers.any;

import	static	org.mockito.Mockito.doNothing;

import	java.util.List;

import	javax.servlet.http.Cookie;

import	javax.servlet.http.HttpServletResponse;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.mockito.InjectMocks;

import	org.mockito.Mock;

import	io.github.bonigarcia.Cat;

import	io.github.bonigarcia.CookiesService;

import	io.github.bonigarcia.Opinion;

import	io.github.bonigarcia.mockito.MockitoExtension;

@ExtendWith(MockitoExtension.class)

@DisplayName("Unit	tests	(white-box):	handling	cookies")

@Tag("unit")

@Tag("functional-requirement-5")

class	CookiesTest	{

				@InjectMocks

				CookiesService	cookiesService;

				@Mock

				HttpServletResponse	response;

				//	Test	data

				Cat	dummy	=	new	Cat("dummy",	"dummy.png");

				String	dummyCookie	=	"0#0.0#_";

				@Test



				@DisplayName("Update	cookies	test")

				void	testUpdateCookies()	{

								doNothing().when(response).addCookie(any(Cookie.class));

								String	cookies	=	cookiesService.updateCookies("",	0L,	0D,	"",	

										response);

								assertThat(cookies,																									

										containsString(CookiesService.VALUE_SEPARATOR));

								assertThat(cookies,	

										containsString(Cookies.CAT_SEPARATOR));

				}

				@Test

				@DisplayName("Check	cat	in	cookies")

				void	testCheckCatInCookies()	{

								boolean	catInCookies	=	cookiesService.isCatInCookies(dummy,

												dummyCookie);

								assertThat(catInCookies,	equalTo(true));

				}

				@DisplayName("Check	cat	in	empty	cookies")

				@Test

				void	testCheckCatInEmptyCookies()	{

								boolean	catInCookies	=	cookiesService.isCatInCookies(dummy,	"");

								assertThat(catInCookies,	equalTo(false));

				}

				@DisplayName("Update	opinions	with	cookies")

				@Test

				void	testUpdateOpinionsWithCookies()	{

								List<Opinion>	opinions	=	cookiesService

												.updateOpinionsWithCookiesValue(dummy,	dummyCookie);

								assertThat(opinions,	not(empty()));

				}

				@DisplayName("Update	opinions	with	empty	cookies")

				@Test

				void	testUpdateOpinionsWithEmptyCookies()	{

								List<Opinion>	opinions	=	cookiesService

												.updateOpinionsWithCookiesValue(dummy,	"");

								assertThat(opinions,	empty());

				}

}

Let’s	move	on	to	the	next	type	of	tests:	integration.	For	this	type	of	test,	we
are	going	to	use	the	in-container	test	capabilities	provided	by	Spring.
Concretely,	we	use	the	Spring	test	object	MockMvc	to	evaluate	the	HTTP
responses	of	our	application	from	the	client-side.	In	each	test,	different
requests	are	exercised	verifying	if	the	responses	(status	code	and	content	type)
are	as	expected:

package	io.github.bonigarcia.test.integration;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.post;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.Test;



import	org.junit.jupiter.api.extension.ExtendWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.boot.test.context.SpringBootTest;

import	org.springframework.test.context.junit.jupiter.SpringExtension;

import	org.springframework.test.web.servlet.MockMvc;

@ExtendWith(SpringExtension.class)

@SpringBootTest

@DisplayName("Integration	tests:	HTTP	reponses")

@Tag("integration")

@Tag("functional-requirement-1")

@Tag("functional-requirement-2")

class	WebContextTest	{

				@Autowired

				MockMvc	mockMvc;

				@Test

				@DisplayName("Check	home	page	(GET	/)")

				void	testHomePage()	throws	Exception	{

								mockMvc.perform(get("/")).andExpect(status().isOk())

												.andExpect(content().contentType("text/html;charset=UTF-8"));

				}

				@Test

				@DisplayName("Check	rate	cat	(POST	/)")

				void	testRatePage()	throws	Exception	{

								mockMvc.perform(post("/").param("catId",	"1").param("stars",	"1")

												.param("comment",	"")).andExpect(status().isOk())

												.andExpect(content().contentType("text/html;charset=UTF-8"));

				}

				@Test

				@DisplayName("Check	rate	cat	(POST	/)	of	an	non-existing	cat")

				void	testRatePageCatNotAvailable()	throws	Exception	{

								mockMvc.perform(post("/").param("catId",	"0").param("stars",	"1")

												.param("comment",	"")).andExpect(status().isOk())

											.andExpect(content().contentType("text/html;charset=UTF-8"));

				}

				@Test

				@DisplayName("Check	rate	cat	(POST	/)	with	bad	parameters")

				void	testRatePageNoParameters()	throws	Exception	{

								mockMvc.perform(post("/")).andExpect(status().isBadRequest());

				}

}

Finally,	we	also	implement	several	end-to-end	tests	using	Selenium
WebDriver.	Inspecting	the	implementation	of	this	test,	we	can	see	that	this	test
is	using	two	JUnit	5	extensions	at	the	same	time:	SpringExtension	(to	start/stop
the	Spring	context	within	the	JUnit	5	tests’	lifecycle)	and	SeleniumExtension	(to
inject	WebDriver	objects	aimed	to	control	web	browsers	in	the	test	methods).
In	particular,	we	use	three	different	browsers	in	one	of	the	tests:

PhantomJS	(headless	browser),	to	assess	is	the	list	of	cats	is	properly
rendered	in	the	web	GUI	(FR1).
Chrome,	to	rate	cats	using	through	the	application	GUI	(FR2).
Firefox,	to	rate	cats	using	the	GUI	but	getting	an	error	as	a	result	(FR2).



package	io.github.bonigarcia.test.e2e;

import	static	org.hamcrest.CoreMatchers.containsString;

import	static	org.hamcrest.CoreMatchers.equalTo;

import	static	org.hamcrest.MatcherAssert.assertThat;

import	static	

org.openqa.selenium.support.ui.ExpectedConditions.elementToBeClickable;

import	static	

org.springframework.boot.test.context.SpringBootTest.WebEnvironment.RANDOM_PORT;

import	java.util.List;

import	org.junit.jupiter.api.DisplayName;

import	org.junit.jupiter.api.Tag;

import	org.junit.jupiter.api.Test;

import	org.junit.jupiter.api.extension.ExtendWith;

import	org.openqa.selenium.By;

import	org.openqa.selenium.WebElement;

import	org.openqa.selenium.chrome.ChromeDriver;

import	org.openqa.selenium.firefox.FirefoxDriver;

import	org.openqa.selenium.phantomjs.PhantomJSDriver;

import	org.openqa.selenium.support.ui.WebDriverWait;

import	org.springframework.boot.test.context.SpringBootTest;

import	org.springframework.boot.web.server.LocalServerPort;

import	org.springframework.test.context.junit.jupiter.SpringExtension;

import	io.github.bonigarcia.SeleniumExtension;

@ExtendWith({	SpringExtension.class,	SeleniumExtension.class	})

@SpringBootTest(webEnvironment	=	RANDOM_PORT)

@DisplayName("E2E	tests:	user	interface")

@Tag("e2e")

public	class	UserInferfaceTest	{

				@LocalServerPort

				int	serverPort;

				@Test

				@DisplayName("List	cats	in	the	GUI")

				@Tag("functional-requirement-1")

				public	void	testListCats(PhantomJSDriver	driver)	{

								driver.get("http://localhost:"	+	serverPort);

								List<WebElement>	catLinks	=	driver

												.findElements(By.className("lightbox"));

								assertThat(catLinks.size(),	equalTo(9));

				}

				@Test

				@DisplayName("Rate	a	cat	using	the	GUI")

				@Tag("functional-requirement-2")

				public	void	testRateCat(ChromeDriver	driver)	{

								driver.get("http://localhost:"	+	serverPort);

								driver.findElement(By.id("Baby")).click();

								String	fourStarsSelector	=	"#form1	span:nth-child(4)";

								new	WebDriverWait(driver,	10)																					

												.until(elementToBeClickable

																(By.cssSelector(fourStarsSelector)));

								driver.findElement(By.cssSelector(fourStarsSelector)).click();

								driver.findElement(By.xpath("//*[@id=\"comment\"]"))

												.sendKeys("Very	nice	cat");

								driver.findElement(By.cssSelector("#form1	>	button")).click();

								WebElement	sucessDiv	=	driver

												.findElement(By.cssSelector("#success	>	div"));

								assertThat(sucessDiv.getText(),	containsString("Your	vote	for															

												Baby"));

				}

				@Test

				@DisplayName("Rate	a	cat	using	the	GUI	with	error")

				@Tag("functional-requirement-2")

				public	void	testRateCatWithError(FirefoxDriver	driver)	{

								driver.get("http://localhost:"	+	serverPort);



								driver.findElement(By.id("Baby")).click();

								String	sendButtonSelector	=	"#form1	>	button";

								new	WebDriverWait(driver,	10).until(

												elementToBeClickable(By.cssSelector(sendButtonSelector)));

								driver.findElement(By.cssSelector(sendButtonSelector)).click();

								WebElement	sucessDiv	=	driver

												.findElement(By.cssSelector("#error	>	div"));

								assertThat(sucessDiv.getText(),	containsString(

												"You	need	to	select	some	stars	for	rating	each	cat"));

				}

}

In	order	to	make	easier	the	traceability	of	the	test	executions,	in	all	the
implemented	test,	we	have	selected	meaningful	test	names	using	@DisplayName.
In	addition,	for	parameterized	tests,	we	use	the	element	name	to	refine	the	test
name	of	each	execution	of	the	test,	depending	on	the	test	input.	The	following
screenshot	of	the	execution	of	the	test	suite	in	Eclipse	4.7	(Oxygen):

Execution	of	the	test	suite	for	the	application	Rate	my	cat!	in	Eclipse	4.7

As	introduced	before,	we	use	Travis	CI	as	build	server	to	execute	our	tests
during	the	development	process.	In	the	configuration	of	Travis	CI	(file
.travis.yml),	we	setup	two	additional	tools	to	enhance	the	development	and	test
process	of	our	application.	On	the	one	hand,	Codecov	provides	a
comprehensive	test	coverage	report.	On	the	other	hand,	SonarCloud	provides
a	complete	static	analysis.	Both	tools	are	triggered	by	Travis	CI	as	part	of	the
continuous	integration	build	process.	As	a	result,	we	can	evaluate	both	the
coverage	test	and	the	internal	code	quality	of	our	application	(such	as	code



smells,	duplicated	blocks,	or	technical	debt)	along	with	our	development
process.

The	following	picture	shows	a	screenshot	of	the	online	report	provided	by
Codecov	(the	report	provided	by	SonarCloud	was	presented	in	the	previous
section	of	this	chapter):



\

Codecov	report	for	the	application	Rate	my	cat!

Last	but	not	least,	we	are	using	several	badges	in	the	README	of	our	GitHub
repository.	Concretely,	we	add	badges	for	Travis	CI	(status	of	the	last	build
process),	SonarCloud	(status	of	the	last	analysis),	and	Codecov	(percentage	of
the	last	code	coverage	analysis):



GitHub	badges	for	the	application	Rate	my	cat!



Summary
In	this	chapter,	we	reviewed	several	concerns	about	the	management	side	of
the	testing	activities.	First,	we	learned	that	testing	can	be	made	in	different
parts	of	the	software	development	process	(software	lifecycle)	depending	on
the	test	methodology:	BDD	(acceptance	tests	are	defined	before	the
requirement	analysis),	TDD	(tests	are	defined	before	the	design	of	the
system),	TFD	(tests	are	implemented	after	the	system	design),	and	TLD	(tests
are	implemented	after	the	system	implementation).

CI	is	a	process	more	and	more	used	in	software	development.	It	consists	on
the	automated	build	and	test	of	a	codebase.	This	process	is	typically	triggered
with	a	new	commit	in	a	source	code	repository,	such	as	GitHub,	GitLab,	or
Bitbucket.	CI	is	extended	to	Continuous	Delivery	(when	releases	are	made	to
development	environment)	and	to	Continuous	Deployment	(when	deployment
to	production	environment	is	made	continuously).	We	reviewed	two	of	the
most	used	build	servers	nowadays:	Jenkins	(CI	as	a	Service)	and	Travis	(in-
premises).

There	some	other	tools	that	can	be	used	to	improve	the	management	of	tests,
for	example,	reporting	tools	(such	as	Maven	Surefire	Report	or	Allure)	or
defect	tracking	systems	(such	as	JIRA,	Bugzilla,	Redmine,	MantisBT,	and
GitHub	issues).	Automated	static	analysis	is	a	great	complement	to	testing,
for	example,	using	linters	such	as	Checkstyle,	FindBugs,	PMD,	or
SonarQube,	and	also	peer	review	tools	such	as	Collaborator,	Crucible,	Gerrit,
and	GitHub	pull	requests	reviews.

To	close	this	book,	the	final	section	of	this	chapter	presents	a	complete	web
application	(named	Rate	my	cat!)	and	its	corresponding	JUnit	5	tests	(unit,
integration,	and	end-to-end).	It	consists	on	a	web	applications	developed	and
assessed	using	different	technologies	presented	throughout	the	book,	namely,
Spring,	Mockito,	Selenium,	Hamcrest,	Travis	CI,	Codecov,	and	SonarCloud.


	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions


	Retrospective On Software Quality And Java Testing
	Software quality
	Quality engineering
	Requirements and specification
	Quality Assurance
	ISO/IEC-25000


	Verification and Validation
	Software defects
	Static analysis


	Software testing
	Testing levels
	Unit testing
	Integration testing
	System testing

	Testing methods
	Black-box testing
	White-box testing
	Non-functional testing

	Testing types
	Other testing approaches

	Testing frameworks for the JVM
	JUnit 3
	Standard tests in JUnit 3
	Test execution in JUnit 3

	JUnit 4
	Standard tests in JUnit 4
	Test execution in JUnit 4
	Advanced features of JUnit 4

	JUnit ecosystem

	Summary

	What’s New In JUnit 5
	Road to JUnit 5
	JUnit 5 motivation
	Modularity
	JUnit 4 runners
	JUnit 4 rules

	JUnit 5 inception
	JUnit 5 community

	JUnit 5 architecture
	Test Engine SPI
	Test Launcher API

	Running tests in JUnit 5
	Jupiter tests with Maven
	Jupiter tests with Gradle
	Legacy tests with Maven
	Legacy tests wih Gradle
	The ConsoleLauncher
	Jupiter tests in JUnit 4
	IntelliJ
	Eclipse


	The extension model of JUnit 5
	Test lifecycle
	Conditional extension points
	Dependency injection
	Third-party extensions

	Summary

	JUnit 5 Standard Tests
	Test lifecycle
	Test instance lifecycle
	Skipping tests
	Display names

	Assertions
	Jupiter assertions
	Group of assertions
	Asserting exceptions
	Asserting timeouts

	Third-party assertion libraries

	Tagging and filtering tests
	Filtering tests with Maven
	Maven regular support

	Filtering tests with Gradle
	Meta-annotations

	Conditional test execution
	Assumptions

	Nested tests
	Repeated tests
	Migration from JUnit 4 to JUnit 5
	Rule support in Jupiter

	Summary

	Simplifying Testing With Advanced JUnit Features
	Dependency injection
	TestInfoParameterResolver
	RepetitionInfoParameterResolver
	TestReporterParameterResolver

	Dynamic tests
	Test interfaces
	Test templates
	Parameterized tests
	@ValueSource
	@EnumSource
	@MethodSource
	@CsvSource and @CsvFileSource
	@ArgumentsSource
	Argument conversion
	Implicit conversion
	Explicit conversion

	Custom names

	Java 9
	JUnit 5 and Java 9 compatibility

	Beyond JUnit 5.0
	Summary

	Integration Of JUnit 5 With External Frameworks
	Mockito
	Mockito in a nutshell
	JUnit 5 extension for Mockito

	Spring
	Spring in a nutshell
	Spring modules
	Introduction to Spring Test
	Testing Spring Boot applications

	JUnit 5 extension for Spring

	Selenium
	Selenium in a nutshell
	JUnit 5 extension for Selenium

	Cucumber
	Cucumber in a nutshell
	JUnit 5 extension for Cucumber

	Docker
	Docker in a nutshell
	JUnit 5 extension for Docker

	Android
	Android in a nutshell
	Gradle plugin for JUnit 5 in Android projects

	REST
	REST in a nutshell
	Using REST test libraries with Jupiter

	Summary

	From Requirements To Test Cases
	The importance of requirements
	Test planning
	Test design
	Equivalence partitioning
	Boundary analysis
	Test coverage

	Software testing principles
	The psychology of testing

	Test anti-patterns
	Code smells

	Summary

	Testing Management
	Software development processes
	Continuous Integration
	Jenkins
	Travis CI

	Test reporting
	Maven Surefire Report
	Allure

	Defect-tracking systems
	Static analysis
	Putting all pieces together
	Features and requirements
	Design
	Tests

	Summary


