The
Pragmatic

ogrammers

Pragmatic Unit Testin
in Java 8 with JUnit

39 4

llll]\mhm‘m

lllll T
38

Jeff Langr

with Andy Hunt
& Dave Thomas
edited by

Susannah Davidson Pfalzer

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Early praise for Pragmatic Unit Testing in Java 8 with JUnit

Langr, Hunt, and Thomas demonstrate, with abundant detailed examples, how
unit testing with JUnit works in the real world. Beyond just showing simple iso-
lated examples, they address the hard issues-things like mock objects, databases,
multithreading, and getting started with automated unit testing. Buy this book
and keep it on your desk, as you’ll want to refer to it often.
» Mike Cohn
Author of Succeeding with Agile, Agile Estimating and Planning, and User Stories
Applied

Working from a realistic application, Jeff gives us the reasons behind unit testing,
the basics of using JUnit, and how to organize your tests. This is a super upgrade
to an already good book. If you have the original, you’'ll find valuable new ideas
in this one. And if you don’t have the original, what’s holding you back?
>» Ron Jeffries

www.ronjeffries.com

Rational, balanced, and devoid of any of the typical religious wars surrounding
unit testing. Top-drawer stuff from Jeff Langr.

» Sam Rose

This book is an excellent resource for those new to the unit testing game. Experi-
enced developers should also at the very least get familiar with the very helpful
acronyms.
» Colin Yates

Principal Architect, QFI Consulting, LLP

www.it-ebooks.info

http://www.it-ebooks.info/

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

www.it-ebooks.info

http://www.it-ebooks.info/

Pragmatic Unit Testing
in Java 8 with JUnit

Jeff Langr

with Andy Hunt
Dave Thomas

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Eileen Cohen (copyeditor)

Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-94122-259-1

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2015

www.it-ebooks.info

https://pragprog.com
rights@pragprog.com
http://www.it-ebooks.info/

Contents

Foreword ix

Preface xi

Part | — Unit-Testing Foundations

Building Your First JUnit Test 38

10
12
12

13
13
15
17
19
19
22
23

25
25
31
34

35
35
36
37

www.it-ebooks.info

http://www.it-ebooks.info/

Contents ® vi

The Value of Focused, Single-Purpose Tests 40
Tests as Documentation 41
More on @Before and @After (Common Initialization and

Cleanup) ... 43
Green Is Good: Keeping Our Tests Relevant 45
e 7

Part Il — Mastering Manic Mnemonics!

FIRST Properties of Good Tests bl
51
52
56
57
59
61
62

63
63
65
67
68
70
71
71
73

75
76
77
78
85
86
87
89
91

www.it-ebooks.info

http://www.it-ebooks.info/

Part lll — The Bigger Design Picture

Refactoring to Cleaner Code .

www.it-ebooks.info

Contents ® vii

95
95
98
100
102
105

107
107
109
114
115
118
121

123
123
125
128
128
130
131
133
134

135
135
137
138
140
142
143
144
146
147
148
149

http://www.it-ebooks.info/

12.

13.

14.

Al.

Part IV — The Bigger Unit-Testing Picture

Test-Driven Development

www.it-ebooks.info

Contents ® viii

153
153
154
157
158
161
162
164
166
167
169
169

171
171
180
186

187
187
188
190
192
196

197
198
202

207

http://www.it-ebooks.info/

Foreword

Some time after Dave Thomas and I (Andy Hunt) wrote The Pragmatic Program-
mer and the first edition of Programming Ruby, we turned our attention to
the most basic needs of modern software developers.

We came up with the idea of The Pragmatic Starter Kit, three books covering
the most fundamental needs of a team: version control, unit testing, and
automated build and test. These were the first three books we’d write and
publish as the Pragmatic Bookshelf.

These topics are still fundamental and critical to any team’s success, but a
lot has changed over the last dozen years or so. Version-control technology
has moved from centralized CVS and Subversion to a distributed model in
Git. Automated build and related tools have become more scripted and more
sophisticated, and testing has evolved from a hard-sell afterthought to a
widely embraced approach via test-driven development.

Now Jeff Langr has taken on the task of updating and expanding our original
unit-testing treatise for the modern world. The principles are the same, but
the tools have gotten better, and I'd like to think the whole approach to soft-
ware development has become more realistic, more professional, and—dare
I say it?—more pragmatic. Jeff will show you the way.

Testing was always a poor name for this particular programming activity. The
very name makes it sound like it's something separate from coding, separate
from design, and separate from debugging.

It’s not.

Your programming-language compiler/interpreter verifies that your source
code is syntactically valid: that it makes at least some sort of sense according
to the syntax of the language. But the compiler can’t really tell what your
code does and so can’t help to determine if the code is correct or not.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Foreword ® x

Unit testing lets you specify what the code does and verifies that the code
does it. Unit testing has become a marvelous intersection of design, coding,
and debugging.

If you haven’t gotten huge value from your testing yet, then this book will
help you. Whether you're brand-new to the ideas here, or just trying to get
the most benefit from unit testing, this book will help you.

Enjoy!
Andy Hunt

Publisher, The Pragmatic Bookshelf
Raleigh, NC

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Preface

The notion of programmers writing tests to verify their own code was a shock
to many in 2003, despite the fact that JUnit had been around for five years
at the time. The first edition of Pragmatic Unit Testing in Java with JUnit
appeared in 2003, providing a friendly overview to this new brave world of
programimer unit testing.

Over a decade later, unit testing is a skill expected of most developers, even
more so in Java shops. Don’t be surprised if you interview at a company and
they ask how you test your code. They might also ask whether or not you
test-drive your code, use things known as mock objects, or have any thoughts
about how to deal with legacy dependency challenges.

Getting a job is one benefit of learning about unit testing. A better benefit is
that you’ll improve the quality of the software you ship. Approach unit testing
with an open mind, and you might even decide to change the way you build
code.

Why Unit Testing

Unit testing is when you (a programmer) write test code to verify units of code.
The size of a unit isn’t precisely defined, so we’ll view a unit as a small bit of
code that exhibits some useful behavior in your system. A unit on its own
usually doesn’t represent complete end-to-end behavior. It instead represents
some small subset of that end-to-end-behavior.

We're coding in Java, so we write our unit tests in Java, too. We run these
unit tests through JUnit, a tool that marks our tests as passing or failing.

Here are a few whens and whys for writing unit tests:

* You just finished coding a feature and want to ensure that it works as
you expect.

e You want to document a change so that you and others later understand
the choices you coded into the system.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Preface * xii

* You need to change code and want to make sure your forthcoming changes
don’t break any existing behavior.

e You want to understand the current behavior of the system.

¢ You want to know when third-party code no longer behaves as you expect.

Most important, good unit tests increase your confidence to ship your produc-
tion system. You still need integration and/or acceptance tests, which verify
end-to-end behavior. We focus only on unit tests in this book.

After reading this book, you’ll be off and writing lots of unit tests in no time.
Take care: it’s easy to create lots of costly-to-maintain tests that provide little
value. This book teaches you better practices for unit testing so that your
investment in it keeps paying off.

Who This Book Is For

This book is a fast-paced introductory book for Java programmers new to
unit testing. Although it doesn’t cover every last detail about unit testing,
you’ll learn everything you need to dive into testing your production systems.

You should already be familiar with Java programming and comfortable with
getting around in your IDE of choice.

What You Need

To follow along and code the examples shown in this book, you'll need the
following three pieces of software:

e Java,' of course. Most any version will work, though the examples in this
book use Java 8.

e An IDE. The examples in this book were built using Eclipse,” but you can
use IntelliJ IDEA,® NetBeans,” vi, Emacs, or pretty much any editor.

e JUnit.® JUnit is integrated with the major three IDEs (Eclipse, IntelliJ,
and NetBeans), so you won't need to install it if you go the IDE route. The
examples in this book use JUnit 4.11. If you're using an older version of
Java, JUnit 4.x should work for any version of Java from 1.5 on. (For even
older versions of Java, you'll need to use JUnit 3.8, which sports a different
interface than presented here.)

https://java.com/download

oLk N

www.it-ebooks.info

https://java.com/download
http://eclipse.org/downloads/
http://www.jetbrains.com/idea/download/
https://netbeans.org/downloads/
https://github.com/junit-team/junit/wiki/Download-and-Install
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

How to Use This Book ® xiii

If your team uses TestNG, another unit-testing tool, the vast majority of this
book still directly applies to your world. TestNG is close to being a proper
superset of JUnit, and you’ll find it trivial to translate JUnit tests to TestNG.
The meatier part of the book is the set of good practices you'll learn, not the
tool specifics themselves.

Refer to the individual product sites for details on how to download, install,
and configure the development tools.

How to Use This Book

This book is divided into four main sections:

¢ Unit-Testing Foundations provides you with a starter set of information
about writing basic tests in JUnit. You’ll learn how to incorporate JUnit
into your project, you’ll write a sample test, you'll write a couple of more-
realistic tests, you’ll learn about JUnit organization and assertions, and
you’ll pick up a few core quality practices for unit testing.

e Mastering Manic Mnemonics! presents a trilogy of acronyms for improving
the quality of your unit testing: the FIRST properties of good tests, the
Right-BICEP for determining what to test, and the CORRECT way of
exploring boundary conditions.

e The Bigger Design Picture focuses on the relevance of design to unit
testing and vice versa. You'll refactor in the small, in the large, and in
your tests; and you’ll learn how to use mock objects to deal with trouble-
some dependencies.

e The Bigger Unit-Testing Picture discusses a handful of larger concerns
in unit testing. You’'ll learn about the disciplined unit-testing practice of
test-driven development. You'll be presented with some examples of testing
more-interesting code challenges. And you’ll find some suggestions for
introducing unit testing in a team environment.

If you're brand-new or reasonably new to unit testing, we recommend that
you work through the book front-to-back.

If you're more experienced with unit testing, you might be able to skip all of
Unit-Testing Foundations. However, Chapter 2, Getting Real with JUnit, on

book, so you might want to skim that chapter to get a bit of familiarity with
the small codebase.

Otherwise, feel free to pick up any chapter that strikes your interest and move
around from there. You'll find numerous links to take you elsewhere when
we reference an interesting topic.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Preface ® xiv

Code and Online Resources

You'll find gobs of Java code throughout the book, almost all of which is
included in the source distribution. You can download the source from the
official Pragmatic Unit Testing book page.’

Code snippets that can be found as part of the distribution appear with the
path and filename immediately above the chunk of code. For example:

iloveyouboss/3/test/iloveyouboss/ScoreCollectionTest.java
public class ScoreCollectionTest {

@Test

public void test() {

}
}

You'll find that snippet of code in the ScoreCollectionTest.java file in the source
distribution, in the iloveyouboss/3/test/iloveyouboss directory. If you're reading this
as an ebook, you can click the filename header to go directly to the code.

The code snippets you see in the book aren’t manually copied from the source
base; they're extracted from the source automatically. That means that the
source should be in sync with what you see here. However, due to IDE con-
figuration settings, you might see some minor differences between your code
and the source code in the book. Most notably, this book uses the wildcard
form for import statements (for example, import java.uti.*), whereas you might
have configured your IDE to show explicit import statements, one per class (for
example, import java.util.List).

To reduce a bit of code clutter, we’'ve omitted package statements from code
listings.
You'll find a number of additional resources for the book at its official Prag-

matic Bookshelf page.’

Your best route to success is to work along with the code examples yourself
rather than simply read them.

Acknowledgments

We’d like to thank all the reviewers who helped with this version of the book,
and thank again all those involved with the production of the first edition.

6. https://pragprog.com/titles/utj2/source_code

7. https://pragprog.com/book/utj2/pragmatic-unit-testing-in-java-8-with-junit

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/3/test/iloveyouboss/ScoreCollectionTest.java
https://pragprog.com/titles/utj2/source_code
https://pragprog.com/book/utj2/pragmatic-unit-testing-in-java-8-with-junit
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Acknowledgments ® xv

Many thanks to Susannah Pfalzer, who again provided excellent feedback
and guidance. Thanks to Andy Hunt and Dave Thomas for blazing the trail
with the first edition, and also for their wisdom in shaping this edition.

A sincere thank you to Mario Aquino, Rusty Bentley, Terry Birch, Kelly Brant,
John Cater, Brad Collins, Jeremy D. Frens, Derek Graham, Alexander Henry,
Rod Hilton, Eric Jutrzenka, Andy Keffalas, Richard Langlois, Mark Latham,
Harold Meder, Fahmida Y. Rashid, Sam Rose, Ray Santos, Bas Stoker, Charley
Stran, and Colin Yates, for your valued feedback.

Thanks in advance to those of you who provide feedback after initial publica-
tion—and we’ll try to make sure you see your name here. Books today are
living, breathing documents.

If you bought the first edition of this book over ten years ago, thank you and
we still love you! Hopefully you've been “test infected”® ever since, and if so,
you probably don’t need another introductory book, but welcome back anyway.
You'll probably find a few new nuggets that pay for the low, low price of
admission.

Jeff Langr
jeff@langrsoft.com
January 2015

8. See http://junit.sourceforge.net/doc/testinfected/testing.htm.

www.it-ebooks.info

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Part I

Unit-Testing Foundations

A couple of examples to get you started, then a
foray into the various JUnit assertions, and finally
a discussion about how to best organize and
structure your unit tests. You'll be slamming out
unit tests before you know it!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Building Your First JUnit Test

In this chapter we’ll work through a small example of writing a unit test. You’'ll
learn how to set up your project and how to add a test class, and you'll see
what a test method looks like. Most important, you’ll learn how to get JUnit
to run your new, passing test.

Reasons to Write a Unit Test

Pat has just completed work on a small feature change, adding a couple dozen
lines to the system. He’s fairly confident in his change, but it's been a while
since he’s tried things out in the deployed system. Pat runs the build script,
which packages and deploys the change to the local web server. He pulls up
the application in his browser, navigates to the appropriate screen, enters a
bit of data, clicks submit, and...stack trace!

Pat stares at the screen for a moment, then the code. Aha! Pat notes that he
forgot to initialize a field. He makes the fix, runs the build script again, cranks
up the application, enters data, clicks submit, and...hmm, that’s not the right
amount. Oops. This time, it takes a bit longer to decipher the problem. Pat
fires up his debugger and after a few minutes discovers an off-by-one error
in indexing an array. He once again repeats the cycle of fix, deploy, navigate
the GUI, enter data, and verify results.

Happily, Pat’s third fix attempt has been the charm. But he spent about fifteen
minutes working through the three cycles of code—manual test—fix.

Dale chooses to work differently. Each time she writes a small bit of code,
she adds a unit test that verifies the small change she added to the system.
She then runs all her unit tests. They run in seconds, so she’s not waiting
long to find out whether or not she can move on.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 1. Building Your First JUnit Test ® 4

If there’s a problem, Dale stops immediately and fixes it. Her problems are
easier to uncover, because she’s added only a few lines of code each time
instead of piling gobs of new code atop her mistakes.

Dale retains the tests permanently along with the rest of the system. They
continue to pay off each time she or anyone else changes code in the same
area. These unit tests support regression testing—she no longer needs to
spend several minutes verifying that new changes break no existing behavior.

Dale’s tests also save Pat and everyone else on the team significant amounts
of time when it comes to understanding what the system does. “How does
the system handle the combination of X and Y?” asks Madhu, the business
analyst. Pat’s response, more often than not, is “I don’t know, let me take a
look at the code.” Sometimes Pat can answer the question in a minute or two,
but frequently he ends up digging about for a half hour or more. Meanwhile,
Dale looks to her unit tests for an immediate answer.

Let’s follow in Dale’s footsteps and start learning how to write small, focused
unit tests. We'll first make sure we understand basic JUnit concepts.

Learning JUnit Basics: Our First Passing Test

For our first example, we’ll write tests against a small class named ScoreCollec-
tion. Its goal is to return the mean (average) for a collection of scoreable objects
(things that answer with a score).

For this first example, you’'ll see Eclipse screenshots. The screenshots are
here to guide you through setting up and using JUnit for the first time. After
this chapter, you won’t see screenshots and you won’t need them.

If you're not using Eclipse, good news: your JUnit tests will look the same
whether you use Eclipse, Intellid IDEA, NetBeans, or some other development
environment. How you set up your project to use JUnit will differ, and the
way JUnit looks and feels will differ a bit from IDE to IDE. For that reason,
we’'ve provided comparable screenshots from IntelliJ IDEA and NetBeans in
Appendix 1, Setting Up JUnit in IntelliJ IDEA and NetBeans, on page 197.

Here’s the code we want to test:

iloveyouboss/1/src/iloveyouboss/Scoreable.java
package iloveyouboss;

@FunctionallInterface
public interface Scoreable {
int getScore();

}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/1/src/iloveyouboss/Scoreable.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Learning JUnit Basics: Our First Passing Test ® 5

iloveyouboss/1/src/iloveyouboss/ScoreCollection.java
package iloveyouboss;

import java.util.*;

public class ScoreCollection {
private List<Scoreable> scores = new ArrayList<>();

public void add(Scoreable scoreable) {
scores.add(scoreable);

}

public int arithmeticMean() {
int total = scores.stream().mapToInt(Scoreable::getScore).sum();
return total / scores.size();

}

A ScoreCollection class accepts a Scoreable instance through its add() method. A
Scoreable object is simply one that can return an int score value.

Feel free to enter the source directly into your development environment. You
we're still learning to master the fun things in Java 8 such as lambdas, so
we’d just as soon type the code ourselves. We've found that typing the code
instead of simply pasting it helps us learn better.

Configuring Our Project

We're going to put our tests in the same package (iloveyouboss—we’ll explain
the package name in the next chapter) as ScoreCollection. In Eclipse, we separate
the tests and production code by putting the tests in one source folder (test)
and the production code in another (src).

Let’s create a source folder named test before continuing. In Eclipse, the easiest
way to do this is in the Package Explorer. Select the project, right-click to
bring up the context menu, and select New » Source Folder. Type the name
test as the Folder Name and click Finish.

Next, we’ll create a JUnit test class for ScoreCollection. In Eclipse, here’s one
way to do this:

1. Select the ScoreCollection.java entry from the Package Explorer.
2. Right-click to bring up the context menu.
3. Select New P JUnit Test Case.

The following figure shows what the menu looks like in Eclipse:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/1/src/iloveyouboss/ScoreCollection.java
http://pragprog.com/book/utj2/source_code
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

[# Package Explorer 52 | Ju JUnit

v =2 iloveyouboss

v [#Bsrc

V¥ {3 iloveyouboss

b [J] Scoreable java
I ScoreCollection.java

[test
P =i JRE System Library [Java SE 8 [1.8.0]]
> =4 JUnit 4

Chapter 1. Building Your First JUnit Test ® 6

rew Arraylist<>(Q);

New > 2% Java Project

Open 3 9 Project...

Open With > # Package

Open Type Hierarchy $ F4 @ Class

Show In X 8W @ Interface

[Z Copy 38C G Enum

E2 Copy Qualified Name @’ Annotation

[Paste 8V &% Source Folder

* Delete ® 19)ava Working Set
[Folder

Build Path) [3 File

zzngor %:.Sr : |2 Untitled Text File

Eclipse provides a busy wizard dialog, but we’ll rarely need to change much
in it. We simply need to tell Eclipse that the source folder is iloveyouboss/test
instead of iloveyouboss/src. The one small thing we must change is highlighted
in the Figure 1, JUnit Test Case wizard in Eclipse, on page 7.

We click Finish to create the test class. Since this is the first time we're creat-
ing a test for the iloveyouboss project, Eclipse tells us that we need to add sup-
port for JUnit 4 to the project. (In case you're wondering, JUnit 4 has been
available since 2006. You might find some older projects that use JUnit 3,
which is fairly easy to figure out after you learn JUnit 4.) The following figure
shows you this minor distraction:

1 JUnit 4 is not on the build path. Do you want to add it?

2/

() Not now

() Open the build path property page

(®) Perform the following action:

% Add JUnit 4 library to the build path

\' Cancel \ [oK]

Sounds good to us—let’s click OK.

www.it-ebooks.info

report erratum

- discuss

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

@06 O 00

Learning JUnit Basics: Our First Passing Test ® 7

JUnit Test Case

Select the name of the new JUnit test case. You have the options to specify E
the class under test and on the next page, to select methods to be tested. -

() New JUnit 3 test () New JUnit 4 test

Source folder: I iloveyoubgss/test | Browse...
Package: | iloveyouboss ‘ Browse...
Name: |ScoreCollectionTest ‘

Superclass: |java.|ang.0bject ‘ Browse...

Which method stubs would you like to create?
] setUpBeforeClass() [| tearDownAfterClass()
[] setUp() [] tearDown()
constructor
Do you want to add comments? (Configure templates and default value here)

() Generate comments

Class under test: |iIoveyouboss.ScoreCoIIection Browse... |
@ < Back [Next > j { Cancel j [Finish]

Figure 1—JUnit Test Case wizard in Eclipse

Understanding the JUnit Test Bits
Eclipse creates a nice little template test for us, all ready to run:

iloveyouboss/2/test/iloveyouboss/ScoreCollectionTest.java
package iloveyouboss;

import static org.junit.Assert.*;
import org.junit.*;

public class ScoreCollectionTest {
@Test

public void test() {
fail("Not yet implemented");

www.it-ebooks.info

report erratum - discuss

http://media.pragprog.com/titles/utj2/code/iloveyouboss/2/test/iloveyouboss/ScoreCollectionTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 1. Building Your First JUnit Test ® 8

Stepping through the important bits:
O The fail static method comes from the org.junit.Assert class.
©® The @Test annotation comes from the org.junit package.

© The test-class name is ScoreCollectionTest. Many teams adopt the standard
of appending Test to the name of the class being tested (for now, the target
class) to derive the test-class name. (You'll see later that there are good
reasons to create more than one test class for a given target.)

O JUnit knows to execute the test method as a test because it’s marked with
the @Test annotation. You can have other methods in the test class that
are not tests, and JUnit doesn’t try to execute them as such.

© JUnit creates a single test method (or simply, a single test) in the test
class. Its name—an important piece of information—defaults to test. We'll
always want to change the test name to something meaningful.

0O Eclipse adds a deliberate test-failure point as the default body of the test.
When JUnit executes this test, fail() causes a test failure, at which point
JUnit displays the informative failure message Not yet implemented. Our job
is to replace this stub failure statement with a real test.

Running JUnit

Let’s see what happens when we run JUnit against our project. From the
Package Explorer, click the project (iloveyouboss) and right-click to bring up its
context menu. Select Run As » JUnit Test. You'll get something that looks
like Figure 2, Running a JUnit Test, on page 9.

The JUnit view shows information about the tests that JUnit just ran:

RTINS

Finished after 0.008 seconds

Runs: 1/1 B Errors: 0 B Failures: 1

v E?_;|iIoveyouboss.ScoreCoIIectionTest [Runner: JUnit 4] (0.001 s)

1= test (0.001 s)

. L
Failure Trace o

[

U java.lang.AssertionError: Not yet implemented
= at iloveyouboss.ScoreCollectionTest.test(ScoreCollectionTest.java: 10)

The most prominent visual feature of the JUnit view is the solid red bar,
indicating that one or more tests failed. If colors aren’t your thing, you can

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Learning JUnit Basics: Our First Passing Test ® 9

¢ Package Explorer 22 = 0 ScoreCollection.java @ ScoreCollectionTest.java £
=) B v 1 package iloveyouboss;
U “
ol Assert.o;
#src
Go Into

v £ iloveyouboss
» [J] Scoreable java
» [J] ScoreCollectiol
v (#Btest
v {1 iloveyouboss
» [J] ScoreCollectiol
» =, JRE System Library [J
» =4 JUnit 4

Open in New Window tectionTest {

Open Type Hierarchy
Show In X BwW

F4

> i {
mplemented");

[= Copy 8C

2 Copy Qualified Name

8V
®

[Paste
® Delete

Build Path
Source
Refactor

>
>
>

&S
8T

£ Import...
4 Export...

« Refresh F5

Close Project
Assign Working Sets...

Debug As >

BTV = 1JavaApplet U#XA

Team > [31 2 Java Application X 88X

Compare With > 21z 3 JUnit Test N#8XT

Restore from Local History...

Figure 2—Running a JUnit Test

also look at the numeric summaries immediately above the red bar. In our
example, Runs shows that one test ran out of one total, we had zero errors,

and one of the tests demonstrated a failure.

The two panes below the red bar provide detailed information about JUnit’s
test run. The top pane provides a hierarchical view of test classes and the
test methods contained within. Selecting a failed test from the top pane pro-
vides a stack trace in the bottom pane. Because Eclipse’s version of JUnit
selected our sole test, we see in the bottom pane that it threw a java.lang.Asser-
tionError at line 10 in ScoreCollectionTest. The exception carries the message Not yet
implemented, which we can trace directly back to our test-class code. Cool!

At the top of the JUnit view you can see a number of tool icons (for which
hover help is available). Don'’t fear experimenting with them. The most useful
is the Rerun Test icon, which runs once again the set of tests you currently
see in the JUnit view. Try it out.

The red of JUnit is strong and mildly off-putting. We'll try to ingrain an
instinctive reaction of noting any red bars we see, calmly fixing the code or
tests, then rerunning the tests until we no longer see red. Think “bull on
Valium.”

To get rid of our red bar, remove the fail method call:

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 1. Building Your First JUnit Test ® 10

iloveyouboss/3/test/iloveyouboss/ScoreCollectionTest.java
public class ScoreCollectionTest {

@Test

public void test() {

}
}

(You’'ll now see only pertinent parts of code in the book. Remember, you can
download the full source from the PragProg site.)'

Now, rerun the tests. We wouldn’t dare deprive you of seeing the glorious,
luminescent JUnit green bar on your own screen. No screenshot here; go see
for yourself. We have a passing test!

The passing test clarifies an important design feature of JUnit. When JUnit
calls a test method, it executes statements top-to-bottom. If JUnit runs
through to the end of the test method without encountering an explicit fail (or
an assertion that fails; we’ll see this very soon), the test passes.

Our test is empty, so it will always hit the end immediately and thus pass.

If you got the green bar, congratulations! Setting things up is often the
hardest part. If you're still struggling, seek help from a colleague or on the
Internet, or drop a question in the forum for this book.”

You've learned most of what you need to know about how to work with JUnit
in your IDE, so you'll see code and no more screenshots from here on out.
You should strive to master your IDE of choice, though. Eclipse and other
IDEs provide keyboard shortcuts to kick off tests, rerun them, switch between
the tests and the editors, and so on. Ingraining the shortcuts will remove one
more impediment to effective coding.

Arrange, Act, and Assert Your Way to a Test

In the prior section, we ran a test that does...nothing. Now it’s time to flesh
it out with code that vets the ScoreCollection class.

We want to start with a scenario—a test case—that provides an example of
expected behavior of the target code. To test a ScoreCollection object, we can add
the numbers 5 and 7 to it and expect that the arithmeticMean method will return
6 (because (5 + 7) /2 is equal to 6).

Naming is important. We call this test answersArithmeticMeanOffwoNumbers—that
nicely summarizes the scenario laid out in the test method. Here’s the code:

1. For your pleasure, one more time: https://pragprog.com/titles/utj2/source_code.
2. Click the Discuss link at https://pragpr

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/3/test/iloveyouboss/ScoreCollectionTest.java
https://pragprog.com/titles/utj2/source_code
https://pragprog.com/book/utj2/pragmatic-unit-testing-in-java-8-with-junit
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Line 1

Arrange, Act, and Assert Your Way to a Test ® 11

iloveyouboss/4/test/iloveyouboss/ScoreCollectionTest.java
package iloveyouboss;

- import static org.junit.Assert.*;
- import static org.hamcrest.CoreMatchers.*;

import org.junit.*;

- public class ScoreCollectionTest {

20

@Test
public void answersArithmeticMeanOfTwoNumbers() {
// Arrange

ScoreCollection collection = new ScoreCollection();
collection.add(() -> 5);
collection.add(() -> 7);

// Act
int actualResult = collection.arithmeticMean();

// Assert
assertThat (actualResult, equalTo(6));

-}

To do anything in a test, we first need to arrange things with code that sets
up the state in a test. For our example, we create a ScoreCollection instance,
then call the add() method a couple times with Scoreable implementations.

As far as creating Scoreable instances is concerned: we could find a class in
our system that implements Scoreable and create instances of it. Or we could
define (perhaps in the test as a nested class) an implementation of Scoreable
that allows setting a value into it to be returned by getScore, but that'd be a
good amount of extra and unnecessary code. The simpler way using Java 8
is to pass a lambda expression that returns the value we want the Scoreable
instance to return: () -> 5, for example.

After we arrange the test, we act on—execute—the code we're trying to verify:
the arithmeticMean method.

Finally, we assert that we get the expected result. We use the assertThat()
method, which takes two arguments: the actual result and a matcher. The
equalTo matcher compares the actual result to the expected value of 6. JUnit
passes the test if the result of applying the matcher is true; otherwise it fails
the test.

To use the equalTo matcher, make sure you use a static import for org.ham-
crest.CoreMatchers (see line 4).

Let’s verify that it works. Run JUnit and drool over the lovely shade of green.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/4/test/iloveyouboss/ScoreCollectionTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 1. Building Your First JUnit Test ® 12

If you're worried that the test isn’t really doing anything, change the expected
value of 6 to something else (42), rerun JUnit, and watch the test fail. There’s
that disturbing red again.

The failed assertion does more than report an error: it halts the test then and
there (by throwing a runtime exception that JUnit itself catches). Do not pass
failed assertion, do not collect $200! If you have any lines of code following
an assertion that fails, they won’t be executed. It’s one hint that you're prob-
ably best off sticking to a single assertion as the last statement in your tests.

Is the Test Really Testing Anything?

You might even want to consider building a strong discipline around ensuring
that the tests fail. Consider always ensuring that the test fails. It’s possible
to write a test that doesn’t really verify what you think it does, which can lead
to bad, costly assumptions on your part.

In fact, programmers following the practice of test-driven development (TDD)
always demonstrate test failure first, to demonstrate that the code they write
is responsible for making the test pass. See Chapter 12, Test-Driven Develop-

this discipline.

Deliberately fail your tests to prove they're really doing something.

7

After

In this chapter you got past one of the more significant challenges: getting a
first test to pass using JUnit in your IDE. Congrats! But life, and most “real”
code, isn’t so simple. In the next chapter, you'll tackle writing tests for a
meatier example and learn quite a bit more about JUnit in the process.

Before moving on: we wrote one test against ScoreCollection. That might or might
not be sufficient. Take a few moments and analyze ScoreCollection’s code. Ask
yourself:

¢ Do I need to write additional tests to feel confident that the code works?
* Could I write tests that expose defects or limitations in the class?

In the next several chapters, we’ll explore how to best answer those questions
for any code you're testing.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER 2

Getting Real with JUnit

In the last chapter we wrote tests against a simple example class named
ScoreCollection that calculates an arithmetic mean. Working through that exercise
helped us get a good handle on JUnit fundamentals.

Pat wasn’t impressed, however. “All that effort to test a tiny class that averages
a bunch of numbers? Real code isn’t so simple.”

True, Pat, although the previous chapter was more about getting you comfort-
able with JUnit. We could write more tests against ScoreCollection, but it’s time
to move on to testing code closer to the reality of the average system.

In this chapter we’ll spend a little time looking at a meatier bit of code that
we want to test. The analysis effort will help us to focus on writing a test that
covers one path through the code. We’'ll then write a second test to verify a
second path through the code. Our second effort will demonstrate how things
get easier after we've tackled the first test.

We'll also increase our focus on test structure. We’'ll delve deeper into the
arrange-act-assert (AAA) mnemonic for test layout, as well as the @Before
annotation, which allows putting common initialization code in one place.

Understanding What We're Testing: The Profile Class

We'll be writing tests against portions of an application named iloveyouboss,
a job-search website designed to compete with sites like Indeed and Monster.
It takes a different approach and attempts to match prospective employees
with potential employers, and vice versa, much as a dating site would.
Employers and employees both create profiles by answering a series of multi-
ple-choice or yes-no questions. The site scores profiles based on criteria from
the other party and shows the best potential matches from the perspective
of both employee and employer.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 2. Getting Real with JUnit ¢ 14

The authors reserve the right to monetize the site, make a fortune, retire, and
do nothing but support the kind readers of this book.

Let’s look at a core class in iloveyouboss, the Profile class:

iloveyouboss/6/src/iloveyouboss/Profile.java
Line1 package iloveyouboss;

import java.util.*;

5 public class Profile {
private Map<String,Answer> answers = new HashMap<>();
private int score;
private String name;

10 public Profile(String name) {
this.name = name;

}

public String getName() {
15 return name;

}

public void add(Answer answer) {
answers.put(answer.getQuestionText(), answer);
20 }

public boolean matches(Criteria criteria) {
score = 0;

25 boolean kill = false;
boolean anyMatches = false;
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());
30 boolean match =
criterion.getWeight() == Weight.DontCare ||
answer.match(criterion.getAnswer());

if (!match && criterion.getWeight() == Weight.MustMatch) {
35 kill = true;
}
if (match) {
score += criterion.getWeight().getValue();

}
40 anyMatches |= match;
}
if (kill)

return false;
return anyMatches;
45 }

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/6/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

50

Determining What Tests We Can Write ® 15

public int score() {
return score;
}
}

This looks like the code we come across often! Let’s walk through it.

A Profile (line 5) captures answers to relevant questions one might ask about
a company or a job seeker. For example, a company might ask of a job seeker,
“Are you willing to relocate?” A Profile for a job seeker might contain an Answer
object with the value true for that question. You add Answer objects to a Profile
by using the add() method (line 18). A Question contains the text of a question
plus the allowable range of answers (true or false for yes/no questions). The
Answer object references the corresponding Question and contains an appropriate
value for the answer (line 29).

A Criteria instance (see line 22) is simply a container that holds a bunch of Cri-
terions. A Criterion (first referenced on line 27) represents what an employer
seeks in an employee, or vice versa. It encapsulates an Answer object and a
Weight object, which represents how important the right answer to a question
is.

The matches() method takes a Criteria object (line 22) and iterates through each
Criterion (line 27) in an effort to determine whether or not the criteria are a
match for the answers in the profile (line 30). If any criterion is weighted as
an absolute must but doesn’t match the corresponding profile answer, then
matches() returns false (lines 34 and 42). If no criteria match corresponding
answers in the profile, matches() also returns false (lines 26, 40, and 44). In all
other cases matches() returns true.

The matches() method also has a side effect: when a criterion matches the
corresponding profile answer, the score for the profile is increased by the
weighted value of the criteria (line 37).

All that sounds logical, but the matches() method is reasonably involved, and
we want to know if it works as expected. Let’s figure out how to write a test
against it.

Determining What Tests We Can Write

You could write dozens or even hundreds of tests against any method of rea-
sonable complexity. You want to think instead about how many tests you
should write. You can look at branches and potentially impactful data variants
in the code. A starting point is to look at loops, if statements, and complex

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 2. Getting Real with JUnit ¢ 16

conditionals. After that, consider data variants: what happens if a value is
null or zero? How do the data values affect evaluation of the conditionals in
the code?

Beyond a simple happy path where the Criteria instance holds a single matching
Criterion object, each of the following conditions merits consideration for
affecting an existing test case or introducing another test case:

e The Criteria instance holds no Criterion objects (line 27).
e The Criteria instance holds many Criterion objects (line 27).
¢ The Answer returned from answers.get() is null (line 29).

e Either of criterion.getAnswer() or criterion.getAnswer().getQuestionText() returns null
(line 29).

e match resolves to true because criterion.getWeight() returns Weight.DontCare (line
30).

¢ match resolves to true because value matches criterion.getValue() (line 30).
¢ match resolves to false because both conditions return false (line 30).

e kill gets set to true because match is false and criterion.getWeight() equals
Weight.MustMatch (line 34).

* kill does not get changed because match is true (line 34).

* kill does not get changed because criterion.getWeight() is something other than
Weight.MustMatch (line 34).

e score gets updated because match is true (line 37).
e score does not get updated because match is false (line 37).
¢ The matches method returns false because kill is true (line 42).

e The matches method returns true because kill is false and anyMatches is true
(lines 42 and 44).

e The matches method returns false because kill is false and anyMatches is false
(lines 42 and 44).

This list of fifteen conditions (and we could probably come up with a few more
good ones) is based on a surface reading of the code. All we're doing so far is
figuring how the code can branch or how data variants can cause different
things to happen. When we get down to writing tests, we’ll have to better
understand what the code really does.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Covering One Path ¢ 17

We'd likely end up writing fewer than fifteen tests, however. Some of these
conditions only have relevance if other conditions are met, so we’d combine
those dependent conditions into a single test. But the key point remains: to
comprehensively test matches(), we would need to write a good number of tests.

We'll instead triage a bit better. We wrote the code (well, let’s assume you
helped, which means we’ll have to remind you of what you wrote), so we
probably have a good idea where the most interesting and thus risky areas
lie. In a similar vein, when we examine our freshly written code to write tests,
we recognize that it has meaty parts that concern us most.

Covering One Path

The bulk of the “interesting” logic in matches() resides in the body of the for
loop. Let’s write a simple test that covers one path through the loop.

Two points that glancing at the code should make obvious: we need a Profile
instance, and we need a Criteria object to pass as an argument to matches().

By analyzing the code in matches() and looking at the constructors for Criteria,
Criterion, and Question, we figure out how to piece together a useful Criteria object.

The analysis lets you write this part of the arrange portion of the test:

iloveyouboss/6/test/iloveyouboss/ProfileTest.java
@Test
public void test() {
Profile profile = new Profile("Bull Hockey, Inc.");
Question question = new BooleanQuestion(1l, "Got bonuses?");
Criteria criteria = new Criteria();
Answer criteriaAnswer = new Answer(question, Bool.TRUE);
Criterion criterion = new Criterion(criteriaAnswer, Weight.MustMatch);
criteria.add(criterion);

}

(From here on out, we're expecting you to code along with us. We won'’t be as
explicit. If you see a new code snippet, figure that you’ll need to make some
changes on your end.)

Paraphrased in brief: after creating a profile, create a question (Got bonuses?
They’d better!). The next three lines are responsible for putting together a
Criterion, which is an answer plus a weighting of the significance of that answer.
The answer, in turn, is a question and the desired value (Bool. TRUE) for the
answer to that question. Finally, the criterion is added to a Criteria object.

(In case you're wondering, the Bool class is a wrapper around an enum that
has values 0 and 1. We don't claim that the code we're testing is good code.)

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/6/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

vy

Chapter 2. Getting Real with JUnit ¢ 18

In matches(), for each Criterion object iterated over in the for loop, the code
retrieves the corresponding Answer object in the answers HashMap (line 29). That
means you must add an appropriate Answer to the Profile object:

iloveyouboss/7/test/iloveyouboss/ProfileTest.java
@Test
public void test() {
Profile profile = new Profile("Bull Hockey, Inc.");
Question question = new BooleanQuestion(1l, "Got bonuses?");
Answer profileAnswer = new Answer(question, Bool.FALSE);
profile.add(profileAnswer);
Criteria criteria = new Criteria();
Answer criteriaAnswer = new Answer(question, Bool.TRUE);
Criterion criterion = new Criterion(criteriaAnswer, Weight.MustMatch);
criteria.add(criterion);

}

We finish up the test by acting and asserting. We also change its name to
aptly describe the scenario it demonstrates:

iloveyouboss/8/test/iloveyouboss/ProfileTest.java

@Test

public void matchAnswersFalseWhenMustMatchCriteriaNotMet() {
Profile profile = new Profile("Bull Hockey, Inc.");
Question question = new BooleanQuestion(1l, "Got bonuses?");
Answer profileAnswer = new Answer(question, Bool.FALSE);
profile.add(profileAnswer);
Criteria criteria = new Criteria();
Answer criteriaAnswer = new Answer(question, Bool.TRUE);
Criterion criterion = new Criterion(criteriaAnswer, Weight.MustMatch);
criteria.add(criterion);

boolean matches = profile.matches(criteria);
assertFalse(matches);

}

We were able to piece together a test based on our knowledge of the matches
method, verifying that one pathway through the code works as (apparently)
intended. If neither of us knew much about the code, we would have had to
spend a bit more time carefully reading through the code to understand what
it does, building up more and more of a real test as we went.

Think about maintaining our test. It's ten lines of code, which doesn’t seem
like much. But if we write tests to cover all fifteen conditions described previ-
ously, it seems like it could get out of hand. Fifteen tests times ten lines each
sounds like a lot to maintain for a target method of fewer than twenty lines.

From a cognitive standpoint, the ten lines require careful reading, particularly
for someone else who knows nothing about the code we wrote.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/7/test/iloveyouboss/ProfileTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/8/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Tackling a Second Test ® 19

Tackling a Second Test

Let’s write a second test to see if our concerns are warranted. Taking a look
at the assignment to the match local variable (starting at line 30 in Profile.java),
it appears that match gets set to true when the criterion weight is DontCare. Code
in the remainder of the method suggests that matches() should return true if a
sole criterion sets match to true.

Each unit test in JUnit requires its own context: JUnit doesn’t run tests in
any easily determinable order, so we can’t have one test depend on the results
of another. Further, JUnit creates a new instance of the ProfileTest class for
each of its two test methods.

We must then make sure our second test, matchAnswersTrueForAnyDontCareCriteria,
similarly creates a Profile object, a Question object, and so on:

iloveyouboss/9/test/iloveyouboss/ProfileTest.java

@Test

public void matchAnswersTrueForAnyDontCareCriteria() {
Profile profile = new Profile("Bull Hockey, Inc.");
Question question = new BooleanQuestion(1l, "Got milk?");
Answer profileAnswer = new Answer(question, Bool.FALSE);
profile.add(profileAnswer);
Criteria criteria = new Criteria();
Answer criteriaAnswer = new Answer(question, Bool.TRUE);
Criterion criterion = new Criterion(criteriaAnswer, Weight.DontCare);
criteria.add(criterion);

boolean matches = profile.matches(criteria);
assertTrue(matches);

}

The second test looks darn similar to matchAnswersFalseWhenMustMatchCriteriaNotMet.
In fact, the two highlighted lines are the only real difference between the two
tests. Maybe we can reduce the 150 potential lines of test code by eliminating
some of the redundancy across tests. Let’s do a bit of refactoring.

Initializing Tests with @Before Methods

The first thing to look at is common initialization code in all (both) of the tests
in ProfileTest. If both tests have such duplicate logic, move it into an @Before
method. For each test JUnit runs, it first executes code in any methods marked
with the @Before annotation.

The tests in ProfileTest each require the existence of an initialized Profile object
and a new Question object. Move that initialization to an @Before method named
create() (or bozo() if you want to irritate your teammates—the name is arbitrary).

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/9/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYYYYYYYYVYY

Chapter 2. Getting Real with JUnit ¢ 20

iloveyouboss/10/test/iloveyouboss/ProfileTest.java
public class ProfileTest {

}

private Profile profile;
private BooleanQuestion question;
private Criteria criteria;

@Before

public void create() {
profile = new Profile("Bull Hockey, Inc.");
guestion = new BooleanQuestion(l, "Got bonuses?");
criteria = new Criteria();

@Test

public void matchAnswersFalseWhenMustMatchCriteriaNotMet() {
Answer profileAnswer = new Answer(question, Bool.FALSE);
profile.add(profileAnswer);
Answer criteriaAnswer = new Answer(question, Bool.TRUE);
Criterion criterion = new Criterion(criteriaAnswer, Weight.MustMatch);
criteria.add(criterion);

boolean matches = profile.matches(criteria);

assertFalse(matches);

@Test

public void matchAnswersTrueForAnyDontCareCriteria() {
Answer profileAnswer = new Answer(question, Bool.FALSE);
profile.add(profileAnswer);
Answer criteriaAnswer = new Answer(question, Bool.TRUE);
Criterion criterion = new Criterion(criteriaAnswer, Weight.DontCare);
criteria.add(criterion);

boolean matches = profile.matches(criteria);

assertTrue(matches);

The initialization lines moved to @Before disappear from each of the two tests,
making them a little bit easier to read.

Imagining that JUnit chooses to run matchAnswersTrueForAnyDontCareCriteria first,

here’s the sequence of events:

1.

JUnit creates a new instance of ProfileTest, which includes the uninitialized
profile, question, and criteria fields.
JUnit calls the @Before method, which initializes each of profile, question, and
criteria to appropriate instances.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/10/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Initializing Tests with @Before Methods ® 21

3. JUnit calls matchAnswersTrueForAnyDontCareCriteria, executing each of its state-
ments and marking the test as passed or failed.

4. JUnit creates a new instance of ProfileTest, because it has another test to
process.

5. JUnit calls the @Before method for the new instance, which again initializes
fields.

6. JUnit calls the other test, matchAnswersFalseWhenMustMatchCriteriaNotMet.

If you don't believe that JUnit creates a new instance for each test it runs,
crank up your debugger or drop in a few System.out.printin calls. JUnit works
that way to force the issue of independent unit tests. If both ProfileTest tests
ran in the same instance, you'd have to worry about cleaning up the state of
the shared Profile object.

You want to minimize the impact any one test has on another (which means
you also want to avoid static fields in your test classes). Imagine you have
several thousand unit tests, with numerous interdependencies among tests.
If test xyz fails, your effort to determine why increases dramatically, because
you must now look at all the tests that run before xyz.

Our tests read a bit better now, but let’s make another pass at cleaning them
up. We inline some local variables, creating a more condensed yet slightly
more readable arrange portion of each test:

iloveyouboss/11/test/iloveyouboss/ProfileTest.java
@Test
public void matchAnswersFalseWhenMustMatchCriteriaNotMet() {
profile.add(new Answer(question, Bool.FALSE));
criteria.add(
new Criterion(new Answer(question, Bool.TRUE), Weight.MustMatch));

boolean matches = profile.matches(criteria);

assertFalse(matches);

}
@Test
public void matchAnswersTrueForAnyDontCareCriteria() {
profile.add(new Answer(question, Bool.FALSE));
criteria.add(
new Criterion(new Answer(question, Bool.TRUE), Weight.DontCare));

boolean matches = profile.matches(criteria);

assertTrue(matches);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/11/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 2. Getting Real with JUnit ¢ 22

What we like about this version of the two tests is that each of the
arrange/act/assert sections is an easily digested line or two. If necessary, we
can look at any @Before methods, but we design their contents to put low-
information clutter out of sight.

How Ya Feelin’ Now?

This book provides two starter examples for a few reasons. The first example
(Chapter 1, Building Your First JUnit Test, on page 3) demonstrates the basics
of how to use JUnit and minimizes the distraction of involved logic. That's
not good enough for Pat, who would claim, “See? Unit testing is only good on

toy examples.”

Hence the second example in this chapter, which contains a reasonably
complex set of logic. We hope it doesn’t dissuade you from wanting to unit-
test your code, but this is reality: methods like matches() embody a surprising
number of branches and cases that each suggest the need for yet another
test.

So far, we've covered only two paths through the matches() method. The
smaller effort required to write the second test hopefully makes it apparent
that we could write the other tests—up to thirteen more—in reasonable time.
But it would still be a bunch more tests.

Clean up your tests regularly to simplify writing more tests.

NN

We'll let you choose whether or not to write those missing tests. It’s really not
that much more effort, and it pays off by giving you high confidence that the
matches() method works as expected.

We're going to write those tests so that we have confidence to change the Profile
code in later chapters in this book. You can take a look at the source distri-
bution to see the tests we write. You'll find the set of tests—seven in all, not
so bad—in iloveyouboss/13/test/iloveyouboss/ProfileTest.java.

Don’t give up on unit testing just yet! There’s a better way of structuring code
in the first place so that things are a bit simpler and so you don’t feel com-
pelled to write as many tests. In Chapter 9, Bigger Design Issues, on page 107,
you'll see how a better design makes it easier for you to write tests. And in
Chapter 12, Test-Driven Development, on page 153, you'll see how writing the

tests as you build each small bit of code makes writing tests a natural and
even fun process.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

After ® 23

After

In this chapter you learned enough to start writing tests with JUnit. However,
writing good unit tests takes a little more discipline than slapping some asserts
around your code. Also, JUnit provides a number of fun little features that
we didn’t touch on in this example.

In the next chapter you’ll learn more about the various types of JUnit asser-
tions that you can use to help verify expected conditions in your tests.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER 3

Digging Deeper into JUnit Assertions

In the last chapter we worked through a meaty example of writing unit tests
against an existing bit of code. You learned how to use assertions to express
expected outcomes.

In this chapter you’ll learn many additional ways to phrase asserts in JUnit
by using a library known as Hamcrest. You'll also learn how to write tests
when you're expecting exceptions.

Assertions in JUnit

Assertions (or asserts) in JUnit are static method calls that you drop into
your tests. Each assertion is an opportunity to verify that some condition
holds true. If an asserted condition does not hold true, the test stops right
there, and JUnit reports a test failure.

(It’'s also possible that when JUnit runs your test, an exception is thrown and
not caught. In this case, JUnit reports a test error.)

JUnit supports two major assertion styles—classic-style assertions that
shipped with the original version of JUnit, and a newer, more expressive style
known as Hamcrest (an anagram of the word matchers).

Each of the two assertion styles provides a number of different forms for use
in different circumstances. You can mix and match, but you're usually better
off sticking to one style or the other. We’'ll briefly look at classic assertions
but then will focus primarily on Hamcrest assertions.

assertTrue
The most basic assertion is:

org.junit.Assert.assertTrue(someBooleanExpression);

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 3. Digging Deeper into JUnit Assertions ® 26

Since assertions are so pervasive in JUnit tests, most programmers use a
static import to reduce the clutter:

import static org.junit.Assert.*;

A couple of examples:

iloveyouboss/13/test/scratch/AssertTest.java

@Test

public void hasPositiveBalance() {
account.deposit(50);
assertTrue(account.hasPositiveBalance());

}

iloveyouboss/13/test/scratch/AssertTest.java

@Test

public void depositIncreasesBalance() {
int initialBalance = account.getBalance();
account.deposit(100);
assertTrue(account.getBalance() > initialBalance);

}

The preceding examples depend on the existence of an initialized Account
instance. You can create an Account in an @Before method (see More on @Before

tion) and store a reference to it as a field on the test class:

iloveyouboss/13/test/scratch/AssertTest.java
private Account account;

@Before
public void createAccount() {
account = new Account("an account name");

}

A test name such as depositincreasesBalance is a general statement about the
behavior you're trying to verify. We can write assertions that are also general-
izations; for example, we can assert that the balance after depositing is greater
than zero. However, the code in our test provides a specific example, and as
such you're better off being explicit about the answer you expect.

assertThat Something Is Equal to Another Something

More often than not, we can compare an actual result returned against a
result that we expect. Rather than simply verify that a balance is greater than
zero, we can assert against a specific expected balance:

iloveyouboss/13/test/scratch/AssertTest.java
assertThat(account.getBalance(), equalTo(100));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Assertions in JUnit ¢ 27

The assertThat() static method call is an example of a Hamcrest assertion. The
first argument to a Hamcrest assertion is the actual expression—the value
we want to verify (often a method call to the underlying system). The second
argument is a matcher. A matcher is a static method call that allows comparing
the results of an expression against an actual value. Matchers can impart
greater readability to your tests. They read fairly well left-to-right as a sen-
tence. For example, we can quickly paraphrase the preceding assertion as
“assert that the account balance is equal to 100.”

To use the core Hamcrest matchers that JUnit provides, we need to introduce
another static import:

iloveyouboss/13/test/scratch/AssertTest.java

import static org.hamcrest.CoreMatchers.*;
import java.io.*;

import java.util.*;

We can pass any Java instance or primitive value to the equalTo matcher. As
you might expect, equalTo uses the equals() method as the basis for comparison.
Primitive types are autoboxed into instances, so we can compare any type.

Hamcrest assertions provide a more helpful message when they fail. The prior
test expected account.getBalance() to return 100. If it returns 101 instead, you see
this:

java.lang.AssertionError:

Expected: <100>

but: was <101>
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)

Not as much with assertTrue(). When it fails, we get the following stack trace:

java.lang.AssertionError
at org.junit.Assert.fail(Assert.java:86)

That’s not a terribly useful stack trace; you'll have to dig into the test and
code to figure out what's going on—maybe insert a few System.out.printins or
even hit the debugger.

The assertTrue() call is a classic assertion. You could try using a Hamcrest
matcher for assertions against Boolean expressions, to see if you get better
failure messages:

iloveyouboss/13/test/scratch/AssertTest.java

account.deposit(50);
assertThat(account.getBalance() > 0, is(true));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 3. Digging Deeper into JUnit Assertions ® 28

But it doesn’t provide any more useful information. Some folks find it a bit
ridiculous with its extra, useless verbiage. We prefer a simple assertTrue()
instead.

Let’s take a look at another Hamcrest assertion, one that uses a startsWith
matcher (provided by the CoreMatchers class):

iloveyouboss/13/test/scratch/AssertTest.java
assertThat(account.getName(), startsWith("xyz"));

When the assertThat() call fails, we get the following stack trace:

java.lang.AssertionError:
Expected: a string starting with "xyz"
but: was "an account name"
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)

The stack trace might be all the information we need to fix the problem!

Rounding Out the Important Hamcrest Matchers

The Hamcrest CoreMatchers class that ships with JUnit provides us with a solid
starter set of matchers. Although you can survive using only a few matchers,
your tests will gain expressiveness the more you reach deeper into the Ham-
crest bag of matchers. This section presents a few key Hamcrest matchers.

You can use equalTo() to compare Java arrays or collection objects, and it
compares them as you might expect. The following two assertions fail:

assertThat(new String[] {"a", "b", "c"}, equalTo(new String[] {"a", "b"}));

assertThat(Arrays.asList(new String[] {"a"}),
equalTo(Arrays.asList(new String[] {"a", "ab"})));

The assertions pass when the compared collections match:
assertThat(new String[] {"a", "b"}, equalTo(new String[] {"a", "b"}));

assertThat(Arrays.asList(new String[] {"a"}),
equalTo(Arrays.asList(new String[] {"a"})));

You can make your matcher expressions more readable in some cases by
adding the is decorator. It simply returns the matcher passed to it—in other
words, it does nothing. Sometimes a little bit of nothing can make your code
more readable:

Account account = new Account("my big fat acct");
assertThat(account.getName(), is(equalTo("my big fat acct")));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Assertions in JUnit ® 29

You can also use the phrasing is("my big fat acct") to mean the same thing as
equalTo("my big fat acct"). The use of these decorators is up to you. Our brains
can fill in missing words like is for us automatically, so our preference is to
omit the decorators and only specify equalTo.

If you must assert the opposite of something, use not:

assertThat(account.getName(), not(equalTo("plunderings")));

(You could again choose to wrap the matcher expression with the is decorator:
is(not(equalTo("plunderings"))).)

You can check for null values or not-null values, as the case may be:

assertThat(account.getName(), is(not(nullValue())));
assertThat(account.getName(), is(notNullValue()));

Frequent not-null checking suggests a design issue, or maybe too much wor-
rying. In many cases, not-null checks are extraneous and add little value:

assertThat(account.getName(), is(notNullValue())); // not helpful
assertThat(account.getName(), equalTo("my big fat acct"));

You can eliminate the not-null assertion in the prior example. If account.getName()
returns null, the second assertion (equalTo("...")) still prevents the test from
passing. A minor distinction: the null reference exception that gets thrown
generates a test error, not a test failure. JUnit reports an error for any
exception thrown and not caught by the test.

If you're hungry for more matchers, JUnit Hamcrest matchers let you:

¢ Verify the type of an object

* Verify that two object references represent the same instance

e Combine multiple matchers, requiring that either all or any of the
matchers succeed

e Verify that a collection contains or matches an element

¢ Verify that a collection contains all of several items

¢ Verify that all elements in a collection conform to a matcher

...and much more! Refer to the Hamcrest API documentation' for details, or
better yet, try ‘em out in your IDE to get comfortable with how they work.

If those matchers still aren’t enough for your needs, you can create your own
domain-specific custom matchers. The sky’s the limit! Google’s tutorial® can

1. http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html. Note that not all of the

Hamcrest matchers are shipped with the JUnit distribution.
2. https://code.google.com/p/hamcrest/wiki/Tutorial

www.it-ebooks.info

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html
https://code.google.com/p/hamcrest/wiki/Tutorial
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 3. Digging Deeper into JUnit Assertions ® 30

show you how, and you'll also learn how later in this book (see Creating a
Custom Matcher to Verify an Invariant, on page 81).

Comparing Two Floating-Point Numbers

Computers can’t represent every floating-point number.® In Java, some of the
numbers of the floating-point types (float and double) must be approximated.
The implication for unit testing is that comparing two floating-point results
doesn’t always produce the result we want:

iloveyouboss/13/test/scratch/AssertHamcrestTest.java
assertThat(2.32 * 3, equalTo(6.96));

That test looks like it should pass, but it doesn’t:

java.lang.AssertionError:
Expected: <6.96>
but: was <6.959999999999999>

When comparing two float or double quantities, we want to specify a tolerance,
or error margin, that the two numbers can diverge by. We could write such
an assertion by hand using assertTrue():

iloveyouboss/13/test/scratch/AssertHamcrestTest.java
assertTrue(Math.abs((2.32 * 3) - 6.96) < 0.0005);

Yuk. That assertion doesn’t read well, and when it fails, the failure message
doesn’t read well either.

We can instead use a Hamcrest matcher named IsCloseTo, which provides a
static method named closeTo(). (Note: The Hamcrest matchers shipped with
JUnit are a subset of a larger set of matchers. If you want to use IsCloseTo, or
one of dozens more potentially useful matchers, you’ll need to download the
original Hamcrest matchers library separately and include it in your project.
Visit the Hamcrest site* for further details, and good luck!

The IsCloseTo matcher makes our floating-point comparison quite readable:

iloveyouboss/13/test/scratch/AssertHamcrestTest.java

import static org.hamcrest.number.IsCloseTo.*;
/] ...
assertThat(2.32 * 3, closeTo(6.96, 0.0005));

3. See http://stackoverflow.com/questions/1089018/why-cant-decimal-numbers:be:represented-exactly-in-binary

for some discussions on why.
4. http://hamcrest.org/JavaHamcrest

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertHamcrestTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertHamcrestTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertHamcrestTest.java
http://stackoverflow.com/questions/1089018/why-cant-decimal-numbers-be-represented-exactly-in-binary
http://hamcrest.org/JavaHamcrest
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Three Schools for Expecting Exceptions ® 31

Explaining Asserts

All JUnit assert forms (classic, fail(), and assertThat()) support an optional first
argument named message. The message allows us to supply a nice verbose
explanation of the rationale behind the assertion:

iloveyouboss/13/test/scratch/AssertTest.java
@Test
public void testWithWorthlessAssertionComment() {
account.deposit(50);
assertThat("account balance is 100", account.getBalance(), equalTo(50));

}

That comment doesn’t even accurately describe the test. It’s a lie! The comment
indicates an expected balance (100) that doesn’t match the real expectation
in the test (50). Comments that explain implementation details are notorious
for getting out of sync with the code.

If you prefer lots of explanatory comments, you might get some mileage out
of assertion messages. However, the better route is to make your tests more
descriptive. It's easy to make dramatic improvements to your tests by
renaming them, introducing meaningful constants, improving the names of
variables, extracting complex setup to meaningfully named helper methods,
and using more-literary Hamcrest assertions. We'll step through an example
of test cleanup in Chapter 11, Refactoring Tests, on page 135.

Assert messages provide useful information slightly more quickly if a test
does fail. But we’ll personally take the trade-off of having less-cluttered code.

Three Schools for Expecting Exceptions

In addition to ensuring that the happy path through our code works, we want
to verify that exceptions get thrown when expected. Understanding the condi-
tions that cause a class to throw exceptions can make life a lot easier for a
client developer using the class.

JUnit supports at least three different ways of specifying that you expect an
exception to be thrown. Let’s examine a simple case: ensure that Account code
throws an Exception when a client attempts to withdraw more than the available
balance.

Simple School: Using an Annotation

The JUnit @Test annotation supports passing an argument that specifies the
type of an expected exception:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

>

Chapter 3. Digging Deeper into JUnit Assertions ® 32

iloveyouboss/13/test/scratch/AssertTest.java

@Test(expected=InsufficientFundsException.class)

public void throwsWhenWithdrawingTooMuch() {
account.withdraw(100);

}

If an InsufficientFundsException gets thrown during execution of throwsWhenWithdraw-
ingTooMuch, the test passes. Otherwise JUnit fails the test:

java.lang.AssertionError:
Expected exception: scratch.AssertTest$InsufficientFundsException

Demonstrate this exception by simply commenting out the withdrawal opera-
tion from throwsWhenWithdrawingTooMuch and rerunning the test.

Old School: Try and Fail-or-Catch

You can use a try/catch block that handles the expected exception getting
thrown. If an exception doesn’t get thrown, explicitly fail the test by calling
org.junit.Assert.fail():

try {
account.withdraw(100);
fail();

}

catch (InsufficientFundsException expected) {

}

If the account withdrawal generates an exception, control transfers to the
catch block, then drops out of the test, meaning it passes. Otherwise, control
drops to the fail statement. The try/catch idiom represents the rare case where
it might be okay to have an empty catch block. Naming the exception variable
expected helps reinforce to the reader that we expect an exception to be thrown
and caught.

Purposely fail the test by commenting out the withdrawal operation.

The old-school technique is useful if you need to verify the state of things
after the exception gets thrown. Perhaps you want to verify the exception
message. For example:

try {
account.withdraw(100);
fail();

}

catch (InsufficientFundsException expected) {
assertThat (expected.getMessage(), equalTo("balance only 0"));

}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Line 1

-/

Three Schools for Expecting Exceptions ® 33

New School: ExpectedException Rules

JUnit allows you to define custom rules, which can provide greater control
over what happens during the flow of test execution. In a sense, rules provide
us with a capability similar to aspect-oriented programming.’® They provide
a way to automatically attach a cross-cutting concern—an interest in main-
taining an invariant—to a set of tests.

JUnit provides a few useful rules out of the box (you don’t have to code them).
Particularly, the ExpectedException rule lets you combine the best of the simple
school and the old school when it comes to verifying exceptions.

Suppose were designing a test in which we withdraw funds from a new
account—that is, one with no money. Withdrawing any money from the
account should generate an exception.

To use the ExpectedException rule, declare a public instance of ExpectedException
in the test class and mark it with @Rule (line 4 in the following test).

import org.junit.rules.*;
@Rule
public ExpectedException thrown = ExpectedException.none();

@Test

public void exceptionRule() {
thrown.expect(InsufficientFundsException.class);
thrown.expectMessage("balance only 0");

account.withdraw(100);

}

Our test setup requires telling the rule what we expect to happen at some
point during execution of the rest of the test. We tell the thrown rule instance
to expect that an InsufficientFundsException gets thrown (line 8).

We also want to verify that the exception object contains an appropriate
message, so we set another expectation on the thrown rule (line 9). If we were
interested, we could also tell the rule object to expect that the exception
contains a cause object.

Finally, our act portion of the test withdraws money (line 11), which hopefully
triggers the exception we expect. JUnit’s rule mechanism handles the rest,

5. See http://en.wikipedia.org/wiki/Aspect-oriented programming for an overview of aspect-oriented

programming (AOP).

www.it-ebooks.info

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 3. Digging Deeper into JUnit Assertions ® 34

passing the test if all expectations on the rule were met and failing the test
otherwise.

Three ways of asserting against expected exceptions—is that all? Not a chance.
Searching the web reveals at least a couple more techniques, and Java 8
opens up new possibilities. For example, Stefan Birkner provides a small
library named Fishbowl® that helps you take advantage of the conciseness
that lambda expressions can provide. Fishbowl lets you assign the result of
an exception-throwing lambda expression to an exception object you can
assert against.

Exceptions Schmexceptions

Most tests you write will be more carefree, happy-path tests where exceptions
are highly unlikely to be thrown. But Java acts as a bit of a buzzkill, insisting
that you acknowledge any checked exception types.

Don’t clutter your tests with try/catch blocks to deal with checked exceptions.
Instead, rethrow any exceptions from the test itself:

iloveyouboss/13/test/scratch/AssertTest.java

@Test
public void readsFromTestFile() throws IOException {
String filename = "test.txt";

BufferedWriter writer = new BufferedWriter(new FileWriter(filename));
writer.write("test data");
writer.close();
// ...
}

Given that you're designing these positive tests, you know they shouldn’t
throw an exception except under truly exceptional conditions. You can stop
worrying about those exceptional conditions: in the bizarre case that an
unexpected exception surfaces, JUnit does the dirty work for you. It traps
the exception and reports the test as an error instead of a failure.

After

You've learned myriad ways of expressing expectations in this chapter by
using JUnit’s Hamcrest assertions. Next up, you'll take a look at how to best
structure and organize your JUnit tests.

6. See https://github.com/stefanbirkner/fishbowl.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
https://github.com/stefanbirkner/fishbowl
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER4

Organizing Your Tests

Prior chapters have given you enough unit-testing fodder to hit the ground
running. The problem with hitting the ground running, however, is that you're
leaping into a new, unfamiliar environment, and you’re liable to make a few
wrong turns or even hurt yourself in the process.

Better that you take a few minutes to pick up a few pointers on what you're
getting into. This chapter introduces a few JUnit features as part of showing
you how to best organize and structure your tests.

Some of the topics you'll read about include:

¢ How to make your tests visually consistent using arrange-act-assert
¢ Keeping tests maintainable by testing behavior, not methods

e The importance of test naming

e Using @Before and @After for common initialization and cleanup needs
* How to safely ignore tests getting in your way

Keeping Tests Consistent with AAA

When we wrote tests for the first iloveyouboss example on page 3, we visually

organized our tests into three chunks: arrange, act, and assert, also known
as triple-A (AAA).

@Test

public void answersArithmeticMeanOfTwoNumbers() {
ScoreCollection collection = new ScoreCollection();
collection.add(() -> 5);
collection.add(() -> 7);

int actualResult = collection.arithmeticMean();

assertThat(actualResult, equalTo(6));

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 4. Organizing Your Tests ® 36

Back then, we added comments to identify each of the chunks explicitly, but
these comments add no value once you understand the AAA idiom.

AAA is a part of just about every test you’ll write. With AAA, you:

e Arrange. Before we execute the code we're trying to test, ensure that the
system is in a proper state by creating objects, interacting with them,
calling other APIs, and so on. In some rare cases, we won’t arrange any-
thing, because the system is already in the state we need.

e Act. Exercise the code we want to test, usually by calling a single method.

* Assert. Verify that the exercised code behaved as expected. This can
involve inspecting the return value of the exercised code or the new state
of any objects involved. It can also involve verifying that interactions
between the tested code and other objects took place.

The blank lines that separate each portion of a test are indispensable visual
reinforcement to help you understand a test even more quickly.

You might need a fourth step:

e After. If running the test results in any resources being allocated, ensure
that they get cleaned up.

Testing Behavior Versus Testing Methods

When you write tests, focus on the behaviors of your class, not on testing the
individual methods.

To understand what that means, think about the tedious but time-tested
example of an ATM class for a banking system. Its methods include deposit(),
withdraw(), and getBalance(). We might start with the following tests:

e makeSingleDeposit
e makeMultipleDeposits

To verify the results of each of those tests, you need to call getBalance(). Yet
you probably don’t want a test that focuses on verifying the getBalance() method.
Its behavior is probably uninteresting (it likely just returns a field). Any
interesting behavior requires other operations to occur first—namely, deposits
and withdrawals. So let’s look at the withdraw() method:

e makeSingleWithdrawal
e makeMultipleWithdrawals
¢ attemptToWithdrawTooMuch

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Relationship Between Test and Production Code ® 37

All of the withdrawal tests require us to first make a deposit (initializing an
ATM object with a balance is effectively making a deposit). There’s no easy or
meaningful way to write the tests otherwise.

When you write unit tests, start with a more holistic view: you are testing
aggregate behaviors of a class, not its individual methods.

Relationship Between Test and Production Code

The JUnit tests you write will live in the same project as the production code
that they verify. However, you'll keep the tests separate from the production
code within a given project. You’'ll ship the production code (the target of the
tests, sometimes known as the system under test or SUT), but the tests will
typically stay behind.

When we say the tests you write, we mean you, a programmer. Unit testing
is solely a programmer activity. No customers, end users, or nonprogramimers
will typically see or run your tests.

Unit testing is a one-way street, as demonstrated in the following figure. Tests
depend on the production-system code, but the dependency goes only in that
direction. The production system has no knowledge of the tests.

BankATM
BankATMTest
withdraw
makeSingleWithdrawal deposit
test class target class

That’s not to say that the act of writing tests can’t influence the design of
your production system. The more you write unit tests, the more you’ll
encounter cases where a different design would make it a lot easier to write
tests. Go with the flow—you’ll make life easier on yourself by choosing the
more testable design, and you’ll find that the design itself is usually better.

Separating Tests and Production Code

When you ship or deploy your production software, you could choose to
include your tests too. Most shops don’t—it bloats the size of the JAR files
that must be loaded (a minor slowdown), and it increases the attack surface1

1. http://en.wikipedia.org/wiki/Attack surface

www.it-ebooks.info

http://en.wikipedia.org/wiki/Attack_surface
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 4. Organizing Your Tests ® 38

of your codebase. But if your product ships with the production source, you
have no reason not to include the tests.

Beyond the consideration of whether or not to ship the tests, you need to
decide where the tests go within your project. You have at least three options:

e Tests in same directory and package as production code. This solution is
simple to implement, but no one does it on a “real” system. To avoid
shipping tests when using this scheme, you need to script stripping them
from your distribution. Either you need to identify them by name (for
example, Test*.class) or you need to write a bit of reflective code that identi-
fies test classes. Keeping the tests in the same directory also bloats the
number of files you must wade through in a directory listing.

e Tests in separate directory, with package structure mirroring that of produic-
tion code. Most shops use this option. Tools like Eclipse and Maven gen-
erally adhere to this model. Here’s a tree view showing an example:

F— src

| L iloveyouboss
— ScoreCollection. java

| L Scoreable.java
L— test

L iloveyouboss
L ScoreCollectionTest.java

You can see that the iloveyouboss package appears in both the src and test
source directories. The iloveyouboss.ScoreCollectionTest test class ends up in
ScoreCollectionTest.java in the test source directory, and the iloveyouboss.ScoreCol-
lection and iloveyouboss.Scoreable production classes end up in the src directory.

As the test directory’s structure mirrors that of the src directory, each test
ends up in the same package as the target class that it verifies. The test
class can access package-level elements of the target class if necessary.
This is both a plus and a minus. See the next section, Exposing Private

e Tests in separate directory and separate but similar package structure.
Here’s a tree view:

F— src

| L— iloveyouboss
— ScoreCollection.java

| L Scoreable.java
L— test

L— test

L— iloveyouboss
L ScoreCollectionTest.java

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Relationship Between Test and Production Code ® 39

In the preceding tree view, the test.iloveyouboss.ScoreCollectionTest test class
appears in the test source folder, in a distinct package from the production
classes. Prefixing the test-package names with test is one convention; you
might choose a different organization.

Putting the tests in a different package from the production code forces
you to write tests through the public interface. Many developers choose
this route as a conscious design decision. Let’s talk about it!

Exposing Private Data Versus Exposing Private Behavior

Some developers believe that you should test using only the public interface
of production code. Interacting with nonpublic methods from a test violates
notions of information hiding. One implication: tests that go after nonpublic
code tie themselves to implementation details. If those details change, tests
can break, even though technically no public behavior has changed.

Testing private details can result in lower-quality code. How? When small
changes to code break numerous tests—because the tests are overly aware
of private implementation details—programmers get frustrated at the effort
required to fix the broken tests. The more tests they break, the more the
programmers learn to avoid refactoring. And the less refactoring they do, the
more rapidly their codebase degrades. We've seen some teams abandon their
significant investment in unit tests because of such tight coupling.

Caveat aside, you’ll occasionally need to ask overly personal questions of your
objects in order to write tests. To assert against an otherwise private field,
you need to create a getter method for it. If you keep your tests in the same
package as the production code, you can specify package-level access for the
getter. You'll sleep a little better knowing that you need not expose the field
to the public world.

Exposing private data as needed to allow testing is unlikely to create overly
tight coupling between your tests and production code. Exposing private
behavior is another matter.

Larger classes often contain many complex private methods. You might feel
compelled to write tests directly against that private behavior.

If your tests are in the same package as the production code, you can expose
the methods to package-level access. If the tests are in a different package,
you can cheat and use Java’s reflection capability to bypass access protection.
But the best answer is to do neither.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 4. Organizing Your Tests ® 40

The compulsion to test private behavior indicates that you have a design
problem. Gobs of interesting, buried behavior is almost always a violation of
the Single Responsibility Principle (SRP), which states that classes should be
small and single-purpose. Your best bet is to extract the interesting private
behavior and move it to another, possibly new, class where it becomes useful
public behavior. We'll work through cleaning up the Profile class in this fashion
in The Profile Class and the SRP, on page 107.

The Value of Focused, Single-Purpose Tests

The tests we built in Chapter 1, Building Your First JUnit Test, on page 3 are

short—four lines of code each. We might consider combining them:

iloveyouboss/12/test/iloveyouboss/ProfileTest.java

@Test

public void matches() {
Profile profile = new Profile("Bull Hockey, Inc.");
Question question = new BooleanQuestion(1l, "Got milk?");

// answers false when must-match criteria not met
profile.add(new Answer(question, Bool.FALSE));
Criteria criteria = new Criteria();
criteria.add(
new Criterion(new Answer(question, Bool.TRUE), Weight.MustMatch));

assertFalse(profile.matches(criteria));

// answers true for any don't care criteria
profile.add(new Answer(question, Bool.FALSE));
criteria = new Criteria();
criteria.add(
new Criterion(new Answer(question, Bool.TRUE), Weight.DontCare));

assertTrue(profile.matches(criteria));

}

We could add the rest of the test cases to the matches test, prefacing each with
an explanatory comment. That would reduce the overhead of repeated common
setup that each test would need if separate. However, we’d lose the important
benefit of test isolation that JUnit provides.

Split multiple cases into separate JUnit test methods, each named
P for the behavior it verifies.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/12/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Tests as Documentation © 41

With separate tests:

e We immediately know what behavior went awry when an assertion fails,
because JUnit displays the name of the failing test.

e We minimize the amount of sleuthing required to decipher a failed test.
Because JUnit runs each test in a separate instance, it's unlikely that
other test failures have anything to do with the current failing test.

e We ensure that all cases get executed. When an assertion fails, the current
test method aborts, because an assertion failure results in a
java.lang.AssertionError getting thrown. (JUnit traps this in order to mark the
test as failed.) Any test cases that appear after the assertion failure don’t
get executed.

Tests as Documentation

Our unit tests should provide lasting and trustworthy documentation on the
capabilities of the classes we build. Tests provide opportunities to explain
things that the code itself can’t do as easily. In a sense, tests can supplant a
lot of the comments you might otherwise feel compelled to write.

Documenting Our Tests with Consistent Names

The more you combine cases into a single test, the more generic and mean-
ingless the test name becomes. A test named matches doesn’t tell anyone squat
about what it demonstrates.

As you move toward more-granular tests, each focused on a distinct behavior,
you have the opportunity to impart more meaning in each of your test names.
Instead of suggesting what context you're going to test, you can suggest what
happens as a result of invoking some behavior against a certain context.

(Real examples, please, Jeff, and not so much babble.)

not-so-hot name cooler, more descriptive name
makeSingleWithdrawal withdrawalReducesBalanceByWithdrawnAmount
attemptToWithdrawTooMuch withdrawalOfMoreThanAvailableFundsGeneratesError
multipleDeposits multipleDepositsincreaseBalanceBySumOfDeposits

Well, that last one is kind of obvious, but that’s because you already under-
stand the ATM domain. Still, more-precise names go a long way toward
helping other programmers understand what a test is about.

Of course, you can go too far. Reasonable test names probably consist of up
to seven or so words. Longer names quickly become dense sentences that are

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 4. Organizing Your Tests ® 42

tough to swallow. If many of your test names are long, it might be a hint that
your design is amiss.

The cooler, more descriptive names all follow the form:
doingSomeOperationGeneratesSomeResult

You might also use a slightly different form such as:
someResultOccursUnderSomeCondition

Or you might decide to go with the given-when-then naming pattern, which
derives from a process known as behavior-driven development:?

givenSomeContextWhenDoingSomeBehaviorThenSomeResultOccurs

Given-when-then test names can be a mouthful, though some alternate Java
testing frameworks such as JDave® and easyb® support the longer names
well. You can usually drop the givenSomeContext portion without creating
too much additional work for your test reader:

whenDoingSomeBehaviorThenSomeResultOccurs
...which is about the same as doingSomeOperationGeneratesSomeRestuilt.

Which form you choose isn’'t as important as being consistent. Your main
goal: make your tests meaningful to others.

Keeping Our Tests Meaningful

If others (or you yourself) have a tough time understanding what a test is
doing, don’t simply add comments. Start by improving the test name. You
can also:

e Improve any local-variable names.

¢ Introduce meaningful constants.

* Prefer Hamcrest assertions.

e Split larger tests into smaller, more-focused tests.

e Move test clutter to helper methods and @Before methods.

Rework test names and code to tell stories, instead of introducing
P explanatory comments.

2. See http://en.wikipedia.org/wiki/Behavior-driven_development.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Behavior-driven_development
http://jdave.org
http://easyb.org
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

More on @Before and @After (Common Initialization and Cleanup) ® 43

More on @Before and @After (Common Initialization and
Cleanup)

In Chapter 2, Getting Real with JUnif, on page 13, you learned how to eliminate

duplicate initialization across tests by using an @Before method (sometimes
referred to as a setup method).

As you add more tests for a given set of related behaviors, you’ll realize that
many of them have the same initialization needs. You’ll want to take advantage
of the @Before method to help ensure that your tests don’t become a mainte-
nance nightmare of redundant code.

It's important to understand the order in which JUnit executes @Before and
@Test methods. Here’s a small example:

iloveyouboss/13/test/scratch/AssertTest.java
private Account account;

@Before
public void createAccount() {
account = new Account("an account name");

}

Imagine that the class in which this @Before method resides has two tests,
hasPositiveBalance and depositincreasesBalance. Here’s the flow of execution when
JUnit interacts with that test class:

@Before createAccount

@Test depositIncreasesBalance
@Before createAccount

@Test hasPositiveBalance

(Don’t forget that JUnit might run the tests in an order different from their
ordering in the source file!)

In other words, the @Before method executes before each and every test method.

Sometimes your initialization needs will grow. For example, you might need
to delete a file before running each test. Rather than combining the operations
into a single @Before method, you can create additional @Before methods:

@Before createAccount
@Before resetAccountlLogs
@Test depositIncreasesBalance

Be careful—the order in which JUnit executes multiple @Before methods is
out of your control. You can’t guarantee that createAccount() will run prior to

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 4. Organizing Your Tests ® 44

resetAccountlLogs(). If you need to guarantee an order, use a single @Before method
with its statements ordered how you need them to be.

An @Before method can have as much initialization code as you need. An @Before
method applies to all tests in a class, so you only want to put code into it that
makes sense to run before every test in that class.

You might have the rare need for an @After method—the bookend to @Before.
An @After method runs on completion of each and every test method, even
when a test fails. You use @After methods to clean up the messes a test can
make. For example, you might close any open database connections. Here’s
the execution flow for your imaginary test class that defines an @After method:

@Before createAccount

@Test depositIncreasesBalance
@After closeConnections
@Before createAccount

@Test hasPositiveBalance
@After closeConnections

BeforeClass and AfterClass

Normally the test-level setup (@Before) is all you need. In rare circumstances,
you might need test-class-level setup of @BeforeClass, which runs once and
only once, before any tests in the class execute. JUnit provides the expected
@AfterClass bookend.

iloveyouboss/13/test/scratch/AssertMoreTest.java
public class AssertMoreTest {
@BeforeClass
public static void initializeSomethingReallyExpensive() {
// ...
}

@AfterClass

public static void cleanUpSomethingReallyExpensive() {
// ...

}

@Before

public void createAccount() {
// ...

}

@After

public void closeConnections() {
// ...

}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertMoreTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Green Is Good: Keeping Our Tests Relevant ¢ 45

@Test

public void depositIncreasesBalance() {
/...

}

@Test
public void hasPositiveBalance() {
// ...
}
}

Here’s the flow of execution when JUnit interacts with AssertMoreTest:

@BeforeClass initializeSomethingReallyExpensive
@Before createAccount

@Test depositIncreasesBalance

@After closeConnections

@Before createAccount

@Test hasPositiveBalance

@After closeConnections

@AfterClass cleanUpSomethingReallyExpensive

Green Is Good: Keeping Our Tests Relevant

You should normally expect that all tests pass all of the time. In practice,
that means that when you introduce a bug, only one or two tests fail. Isolating
the problem is usually pretty easy in that environment.

Do not continue adding features when there are failing tests! Fix any test as
soon as it fails, and keep all tests passing all of the time. “All green all of the
time!” will keep you sane when you must change production code.

Keeping Our Tests Fast

Eclipse and other IDEs make it easy to run only the tests defined in a single
test class. Some IDEs allow you to run just one unit test at a time. So one
way to run your tests all the time and keep them green is to run only the ones
you think you need.

But there’s a dark downside to limiting the number of tests you run: you
could be creating bigger problems for yourself. The longer you go without the
feedback that your entire suite of tests provides, the more likely you're writing
code that breaks something else in your application. Finding that problem
later can cost you significantly more time than finding it now.

If your tests don’t interact with code that controls slow resources such as
databases, it’s possible to run many thousands of them in a few seconds. At
that rate, the easiest thing to do is to run all your tests all the time. In Eclipse

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 4. Organizing Your Tests ® 46

and comparable IDEs, running all the tests all the time is as simple as right-
clicking the project and running the tests at that level.

Some developers further bolster the definition of unit tests by insisting they
must be lightning-fast.” In Chapter 10, Using Mock Objects, on page 123, you'll

learn how to turn slow tests (that depend on things like databases) into fast
tests by using mock objects.

If you can’t stand to run all of the tests, drop down a level from the project
and run all of the tests in a package. Or consider a tool like Infinitest,® which
runs the tests continuously in the background.

You'll no doubt have a number of tests that are slow because they must hit
an external resource. JUnit provides a feature called Categories that allows
you to run only tests annotated with a specific category.”

The better solution is to minimize, with vigilance, the number of tests that
fall into the slow bucket. Most of your unit tests should be blindingly fast.
That’s not to say you won’t need slower, integration tests—you will—but this
book focuses on unit tests that provide fast feedback.

Run as many tests as you can stand.

7

Ignoring Tests

Your current test might be red as you develop it and/or the code, and that’s
okay. Otherwise, avoid the headache of managing multiple test failures
simultaneously.

As one solution for dealing with multiple failures, you could comment out
other failing tests as you focus on the problematic test. JUnit provides a
better mechanism than commenting, though: you can mark a test with an
@Ignore annotation:

iloveyouboss/13/test/scratch/AssertTest.java

@Test

@Ignore("don't forget me!")

public void somethingWeCannotHandleRightNow() {

// ...
}
5. See http://www.artima.com/weblogs/viewpost.jsp?thread=126923.
6. ini
7.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/AssertTest.java
http://www.artima.com/weblogs/viewpost.jsp?thread=126923
https://infinitest.github.io/
https://github.com/junit-team/junit/wiki/Categories
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

After ® 47

The explanatory-message argument to @Ignore is optional.

The JUnit test runner reminds us that we have ignored one or more tests. In
Eclipse, the Runs: section in the JUnit view shows the number of skipped tests
parenthetically. Having a reminder is great, since it’s easy to forget that you
have commented-out tests. Committing commented-out tests to your repo is
like burying a bag of money by an unmarked fence post in the middle of North
Dakota.

After

JUnit is a seemingly simple tool that hides a good number of details beneath
its surface. Though we only scratched the surface in this chapter, the JUnit
features we discussed will suffice for most of your professional unit-testing
needs.

You'll be able to master the mechanics of JUnit in no time. The more enduring
challenge is how to build unit tests with high quality. The next section
focuses on a series of mnemonics to help you build better tests.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Part II

Mastering Manic Mnemonics!

To be productive with JUnit, you’ll want to learn
some guidelines for what things you should be
testing, the boundary conditions you want to malce
sure you cover, and what makes for good tests.
Fortunately, each of these sets of guidelines can
be summarized by a useful mnemonic: FIRST, the
Right-BICEP, and CORRECT. You'll swim the alpha-
bet soup in this section!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

FIRST Properties of Good Tests

Unit tests provide many significant benefits when crafted with care. But your
tests also represent code you must write and maintain. You and your team
can lose lots of time and sleep due to the following problems with your tests:

e Tests that make little sense to someone following them

Tests that fail sporadically

e “Tests” that don’t prove anything worthwhile

¢ Tests that require a long time to execute

¢ Tests that don’t sufficiently cover the code

e Tests that couple too tightly to implementation, meaning that small
changes break lots of tests all at once

¢ Convoluted tests that jump through numerous setup hoops

In this chapter you’ll learn some key concepts and a few simple tactics that
can help make your tests shine and ensure that they pay off more than they
cost.

FIRST It Helps to Remember That Good Tests Are FIRST

You can avoid many of the pitfalls that unit testers often drop into by following
the FIRST principles of unit testing:

¢ [Flast

¢ [I[]solated

¢ [Rlepeatable

e [Slelf-validating
e [Tlimely

The word first itself has significant meaning in the context of unit testing.
Right now, you're probably writing your code first, then writing unit tests
after the fact. But, perhaps surprisingly, you can get different and better

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 5. FIRST Properties of Good Tests ® 52

results if you write the unit tests before you write the corresponding code. A
host of folks practice the discipline known as test-driven development (TDD).
The sole delineation between plain ol’ unit testing (POUT) and TDD is that in
TDD, the tests come first. Check out Chapter 12, Test-Driven Development,
on page 153 ff youre Intrigued, |

Whether you write tests first or last, you’'ll go farther with them if you adhere
to the FIRST principles.

[FIIRST: [F]ast!

The dividing line between fast and slow unit tests is somewhat arbitrary—as
Justice Potter Stewart said, “I know it when I see it.” Fast tests deal solely in
code and take a few milliseconds at most to execute. Slow tests interact with
code that must handle external evil necessities such as databases, files, and
network calls. They take dozens, hundreds, or thousands of milliseconds.

On a typical Java system, you’ll probably want a few thousand unit tests. If
an average test takes 200 ms, you’ll wait over eight minutes each time to run
2,500 unit tests. Eight minutes might not seem terrible, but you're not going
to run an eight-minute set of tests too many times throughout your develop-
ment day.

“So what?” Pat says. “I can run just the tests around the code I'm changing.”

Dale laughs. “I remember the last time you merged in one of your changes.
It took us hours to uncover your nasty little defect. What did you say? Oh
yes: ‘My code changes can’t possibly break that code way over there.”

Pat says, “Well, I'll just wait until I've built up a good pile of changes, then
run all the tests. One or two times a day should be enough.”

“The last time you piled up a bunch of changes, you spent an extra couple
hours merging. It really pays off to merge more frequently and know that your
changes work well with the rest of the system,” says Dale.

As your system grows, your unit tests will take longer and longer to run. Eight
minutes easily turns into fifteen or even thirty. Don't feel alone if this happens
to you—it’'s a common quandary—but don’t feel at all proud.

When your unit tests reach the point where it’s painful to run them more
than a couple times per day, you've tipped the scale in the wrong direction.
The value of your suite of unit tests diminishes as their ability to provide
continual, comprehensive, and fast feedback about the health of your system

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

[FIIRST: [Flast! ® 53

also diminishes. When you allow your tests to fall out of favor, you and your
team will question the investment you made to create them.

Keep your tests fast! You can do so by keeping your design clean: minimize
the dependencies on code that executes slowly, first and foremost. If all your
tests interact with code that ultimately always makes a database call, all your
tests will be slow.

We're faced with writing tests around the responsesByQuestion() method, which
returns a histogram that breaks down the number of true and false responses
for each question:

iloveyouboss/16-branch-persistence/src/iloveyouboss/domain/StatCompiler.java
public class StatCompiler {
private QuestionController controller = new QuestionController();

public Map<String, Map<Boolean, AtomicInteger>> responsesByQuestion(
List<BooleanAnswer> answers) {
Map<Integer, Map<Boolean, AtomicInteger>> responses = new HashMap<>();
answers.stream().forEach(answer -> incrementHistogram(responses, answer));
return convertHistogramIdsToText(responses);

}

private Map<String, Map<Boolean, AtomicInteger>> convertHistogramIdsToText (
Map<Integer, Map<Boolean, AtomicInteger>> responses) {
Map<String, Map<Boolean, AtomicInteger>> textResponses = new HashMap<>();
responses.keySet().stream().forEach(id ->
textResponses.put(controller.find(id).getText(), responses.get(id)));
return textResponses;

}

private void incrementHistogram(
Map<Integer, Map<Boolean, AtomicInteger>> responses,
BooleanAnswer answer) {
Map<Boolean, AtomicInteger> histogram =
getHistogram(responses, answer.getQuestionId());
histogram.get(Boolean.valueOf(answer.getValue())).getAndIncrement();

}

private Map<Boolean, AtomicInteger> getHistogram(
Map<Integer, Map<Boolean, AtomicInteger>> responses, int id) {
Map<Boolean, AtomicInteger> histogram = null;
if (responses.containsKey(id))
histogram = responses.get(id);
else {
histogram = createNewHistogram();
responses.put(id, histogram);
}

return histogram;

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence/src/iloveyouboss/domain/StatCompiler.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

>

Chapter 5. FIRST Properties of Good Tests ® 54

private Map<Boolean, AtomicInteger> createNewHistogram() {
Map<Boolean, AtomicInteger> histogram;
histogram = new HashMap<>();
histogram.put(Boolean.FALSE, new AtomicInteger(0));
histogram.put(Boolean.TRUE, new AtomicInteger(0));
return histogram;

}

The histogram is a map of Booleans to a count for each. The responses hash
map pairs question IDs with a histogram for each. The incrementHistogram()
method updates the histogram for a given answer. Finally, the convertHistogramld-
sToText() method transforms the responses map to a map of question-text-to-
histogram.

Unfortunately, convertHistogramldsToText() presents a testing challenge. Its call to
the QuestionController find() method represents an interaction with a slow persistent
store. Not only will the test be slow, but it will also require that the underlying
database be populated with appropriate question entities. Because of the
distance between the database data and the expected data values in the test,
the test will be hard to follow and brittle.

Rather than have the code query the controller for the questions, let’s first
retrieve the questions, then pass their text as an argument to responsesByQues-
tion().

First, create a questionText() method whose sole job is to create a map of ques-
tion-ID-to-question-text for questions referenced by the answers:

iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
public Map<Integer,String> questionText(List<BooleanAnswer> answers) {
Map<Integer,String> questions = new HashMap<>();
answers.stream().forEach(answer -> {
if (!questions.containsKey(answer.getQuestionId()))
questions.put(answer.getQuestionId(),
controller.find(answer.getQuestionId()).getText()); });
return questions;

}
Change responsesByQuestion() to take on the question-ID-to-question-text map:

iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
public Map<String, Map<Boolean, AtomicInteger>> responsesByQuestion(
List<BooleanAnswer> answers, Map<Integer,String> questions) {
Map<Integer, Map<Boolean, AtomicInteger>> responses = new HashMap<>();
answers.stream().forEach(answer -> incrementHistogram(responses, answer));
return convertHistogramIdsToText(responses, questions);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

[FIIRST: [Flast! ® 55

responsesByQuestion() then passes the map over to convertHistogramldsToText():

iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
private Map<String, Map<Boolean, AtomicInteger>> convertHistogramIdsToText (
Map<Integer, Map<Boolean, AtomicInteger>> responses,
Map<Integer,String> questions) {
Map<String, Map<Boolean, AtomicInteger>> textResponses = new HashMap<>();
responses.keySet().stream().forEach(id ->
textResponses.put(questions.get(id), responses.get(id)));
return textResponses;

}

The code in questionText() still depends on the slow persistent store, but it’'s a
small fraction of the code we were trying to test. We’'ll figure out how to test
that later. The code in convertHistogramldsToText() now depends only on an in-
memory hash map, not a lookup to a slow persistent store. We can now easily
write a test around the good amount of code involved with responsesByQuestion():

iloveyouboss/16-branch-persistence-redesign/test/iloveyouboss/domain/StatCompilerTest.java
@Test
public void responsesByQuestionAnswersCountsByQuestionText() {
StatCompiler stats = new StatCompiler();
List<BooleanAnswer> answers = new ArraylList<>();

answers.add(new BooleanAnswer(1l, true));
answers.add(new BooleanAnswer(1l, true));
answers.add(new BooleanAnswer(1l, true));
answers.add(new BooleanAnswer(1l, false));
answers.add(new BooleanAnswer(2, true));

answers.add(new BooleanAnswer(2, true));
Map<Integer,String> questions = new HashMap<>();
questions.put(l, "Tuition reimbursement?");
questions.put(2, "Relocation package?");

Map<String, Map<Boolean,AtomicInteger>> responses =
stats.responsesByQuestion(answers, questions);

assertThat(responses.get("Tuition reimbursement?").
get(Boolean.TRUE).get(), equalTo(3));

assertThat(responses.get("Tuition reimbursement?").
get(Boolean.FALSE) .get(), equalTo(l));

assertThat(responses.get("Relocation package?").
get(Boolean.TRUE) .get(), equalTo(2));

assertThat(responses.get("Relocation package?").
get(Boolean.FALSE) .get(), equalTo(0));

}

The responsesByQuestionAnswersCountsByQuestionText test is indeed a fast test, just
the way we like them. It covers a good amount of interesting logic in responses-
ByQuestion(), convertHistogramldsToText(), and incrementHistogram(). We could write a

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-redesign/test/iloveyouboss/domain/StatCompilerTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 5. FIRST Properties of Good Tests ® 56

number of interesting tests against the combinations of logic in all three of
these methods. By the time we're done, we could easily write a handful of
tests. A handful of fast tests covering more logic will easily outperform a single
test dependent on a database call.

Your unit tests will run faster, and you'll find them easier to write, if you seek
to minimize the amount of code that ultimately depends on slow things.
Minimizing such dependencies is also a goal of good design—again and again,
as here, you'll find that unit testing gets easier the more you're willing to align
your code with clean object-oriented (OO) design concepts.

We still want to test the logic in questionText(), which still depends on the con-
troller. We'll learn a technique for how to accomplish that in Chapter 10,

F[IJRST: [I]solate Your Tests

Good unit tests focus on a small chunk of code to verify. That'’s in line with
our definition of unit. The more code that your test interacts with, directly or
indirectly, the more things are likely to go awry.

The code you're testing might interact with other code that reads from a
database. Data dependencies create a whole host of problems. Tests that
must ultimately depend on a database require you to ensure that the database
has the right data. If your data source is shared, you have to worry about
external changes (maybe out of your control) breaking your tests. Don’t forget
that other developers are often running their tests at the same time! Simply
interacting with an external store increases the likelihood that your test will
fail for availability or accessibility reasons.

Good unit tests also don’t depend on other unit tests (or test cases within the
same test method). You might think you're speeding up your tests by carefully
crafting their order so that several tests can reuse some of the same expen-
sively constructed data. But you're simultaneously creating an evil chain of
dependencies. When things go wrong—and they will—you’ll spend piles of
time figuring out which one thing buried in a long chain of prior events caused
your test to fail.

You should be able to run any one test at any time, in any order.

It’s easy to keep your tests focused and independent if each test concentrates
only on a small amount of behavior. When you start to add a second assert

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

FI[R]ST: Good Tests Should Be [R]lepeatable ® 57

to a test, ask yourself, “Does this assertion help to verify a single behavior,
or does it represent a behavior that I could describe with a new test name?”

The Single Responsibility Principle (SRP) of OO class design (see SOLID Class-

purpose. More specifically, the SRP says your classes should have only one
reason to change.

The SRP provides a great guideline for your test methods, also. If one of your
test methods can break for more than one reason, consider splitting it into
separate tests. When a focused unit test breaks, it’s usually obvious why.

Your tests want to each be like Switzerland! Keep ‘em isolated and running
like clockwork!

FI[RIST: Good Tests Should Be [R]lepeatable

Tests don’t appear out of thin air—you're the one who gets to design them,
which means they are entirely under your control. You have the power to
devise a test’s conditions, which also means that you don’t need a crystal ball
to know what the test outcome should be. Part of your job in test design,
then, is to provide an assertion that specifies what the outcome should be
each and every time the test is run.

A repeatable test is one that produces the same results each time you run it.
To accomplish repeatable tests, you must isolate them from anything in the
external environment not under your direct control.

Your system will inevitably need to interact with elements not under your
control, however. Any need to deal with the current time, for example, means
your test must somehow deal with a rogue element that will make it harder
to write repeatable tests. You can use a mock object Chapter 10, Using Mock

keep it independent from the volatility of time.

In the iloveyouboss application, we want to verify that when new questions
are added to a profile, they are saved with a creation timestamp. Timestamps
are moving targets, making it a bit of a challenge to assert what the creation
timestamp should be.

After we add the question to the profile in the test, we could immediately
request the system time. Maybe we’re not worried about milliseconds, so we
could compare the persisted time to the test’s time. Most of the time, this
might even work...but it will likely fail the first time the persistence time is
something like 17:34:05.999.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 5. FIRST Properties of Good Tests ¢ 58

Tests that fail sporadically are nuisances. Sometimes, particularly when tests
drive concurrently executing code, they expose a flaw in the system. But more
often, tests that intermittently fail cry wolf. Someone has to spend the time
and take a look: “Is that a real problem? Hmm. Oh, I see, some chucklehead
has added a comment, /* this test may cry wolf from time to time. */” Don’t be that
chucklehead.

Back to our time challenge. If only we could stop time from moving! Well, we
can’'t stop time, but we can fake it out. Or rather, we can fake out our code
to think it's getting the real time, when it instead obtains the current time
from a different source. In Java 8, we can create a java.time.Clock object that
always returns a fixed time. From a test, pass this fake clock object to the
code that needs to obtain the current time:

iloveyouboss/16-branch-persistence/test/iloveyouboss/controller/QuestionControllerTest.java

@Test

public void questionAnswersDateAdded() {
Instant now = new Date().toInstant();
controller.setClock(Clock.fixed(now, Zoneld.of("America/Denver")));
int id = controller.addBooleanQuestion("text");

Question question = controller.find(id);

assertThat(question.getCreateTimestamp(), equalTo(now));

}

The first line of the preceding test creates an Instant instance and stores it in
the now local variable. The second line creates a Clock object fixed to the now
Instant—when asked for the time, it will always return the now instant—and
injects it into the controller through a setter method. The test’s assertion
verifies that the question’s creation timestamp is the same as now:

iloveyouboss/16-branch-persistence/src/iloveyouboss/controller/QuestionController.java
public class QuestionController {

private Clock clock = Clock.systemUTC();

// ...

public int addBooleanQuestion(String text) {
return persist(new BooleanQuestion(text));

}

void setClock(Clock clock) {
this.clock = clock;

}
// ...

private int persist(Persistable object) {
object.setCreateTimestamp(clock.instant());

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence/test/iloveyouboss/controller/QuestionControllerTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence/src/iloveyouboss/controller/QuestionController.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

FIR[SIT: [S]elf-Validating ® 59

executeInTransaction((em) -> em.persist(object));
return object.getId();

}

The persist() method obtains an instant from the injected clock instance and
passes it along to the setCreateTimestamp() method on the Persistable. If no client
code injects a Clock instance using setClock(), the clock defaults to the systemUTC
clock as initialized at the field level.

Voila! The QuestionController doesn’t know squat about the nature of the Clock,
only that it answers the current Instant. The clock used by the test acts as a
test double—a stand-in for the real thing. You’ll read more about test doubles
and the myriad ways to implement and take advantage of them in Chapter
10, Using Mock Objects, on page 123.

On occasion, you'll need to interact directly with an external environmental
influence such as a database. You'll want to set up a private sandbox to avoid
conflicts with other developers whose tests concurrently alter the database.
That might mean a separate Oracle instance or perhaps a separate web
server on a nonstandard port.

Without repeatability, you might be in for some surprises at the worst possible
moments. What’s worse, these sort of surprises are usually bogus—it’s not
really a bug, it’s just a problem with the test. You can’t afford to waste time
chasing down phantom problems.

Each test should produce the same results every time.

FIR[SIT: [Slelf-Validating

“I've been writing tests for years,” says Pat. “Every once in a while, I write a
main() method that drives some of my code. It spews a bunch of output onto
the console using System.out.printin(). I take a look at each result and compare
it with what I expect the right answer to be.”

“That’s great,” says Dale, “Most of us have done that sometime in our career,
but it doesn’t hold up so well to larger numbers of tests. I remember having
to add lots of comments in main() to explain what I was testing next.”

“I split them into smaller methods when they get out of hand,” says Pat.

“Hmm...,” says Dale, sporting a bemused look. “I also recall having a problem
remembering what the expected output should look like. Sometimes I'd have
to peer intently at the screen to spot the problem in a sea of output.”

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 5. FIRST Properties of Good Tests ® 60

Pat replies, “I just add more comments to tell me what the expected output
should be. Once in a while, I print a Boolean that says whether or not results
are as I expected.”

“It seems like you're beginning to reinvent JUnit, but there’s one important
difference: your main() test driver requires you to always visually verify the
output. JUnit does that work for you—tests either pass or fail.”

“You know,” says Pat, “Maybe I don’t agree with all of the things you're
pushing with unit testing, but I'm starting to think it’d be a great idea to
rework some of my main() methods into proper JUnit tests.”

It sounds like Pat could be on the way to being test-infected!

Tests aren’t tests unless they assert that things went as expected. You write
unit tests to save you time, not take more of your time. Manually verifying
the results of tests is a time-consuming process that can also introduce more
risk—it’s easy to get dozy and gloss over important signs when you pore over
the voluminous output that pseudotests can produce.

Not only must your tests be self-validating, but they must also be self-
arranging. Make sure you don’t do anything silly, such as designing a test to
require manual arrange steps before you can run it. You must automate any
setup your test requires. Remember, regardless: requiring external setup in
order to a run a test violates the [I]solated part of FIRST.

Grow the theme of self-validating as much as you can. Your tests will run as
part of a larger suite of unit tests for your system. You might run these tests
manually on occasion—but you could take things one step further and
automate the process of when and how the tests are run.

If you use Eclipse or IntelliJ IDEA, consider incorporating a tool like Infinitest.
As you make changes to your system, Infinitest identifies and runs (in the
background) any tests that are potentially impacted. With Infinitest, testing
moves from being a proactive task to being a gating criterion, much like
compilation, that prevents you from doing anything further until you've fixed
a reported problem.

On an even larger scale, you can use a continuous integration (CI) tool such
as Jenkins' or TeamCity.? A CI tool watches your source repository and kicks
off a build/test process when it recognizes changes.

1. http://jenkins-ci.org/

www.it-ebooks.info

http://jenkins-ci.org/
https://www.jetbrains.com/teamcity/
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

FIRS[TI: [Tlimely ® 61

The sky’s the limit. As an ideal, imagine a system where you write tests for
all changes you make. Whenever you integrate the code into your source
repository, a build automatically kicks off and runs all the tests (unit and
otherwise), indicating that your system is acceptably healthy. The build
server takes that vote of confidence and goes one step further, deploying your
change to production.

Pat snorts from the corner, “Yeah, sure.”

Don’t laugh, Pat. Many teams today have the confidence to embrace continu-
ous delivery (CD) and have significantly reduced the overhead of taking a
need from inception to deployed product.

FIRS[TI: [Tlimely

You can write unit tests at virtually any time. You could dredge up code in
any old portion of your system and start tacking on unit tests to it. But you're
better off focusing on writing unit tests in a timely fashion.

Unit testing is a good habit. With most good habits that you've not yet com-
pletely ingrained, such as brushing your teeth, it’s easy to procrastinate and
make excuses why you can skip the practice “just this once.” Your dentist
might love your funding his or her practice, but you're going to hate the time
it takes to scrape away the tartar that’s built up.

Likewise, the more you defer probing at your code with unit tests, the more
plaque buildup (cruft) and cavities (defects) you’ll need to deal with. Also,
once you check code into your source repository, chances are low that you’ll
find the time to come back and write tests.

Many test-infected dev teams have guidelines or strict rules around unit
testing. Some use review processes or even automated tools to reject code
without sufficient tests.

“We use pair programming and a bit of peer pressure in our team to ensure
that programmers don’t check in untested code,” says Dale. “Frequent check-
ins into our CI environment has helped our programmers ingrain the habit
of writing timely unit tests. Our team loves how our tests help demonstrate
the health of our system.”

You’'ll want to establish similar rules that make sense for your team. Keeping
atop good practices like unit testing requires continual vigilance.

The more you unit-test, the more you’ll find that it pays to write smaller
chunks of code before tackling a corresponding unit test. First, it'll be easier

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 5. FIRST Properties of Good Tests ® 62

to write the test, and second, the test will pay off immediately as you flesh
out the rest of the behaviors in the surrounding code.

If you've evolved to short code-then-test cycles, consider mutating to the next
step of test-then-code. Take a forward look to Chapter 12, Test-Driven Devel-

Finally, tackling any old code to test can be a waste of time. If the code doesn’t
exhibit any defects or need to change in the near future (such as “now”—as
in, you're about to change the code and want to ensure that you don’t break
anything), your effort will return little value on the investment. Direct your
efforts to more troubled or dynamic spots in your system.

After

Writing unit tests requires a considerable investment in time. Although your
tests can repay that investment, every test you write adds more code that you
must maintain. Guard that investment by ensuring your that tests retain
high quality. Use the FIRST acronym to remind you of the characteristics of
quality tests.

The Right-BICEP, next, provides you with a mnemonic to decide what kinds
of JUnit tests you should write.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER 6

What to Test; The Right-BICEP

It can be hard to look at a method or a class and anticipate all the bugs that
might be lurking in there. With experience, you develop a feel for what’s
likely to break and learn to concentrate on testing those areas first. Until
then, uncovering possible failure modes can be frustrating. End users are
quite adept at finding our bugs, but that's embarrassing and damaging to
our careers! What we need are guidelines to help us understand what’s
important to test.

Your Right-BICEP provides you with the strength needed to ask the right
questions about what to test:

Right Are the results right?

Are all the boundary conditions correct?

Can you check inverse relationships?

Can you cross-check results using other means?

Can you force error conditions to happen?

T QW

Are performance characteristics within bounds?

[Right]-BICEP: Are the Results Right?

Your tests should first and foremost validate that the code produces expected
results. The arithmetic-mean test in Chapter 1, Building Your First JUnit Test,

mean of 6 given the numbers 5 and 7. We show it again here.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 6. What to Test: The Right-BICEP * 64

iloveyouboss/13/test/iloveyouboss/ScoreCollectionTest.java

@Test

public void answersArithmeticMeanOfTwoNumbers() {
ScoreCollection collection = new ScoreCollection();
collection.add(() -> 5);
collection.add(() -> 7);

int actualResult = collection.arithmeticMean();

assertThat(actualResult, equalTo(6));
}

You might bolster such a test by adding more numbers to ScoreCollection or by
trying larger numeric values. But such tests remain in the realm of happy-
path tests—positive cases that reflect a portion of an end-user goal for the
software (it could be a tiny portion!). If your code provides the right answer
for these cases, the end user will be happy.

A happy-path test represents one answer to the important question:
If the code ran correctly, how would I know?

Put another way: if you don’t know how to write a test around the happy path
for a small bit of code, you probably don’t fully understand what it is you're
trying to build—and you probably should hold off until you can come up with
an answer to the question.

In fact, some unit testers explicitly ask themselves that question with every
unit test they write. They don’t write the code until they’ve first written a test
that demonstrates what answer the code should return for a given scenario.
Read more about this more disciplined form of unit testing in the chapter on
TDD (see Chapter 12, Test-Driven Development, on page 153).

“Wait,” sez you, “Insisting that I know all the requirements might not be
realistic. What if they're vague or incomplete? Does that mean I can’t write
code until all the requirements are firm?”

Nothing stops you from proceeding without answers to every last question.
Use your best judgment to make a choice about how to code things, and later
refine the code when answers do come. Most of the time, things change any-
way: the customer has a change of mind, or someone learns something that
demands a different answer.

The unit tests you write document your choices. When change comes, you
at least know how the current code behaves.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/iloveyouboss/ScoreCollectionTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Right-[B]ICEP: Boundary Conditions ® 65

Right-[B]ICEP: Boundary Conditions

An

obvious happy path through the code might not hit any boundary conditions

in the code—scenarios that involve the edges of the input domain. Many of
the defects you’ll code in your career will involve these corner cases, so you'll
want to cover them with tests.

Boundary conditions you might want to think about include:

Bogus or inconsistent input values, such as a filename of
"WX\&GI WS> $g/h#WQ@.

Badly formatted data, such as an email address missing a top-level domain
(fred@foobar.).

Computations that can result in numeric overflow.

Empty or missing values, such as 0, 0.0, ", or null.

Values far in excess of reasonable expectations, such as a person’s age
of 150 years.

Duplicates in lists that shouldn’t have duplicates, such as a roster of
students in a classroom.

Ordered lists that aren’t, and vice versa. Try handing a presorted list to
a sort algorithm, for instance—or even a reverse-sorted list.

Things that happen out of expected chronological order, such as an HTTP
server that returns an OPTIONS response after a POST instead of before.

The ScoreCollection code from Chapter 1, Building Your First JUnit Test, on page

3 seems innocuous enough:

iloveyouboss/13/src/iloveyouboss/ScoreCollection.java
package iloveyouboss;

import java.util.*;

public class ScoreCollection {

private List<Scoreable> scores = new ArrayList<>();

public void add(Scoreable scoreable) {
scores.add(scoreable);

}

public int arithmeticMean() {
int total = scores.stream().mapToInt(Scoreable::getScore).sum();
return total / scores.size();

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/src/iloveyouboss/ScoreCollection.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

Chapter 6. What to Test: The Right-BICEP ® 66

Let’s probe some boundary conditions. Maybe pass a null Scoreable instance:

iloveyouboss/14/test/iloveyouboss/ScoreCollectionTest.java

@Test(expected=IllegalArgumentException.class)

public void throwsExceptionWhenAddingNull() {
collection.add(null);

}

The code generates a NullPointerException in the arithmeticMean() method, a bit too
late for our tests. We’d rather let the clients know as soon as they attempt to
add an invalid value. A guard clause in add() clarifies the input range:

iloveyouboss/14/src/iloveyouboss/ScoreCollection.java

public void add(Scoreable scoreable) {
if (scoreable == null) throw new IllegalArgumentException();
scores.add(scoreable);

}
It’s possible that no Scoreable instances exist in the ScoreCollection:

iloveyouboss/14/test/iloveyouboss/ScoreCollectionTest.java

@Test

public void answersZeroWhenNoElementsAdded() {
assertThat(collection.arithmeticMean(), equalTo(0));

}

The code generates a divide-by-zero ArithmeticException. A guard clause in add()
answers the desired value of 0 when the collection is empty:

iloveyouboss/14/src/iloveyouboss/ScoreCollection.java
public int arithmeticMean() {

if (scores.size() == 0) return 0;

// ...
}

If we're dealing with large integer inputs, the sum of the numbers could exceed
Integer.MAX_VALUE. Perhaps we’d like to allow that:

iloveyouboss/14/test/iloveyouboss/ScoreCollectionTest.java

@Test

public void dealsWithIntegerOverflow() {
collection.add(() -> Integer.MAX VALUE);
collection.add(() -> 1);

assertThat(collection.arithmeticMean(), equalTo(1073741824));
}

Here’s one possible solution:

iloveyouboss/14/src/iloveyouboss/ScoreCollection.java
long total = scores.stream().mapToLong(Scoreable::getScore).sum();
return (int) (total / scores.size());

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/14/test/iloveyouboss/ScoreCollectionTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/14/src/iloveyouboss/ScoreCollection.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/14/test/iloveyouboss/ScoreCollectionTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/14/src/iloveyouboss/ScoreCollection.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/14/test/iloveyouboss/ScoreCollectionTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/14/src/iloveyouboss/ScoreCollection.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Remembering Boundary Conditions with CORRECT ® 67

The narrowing cast from long down to int gives us pause. Should we probe
again with another unit test? No. The add() method constrains the input to int
values, and because division by a count always returns a smaller number, it
shouldn’t be possible to end up with a result larger than an int.

When you design a class, it’s entirely up to you whether or not things like
potential integer overflow need be a concern in the code. If your class repre-
sents an external-facing API, and you can’t fully trust your clients, you want
to guard against bad data.

However, if the clients are coded by members of your own team (who are also
writing unit tests), then you might choose to eliminate the guard clauses and
let your clients beware. This is a perfectly legitimate choice and can help
minimize the clutter of redundant overchecking of arguments in your code.

If you remove guards, you could warn client programmers with code com-
ments. Better, add a test that documents the limitations of the code:

iloveyouboss/15/test/iloveyouboss/ScoreCollectionTest.java

@Test

public void doesNotProperlyHandleIntegerOverflow() {
collection.add(() -> Integer.MAX VALUE);
collection.add(() -> 1);

assertTrue(collection.arithmeticMean() < 0);

}

(You probably don’t want to allow unchecked overflow in most systems,
however. Better to trap and throw an exception.)

Remembering Boundary Conditions with CORRECT

The CORRECT acronym gives you a way to remember potential boundary
conditions. For each of these items, consider whether or not similar conditions
can exist in the method that you want to test, and what might happen if these
conditions are violated:

¢ Conformance—Does the value conform to an expected format?
* Ordering—Is the set of values ordered or unordered as appropriate?
¢ Range—Is the value within reasonable minimum and maximum values?

¢ Reference—Does the code reference anything external that isn’t under
direct control of the code itself?

e Existence—Does the value exist (is it non-null, nonzero, present in a set,
and so on)?

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/iloveyouboss/ScoreCollectionTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 6. What to Test: The Right-BICEP * 68

¢ Cardinality—Are there exactly enough values?

e Time (absolute and relative)}—Is everything happening in order? At the
right time? In time?

We'll examine all of these boundary conditions in the next chapter.

Right-B[I]CEP: Checking Inverse Relationships

Sometimes you’ll be able to check behavior by applying its logical inverse.
For mathematic computations, this is often the case: you can verify division
with multiplication, addition with subtraction, and so on.

We decided to implement our own square-root function using Newton’s algo-
rithm (a silly idea, given that Math.sqgrt() is a trustworthy native implementation;
apparently, we suffer from not-invented-here syndrome). We recall that if we
derive the square root of a number and square that result (that is, multiply
it by itself), we should get the same number we started with:

iloveyouboss/15/test/scratch/NewtonTest.java

import org.junit.*;

import static org.junit.Assert.*;

import static org.hamcrest.number.IsCloseTo.*;
import static java.lang.Math.abs;

public class NewtonTest {
static class Newton {
private static final double TOLERANCE = 1E-16;

public static double squareRoot(double n) {
double approx = n;
while (abs(approx - n / approx) > TOLERANCE * approx)
approx = (n / approx + approx) / 2.0;
return approx;

}

@Test
public void squareRoot() {
double result = Newton.squareRoot(250.0);
assertThat(result * result, closeTo(250.0, Newton.TOLERANCE));

}

In the test, we derive result by calling Newton.squareRoot() with the argument 250.
Our assertion expects that result (whatever it is—we don’t have to know) mul-
tiplied by itself will be very close to the original value of 250.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/scratch/NewtonTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Right-B[I]CEP: Checking Inverse Relationships ® 69

Be careful! If both routines use common code, both the production code and
the inverse behavior could share a common defect. Seek an independent
means of verification. Using multiplication works as an inversion of the square-
root logic. Another example: for code that inserts into a database, write a
direct JDBC query in your test.

Another nonmathematical example: in the iloveyouboss application, the Profile
class supports adding Answer objects. We want a flexible interface on Profile
that supports finding Answers given a Predicate:

iloveyouboss/15/test/iloveyouboss/ProfileTest.java
int[] ids(Collection<Answer> answers) {
return answers.stream()
.mapToInt(a -> a.getQuestion().getId()).toArray();
}

@Test

public void findsAnswersBasedOnPredicate() {
profile.add(new Answer(new BooleanQuestion(1l, "1"), Bool.FALSE));
profile.add(new Answer(new PercentileQuestion(2, "2", new String[1{}), 0));
profile.add(new Answer(new PercentileQuestion(3, "3", new String[1{}), 0));

List<Answer> answers =
profile.find(a->a.getQuestion().getClass() == PercentileQuestion.class);

assertThat(ids(answers), equalTo(new int[] { 2, 3 }));

}
Here’s the relevant implementation in the Profile class:

iloveyouboss/15/src/iloveyouboss/Profile.java
public class Profile {

private Map<String,Answer> answers = new HashMap<>();
// ...

public void add(Answer answer) {
answers.put(answer.getQuestionText(), answer);

}

// ...

public List<Answer> find(Predicate<Answer> pred) {
return answers.values().stream()
.filter(pred)
.collect(Collectors.toList());

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/iloveyouboss/ProfileTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 6. What to Test: The Right-BICEP ® 70

A cross-check might involve finding the complement of the predicate—answers
whose questions are not of type PercentileQuestion. The positive-case answers
and the inverse answers should combine to represent all the answers:
iloveyouboss/15/test/iloveyouboss/ProfileTest.java

List<Answer> answersComplement =
profile.find(a->a.getQuestion().getClass() != PercentileQuestion.class);

List<Answer> allAnswers = new ArrayList<Answer>();
allAnswers.addAll(answersComplement);
allAnswers.addAll(answers);

assertThat(ids(allAnswers), equalTo(new int[] { 1, 2, 3 }));

Cross-checking is a way of ensuring that everything adds up and balances,
much like the general ledger in a double-entry bookkeeping system.

Right-BI[C]EP: Cross-Checking Using Other Means

Any interesting problem has umpteen solutions. You choose a blue-ribbon
winner, perhaps because it performs or smells better. That leaves the “loser”
solutions available for cross-checking the production results. Maybe the
runners-up are too slow or inflexible for production use, but they can help
cross-check your winning choice, particularly if they’re trusted ‘n’ true.

We can use the “inferior” Java library implementation of square root to cross-
check. (Apparently we suffer from bad egos.) We check whether or not our
new superspiffy square-root logic produces the same results as Math.sqrt():
iloveyouboss/15/test/scratch/NewtonTest.java

assertThat (Newton.squareRoot(1969.0),
closeTo(Math.sqrt(1969.0), Newton.TOLERANCE));

Another example: suppose you're developing a system for managing a lending
library. The expectation for a library is that, at any given time, everything
must balance. For each book, the number of copies checked out plus the
number of copies on shelves (not checked out) must equal the total number
of copies held in the collection. Each count is a separate piece of data,
potentially stored in a separate location, but all together they still must agree
and so can be used to cross-check one another.

Another way of looking at cross-checking is that you're using different pieces
of data from the class itself to make sure they all add up.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/iloveyouboss/ProfileTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/scratch/NewtonTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Right-BIC[E]P: Forcing Error Conditions ® 71

Right-BIC[E]P: Forcing Error Conditions

The existence of a happy path suggests that there must be an unhappy path.
Errors happen, even when you think they can’t possibly. Disks fill up, network
lines drop, email goes into a black hole, and programs crash. You want to
test that your code handles all of these real-world problems in a graceful or
reasonable manner. To do so, you need to write tests that force errors to
occur.

That’s easy enough to do with invalid parameters and the like, but to simulate
specific network errors-—without unplugging any cables—-takes some special
techniques. We’ll discuss one way to do this in on page 123.

First, however, think about what kinds of errors or other environmental
constraints you might introduce to test your code. Here are a few scenarios
to consider:

¢ Running out of memory

¢ Running out of disk space

¢ Issues with wall-clock time

e Network availability and errors

e System load

e Limited color palette

¢ Very high or very low video resolution

Good unit testing isn’t simply exhaustive coverage of the obvious logic paths
through your code. It’s also an endeavor that requires you to pull a little cre-
ativity out of your rear pocket from time to time. Some of the ugliest defects
are those least expected.

Right-BICE[P]: Performance Characteristics

Rob Pike of Google: “Bottlenecks occur in surprising places, so don't try to
second guess and put in a speed hack until you have proven that’s where the
bottleneck is.” Indeed, many programmers speculate about where performance
problems might lie and about what the best resolution might be. The only
problem is that their speculations are often dead wrong.

Rather than guess and stab at performance concerns, you can design unit
tests to help you know where true problems lie and whether or not your
speculative changes make enough of a difference.

This test asserts that a bit of code runs within a certain amount of time:

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 6. What to Test: The Right-BICEP ® 72

iloveyouboss/15/test/iloveyouboss/ProfileTest.java
@Test
public void findAnswers() {

}

int dataSize = 5000;
for (int i = 0; i < dataSize; i++)

profile.add(new Answer (

new BooleanQuestion(i, String.valueOf(i)), Bool.FALSE));

profile.add(

new Answer(

new PercentileQuestion(
dataSize, String.valueOf(dataSize), new String[] {}), 0));

int numberOfTimes = 1000;
long elapsedMs = run(numberQOfTimes,
() -> profile.find(
a -> a.getQuestion().getClass() == PercentileQuestion.class));

assertTrue(elapsedMs < 1000);

We wonder if that test is useful. Let’s talk about that in a moment.

Java 8 makes it easy to build a run() method:

iloveyouboss/15/test/iloveyouboss/ProfileTest.java
private long run(int times, Runnable func) {

}

long start = System.nanoTime();

for (int i = 0; i < times; i++)
func.run();

long stop = System.nanoTime();

return (stop - start) / 1000000;

A few cautions are called for:

* You typically want to run the chunk of code a good number of times, to

shake out any issues around timing and the clock cycle.

You need to ensure somehow that Java is not optimizing out any parts
of the code you're iterating over.

Such a test is very slow compared to the bulk of your tests, which take
at most a few milliseconds each. Run performance tests separately from
your fast unit tests. Running performance tests once a night is probably
sufficient—you don’t want to find out too long after someone introduces
crummy code that doesn’t perform acceptably.

Even on the same machine, execution times can vary wildly depending
on sundry factors such as load on the system.

More troublesome is the fact that too many things are arbitrary. The preceding
example asserts that the find operation handles a thousand requests in less

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/iloveyouboss/ProfileTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

After ® 73

than a second. But that second is subjective. Running the test on a beefy
server, sure, the code might be fast enough, but on a crummy desktop, maybe
not. Dealing with a test that fails depending on the environment is never fun,
and there’s no easy solution to ensure that it runs consistently from one
environment to the next. About the only solution is to ensure that such tests
run only on a machine comparable to the production environment.

Second, that criterion of 1,000 requests per second seems pulled out of thin
air. Performance requirements are usually only relevant on an end-to-end
functionality basis, yet the preceding test verifies unit-level code behavior.
Unless the method you're testing is the entry point to the end-user request,
you're comparing apples and oranges.

A better use of a unit-level performance measurement is to provide baseline
information for purposes of making changes. Suppose you suspect that the
Java 8 lambda-oriented solution for the find() method is suboptimal. You'd
like to replace it with a more classic solution to see if the performance
improves.

Before making optimizations, first write a performance “test” that simply
captures the current elapsed time as a baseline. (Run it a few times and grab
the average.) Change the code, run the performance test again, and compare
results. You're seeking relative improvement—the actual numbers themselves
don’t matter.

Base all performance-optimization attempts on real data, not
speculation.

If performance is a key consideration, you likely will be concentrating on the
problem at a higher level than unit testing, and you’ll likely want to use tools
like JMeter.! If you still have a significant interest in unit-level performance
measurement, take a look at third-party tools like JUnitPerf.>

After

In this chapter you learned about what sorts of tests you’ll want to write.
Using the Right-BICEP mnemonic, you'll remember to write tests that cover
happy paths, boundary conditions, and error conditions. You'll also remember
to bolster the validity of your testing by cross-checking results and looking

1. http://jmeter.apache.org/

2. http://www.clarkware.com/software/JUnitPerf.html

www.it-ebooks.info

http://jmeter.apache.org/
http://www.clarkware.com/software/JUnitPerf.html
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 6. What to Test: The Right-BICEP * 74

at inverse relationships. You also know when it might be useful to look at the
performance of your code.

Next up, you'll dig deeper into the CORRECT mnemonic that we touched on
in this chapter. You'll pick up a few additional ideas on how to cover the many
boundary cases that crop up in the code you write.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER 7

Boundary Conditions: The CORRECT Way

Your unit tests can help you prevent shipping some of the defects that often
involve boundary conditions—the edges around the happy-path cases where
things often go wrong.

In the previous chapter, you got a whiff of the CORRECT acronym, which can
help you think about the boundary conditions to consider for your unit tests:

e Conformance—Does the value conform to an expected format?
¢ Ordering—Is the set of values ordered or unordered as appropriate?
¢ Range—Is the value within reasonable minimum and maximum values?

¢ Reference—Does the code reference anything external that isn’'t under
direct control of the code itself?

e Existence—Does the value exist (is it non-null, nonzero, present in a set,
and so on)?

¢ Cardinality—Are there exactly enough values?

e Time (absolute and relative)}—Is everything happening in order? At the
right time? In time?

For each of the CORRECT criteria, consider the impact of data from all possible
origins—including arguments passed in, fields, and locally managed variables.
Then seek to fully answer the question:

What else can go wrong?

Any time you think of something that could go wrong, jot down a test name.
If you have time, flesh out the test. Thinking about one possible errant scenario
can often trigger your brain to think of other, possibly related scenarios. As
long as you're able to dream up tests, keep at it!

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 7. Boundary Conditions: The CORRECT Way ® 76

[CIORRECT: [Clonformance

Many data elements must conform to a specific format. For example, an email
address generally follows the form:

name@somedomain

(Where somedomain might be pragprog.com.) The name and domain portions of
the address each follow a different set of fairly detailed rules. You can find
many of them laid out at Wikipedia.' Imagine that you want to validate the
conformance of an email address to the many rules. (You really don’'t want
to, however. This is a case where you're much better off leaning on the efforts
of others. See the complete spec.?)

Perhaps your code parses an email address, attempting to extract its name
portion—the part leading up to the @ sign. But you want to worry about what
to do if there is no @, or if the name portion is empty. How to design the code
is up to you. You might choose to return a null value or an empty string, or
even throw an exception. Regardless, you need to write tests that demonstrate
what happens when each of these boundary conditions occurs.

Validating formatted string data such as email addresses, phone numbers,
account numbers, and filenames might involve a lot of rules, but it’s usually
straightforward. More-complex structured data can create a combinatorial
explosion of cases to test.

Suppose you're reading report data composed of a header record, some
number of data records, and a trailer record. Here are some of the boundary
conditions you need to test:

e No header, just data and a trailer
¢ No data, just a header and trailer
e No trailer, just a header and data
e Just a trailer

¢ Just a header

e Just data

You'll get better at brainstorming the ways in which data doesn’t conform to
the expected structure the more you do it. You'll find more defects in the
process, because they often live around the interesting boundaries of your
system. But when should you stop writing tests?

1. See http://en.wikipedia.org/wiki/Email address.

2. http://www.ietf.org/rfc/rfc0822.txt?number=822

www.it-ebooks.info

http://en.wikipedia.org/wiki/Email_address
http://www.ietf.org/rfc/rfc0822.txt?number=822
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

C[O]RRECT: [Olrdering ® 77

A field like account number might get passed to countless methods in your
system. However, if you've validated the field at the point where it’s introduced
in the system (perhaps through a Ul, as an argument to a publicly exposed
API, or read from a file), you need not validate it for every method that takes
the field on as an argument. Understanding the flow of data through your
system will help you minimize the number of unnecessary tests.

C[O]RRECT: [O]rdering

The order of data, or the position of one piece of data within a larger collection,
represents a CORRECTness criterion where it’'s easy for code to go wrong.

Let’s look at a need for ordering in the iloveyouboss application. One of the
application’s core features is to score a list of companies based on how well
they match criteria. Naturally, we always want to see the best match first,
followed by the losers, biggest loser last.

The answersResultsinScoredOrder test represents the ordering need:

iloveyouboss/15/test/iloveyouboss/ProfilePoolTest.java

@Test

public void answersResultsInScoredOrder() {
smeltInc.add(new Answer(doTheyReimburseTuition, Bool.FALSE));
pool.add(smeltInc);
langrsoft.add(new Answer(doTheyReimburseTuition, Bool.TRUE));
pool.add(langrsoft);

pool.score(soleNeed(doTheyReimburseTuition, Bool.TRUE, Weight.Important));
List<Profile> ranked = pool.ranked();

assertThat(ranked.toArray(), equalTo(new Profile[]{ langrsoft,smeltInc }));
}

The paraphrased test is:
¢ Add a negative answer to the question for Smelt Inc.
e Add a positive answer to the question for Langrsoft.
¢ Add each question to the profile pool.

e Create a “sole need” criteria object that says it's important that they
reimburse tuition.

¢ Pass the criteria object to the score() method of the pool.

¢ Assert that the ranked profiles have Langrsoft first (because they answered
true to the question and Smelt Inc. answered false).

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/iloveyouboss/ProfilePoolTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 7. Boundary Conditions: The CORRECT Way © 78

The smeltinc, langrsoft, pool, and doTheyReimburseTuition fields are named to minimize
our need to look at how they are declared or initialized. The also-interestingly-
named soleNeed() method collapses the effort to create a Criteria object with a
single Criterion to a single line:

iloveyouboss/15/test/iloveyouboss/ProfilePoolTest.java

private Criteria soleNeed(Question question, int value, Weight weight) {
Criteria criteria = new Criteria();
criteria.add(new Criterion(new Answer(question, value), weight));
return criteria;

}

The implementation shows that the core aspect to ranking the profiles is a
sort that compares the scores of each profile:

iloveyouboss/15/src/iloveyouboss/ProfilePool.java
public void score(Criteria criteria) {
for (Profile profile: profiles)
profile.matches(criteria);

}

public List<Profile> ranked() {
Collections.sort(profiles,
(pl, p2) -> ((Integer)pl.score()).compareTo(p2.score()));
return profiles;

}

Oh crud—it fails! It’s easy to get these things wrong! The order is backward.
To make the test pass, swap the compareTo around:

iloveyouboss/16/src/iloveyouboss/ProfilePool.java
public List<Profile> ranked() {
Collections.sort(profiles,
(pl, p2) -> ((Integer)p2.score()).compareTo(pl.score()));
return profiles;

}
COI[R]RECT: [R]lange

When you use Java’s built-in types for variables, you often get far more
capacity than you need. If you represent a person’s age using an int, you'd be
safe for at least a couple million more centuries. Inevitably, things will go
wrong, and you’ll end up with a person a few times older than Methuselah,
or a backward time traveler—someone with a negative age.

Excessive use of primitive datatypes is a code smell known as primitive
obsession. A benefit of an object-oriented language like Java is that it lets
you define your own custom abstractions in the form of classes.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/test/iloveyouboss/ProfilePoolTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/15/src/iloveyouboss/ProfilePool.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/src/iloveyouboss/ProfilePool.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

COI[RIRECT: [R]ange * 79

A circle has only 360 degrees. Rather than store the direction of travel as a
native type, create a class named Bearing that encapsulates the direction along
with logic to constrain its range. Tests show how it works.

iloveyouboss/16/test/scratch/BearingTest.java
public class BearingTest {
@Test (expected=BearingOutOfRangeException.class)
public void throwsOnNegativeNumber() {
new Bearing(-1);

}

@Test (expected=BearingOutOfRangeException.class)
public void throwsWhenBearingTooLarge() {
new Bearing(Bearing.MAX + 1);

}

@Test
public void answersValidBearing() {

assertThat(new Bearing(Bearing.MAX) .value(), equalTo(Bearing.MAX));
}

@Test
public void answersAngleBetweenItAndAnotherBearing() {
assertThat(new Bearing(15).angleBetween(new Bearing(12)), equalTo(3));

}

@Test
public void angleBetweenIsNegativeWhenThisBearingSmaller() {
assertThat(new Bearing(12).angleBetween(new Bearing(15)), equalTo(-3));
}
}

The constraint is implemented in the constructor of the Bearing class:

iloveyouboss/16/src/scratch/Bearing.java

public class Bearing {
public static final int MAX = 359;
private int value;

public Bearing(int value) {
if (value < 0 || value > MAX) throw new BearingOutOfRangeException();
this.value = value;

}

public int value() { return value; }

public int angleBetween(Bearing bearing) { return value - bearing.value; }

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/test/scratch/BearingTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/src/scratch/Bearing.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYVYY

Chapter 7. Boundary Conditions: The CORRECT Way ® 80

Note that angleBetween() returns an int. We're not placing any range restrictions
(such as that it must not be negative) on the result.

The Bearing abstraction makes it impossible for client code to create out-of-
range bearings. As long as the rest of the system accepts and works with
Bearing objects, the gate on range-related defects is shut.

Other constraints might not be as straightforward. Suppose we have a class
that maintains two points, each an x, y integer tuple. The constraint on the
range is that the two points must describe a rectangle with no side greater
than 100 units. That is, the allowed range of values for both x, y pairs is
interdependent.

We want a range assertion for any behavior that can affect a coordinate, to
ensure that the resulting range of the x, y pairs remains legitimate—that the
invariant on the Rectangle holds true.

More formally: an invariant is a condition that holds true throughout the
execution of some chunk of code. In this case, we want the invariant to hold
true for the lifetime of the Rectangle object—that is, any time its state changes.

We can add invariants, in the form of assertions, to the @After method so that
they run upon completion of any test. Here’s what an implementation for the
invariant for our constrained Rectangle class looks like:

iloveyouboss/16/test/scratch/RectangleTest.java

import static org.junit.Assert.*;

import static org.hamcrest.CoreMatchers.*;

import static scratch.ConstrainsSidesTo.constrainsSidesTo;
import org.junit.*;

public class RectangleTest {
private Rectangle rectangle;

@After
public void ensureInvariant() {
assertThat(rectangle, constrainsSidesTo(100));

}

@Test

public void answersArea() {
rectangle = new Rectangle(new Point(5, 5), new Point (15, 10));
assertThat(rectangle.area(), equalTo(50));

}

@Test

public void allowsDynamicallyChangingSize() {
rectangle = new Rectangle(new Point(5, 5));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/test/scratch/RectangleTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

COI[R]RECT: [R]ange * 81

rectangle.setOppositeCorner(new Point (130, 130));
assertThat(rectangle.area(), equalTo(15625));

}

For all the tests that manipulate a rectangle instance, we can sleep safely,
knowing that JUnit will always check the invariant. The last test, allowsDynam-
icallyChangingSize, violates the invariant and thus fails.

Creating a Custom Matcher to Verify an Invariant

The assertion in the @After method uses a custom Hamecrest matcher named
constrainsSidesTo. The matcher provides an assertion phrasing that reads well
left-to-right: assert that (the) rectangle constrains (its) sides to 100.

To implement our custom Hamcrest matcher, we extend a class from
org.hamcrest.TypeSafeMatcher bound to the type that we’re matching on—Rectangle
in our case. By convention, we name the class ConstrainsSidesTo to correspond
with the matcher phrasing constrainsSidesTo.

The class must override the matchesSafely() method to be useful. matchesSafely()
contains the behavior we're trying to enforce. It returns true as long as both
rectangle sides remain in range. A false return fails the constraint. The custom
matcher class should override the describeTo() method to provide a meaningful
message when the assertion fails.

The custom matcher class should also supply a static factory method that
returns the matcher instance. You use this factory method when phrasing
an assertion. The constrainsSidesTo() factory method passes the length constraint
(100 in the test) to the constructor of the matcher, to be subsequently used
by matchesSafely():

iloveyouboss/16/test/scratch/ConstrainsSidesTo.java
import org.hamcrest.*;

public class ConstrainsSidesTo extends TypeSafeMatcher<Rectangle> {
private int length;

public ConstrainsSidesTo(int length) {
this.length = length;
}

@Override
public void describeTo(Description description) {
description.appendText("both sides must be <= " + length);

}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/test/scratch/ConstrainsSidesTo.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 7. Boundary Conditions: The CORRECT Way © 82

@Ooverride
protected boolean matchesSafely(Rectangle rect) {
return
Math.abs(rect.origin().x - rect.opposite().x) <= length &&
Math.abs(rect.origin().y - rect.opposite().y) <= length;
}

@Factory
public static <T> Matcher<Rectangle> constrainsSidesTo(int length) {
return new ConstrainsSidesTo(length);
}
}

Testing Ranges by Embedding Invariant Methods

The most common ranges you’'ll test will likely depend on data-structure
concerns, not application-domain constraints.

Let’s look at a questionable implementation of a sparse array—a data structure
designed to save space. The sweet spot for a sparse array is a broad range of
indexes where most of the corresponding values are null. It accomplishes this
goal by storing only non-null values, using a pair of arrays that work in concert:
an array of indexes corresponds to an array of values.

Here’s the bulk of the source for the SparseArray class:

iloveyouboss/16/src/util/SparseArray.java

public class SparseArray<T> {
public static final int INITIAL SIZE = 1000;
private int[] keys = new int[INITIAL SIZE];
private Object[] values = new Object[INITIAL SIZE];
private int size = 0;

public void put(int key, T value) {
if (value == null) return;

int index = binarySearch(key, keys, size);

if (index != -1 && keys[index] == key)
values[index] = value;
else

insertAfter(key, value, index);

}

public int size() {
return size;

}

private void insertAfter(int key, T value, int index) {
int[] newKeys = new int[INITIAL SIZE];
Object[] newValues = new Object[INITIAL SIZE];

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/src/util/SparseArray.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

COI[RIRECT: [R]ange * 83

copyFromBefore(index, newKeys, newValues);

int newIndex = index + 1;

newKeys[newIndex] = key;
newValues[newIndex] = value;
if (size - newIndex != 0)

copyFromAfter(index, newKeys, newValues);

keys = newKeys;
values = newValues;

}

private void copyFromAfter(int index, int[] newKeys, Object[] newValues) {
int start = index + 1;
System.arraycopy(keys, start, newKeys, start + 1, size - start);
System.arraycopy(values, start, newValues, start + 1, size - start);

}

private void copyFromBefore(int index, int[] newKeys, Object[] newValues) {
System.arraycopy(keys, 0, newKeys, 0, index + 1);
System.arraycopy(values, 0, newValues, 0, index + 1);

}

@SuppressWarnings ("unchecked")
public T get(int key) {
int index = binarySearch(key, keys, size);
if (index != -1 && keys[index] == key)
return (T)values[index];
return null;

}

int binarySearch(int n, int[] nums, int size) {
// ...
}
}

One of the tests we want to write involves ensuring that we can add a couple
of entries, then retrieve them both:

iloveyouboss/16/test/util/SparseArrayTest.java

@Test

public void handlesInsertionInDescendingOrder() {
array.put(7, "seven");
array.put(6, "six");
assertThat(array.get(6), equalTo("six"));
assertThat(array.get(7), equalTo("seven"));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/test/util/SparseArrayTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 7. Boundary Conditions: The CORRECT Way * 84

The sparse-array code has some intricacies around tracking and altering the
pair of arrays. One way to help prevent errors is to determine what invariants
exist for the implementation specifics. In the case of our sparse-array imple-
mentation, which accepts only non-null values, the tracked size of the array
must match the count of non-null values.

We might consider writing tests that probe at the values stored in the private
arrays, but that would require exposing true private implementation details
unnecessarily. Instead, we devise a checkinvariants() method that can do the
skullduggery for us, throwing an exception if any invariants (well, we have
only one so far) fail to hold true.

iloveyouboss/16/src/util/SparseArray.java
public void checkInvariants() throws InvariantException {
long nonNullValues = Arrays.stream(values).filter(Objects::nonNull).count();
if (nonNullValues !'= size)
throw new InvariantException("size " + size +
" does not match value count of " + nonNullValues);

}
(We could also implement invariant failures using the Java assert keyword.)

Now we can scatter checklnvariants() calls in our tests any time we do something
to the sparse-array object:

iloveyouboss/16/test/util/SparseArrayTest.java

@Test

public void handlesInsertionInDescendingOrder() {
array.put(7, "seven");
array.checkInvariants();
array.put(6, "six");
array.checkInvariants();
assertThat(array.get(6), equalTo("six"));
assertThat(array.get(7), equalTo("seven"));

}
The test errors out with an InvariantException:

util.InvariantException: size 0 does not match value count of 1
at util.SparseArray.checkInvariants(SparseArray.java:48)
at util.SparseArrayTest
.handlesInsertionInDescendingOrder(SparseArrayTest.java:65)

Our code indeed has a problem with tracking the internal size. Challenge:
where’s the defect?

Even though the later parts of the test would fail anyway given the defect,
the checkinvariants calls allow us to pinpoint more easily where the code is failing.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/src/util/SparseArray.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/test/util/SparseArrayTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CORIRIECT: [R]eference ® 85

Indexing needs present a variety of potential errors. As a parting note on the
[Rlange part of the CORRECT mnemonic, here are a few test scenarios to
consider when dealing with indexes:

e Start and end index have the same value

e First is greater than last

¢ Index is negative

¢ Index is greater than allowed

e Count doesn’t match actual number of items

COR[R]ECT: [R]eference

When testing a method, consider:

e What it references outside its scope

e What external dependencies it has

e Whether it depends on the object being in a certain state
e Any other conditions that must exist

A web app that displays a customer’s account history might require the cus-
tomer to be logged on. The pop() method for a stack requires a nonempty stack.
Shifting your car’s transmission from Drive to Park requires you to first stop—if
your transmission allowed the shift while the car was moving, it’'d likely
deliver some hefty damage to your fine Geo Metro.

When you make assumptions about any state, you should verify that your
code is reasonably well-behaved when those assumptions are not met.
Imagine you're developing the code for your car’s microprocessor-controlled
transmission. You want tests that demonstrate how the transmission behaves
when the car is moving versus when it is not. Our tests for the Transmission
code cover three critical scenarios: that it remains in Drive after accelerating,
that it ignores the damaging shift to Park while in Drive, and that it does
allow the shift to Park once the car isn’t moving;:

iloveyouboss/16/test/transmission/TransmissionTest.java

@Test

public void remainsInDriveAfterAcceleration() {
transmission.shift(Gear.DRIVE);
car.accelerateTo(35);
assertThat(transmission.getGear(), equalTo(Gear.DRIVE));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/test/transmission/TransmissionTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 7. Boundary Conditions: The CORRECT Way ® 86

@Test

public void ignoresShiftToParkWhileInDrive() {
transmission.shift(Gear.DRIVE);
car.accelerateTo(30);

transmission.shift(Gear.PARK);

assertThat(transmission.getGear(), equalTo(Gear.DRIVE));

}

@Test

public void allowsShiftToParkWhenNotMoving() {
transmission.shift(Gear.DRIVE);
car.accelerateTo(30);
car.brakeToStop();

transmission.shift(Gear.PARK);

assertThat(transmission.getGear(), equalTo(Gear.PARK));

}

The preconditions for a method represent the state things must be in for it to
run. The precondition for putting a transmission in Park is that the car must
be at a standstill. We want to ensure that the method behaves gracefully when
its precondition isn’t met (in our case, we ignore the Park request).

Postconditions state the conditions that you expect the code to make true—
essentially, the assert portion of your test. Sometimes this is simply the return
value of a called method. You might also need to verify other side
effects—changes to state that occur as a result of invoking behavior. In the
allowsShiftToParkWhenNotMoving test case, calling brakeToStop() on the car instance
has the side effect of setting the car’s speed to O.

CORRI[E]CT: [E]xistence

You can uncover a good number of potential defects by asking yourself, “Does
some given thing exist?” For a given method that accepts an argument or
maintains a field, think through what will happen if the value is null, zero, or
otherwise empty.

Java libraries tend to choke and throw an exception when faced with nonex-
istent or uninitialized data. Unfortunately, by the time a null value reaches
the point where something chokes on it, it can be hard to understand the
original source of the problem. An exception that reports a specific message,
such as “profile name not set,” greatly simplifies tracking down the problem.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CORRE[C]T: [Clardinality ® 87

As programmers, we usually focus first and most on building the happy path.
We give only afterthought to the unhappy paths that can surface when
expected data isn’t available. You want to add tests that probe at these
potential highways to hell. Write tests that see what happens when a called
lookup method returns null. Or when an expected file doesn’t exist. Or when
the network is down.

Ah, yes: things in the environment can wink out of existence as you sneeze—
networks, license keys, users, printers, files’ URLs—you name it. Test with
plenty of nulls, zeros, empty strings, and other nihilist trappings.

Make sure your method can stand up to nothing!

CORREI[C]T: [C]ardinality

Many programmers aren’t so hot at counting, especially past ten when our
fingers can no longer assist us. Answer the following question quickly and
off the top of your head, without benefit of fingers, paper, or Google:

You have to erect a number of fence sections to cover a straight line 12 meters
long. Each section of fencing covers 3 meters, and each end of a section must
be held up with a _fence post:

o 3meters >|
- \O

\/ \/

How many fence posts do you need?

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 7. Boundary Conditions: The CORRECT Way ® 88

If you're like most of us, you probably offered an answer in short order, and
it’s probably incorrect. Think again. Then take a look at the following figure
for the answer. The errors that arise from not thinking hard enough about
the problem occur so often that they have a name: fencepost errors.

= il .l il \

\ l \

) ~— — I_,

Fencepost errors represent one of many ways you can be off by one, an often
fatal condition that we all succumb to at one point or another. Think about
ways to test how well your code counts, and check to see just how many of
a thing you might have.

Existence (see CORRIE|CT: [E]xistence, on page 86) is technically a special
case of cardinality. With cardinality, you're looking at more-specific answers
than “some” or “none.” Still, the count of some set of values is only interesting

in these three cases:

e Zero
e One
e Many (more than one)

Some folks refer to this as the 0-1-n rule. Zero matters, as you just learned
in the discussion of existence. Having one and only one of something is often
important. As far as collections of things are concerned, usually your code is
the same whether you're dealing with ten, a hundred, or a thousand things.
(Of course there are cases where the exact count makes a difference...and
that count is always 42.)

(The 0-10-nrule has broader applicability than just code-cardinality concerns.
Tim Ottinger and Jeff Langr discuss the notion of ZOM in a blog entry entitled
“Simplify Design With Zero, One, Many.”’)

Suppose you maintain a list of the top ten food items ordered in JJ’s Pancake
House. Every time an order is taken, you adjust the top-ten list, which the
Pancake Boss iPhone app expects to see updated in real time. The notion of
cardinality can help you derive a list of things to test out:

3. http://agileinaflash.blogspot.com/2012/06/simplify-design-with-zero-one-many.html

www.it-ebooks.info

http://agileinaflash.blogspot.com/2012/06/simplify-design-with-zero-one-many.html
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CORRECIT]: [T]ime © 89

* Producing a report when there are no items in the list

¢ Producing a report when there’s only one item in the list

¢ Producing a report when there aren’t yet ten items in the list
¢ Adding an item when there are no items in the list

e Adding an item when there’s only one item in the list

e Adding an item when there aren’t yet ten items in the list

¢ Adding an item when there are already ten items in the list

Now that you've written all those tests (great!), the big boss at JJ’s Pancake
House insists on a top-twenty list instead. Think about how many lines of
code you must change and hope the answer is one, something like:

public static final int MAX_ENTRIES = 20;

When the boss demands a top-five report instead, you make the change in
one place without breaking a sweat. Your tests don’t change either, because
they use the same constant.

Your tests should concentrate on boundary conditions of O, 1, and n, where
n can and will change as the business demands.

CORRECIT]: [T]lime

The last boundary condition in the CORRECT acronym is time. You need to
keep several aspects of time in mind:

¢ Relative time (ordering in time)
e Absolute time (elapsed and wall clock)
¢ Concurrency issues

Some interfaces are inherently stateful. You expect login() to be called before
logout(), open() before read(), read() before close(), and so on.

Consider what happens if methods are called out of order. Try various alternate
sequences. Try skipping the first, last, and middle of a sequence. Just as
order of data matters (see the examples in C[OJRRECT: [O]rdering, on page

Relative time might also include issues of timeouts. You must decide how
long your code will wait for an ephemeral resource to become available. You
want to emulate possible conditions in your code, including things such as
timeouts. Seek conditions that aren’t guarded by timeouts, which can cause
your code to wait forever for something that might not happen.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 7. Boundary Conditions: The CORRECT Way ® 90

Something you're waiting on might take “too much” time. You need to deter-
mine whether or not the elapsed time for your method is too much for an
impatient caller.

Actual wall-clock time might represent another consideration. Every rare once
in a while, time of day matters, perhaps in subtle ways. A quick quiz:

True or false? Every day of the year is 24 hours long (not counting leap seconds).

The answer: it depends. In UTC (Universal Coordinated Time, the modern
version of Greenwich Mean Time, or GMT), the answer is yes. In areas of the
world that do not observe Daylight Saving Time (DST), the answer is yes. In
most of the United States (which observes DST), the answer is no. One day
in March will have 23 hours (spring forward) and one in November will have
25 (fall back).

The result of our complicated time-world is that arithmetic doesn’'t always
work as you expect. (It’s even worse than we thought. The original version of
this book indicated April and October for DST-switchover dates. An astute
reviewer caught the errors. Let’s strive to write tests that do the same!) Thirty
minutes later than 1:45 a.m. is not 2:15 a.m. on two days out of the year.
Make sure that you test any time-sensitive code on those boundary days—for
locations that honor DST and for those that do not.

Don’t assume that any underlying library handles these issues correctly on
your behalf. When it comes to time, there’s a lot of broken code out there.
(One of your modest authors once became a reluctant expert at iCalendar, a
file format for communicating calendar events, and quickly realized that no
two implementations realized the specification the same or correctly.)

Another recipe for failure is to write tests that depend on the system clock.
You want to instead change your application so that it requests the time from
another source—one under control of your tests. See FI[R]ST: Good Tests

Finally, one of the most insidious problems brought about by time occurs in
the context of concurrency and synchronized access issues. Entire books
have been written on the topic of designing, implementing, and debugging
multithreaded, concurrent programs (such as Brian Goetz’s Java Concurrency
in Practice),* and we're striving to keep this humble tome thin and focused,
so we’ll only touch on the topic. (That’s all doublespeak, mind you, for sheer
laziness on our part.)

4. Addison-Wesley, Reading, MA, 2006

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

After ® 91

As a starter set of questions, ask yourself: what will happen if multiple threads
access the same object at the same time? Do you need to synchronize any
global or instance-level data or methods? How about external access to files
or hardware? If your client might have concurrency needs, you need to write
tests that demonstrate the use of multiple client threads.

After

We all need to know our boundaries! In tests, even more so: boundary condi-
tions are where we often create nasty little defects. The CORRECT mnemonic
will help you remember the boundaries you want to consider when writing
unit tests.

Now that you've learned to test the right thing and how to build high-quality
tests, you can start to reap the benefits of lower maintenance costs and fewer
defects. However, most code leaves something to be desired when the charac-
ters first hit the screen. You need to pay some attention to cleaning it up.
You'll see how in Chapter 8, Refactoring to Cleaner Code, on page 95, the

leadoff chapter in a section on unit testing and design.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Part III

The Bigger Design Picture

Man and Woman cannot live by bread alone. Or by
unit testing alone. Unit testing is just another part
of a bigger picture that you can simply refer to as
“design.” You want to ensure that your code’s de-
sign stays clean as you build your system, so you’ll
learn about how the practice of refactoring is afford-
ed by good unit tests. To refactor effectively, you
in turn need to understand what a good, bigger
design looks lilce. You'll also discover that some
things are hard to test, so you’ll read about mock
objects and how they help isolate your tests from
inevitable difficult dependencies. Finally, you want
to ensure that your tests continue to return on val-
ue, so we’ll step through taking a difficult test and
whittling it into one that costs less to maintain.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Refactoring to Cleaner Code

Our systems are bloated! You can pick almost any system at random and
spot obvious bits of rampant duplication—whether it's a hundred-line-long
method that’s almost a complete replication from another class or a few lines
of utility code repeated megaumpteen times throughout. The cost of such
duplication is significant: every piece of code duplicated increases the cost to
maintain it, as well as the risk in making a change. You want to minimize
the amount of duplication in your system’s code.

The cost of understanding code is also significant. A change requiring ten
minutes of effort in clear, well-structured code can require hours of effort in
convoluted, muddy code. You want to maximize the clarity in your system’s
code.

You can accomplish both goals—low duplication and high clarity—at a rea-
sonable cost and with a wonderful return on investment. The good news is
that having unit tests can help you reach the goals. In this chapter you'll
learn how to refactor your code with these ideals in mind.

A Little Bit o’ Refactor

If you've recently arrived from Proxima Centauri in a slow warp drive that
required fifteen years of travel time, you might not have heard the term
refactoring. Otherwise, you at least recognize it from the menus in your IDE.
You might even be aware that refactoring your code means you're transforming
its underlying structure while retaining its existing functional behavior.

In other words, refactoring is moving code bits around and making sure the
system still works. Willy-nilly restructuring of code sounds risky! By gosh,
you really want to make sure you have appropriate protection when doing
so. You know...tests.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 8. Refactoring to Cleaner Code ® 96

An Opportunity for Refactoring

Let’s revisit the iloveyouboss code. You wrote a couple of tests with us for it
back in Chapter 2, Getting Real with JUnit, on page 13. As a reminder, here’s

the core matches() method from the Profile class:

iloveyouboss/16/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
score = 0;

boolean kill = false;
boolean anyMatches = false;
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());
boolean match =
criterion.getWeight() == Weight.DontCare ||
answer.match(criterion.getAnswer());
if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;
}
if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;
}
if (kill)

return false;
return anyMatches;

}

The method isn’t particularly long, weighing in at around a dozen total lines
of expressions and/or statements. Yet it’s reasonably dense, embodying quite
a bit of logic. We were able to add five more test cases behind the scenes.

Extract Method: Your Second-Best Refactoring Friend

(Okay, we’ll kill the mystery before you go digging in the index.... Your best
refactoring friend is rename, whether it be a class, method, or variable of any
sort. Clarity is largely about declaration of intent, and good names are what
impart clarity best in code.)

Our goal: reduce complexity in the matches() method so that we can readily
understand what it's responsible for—its policy. We do that in part by
extracting detailed bits of logic to new, separate methods.

Conditional expressions often read poorly, particularly when they are complex.
An example is the assignment to match that appears in the for loop in matches():

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

\ A A

YYVYY

A Little Bit o’ Refactor ® 97

iloveyouboss/16/src/iloveyouboss/Profile.java
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());
boolean match =
criterion.getWeight() == Weight.DontCare ||
answer.match(criterion.getAnswer());
// ...
}

Isolate the complexity of the assignment by extracting it to a separate method.
You're left with a simple declaration in the loop: the match variable represents
whether or not the criterion matches the answer:

iloveyouboss/17/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
score = 0;

boolean kill = false;
boolean anyMatches = false;
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());
boolean match = matches(criterion, answer);

if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;

}

if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;
}
if (kill)

return false;
return anyMatches;

}

private boolean matches(Criterion criterion, Answer answer) {
return criterion.getWeight() == Weight.DontCare ||
answer.match(criterion.getAnswer());

}

If you need to know the details of how a criterion matches an answer, you
can navigate into the newly extracted matches() method. Extracting lower-level
details removes distracting clutter if you need only understand the high-level
policy for how a Profile matches against a Criteria object.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/17/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 8. Refactoring to Cleaner Code ® 98

It's way too easy to break functionality when moving code about. You need
the confidence to know that you can change code and not introduce sneaky
little defects that aren’t discovered until much later.

Fortunately, the tests written for Profile (see Chapter 2, Getting Real with JUnit,

small change, you run your fast set of tests—it’s cheap, easy, and fun.

The ability to move code about safely is one of the most important benefits
of unit testing. It allows you to add new features safely, and it also allows you
to make changes that keep the design in good shape. In the absence of suffi-
cient tests, you'll tend to make fewer changes. Or you’ll make changes that
are highly risky.

Finding Better Homes for Our Methods

Our loop is a bit easier to read—great! But we note that the newly extracted
code in matches() doesn’t have anything to do with the Profile object itself. It
seems that either the Answer class or the Criterion class could be responsible for
determining when one matches another.

Move the newly extracted matches() method to the Criterion class. Criterion objects
already know about Answer objects, but the converse is not true—Answer is not
dependent on Criterion. If you were to move matches() to Answer, you'd have a
bidirectional dependency. Not cool.

Here’s matches() in its new home:

iloveyouboss/18/src/iloveyouboss/Criterion.java
public class Criterion implements Scoreable {
/] ...
public boolean matches(Answer answer) {
return getWeight() == Weight.DontCare ||
answer.match(getAnswer());

}
And here’s what the loop looks like after the move:

iloveyouboss/18/src/iloveyouboss/Profile.java
for (Criterion criterion: criteria) {
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());
boolean match = criterion.matches(answer);

if (!match && criterion.getWeight() == Weight.MustMatch) {

kill = true;
}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/18/src/iloveyouboss/Criterion.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/18/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

>
>
>

Finding Better Homes for Our Methods ® 99

if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;

}
The statement that assigns into the answer local variable is quite a mouthful:

iloveyouboss/18/src/iloveyouboss/Profile.java
Answer answer = answers.get(
criterion.getAnswer().getQuestionText());

It suffers for violating the Law of Demeter (which roughly says to avoid
chaining together method calls that ripple through other objects), and it’'s
simply not clear.

A first step toward improving things is to extract the right-hand-side expres-
sion of the answer assignment to a new method whose name, answerMatching(),
better explains what’s going on:

iloveyouboss/19/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
score = 0;

boolean kill = false;

boolean anyMatches = false;

for (Criterion criterion: criteria) {
Answer answer = answerMatching(criterion);
boolean match = criterion.matches(answer);

if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;

}

if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;
}
if (kill)

return false;
return anyMatches;

}

private Answer answerMatching(Criterion criterion) {
return answers.get(criterion.getAnswer().getQuestionText());

}

Temporary variables have a number of uses. You might be more accustomed
to temporaries that cache the value of an expensive computation or collect
things that change throughout the body of a method. The answer temporary

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/18/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/19/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 8. Refactoring to Cleaner Code ¢ 100

variable does neither, but another use of a temporary variable is to clarify
the intent of code—a valid choice even if the temporary is used only once.

Automated and Manual Refactorings

In our case, the answer local variable doesn’t clarify the code, and it’s used
only once. Inline (remove) the variable by replacing its use with the answerMatch-
ing(criterion) expression:

iloveyouboss/20/src/iloveyouboss/Profile.java

for (Criterion criterion: criteria) {
boolean match = criterion.matches(answerMatching(criterion));

if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;

}

if (match) {
score += criterion.getWeight().getValue();

}

anyMatches |= match;

}

You could manually inline answer, but your IDE most likely automates the
inline refactoring. In Eclipse, select Refactor » Inline... from the main menu to
inline.

The very existence of automated IDE automated should reinforce the idea
that refactorings are code transformations that don’'t affect functional
behavior. Peruse the refactoring menu in your IDE of choice. Any good IDE
automates well over a dozen common transformations. Learn and use
them—you’ll save countless hours over coding the transforms yourself, and
even more hours over fixing the mistakes you’ll make refactoring manually.

Lucky you: fifteen years ago, Java programmers manually moved bits of code
about in highly unsafe ways. Today, the beauty of automated refactoring can’t
be overstated. You get to watch the computer do the dirty work and know
that your code still works.

With some of the detail out of the way in the matches() method, we now have
an easier time understanding its high-level policy. We can piece apart the
core goals of the method:

e It calculates the total score by summing the weights of matching criteria.

¢ It returns false when any must-match criterion does not match the corre-
sponding profile answer.

e It returns true if there are otherwise any matches, false if there are not.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/20/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

\

YYYYYVYY

Automated and Manual Refactorings ® 101

Let’s restructure matches() to more clearly state these three core intents. Last
things first. Change the return statement from returning the value of anyMatches
to instead return the result of a Boolean method, anyMatches(). Find the four
lines of code in matches() that determine the result of whether or not there are
any matches, and move them into the anyMatches() method:

iloveyouboss/20-misadventure/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
score = 0;

boolean kill = false;
for (Criterion criterion: criteria) {
boolean match = criterion.matches(answerMatching(criterion));

if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;
}
if (match) {
score += criterion.getWeight().getValue();
}
}
if (kill)
return false;
return anyMatches(criteria);

}

private boolean anyMatches(Criteria criteria) {
boolean anyMatches = false;
for (Criterion criterion: criteria)
anyMatches = criterion.matches(answerMatching(criterion));
return anyMatches;

}

Every refactoring requires you to rerun the tests. This refactoring is riskier
because there’s no automated way to gather disjoint lines of code into a new
method, so you must do things manually. Indeed, we have a failing test:

iloveyouboss/20-misadventure/test/iloveyouboss/ProfileTest.java

@Test

public void matchAnswersTrueWhenAnyOfMultipleCriteriaMatch() {
profile.add(answerThereIsRelocation);
profile.add(answerDoesNotReimburseTuition);
criteria.add(new Criterion(answerThereIsRelocation, Weight.Important));
criteria.add(new Criterion(answerReimbursesTuition, Weight.Important));

boolean matches = profile.matches(criteria);

assertTrue(matches);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/20-misadventure/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/20-misadventure/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYYVYYY

Chapter 8. Refactoring to Cleaner Code ¢ 102

The fix is to use the compound assignment operator (|=) when updating the
value of anyMatches (apparently the | character slipped through the cracks when
we manually constructed the assignment statement):

iloveyouboss/21/src/iloveyouboss/Profile.java
private boolean anyMatches(Criteria criteria) {
boolean anyMatches = false;
for (Criterion criterion: criteria)
anyMatches |= criterion.matches(answerMatching(criterion));
return anyMatches;

}

Oops, in any case. Simple mistakes are easy to make when you change any
code manually. For this reason, always prefer using your IDE’s automated
refactoring tools if you can. Also, be happy you have tests, and honor them
by running them all the time when refactoring.

In any case, it's possible that you're mildly concerned about that method
extraction and its performance implications. Hang in there.

Taking Refactoring Too Far?

Similarly, extract the code that calculates the total weighting of all matches:

iloveyouboss/22/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
calculateScore(criteria);

boolean kill = false;
for (Criterion criterion: criteria) {
boolean match = criterion.matches(answerMatching(criterion));
if (!match && criterion.getWeight() == Weight.MustMatch) {
kill = true;
}
}
if (kill)
return false;
return anyMatches(criteria);

}

private void calculateScore(Criteria criteria) {
score = 0;
for (Criterion criterion: criteria)
if (criterion.matches(answerMatching(criterion)))
score += criterion.getWeight().getValue();

}

Double hmm. You might be wondering if we're headed toward trouble.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/21/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/22/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yy

YYYYYVYYVYY

Taking Refactoring Too Far? ® 103

Finally, extract the logic that determines whether or not there are any must-
meet criteria that aren’t a match:

iloveyouboss/23/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
calculateScore(criteria);
if (doesNotMeetAnyMustMatchCriterion(criteria))
return false;
return anyMatches(criteria);

}

private boolean doesNotMeetAnyMustMatchCriterion(Criteria criteria) {
for (Criterion criterion: criteria) {
boolean match = criterion.matches(answerMatching(criterion));
if (!match && criterion.getWeight() == Weight.MustMatch)
return true;

}

return false;

}

Harumph. Three new methods, three new loops. Are we kidding? We're not.
Let’s discuss the performance implications, but first let’s see what benefits
we gain by having three methods.

The Reward: Clear, Testable Units

The matches() method now clearly explains the overall algorithm in a form that
you can almost instantly digest. You can almost read the code as-is to step
through the algorithm:

e Calculate the score given the criteria.

e Return false if the profile does not meet any must-match criterion from
the criteria.

e Otherwise, return the result of whether or not there are any matches
given the criteria.

The prior version of the code required more careful reading and created more
opportunities for confusion about the intent of matches().

The implementation details for each of the three steps in the algorithm are
hidden in the corresponding helper methods calculateScore(), doesNotMeetAnyMust-
MatchCriterion(), and anyMatches(). Each helper method allows the necessary
behavior to be expressed in a concise, isolated fashion, not cluttered with
other concerns.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/23/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 8. Refactoring to Cleaner Code ¢ 104

The Performance Anxiety: Oh No You Di-n"t!

Some of you dear readers are no doubt perturbed. After refactoring of the
matches() method, each of anyMatches(), calculateScore(), and doesNotMeetAnyMustMatchCri-
terion() iterates through the criterion collection. Three new loops—we have
potentially quadrupled the time to execute the matches() method.

To which we say, “So what?”

If you can respond to that obnoxious question with an answer relevant to our
real requirements, we’ll listen. Otherwise, stop worrying about it. Yes, perfor-
mance is important. But is the refactored code now incapable of meeting
performance expectations?

Stop—you can’t answer that question. We (or our customer) might be able to
(since we're making up requirements as we go). Maybe we expect modest
volume and don’t care about the possible performance degradation. Yet. Or
maybe the code doesn’t perform as badly as you might guess. It’s also possible
that we need to process a few million profiles, and performance is of the
utmost consideration.

If performance isn’t an immediate problem, invest in keeping the code clean
instead of wasting time with premature optimization efforts. Optimized code
is more challenging in so many ways: it usually makes the code more difficult,
increasing maintenance costs, and it usually makes the design less flexible.

In contrast, a clean design is the best protection against the sudden need to
optimize for performance. A clean design often provides more flexibility to
move code around and try different algorithms.

A clean design is your best preparation for optimization.

If we think performance is a problem right now: before we do anything else,
we need to measure how bad things are with a performance test (see Right-

test code that tells us how fast the old code was and compare the performance
to the refactored code to determine the percentage degradation.

Right now, the code in matches() clearly states what's going on. But it also
poses some concerns about the bigger design picture—for example, does the
Profile class now do too much? Next chapter, we’ll explore where our design
falls flat, and we’ll use our tests again to get things back on track.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

After ® 105

After

It’s easy to write a lot of code quickly. It’s just as easy to let that code get
dirty, to the point where it becomes difficult to step through. Unit tests provide
the safeguards you need to clean up code messes without breaking things.
In this chapter you learned techniques for keeping your system clean contin-
ually, which will enable you to stem much of the rot inevitable in your system.

As you begin to sweep away the small bits of dust in your system, you’ll start
to see larger design concerns. Next up, you'll learn how to lean on unit tests
again to address these larger design concerns.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER 9

Bigger Design Issues

In the last chapter we refactored the matches() method into a number of clearer,
more-composed methods. Such continual refactoring of small bits of code
helps to keep code maintenance costs low.

Writing unit tests isn’t an exercise that occurs in a vacuum. It’s instead part
of the larger, continually shifting puzzle we call design. Our system’s design
impacts our ability to write tests, and vice versa.

In this chapter we’ll take a look at some bigger design concerns. Specifically,
we'll focus on the Single Responsibility Principle (SRP), which guides us to
small classes that increase flexibility and ease of testing, among other things.
And we'll investigate command-query separation, which uses methods that
don’t end up fooling their users by both creating side effects and returning
values. We'll apply these principles by refactoring code in the Profile class.

The Profile Class and the SRP

Let’s take a look at our Profile class so far:

iloveyouboss/23/src/iloveyouboss/Profile.java
public class Profile {
private Map<String,Answer> answers = new HashMap<>();

private int score;
private String name;

public Profile(String name) {
this.name = name;

}

public String getName() {
return name;

}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/23/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 9. Bigger Design Issues ¢ 108

public void add(Answer answer) {
answers.put(answer.getQuestionText(), answer);

public boolean matches(Criteria criteria) {
calculateScore(criteria);
if (doesNotMeetAnyMustMatchCriterion(criteria))
return false;
return anyMatches(criteria);

private boolean doesNotMeetAnyMustMatchCriterion(Criteria criteria) {
for (Criterion criterion: criteria) {
boolean match = criterion.matches(answerMatching(criterion));
if (!match && criterion.getWeight() == Weight.MustMatch)
return true;
}

return false;

private void calculateScore(Criteria criteria) {
score = 0;
for (Criterion criterion: criteria)
if (criterion.matches(answerMatching(criterion)))
score += criterion.getWeight().getValue();

private boolean anyMatches(Criteria criteria) {
boolean anyMatches = false;
for (Criterion criterion: criteria)
anyMatches |= criterion.matches(answerMatching(criterion));
return anyMatches;

private Answer answerMatching(Criterion criterion) {
return answers.get(criterion.getAnswer().getQuestionText());

}

public int score() {
return score;

@Override
public String toString() {
return name;

public List<Answer> find(Predicate<Answer> pred) {
return answers.values().stream()

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Extracting a New Class ® 109

.filter(pred)
.collect(Collectors.toList());

}

At under a hundred source lines, Profile isn’t inordinately large and doesn’t
seem excessively complex. But it contains some hints that the class exhibits
less-than-ideal design.

Profile tracks and manages information for a company or person, including a
name and a collection of answers to questions. This set of information that
the Profile class captures will most likely need to change over time—more
information will likely need to be added, and some might need to be removed
or altered.

A secondary responsibility of the Profile class is to calculate a score to indicate
if—and to what extent—a set of criteria matches the profile. With the refactor-
ing we accomplished in the previous chapter, we ended up with a good
number (five) of methods to assist in scoring matches. Changes to the Profile
class are thus likely for a second reason: we’ll undoubtedly change the
sophistication of our matching algorithm over time.

The Profile class violates the Single Responsibility Principle (SRP) of object-
oriented class design, which tells us that classes should have only one reason
to change. (The SRP is one of five important class-design principles—see
SOLID Class-Design Principles, on page 110.) The resulting focus of a class on
a single responsibility decreases the risk of change: the more responsibilities
a class has, the easier it is to break other existing behavior when changing
code within the class. Smaller, more-focused classes are also more likely to
provide value in another context—reuse! In contrast, a very large class with

lots of responsibilities cannot possibly be used in other contexts.

Extracting a New Class
The Profile class defines two responsibilities:

¢ Track information about a profile.
e Determine whether and to what extent a set of criteria matches a profile.

We want to split the two responsibilities so that we have two classes, each
small and adherent to the SRP. To do so, we plan to extract the code related
to the matches responsibility to another class, named MatchSet. As with all
refactoring, we seek an incremental path—make a small change, run the tests
to make sure they still pass.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 9. Bigger Design Issues ® 110

In the mid-1990s, Robert C. Martin gathered five principles for object-oriented class
design, presenting them as the best guidelines for building a maintainable object-
oriented system. Michael Feathers attached the acronym SOLID to these principles
in the early 2000s.

¢ Single Responsibility Principle (SRP). Classes should have one reason to change.
Keep your classes small and single-purposed.

¢ Open-Closed Principle (OCP). Design classes to be open for extension but closed
for modification. Minimize the need to make changes to existing classes.

e Liskov Substitution Principle (LSP). Subtypes should be substitutable for their
base types. From a client’s perspective, override methods shouldn’t break func-
tionality.

¢ Interface Segregation Principle (ISP). Clients should not be forced to depend on
methods they don’t use. Split a larger interface into a number of smaller inter-
faces.

¢ Dependency Inversion Principle (DIP). High-level modules should not depend on
low-level modules; both should depend on abstractions. Abstractions should not
depend on details; details should depend on abstractions.

You can and should read more about SOLID at Wikipedia.®

a. http://en.wikipedia.org/wiki/SOLID (object-oriented_design)

"
The first change: move the calculateScore() logic into MatchSet. Start by changing
the code in matches() to declare the intent. Rather than call calculateScore()
directly from matches(), construct a new MatchSet object with the information it
needs—the hash map of answers and the criteria—and ask it for the score:

iloveyouboss/big-1/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
score = new MatchSet(answers, criteria).getScore();
if (doesNotMeetAnyMustMatchCriterion(criteria))
return false;
return anyMatches(criteria);

}

Copy the calculateScore() method into MatchSet and then whittle the class a bit:
in the constructor of MatchSet, store the answers argument in a field, and pass
the criteria instance to the calculateScore() method. Add a score field and a getScore()
method to return it.

Compilation reveals that calculateScore() needs to call answerMatching(). Copy over
that method:

www.it-ebooks.info

report erratum -« discuss

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-1/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Extracting a New Class ® 111

iloveyouboss/big-1/src/iloveyouboss/MatchSet.java
import java.util.*;

public class MatchSet {
private Map<String, Answer> answers;
private int score = 0;

public MatchSet(Map<String, Answer> answers, Criteria criteria) {
this.answers = answers;
calculateScore(criteria);

}

private void calculateScore(Criteria criteria) {
for (Criterion criterion: criteria)
if (criterion.matches(answerMatching(criterion)))
score += criterion.getWeight().getValue();

}

private Answer answerMatching(Criterion criterion) {
return answers.get(criterion.getAnswer().getQuestionText());

}

public int getScore() {
return score;
}
}

Both classes now compile. The code in Profile no longer uses the calculateScore()
private method. Delete it. The answerMatching() method is still used by code in
Profile; make a note that it’s duplicate code. If the answerMatching() method still
needs to be used by both classes when you finish moving code about, you'll
have to figure out how to factor that code to a single place.

The score-related code is now in MatchSet. The remainder of the code in matches()
represents the second goal of the method—to answer true or false depending
on whether or not the criteria match the set of answers. We decide to delegate
the responsibility for coming up with the answer to the MatchSet class.

First step: create the matches() method in MatchSet. Move into it the two lines
from matches() in the Profile class. The two methods it calls, doesNotMeetAnyMust-
MatchCriterion() and anyMatches(), must come along for the ride. Here’s matches() in
its new home:

iloveyouboss/big-2/src/iloveyouboss/MatchSet.java
public boolean matches() {
if (doesNotMeetAnyMustMatchCriterion(criteria))
return false;
return anyMatches(criteria);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-1/src/iloveyouboss/MatchSet.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-2/src/iloveyouboss/MatchSet.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yvy

YYY YVYVYYVY

Yvy

Chapter 9. Bigger Design Issues ® 112

For the Profile method matches() to delegate to the MatchSet implementation of
matches(), create a matchSet local variable and call the matches() method on it
after storing the score:

iloveyouboss/big-2/src/iloveyouboss/Profile.java

public boolean matches(Criteria criteria) {
MatchSet matchSet = new MatchSet(answers, criteria);
score = matchSet.getScore();
return matchSet.matches();

}

Back in MatchSet, the moved doesNotMeetAnyMustMatchCriterion() and anyMatches()
methods both require access to the criteria instance. Alter the constructor in
MatchSet to store criteria as a new field. Here’s MatchSet with everything moved
successfully:

iloveyouboss/big-2/src/iloveyouboss/MatchSet.java
import java.util.*;

public class MatchSet {
private Map<String, Answer> answers;
private int score = 0;
private Criteria criteria;

public MatchSet(Map<String, Answer> answers, Criteria criteria) {
this.answers = answers;
this.criteria = criteria;
calculateScore(criteria);
}
// ...
public boolean matches() {
if (doesNotMeetAnyMustMatchCriterion(criteria))
return false;
return anyMatches(criteria);

}

private boolean doesNotMeetAnyMustMatchCriterion(Criteria criteria) {
/] ...
}

private boolean anyMatches(Criteria criteria) {
// ...
}
}

The MatchSet class has all the code it needs to handle processing of match
requests. Because criteria is now stored in a field, there’s no reason to pass
criteria around to the calculateScore(), doesNotMeetAnyMustMatchCriterion(), and anyMatches()
methods:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-2/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-2/src/iloveyouboss/MatchSet.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Extracting a New Class ® 113

iloveyouboss/big-3/src/iloveyouboss/MatchSet.java
import java.util.*;

public class MatchSet {
private Map<String, Answer> answers;
private int score = 0;
private Criteria criteria;

public MatchSet(Map<String, Answer> answers, Criteria criteria) {
this.answers = answers;
this.criteria = criteria;
calculateScore();

}

private void calculateScore() {
// ...
}
// ...
public boolean matches() {
if (doesNotMeetAnyMustMatchCriterion())
return false;
return anyMatches();

}

private boolean doesNotMeetAnyMustMatchCriterion() {
// ...
}

private boolean anyMatches() {
/!l ...
}
}

The concept of real-world modeling in object-oriented design gets you only
so far. If you constrain yourself to a single Profile class because it matches well
to the real-world concept of profiles, you do yourself a disservice. Your
classes become larger and more complex. That in turn minimizes reuse,
increases the difficulty of understanding what each class does, and increases
the likelihood of breaking unrelated items each time a class is edited.

Create classes that map to concepts, not concrete notions. The MatchSet concept
allows you to isolate the code related to matching, which keeps its code sim-
pler. The Profile code from which it came gets simpler as well.

Design is everywhere you make a code change. Focus on all aspects of
maintenance, not just class-level interactions. Let’s take a look at the design
space for an individual method and discuss the concept of command-query
separation.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-3/src/iloveyouboss/MatchSet.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 9. Bigger Design Issues ® 114

Command-Query Separation

In Profile, we scrutinize the matches() method:

iloveyouboss/big-2/src/iloveyouboss/Profile.java

public boolean matches(Criteria criteria) {
MatchSet matchSet = new MatchSet(answers, criteria);
score = matchSet.getScore();
return matchSet.matches();

}

It has the awkward side effect of storing a calculated score on the Profile object.
That makes no sense from the context of a Profile. A Profile doesn’t have a single
score; it only has a score in conjunction with an attempt to match on criteria.

The score side effect causes another problem, which is that we can’t separate
one interest from the other. If we want the score, we have to know to call the
matches() method, which is counterintuitive, and we wastefully discard the
Boolean result. Conversely, to know if a set of criteria matches, we end up
unwittingly altering a Profile attribute (score).

A method that both returns a value and generates a side effect (changes the
state of the class or some other entity in the system) violates the principle
known as command-query separation. The principle states that a method
should either execute a command (do something that creates a side effect) or
answer a query (return some value), but not both.

In some cases, command-query separation creates potential pain for client
code. If a query method alters the state of the object, it might not be possible
to call it twice (to ask the same question again, for whatever good reason) and
get the same answer. Or, calling it a second time might alter the state of the
object in an undesired way.

A classic example of the violation of command-query separation exists in the
java.util.lterator interface. The next() method returns the object pointed to and
advances the current object pointer. Careless use can lead to “duh!” defects.

We decide that it’s the job of the client code to deal with MatchSet objects
however they want. As a result, we change the interface to Profile to contain a
method that simply returns a new MatchSet object when passed a Criteria
instance. The client can itself get the score or the Boolean answer (as to
whether or not the criteria matches) from the MatchSet.

Accordingly, delete the score() method and the score field from Profile. The
resulting class is a good example of adherence to the SRP:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-2/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yvy

The Cost of Maintaining Unit Tests ® 115

iloveyouboss/big-3/src/iloveyouboss/Profile.java
import java.util.*;

import java.util.function.*;

import java.util.stream.*;

public class Profile {
private Map<String,Answer> answers = new HashMap<>();
private String name;

public Profile(String name) {
this.name = name;

}

public String getName() {
return name;

}

public void add(Answer answer) {
answers.put(answer.getQuestionText(), answer);

}

public MatchSet getMatchSet(Criteria criteria) {
return new MatchSet(answers, criteria);

}

@Override
public String toString() {
return name;

}

public List<Answer> find(Predicate<Answer> pred) {
return answers.values().stream()
.filter(pred)
.collect(Collectors.toList());

}

Uh oh. That change created a few problems in the tests, and several are now
failing. That’s not good. We must fix them before going any further.

The Cost of Maintaining Unit Tests

The change to the interface to Profile broke a number of tests in ProfileTest. We
need to invest some effort to fix the tests, which points out one of the costs
of having unit tests in the first place.

Refactoring is supposed to be an activity where we change the implementation
of the code without changing its behavior. The tests are supposed to be a
reflection of the behavior. But the reality is that we are changing the behavior

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-3/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 9. Bigger Design Issues ® 116

of our classes, at least in terms of how we expose that behavior through the
classes’ interfaces.

We accept the cost of fixing broken tests because their return on value can
be far greater. We've mentioned elsewhere the benefits of having code with
few defects, the benefit of being able to make changes without the worry about
having broken other code, and the benefit of knowing exactly what the code
does (without having to spend inordinate amounts of time digging through
the code and possibly guessing wrong).

Still, the cost of maintaining the tests isn’t tiny. We truly recognize its expense
when we encounter scenarios like the current one, where we’'ve broken a
number of tests all at once.

Moving forward, think about the magnitude of failing tests as a negative design
indicator: the more tests that break simultaneously, the more likely you have
a design issue.

How to Protect Yourself

Duplication of code is one of the biggest design problems. From the stance
of the tests themselves, duplication across tests creates two problems: first,
it makes the tests harder to follow. If you expend three lines of code to create
and populate an Answer object, it’s three lines that a reader must step through
and understand. Distilling them to a single concept, such as a helper method
named createMatchingAnswer(), imparts immediate understanding to the reader.

Second, extracting duplicated occurrences of small bits of code to a single
method minimizes the impact when those small bits must change. Better to
make a change in a single place than in numerous tests scattered across your
source base.

Requiring several or even dozens of lines of code to set up unit tests is an
indicator that you have problems in the design of your system. Violation of
the SRP means larger classes, which usually lead to more dependencies on
other classes, which in turn demands more effort to set up your tests. Find
a way to split your larger classes!

The compulsion to test private methods—implementation details—is another
hint that your classes are too large. More often than not, a spate of private
methods suggests that the private behavior is better moved to a new class
where it becomes public behavior.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

The Cost of Maintaining Unit Tests ® 117

If unit testing seems hard, take the hint. Find ways to make unit testing
easier by improving your design. You'll decrease (but never eliminate) the cost
of maintaining your tests.

Unit test maintenance costs increase as your system'’s design/code
4 quality decreases.
Ao

Fixing Our Broken Tests

The current tests in ProfileTest are mostly focused on managing what are now
MatchSet objects. Extract these tests to the new MatchSetTest test class and make
the changes necessary to get the test code compiled and passing. Specifically,
to create a MatchSet object, we must pass it a hash of question-text-
to-Answer-object. Add a utility method to simplify creating MatchSet objects and
another to simplify adding Answer objects to a MatchSet.

Here’s what a couple of the tests look like in their new home:

iloveyouboss/big-4/test/iloveyouboss/MatchSetTest.java
import static org.junit.Assert.*;

import java.util.*;

import org.junit.*;

import static org.hamcrest.CoreMatchers.*;

public class MatchSetTest {
private Criteria criteria;
private Question questionReimbursesTuition;
/] ..

private Map<String,Answer> answers;

@Before
public void createAnswers() {
answers = new HashMap<>();

}

@Before
public void createCriteria() {
criteria = new Criteria();

}
@Before
public void createQuestionsAndAnswers() {

/...
}

private void add(Answer answer) {

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-4/test/iloveyouboss/MatchSetTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yy

YVYY

Chapter 9. Bigger Design Issues ® 118

answers.put(answer.getQuestionText(), answer);

}

private MatchSet createMatchSet() {
return new MatchSet(answers, criteria);

}

@Test
public void matchAnswersFalseWhenMustMatchCriteriaNotMet() {
add (answerDoesNotReimburseTuition);
criteria.add(
new Criterion(answerReimbursesTuition, Weight.MustMatch));

assertFalse(createMatchSet().matches());

}

@Test
public void matchAnswersTrueForAnyDontCareCriteria() {
add (answerDoesNotReimburseTuition);
criteria.add(
new Criterion(answerReimbursesTuition, Weight.DontCare));

assertTrue(createMatchSet().matches());

}
// ...

}

When you extract code to new classes, the tests you write become more direct
and often simpler to write. To test MatchSet code, the tests no longer require
the distracting overhead of creating Profile objects. You also tend to cover more
permutations when the tests are easier to write.

If you move private methods to become public methods on a new class, you’ll
find that they typically have insufficient test coverage—because it's harder
to test private behavior. After the methods become public, it's your job to
ensure that you document the newly exposed behavior by writing tests against
it.

Other Design Thoughts

The MatchSet() constructor does the work of calculating the score. If the calcu-
lated score isn’t consumed by a client, the effort to compute it is waste. For
this reason (among others'), avoid doing any real work in constructors.

Change the code to calculate the score when it's requested:

1. See http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/.

www.it-ebooks.info

http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYVYVYY

Other Design Thoughts ® 119

iloveyouboss/big-5/src/iloveyouboss/MatchSet.java
public class MatchSet {
/! ...

public MatchSet(Map<String, Answer> answers, Criteria criteria) {
this.answers = answers;
this.criteria = criteria;

}

public int getScore() {
int score = 0;
for (Criterion criterion: criteria)
if (criterion.matches(answerMatching(criterion)))
score += criterion.getWeight().getValue();
return score;

}
// ..

}

The score field goes away, and the calculateScore() method gets inlined into
getScore(). If recalculating the score each time getScore() gets called is a perfor-
mance sink, you can always introduce lazy initialization to fix the problem.

The way we handle the answers collection raises a few questions. In Profile, we
create a Map<String, Answer> that stores answers using the question text as a
key. But we also pass the answers map reference into each MatchSet object cre-
ated. That means both classes have intimate knowledge of how answers get
stored and retrieved. Implementation details scattered across classes foster
the code smell known as Shotgun Surgery:” if/when we need to replace the
answers map with a database table, we’ll end up having to make that change
in a couple of places.

Having the answers map in two places also introduces confusion about the
state of the data. Is it somehow possible for the Profile to contain a different
set of answers from a MatchSet? (With the current code, no, but as code changes,
this is how to end up with defects.)

We decide to isolate the storage of answers to a class named AnswerCollection.
We refactor incrementally, running tests with each small change, and end
up with the following code:

iloveyouboss/big-6/src/iloveyouboss/Profile.java

public class Profile {

private AnswerCollection answers = new AnswerCollection();
private String name;

2. See http://en.wikipedia.org/wiki/Shotgun_surgery.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-5/src/iloveyouboss/MatchSet.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-6/src/iloveyouboss/Profile.java
http://en.wikipedia.org/wiki/Shotgun_surgery
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

>

>
>

Chapter 9. Bigger Design Issues ® 120

public Profile(String name) {
this.name = name;

public String getName() {
return name;

public void add(Answer answer) {
answers.add(answer);

public MatchSet getMatchSet(Criteria criteria) {
return new MatchSet(answers, criteria);
}
// ...
}

iloveyouboss/big-6/src/iloveyouboss/AnswerCollection.java
import java.util.*;

import java.util.function.*;

import java.util.stream.*;

public class AnswerCollection {
private Map<String,Answer> answers = new HashMap<>();

public void add(Answer answer) {
answers.put(answer.getQuestionText(), answer);

public Answer answerMatching(Criterion criterion) {
return answers.get(criterion.getAnswer().getQuestionText());

public List<Answer> find(Predicate<Answer> pred) {
return answers.values().stream()
.filter(pred)
.collect(Collectors.toList());

}

iloveyouboss/big-6/src/iloveyouboss/MatchSet.java
public class MatchSet {
private AnswerCollection answers;
private Criteria criteria;

public MatchSet(AnswerCollection answers, Criteria criteria) {

this.answers = answers;
this.criteria = criteria;

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-6/src/iloveyouboss/AnswerCollection.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/big-6/src/iloveyouboss/MatchSet.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

After ® 121

public int getScore() {
int score = 0;
for (Criterion criterion: criteria)
if (criterion.matches(answers.answerMatching(criterion)))
score += criterion.getWeight().getValue();
return score;

}
// ...
}

Finally: MatchSet still contains redundant loops to iterate over the criterion
objects in a criteria collection. Although our implementation works, it does
carry a performance penalty, and it also represents the duplication of multiple
methods needing to specify the iteration. You might consider introducing the
Visitor design pattern,® which solves the problem without reverting the code
to the original mess of an entangled loop that does everything.

Keep a critical eye on your system’s design, and remember that there’s rarely
one “best” possible design. Your responsibility to keep your system clean
never ends.

After

You've already heard this, but it can’t be stressed enough:

Increase unit-test coverage to boost your confidence in continually
. improving your design.

In this chapter we focused on improving our design based on a couple of big
design ideas: the SRP and command-query separation. You owe it to yourself
to know as much as possible about these and other big concepts in design.
You also owe it to yourself to understand the “little” concepts in design and
how small code refactorings can make a big difference. Armed with a stockpile
of design smarts, your unit tests will allow you to refactor your code to a place
where it more readily supports the inevitable changes coming.

Be willing to create new, smaller classes and new, smaller methods. It’s a bit
of effort (though tools like Eclipse make it much easier), and we often resist
as lazy programmers. But it’s worth it: design flexibility starts with smaller,
more-composed building blocks.

3. See http://en.wikipedia.org/wiki/Visitor_pattern.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Visitor_pattern
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 9. Bigger Design Issues ® 122

We'd like to test more of our code, but the realities of what our code must
interact with (things like databases and services) mean that it won't always
be easy to write unit tests. We’ll next talk about how to overcome these real
challenges by using mock objects.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

cHAPTER 10

Using Mock Objects

It's a safe bet that you find your own system hard to test. Perhaps you're
thinking that the rest of this book makes it all look too easy. “It must be nice
to have a system that supports writing unit tests out of the box, but it doesn’t
match my reality,” says Pat.

In this chapter you’ll learn how to employ mock objects to break dependencies
on pain-inducing collaborators, gaining a tool that will help you get past an
ever-present hurdle. With mocking, you’ll be able to see more of the light at
the end of the unit-testing tunnel.

A Testing Challenge

We're adding a new feature to the iloveyouboss application. As an alternative
to typing in address details, users can select a point on an interactive map
that represents a Profile address. The application passes the latitude and lon-
gitude coordinates for the selected point to a retrieve() method defined on the
AddressRetriever class. The point method should return a populated Address object
based on the coordinates.

Lucky us, the coding is done, and it’s now our job to write a test for the retrieve()
method:

iloveyouboss/mock-1/src/iloveyouboss/AddressRetriever.java
import java.io.*;

import org.json.simple.*;

import org.json.simple.parser.*;

import util.*;

public class AddressRetriever {
public Address retrieve(double latitude, double longitude)
throws IOException, ParseException {
String parms = String.format("lat=%.67lon=%.6f", latitude, longitude);
String response = new HttpImpl().get(

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-1/src/iloveyouboss/AddressRetriever.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

}

Chapter 10. Using Mock Objects ® 124

"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"
+ parms);

JSONObject obj = (JSONObject)new JSONParser().parse(response);

JSONObject address = (JSONObject)obj.get("address");
String country = (String)address.get("country code");
if (!country.equals("us"))
throw new UnsupportedOperationException(
"cannot support non-US addresses at this time");

String houseNumber = (String)address.get("house number");
String road = (String)address.get("road");

String city = (String)address.get("city");

String state = (String)address.get("state");

String zip = (String)address.get("postcode");

return new Address(houseNumber, road, city, state, zip);

On first glance, we think it should be straightforward to write tests for the
method, since it consists of only a dozen or so statements and a sole condi-

tional

. Then we notice the code that appears to make an HTTP GET request

(highlighted). Hmm.

Sure enough, the Httpimpl class interacts with Apache’s HttpComponents Client

to exe

cute a REST call:

iloveyouboss/mock-1/src/util/Httplmpl.java

import
import
import
import
import

public
pub

}

java.io.*;

org.apache.http.*;
org.apache.http.client.methods.*;
org.apache.http.impl.client.*;
org.apache.http.util.*;

class HttpImpl implements Http {

lic String get(String url) throws IOException {
CloseableHttpClient client = HttpClients.createDefault();
HttpGet request = new HttpGet(url);
CloseableHttpResponse response = client.execute(request);
try {

HttpEntity entity = response.getEntity();

return EntityUtils.toString(entity);
} finally {

response.close();

}

The Httpimpl class implements the Http interface:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-1/src/util/HttpImpl.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Replacing Troublesome Behavior with Stubs ® 125

iloveyouboss/mock-1/src/util/Http.java
public interface Http {

String get(String url) throws IOException;
}

We know that the Httpimpl code works, having used it in a number of other
successfully deployed subsystems, so we don’t have to worry about writing
tests for it. Whew. But we also know that the Httpimpl class must interact with
an external service over HTTP—a recipe for unit-testing trouble. Any tests we
could write against the retrieve() method on AddressRetriever will end up executing
a live HTTP call, which would carry at least two significant implications:

e The tests against the live call will be slow in comparison to the bulk of
our other, fast tests.

e We can’t guarantee that the Nominatim HTTP API will always be available
and return consistent results. It’s out of our control.

A test version of the API (perhaps sitting on a QA server) would at least give
us some control over availability, but it'd still be slow in comparison. And in
all likelihood, it’'d create a nuisance on occasions when the API goes down.

We focus instead on our primary goal: we want to unit-test the logic in retrieve()
in isolation from any other code or dependencies. Given that we trust the
Httplmpl class, what remains to test is the logic that prepares the HTTP call
and the logic that populates an Address given the HTTP response.

Replacing Troublesome Behavior with Stubs

Let’s focus first on verifying how we populate an Address using the JSON
response from the HTTP call. To do that, we’d like to change the behavior of
Httplmpl’s get() method—just for purposes of the test we want to write—so that
it returns a hardcoded JSON string. An implementation that returns a hard-
coded value for purposes of testing is known as a stub.

Httplmpl implements the functional Http interface. Create a stub implementation
dynamically using lambdas:

iloveyouboss/mock-2/test/iloveyouboss/AddressRetrieverTest.java
Http http = (String url) ->
"{\"address\":{"

+ "\"house number\":\"324\","

+ "\"road\":\"North Tejon Street\","
+ "\"city\":\"Colorado Springs\","

+ "|"state\":\"Colorado\","

+ "\"postcode\|":1"80903\","

+ "\"country code\":\"us\"}"

R

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-1/src/util/Http.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-2/test/iloveyouboss/AddressRetrieverTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yvy

Yvy

Chapter 10. Using Mock Objects ® 126

Or, if you're more comfortable with anonymous inner classes:

iloveyouboss/mock-2/test/iloveyouboss/AddressRetrieverTest.java
Http http = new Http() {
@Override
public String get(String url) throws IOException {
return "{\"address\":{"

+ "\"house number\":\"324\","
+ "\"road\":\"North Tejon Street\","
// ...

1}

How did we come up with that JSON string? We worked through the parsing
code in the retrieve() method to see what it could parse.

Defining this stub gets us halfway toward being able to write our test. We
still need a way to tell AddressRetriever to use our stub instead of the production
implementation in Httpimpl. We decide to use a technique fancily called
dependency injection, which in simple terms means that we pass the stub to
an AddressRetriever instance, or inject it. For now, we choose to inject the stub
via a constructor on AddressRetriever.

To support constructor dependency injection, add a constructor that takes
an Http instance as a parameter and assigns it to a new field named http. In
the retrieve() method, simply dereference the http field to call the get() method.
Here are the changes, highlighted:

iloveyouboss/mock-2/src/iloveyouboss/AddressRetriever.java
public class AddressRetriever {
private Http http;

public AddressRetriever(Http http) {
this.http = http;
}

public Address retrieve(double latitude, double longitude)
throws IOException, ParseException {
String parms = String.format("lat=%.67lon=%.6f", latitude, longitude);
String response = http.get(
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"
+ parms);

JSONObject obj = (JSONObject)new JSONParser().parse(response);
// ...

}

Now we can write the test:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-2/test/iloveyouboss/AddressRetrieverTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-2/src/iloveyouboss/AddressRetriever.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Replacing Troublesome Behavior with Stubs ® 127

iloveyouboss/mock-2/test/iloveyouboss/AddressRetrieverTest.java
import java.io.*;

import org.json.simple.parser.*;

import org.junit.*;

import util.*;

import static org.hamcrest.CoreMatchers.*;
import static org.junit.Assert.*;

public class AddressRetrieverTest {
@Test
public void answersAppropriateAddressForValidCoordinates()
throws IOException, ParseException {
Http http = (String url) ->
"{\"address\":{"

+ "\"house number\":\"324\","

+ "\"road\":\"North Tejon Street\","
+ "\"city\":\"Colorado Springs\","

+ "\"statel|":\"Colorado\","

+ "\ "postcode\":1"80903\","

+ "\"country code\":\"us\"}"

+ R

AddressRetriever retriever = new AddressRetriever(http);
Address address = retriever.retrieve(38.0,-104.0);

assertThat(address.houseNumber, equalTo("324"));
assertThat(address.road, equalTo("North Tejon Street"));
assertThat(address.city, equalTo("Colorado Springs"));
assertThat(address.state, equalTo("Colorado"));
assertThat(address.zip, equalTo("80903"));

}
Here’s what happens when the test runs:

¢ The test creates a stub instance of Http for which its sole method (get(String
url)) returns a hardcoded JSON string.

e The test creates an AddressRetriever, passing the stub to its constructor.

e The AddressRetriever stores the stub.

e When executed, the retrieve() method first formats the parameters passed
to it. It then calls the get() method on the http field, which stores the stub.
The retrieve() method doesn’t care whether http holds a stub or the produc-
tion implementation; all it knows is that it's interacting with an object
that implements the get() method.

¢ The stub returns the JSON string we hardcoded in the test.

e The rest of the retrieve() method parses the hardcoded JSON string and
populates an Address object accordingly.

e The test verifies elements of the returned Address object.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-2/test/iloveyouboss/AddressRetrieverTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 10. Using Mock Objects ® 128

Changing Our Design to Support Testing

Our new code represents a small change to the design of the system. Before,
the Http instance was created by the retrieve() method as a private detail of the
AddressRetriever class. Now, any client that interacts with AddressRetriever is
responsible for creating and passing in an appropriate Http instance, perhaps
something like:

AddressRetriever retriever = new AddressRetriever(new HttpImpl());

Is changing your system’s design just to write a test a bad thing? No, because
it's most important to demonstrate, in a simple fashion, that the system
behaves the way you expect. Also, you have a better design: the dependency
on Http is now declared in the clearest way possible, and moving the depen-
dency to the interface loosens the coupling a bit.

You're not limited to constructor injection. Many other ways to inject stubs
are available, including some that require no changes to the interface of your
class. You can use setters instead of constructors; you can override factory
methods; you can introduce abstract factories; and you can even use tools
such as Google Guice or Spring that do the injection somewhat magically.

Adding Smarts to Our Stub: Verifying Parameters

Our Http stub always returns the same hardcoded JSON string, regardless of
the latitude and longitude passed to its get() method. That's a small hole in
testing. If the AddressRetriever doesn’t pass the parameters correctly, we have a
defect.

“How hard can it be to pass a couple arguments correctly to a function?” asks
Pat. “Do we really need to test that?”

Dale says, “You're forgetting when we shipped code the other week where
someone inadvertently swapped the order of the latitude and longitude in
another part of the system. We wasted a couple hours on that defect.”

Here’s another way to think about what we're doing: we're not exercising the
real behavior of Httpimpl, but we know that other tests exist for it. We're exer-
cising the rest of the code in retrieve() based on a return value that Httpimpl
might cough up. The only thing left to cover is to verify that the code in retrieve()
correctly interacts with the Httpimpl code.

Add a guard class to the stub that verifies the URL passed to the Http method
get(). If it doesn’t contain the expected parameter string, explicitly fail the test
at that point:

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

>

Adding Smarts to Our Stub: Verifying Parameters ® 129

iloveyouboss/mock-3/test/iloveyouboss/AddressRetrieverTest.java
import java.io.*;

import org.json.simple.parser.*;

import org.junit.*;

import util.*;

import static org.hamcrest.CoreMatchers.*;
import static org.junit.Assert.*;

public class AddressRetrieverTest {
@Test
public void answersAppropriateAddressForValidCoordinates()
throws IOException, ParseException {
Http http = (String url) ->
{
if (!url.contains("lat=38.000000&lon=-104.000000"))
fail("url " + url + " does not contain correct parms");
return "{\"address\":{"

+ "\"house number\":\"324\","
+ "\"road\":\"North Tejon Street\","
+ "\"city\":\"Colorado Springs\","
+ "|"state\":\"Colorado\","
+ "\"postcodel|":\"809603\","
+ "\"country code\":\"us\"}"
R
b
AddressRetriever retriever = new AddressRetriever(http);

// ...
}

The stub has a little bit of smarts now. It’s close to being something known
as a mock. A mock is a test construct that provides emulated behavior and
also does the job of verifying whether or not it received all the parameters
expected.

Our smart stub pays off—we find that our tests now fail. The formatted
parameter string is missing an ampersand (&):

iloveyouboss/mock-3/src/iloveyouboss/AddressRetriever.java
public Address retrieve(double latitude, double longitude)
throws IOException, ParseException {
String parms = String.format("lat=%.6flon=%.6f", latitude, longitude);
String response = http.get(
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"
+ parms);

JSONObject obj = (JSONObject)new JSONParser().parse(response);
// ...

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-3/test/iloveyouboss/AddressRetrieverTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-3/src/iloveyouboss/AddressRetriever.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yy

Chapter 10. Using Mock Objects ® 130

Simplifying Testing Using a Mock Tool

We consider transforming our smart stub into a mock as the next step. To
do so would involve:

e Specifying in the test which parameters we expected (as opposed to
within the stub itself)

¢ Trapping and storing the parameters passed to the get() method

e Supporting the ability to verify upon test completion that the stored
parameters to get() contain the expected parameters

Creating a mock that performs those steps seems like overkill. What does it
buy us? Actually, not much at all. But if we were to write a second or third
test that used the same mock, we’d shrink the amount of code we’d need to
write for each.

And if we created more mock implementations for other troublesome depen-
dencies, we’d find a way to refactor the redundancy between them. We’'d end
up with a general-purpose tool that would allow us to quickly bang out tests
employing mocks. Our tests would be smaller and would more concisely
declare what they're trying to prove.

Rather than reinvent the wheel, we instead choose to find the fruits of someone
else who'’s done that work of designing a general-purpose mock tool. Mockito'
is such a fruit (though its creators would say it's more of a cocktail).

Setting up Mockito is a matter of downloading some JARs and configuring
your project to point to them. Once it’s set up, the tests you write that use
Mockito should statically import everything in org.mockito.Mockito. Here’s a
complete test that uses Mockito (including the import statement):

iloveyouboss/mock-4/test/iloveyouboss/AddressRetrieverTest.java
// ...
import static org.mockito.Mockito.*;

public class AddressRetrieverTest {
@Test
public void answersAppropriateAddressForValidCoordinates()
throws IOException, ParseException {
Http http = mock(Http.class);
when(http.get(contains("lat=38.000000&1lon=-104.000000"))) .thenReturn(
"{\"address\":{"

+ "\"house number\":\"324\","
// ...
+ n n);

1. https://code.google.com/p/mockito/

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-4/test/iloveyouboss/AddressRetrieverTest.java
https://code.google.com/p/mockito/
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

One Last Simplification: Introducing an Injection Tool ® 131

AddressRetriever retriever = new AddressRetriever(http);
Address address = retriever.retrieve(38.0,-104.0);

assertThat (address.houseNumber, equalTo("324"));
// ...
}

The first statement in the test tells Mockito to synthesize a mock instance
that implements the Http interface. This mock does all the dirty tracking and
verifying work behind the scenes.

The second statement in the test starts by calling the when() static method on
org.mockito.Mockito to set up the expectations for the test. It completes by calling
thenReturn() on the expectation—meaning that, when the expectation is met,
the mock returns the specified value. You can paraphrase the code and
quickly understand what the mock is set up to do: when a call to the http
method get() is made with a parameter containing the string "lat=38.000000&lon=-
104.000000", then return the hardcoded JSON string.

This setting of expectations for the test is done prior to executing the act part
of the test.

The next statement in the test, as before, injects the Mockito mock into the
AddressRetriever via its constructor.

Finally, in the act part of the test: when the retrieve() method is called, its code
interacts with the Mockito mock. If the Mockito mock’s expectations are met,
it returns the hardcoded JSON string. If not, the test should fail.

The when(...).thenReturn(...) pattern is one of a number of ways to set up mocks
using Mockito, but it’'s probably the simplest to understand and code. It distills
the effort of setting up a mock into what’s essentially a one-liner that’s
immediately understood by code readers.

As an alternative to when(...).thenReturn(...), you might want to verify that a certain
method was called as part of processing. There’s an example of that using
Mockito’s ‘verify()* construct later in the book on page 171.

One Last Simplification: Introducing an Injection Tool

Passing a mock to a target class using a constructor is one technique. It
requires a change to the interface and exposes a private detail to another
class in the production code. Not a great deal, but you can do better by using
a dependency injection (DI) tool. You'll find a handful or more of DI tools out
there, including Spring DI and Google Guice.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

YYYVYY

Chapter 10. Using Mock Objects ® 132

Because we're using Mockito, however, we’ll use its built-in DI capabilities.
The DI power in Mockito isn’t as sophisticated as you might find in other
tools, but most of the time you shouldn’t need anything more.

Using DI in Mockito means following these steps:

1. Create a mock instance using the @Mock annotation.
2. Declare a target instance variable annotated with @InjectMocks.
3. After instantiating the target instance, call MockitoAnnotations.initMocks(this).

Here’s the code:

iloveyouboss/mock-5/test/iloveyouboss/AddressRetrieverTest.java
public class AddressRetrieverTest {

@Mock private Http http;

@InjectMocks private AddressRetriever retriever;

@Before

public void createRetriever() {
retriever = new AddressRetriever();
MockitoAnnotations.initMocks(this);

}

@Test
public void answersAppropriateAddressForValidCoordinates()
throws IOException, ParseException {
when(http.get(contains("lat=38.000000&1lon=-104.000000")))
.thenReturn("{\"address\":{"
+ "\"house number\":\"324\","
VA

}
And here’s a paraphrase of the preceding code:

¢ Declare the http field and annotate it with @Mock, indicating that it’s where
you want the mock to be synthesized.

e Declare the retriever field and annotate it with @InjectMocks, indicating that
it’s where you want the mock to be injected.

¢ In the @Before method, create an instance of AddressRetriever.

e Call MockitoAnnotations.initMocks(this). The this argument refers to the test class
itself. Mockito retrieves any @Mock-annotated fields on the test class and
synthesizes a mock instance for each (effectively running the same code
as the earlier explicit call, org.mockito.Mockito.mock(Http.class). It then retrieves
any @InjectMocks-annotated fields and injects mock objects into them (our
AddressRetriever instance, in our case).

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-5/test/iloveyouboss/AddressRetrieverTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

What's Important to Get Right When Using Mocks ¢ 133

To inject mock objects, Mockito first seeks an appropriate constructor to use.
If it finds none, it seeks an appropriate setter method. It finally seeks an
appropriate field (it starts by trying to match on the type of the field). Cool!
You want to use this feature, so eliminate the constructor on AddressRetriever:

iloveyouboss/mock-5/src/iloveyouboss/AddressRetriever.java
public class AddressRetriever {
private Http http = new HttpImpl();

public Address retrieve(double latitude, double longitude)
throws IOException, ParseException {
String parms = String.format("lat=%.67&lon=%.61", latitude, longitude);
String response = http.get(
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"
+ parms);

JSONObject obj = (JSONObject)new JSONParser().parse(response);
/] ...

Mockito magically finds our http field and injects the mock instance into it!

The beauty of field-level injection is that we no longer need to require clients
to construct and pass in an implementation of Http. We instead provide a
default implementation at the field level (highlighted in the preceding code).

What's Important to Get Right When Using Mocks

In the best case, you end up with a single-line arrange portion of your test
that creates an expectation using Mockito’s when(...).then(...) construct. You have
a single-line act, and you have a single assert. These are tests you can
quickly read, understand, and trust.

Tests using mocks should clearly state what’s going on. One way we do this
is by correlation. In answersAppropriateAddressForValidCoordinates, it’s clear that the
expected parameter string of "lat=38.000000&lon=-104.000000" correlates to the act
arguments of 38.0 and -104.0. Things obviously aren’t always this easy, but the
more you can help the test reader make that connection without having to
dig through other code, the better your tests will be.

Don't forget that mocks replace real behavior. You want to ask yourself a few
questions to make sure you're using them safely.

Does your mock really emulate the way the production code works? Does the
production code return other formats you're not thinking of? Does it throw
exceptions? Does it return null? You’ll want a different test for each of these
conditions.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/mock-5/src/iloveyouboss/AddressRetriever.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 10. Using Mock Objects ® 134

Does your test really use the mock or are you accidentally still triggering
production code? In many cases, it’s obvious; in some cases, it’s more subtle.
If you were to turn off the mock and let retrieve() interact with the Httpimpl pro-
duction class, you'd notice a slight slowdown on the test run (you can actually
watch the JUnit progress bar pause for a split second). But others might not
notice. One simple thing you can do is to temporarily throw a runtime
exception from the production code. If you see an exception thrown when you
run the test, you know you're hitting the production code. Don’t forget to
delete the throw statement when you're done fixing the test!

A perhaps better route is to use test data that you know is not what the pro-
duction call would return. In our test, we passed neat whole numbers for
latitude and longitude, and we know they don’t correspond to the expected
address in Colorado Springs. If we were using the real Httpimpl class, our test
expectations would fail.

Finally, remember that you're not testing the production code directly. Any
time you introduce a mock, recognize that you are creating gaps in test cov-
erage. Make sure you have an appropriate higher-level test (perhaps an inte-
gration test) that demonstrates end-to-end use of the real class.

A mock creates a hole in unit-testing coverage. Write integration
4 tests to cover these gaps.

After

In this chapter you learned the important technique of introducing stubs and
mocks to emulate behavior of dependent objects. Your tests don’t have to
interact with live services, files, databases, and other troublesome dependen-
cies! You also learned how to use a tool to simplify your effort in creating and
injecting mocks.

You've focused on making sure the production code is clean and well-designed
in this and the prior two chapters. Doing so will extend the life of your system.
However, the bigger design picture isn’t complete without also continually
refactoring your tests. You’'ll focus on some test cleanup in the next chapter.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER 11

Refactoring Tests

Your tests represent a significant investment. They’ll pay off in minimizing
defects and by allowing you to keep your production system clean through
refactoring. But they also represent a continual cost. You need to continually
revisit your tests as your system changes. At times you’ll want to make
sweeping changes and might end up having to fix numerous broken tests as
a result.

In this chapter you’ll address problems in your tests that can lead to increased
costs. You'll learn to refactor your tests, much as you would refactor your
production system, to maximize understanding and minimize maintenance
costs.

Searching for an Understanding

We're tasked with making some enhancements to the search capabilities of
our application. We know we’ll be changing the util.Search class, but none of
us is familiar with exactly what the Search class does. We turn to the tests.
Well, test. We have only one test, and at first glance we roll our eyes in frus-
tration. What in the world is this test trying to prove?

iloveyouboss/test-1/test/util/SearchTest.java

import java.io.*;

import java.net.*;

import java.util.*;

import org.junit.*;

import java.util.logging.*;

import static org.hamcrest.CoreMatchers.*;
import static org.junit.Assert.*;

public class SearchTest {
@Test
public void testSearch() {
try {

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-1/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 11. Refactoring Tests ® 136

String pageContent = "There are certain queer times and occasions "
"in this strange mixed affair we call life when a man "
"takes this whole universe for a vast practical joke, "
"though the wit thereof he but dimly discerns, and more
"than suspects that the joke is at nobody's expense but "

+ "his own.";
byte[] bytes = pageContent.getBytes();
ByteArrayInputStream stream = new ByteArrayInputStream(bytes);
// search
Search search = new Search(stream, "practical joke", "1");
Search.LOGGER.setLevel(Level.OFF);
search.setSurroundingCharacterCount(10);
search.execute();
assertFalse(search.errored());
List<Match> matches = search.getMatches();
assertThat(matches, is(notNullValue()));
assertTrue(matches.size() >= 1);
Match match = matches.get(0);
assertThat(match.searchString, equalTo("practical joke"));
assertThat(match.surroundingContext,

equalTo("or a vast practical joke, though t"));

stream.close();

+ o+ 4+ +

// negative
URLConnection connection =
new URL("http://bit.ly/15sYPA7") .openConnection();

InputStream inputStream = connection.getInputStream();
search = new Search(inputStream, "smelt", "http://bit.ly/15sYPA7");
search.execute();
assertThat(search.getMatches().size(), equalTo(0));
stream.close();

} catch (Exception e) {
e.printStackTrace();
fail("exception thrown in test" + e.getMessage());

}
(Text in pageContent by Herman Melville from Moby Dick.)

The test name, testSearch, doesn’t tell us anything useful. We see a couple of
comments that don’t add much value either. If we want to fully understand
what’s going on, we’ll have to read the test line-by-line and try to piece its
steps together.

(We're not even going to show you the Search class itself in this chapter—our
focus will solely be on cleaning up the tests so that we can use them to
understand how Search behaves. The source distribution will sate your
curiosity.)

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Test Smell: Unnecessary Test Code ® 137

We decide to refactor testSearch() as we work our way through understanding
it, with the goal of shaping it into one or more clear, expressive tests. To do
so, we look for various test smells—nasty bits of code that emanate a bad
odor.

Test Smell: Unnecessary Test Code

The test code that comprises testSearch() doesn’t expect any exceptions to be
thrown. It contains a number of assertions against positive facts. If the test
code throws an exception, a try/catch block catches it, spews a stack trace onto
System.out, and explicitly fails the test. In other words, exceptions are unexpect-
ed by this test method.

Unless your tests expect an exception to be thrown—because you've explicitly
designed the test to set the stage for throwing an exception—you can simply
let the exceptions fly. Don’t worry, JUnit traps any exceptions that explode
out of your test. JUnit marks a test that throws an exception as an error and
displays the stack trace in its output. The explicit try/catch block adds no
additional value.

Remove the try/catch block and modify the signature of testSearch() to indicate
that it can throw an IOException:

iloveyouboss/test-2/test/util/SearchTest.java

@Test
public void testSearch() throws IOException {
String pageContent = "There are certain queer times and occasions "
+ "in this strange mixed affair we call life when a man "
+ "takes this whole universe for a vast practical joke, "
+ "though the wit thereof he but dimly discerns, and more "
+ "than suspects that the joke is at nobody's expense but "
+ "his own.";
byte[] bytes = pageContent.getBytes();
// ...

stream.close();

}
The test now contains a little less distracting clutter. Yay!

We next notice a not-null assert—an assertion that verifies that a value is not
null. The result of search.getMatches() is assigned to the matches local variable. The
next statement asserts that matches is not a null value. The final assert verifies
that the size of matches is at least 1:

iloveyouboss/test-1/test/util/SearchTest.java
List<Match> matches = search.getMatches();
assertThat(matches, is(notNullValue()));
assertTrue(matches.size() >= 1);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-2/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-1/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 11. Refactoring Tests ® 138

Checking that a variable isn’t null before dereferencing it is safe and a good
thing, right?

In production code, perhaps. In this test, the not-null assert is again clutter.
It adds no value: if the matches reference ends up null, the call to matches.size()
happily throws an exception. JUnit traps this exception and errors the test.

Like the try/catch block, the not-null assert imparts no additional useful infor-
mation. It is unnecessary test code, so remove it:

iloveyouboss/test-2/test/util/SearchTest.java
List<Match> matches = search.getMatches();
assertTrue(matches.size() >= 1);

That’s one fewer line of test to wade through!

Test Smell: Missing Abstractions

A well-structured test distills the interaction with the system to three portions:
arranging the data, acting on the system, and asserting on the results (see
Keeping Tests Consistent with AAA, on page 35). Although the test requires
detailed code to accomplish each of these steps, we can improve understanding
by organizing those details into abstractions—code elements that maximize

the essential concepts and hide the unnecessary details.

A good test is an abstraction of how clients interact with the sys-
tem.

L 7

Our muddled test contains five lines that assert against the list of matches
returned by search.getMatches(). We must read these five lines individually to
understand what’s going on:

iloveyouboss/test-2/test/util/SearchTest.java
List<Match> matches = search.getMatches();
assertTrue(matches.size() >= 1);
Match match = matches.get(0);
assertThat(match.searchString, equalTo("practical joke"));
assertThat(match.surroundingContext, equalTo(

"or a vast practical joke, though t"));

The five lines of assertion detail cover a single concept: does the list of
matches contain a single entry with a specific search string and surrounding
context? Let’s introduce a custom assertion that buries the five lines of detail
required to make that assertion:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-2/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-2/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yvy

Test Smell: Missing Abstractions ¢ 139

iloveyouboss/test-3/test/util/SearchTest.java

import java.io.*;

import java.net.*;

import java.util.*;

import org.junit.*;

import java.util.logging.*;

import static org.hamcrest.CoreMatchers.*;
import static org.junit.Assert.*;

import static util.ContainsMatches.*;

public class SearchTest {

@Test
public void testSearch() throws IOException {
String pageContent = "There are certain queer times and occasions "

// ...
search.execute();
assertFalse(search.errored());
assertThat(search.getMatches(), containsMatches(new Match[] {
new Match("1", "practical joke",
"or a vast practical joke, though t") }));
stream.close();
/] ..

}

Paraphrased, the custom-matcher assertion says, “Assert that matches contains
a list whose sole entry is equal to a Match object with specific values for the
search string and surrounding context.” Just what we wanted. The five lines
of implementation detail are embodied in the new custom-matcher class:

iloveyouboss/test-3/test/util/ContainsMatches.java
import java.util.*;
import org.hamcrest.*;

public class ContainsMatches extends TypeSafeMatcher<List<Match>> {
private Match[] expected;

public ContainsMatches(Match[] expected) {
this.expected = expected;

}

@Override
public void describeTo(Description description) {

description.appendText("<" + expected.toString() + ">");

}

private boolean equals(Match expected, Match actual) {
return expected.searchString.equals(actual.searchString)
&& expected.surroundingContext.equals(actual.surroundingContext);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-3/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-3/test/util/ContainsMatches.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 11. Refactoring Tests ® 140

@Override
protected boolean matchesSafely(List<Match> actual) {
if (actual.size() != expected.length)

return false;
for (int i = 0; i < expected.length; i++)
if ('equals(expected[i], actual.get(i)))
return false;
return true;

}

@Factory
public static <T> Matcher<List<Match>> containsMatches(Match[] expected) {
return new ContainsMatches(expected);
}
}

Implementing the matcher requires a few more lines of code, but simplifying
the effort to understand the test is worth it. Further, we’ll be able to reuse
the matcher in numerous additional tests. You can find another example of
creating a custom assertion, with more-detailed explanation of the pieces
required, at Creating a Custom Matcher to Verify an Invariant, on page 81.

Anywhere you find two or three lines of code that implement a single concept,
find a way to distill them to a single, clear statement in the test.

We spot another small opportunity for introducing an abstraction in the second
chunk of the test. The final assertion compares the size of the results to O:

iloveyouboss/test-2/test/util/SearchTest.java
assertThat(search.getMatches().size(), equalTo(0));

The missing abstraction here is the concept of emptiness. Altering the asser-
tion reduces the extra mental overhead needed to understand the size com-
parison:

iloveyouboss/test-3/test/util/SearchTest.java
assertTrue(search.getMatches().isEmpty());

Every small amount of mental clutter adds up. A system that contains never-
ending clutter wears you down, much as road noise adds up to further fatigue
you on a long car trip.

Test Smell: Irrelevant Information

A well-abstracted test emphasizes everything that's important to understanding
it and deemphasizes anything that’s not. The data used in a test should help
tell a story.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-2/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-3/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

>

Test Smell: Irrelevant Information © 141

Sometimes you're forced to supply data to get code to compile, even though
that data is irrelevant to the test at hand. For example, a method might take
additional arguments that have no impact on the test.

Our test contains some “magic literals” that aren’t at all clear:

iloveyouboss/test-3/test/util/SearchTest.java
Search search = new Search(stream, "practical joke", "1");

and:

iloveyouboss/test-3/test/util/SearchTest.java
assertThat(search.getMatches(), containsMatches(new Match[] {
new Match("1", "practical joke",
"or a vast practical joke, though t") }));

We're not sure what the "1" string represents, so we navigate into the construc-
tors for Search and Match. We discover that the "1" represents a search title, a
field whose value we don’t care about.

Including the "1" magic literal raises unnecessary questions. What does it
represent? How, if at all, is it relevant to the results of the test? Your readers
waste time when they must dig around to find answers. A better solution:
give them the answer by introducing a meaningfully named constant.

The second call to the Search constructor contains a URL as the title argument:

iloveyouboss/test-3/test/util/SearchTest.java
URLConnection connection =
new URL("http://bit.ly/15s5YPA7") .openConnection();
InputStream inputStream = connection.getInputStream();
search = new Search(inputStream, "smelt", "http://bit.ly/15sYPA7");

At first glance, it appears that the URL has a correlation with the URL passed
to the URL constructor two statements earlier. Digging reveals that no real
correlation exists. Replace the confusing URL and the "1" magic literal with
the A TITLE constant, which represents a title with any value:

iloveyouboss/test-4/test/util/SearchTest.java
public class SearchTest {
private static final String A TITLE = "1";

@Test
public void testSearch() throws IOException {
String pageContent = "There are certain queer times and occasions "

"in this strange mixed affair we call life when a man "
"takes this whole universe for a vast practical joke, "
"though the wit thereof he but dimly discerns, and more "
"than suspects that the joke is at nobody's expense but "
"his own.";

byte[] bytes = pageContent.getBytes();

+ 4+ 4+ + o+

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-3/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-3/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-3/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-4/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

Chapter 11. Refactoring Tests ® 142

ByteArrayInputStream stream = new ByteArrayInputStream(bytes);
// search
Search search = new Search(stream, "practical joke", A TITLE);
Search.LOGGER.setLevel(Level.OFF);
search.setSurroundingCharacterCount(10);
search.execute();
assertFalse(search.errored());
assertThat(search.getMatches(), containsMatches(new Match[]

{ new Match(A TITLE, "practical joke",

"or a vast practical joke, though t") }));

stream.close();

// negative
URLConnection connection =

new URL("http://bit.ly/15sYPA7") .openConnection();
InputStream inputStream = connection.getInputStream();
search = new Search(inputStream, "smelt", A TITLE);
search.execute();
assertTrue(search.getMatches().isEmpty());
stream.close();

}

You might have named the constant ANY_TITLE or ARBITRARY_TITLE. Or you might
have used the convention of an empty string to represent data that you don’t
care about (though sometimes the distinction between an empty string and
a nonempty string is relevant).

Test Smell: Bloated Construction

We must pass an InputStream to a Search object through its constructor. Our
test builds an InputStream in two places. The first construction requires three
statements:

iloveyouboss/test-4/test/util/SearchTest.java

String pageContent = "There are certain queer times and occasions
"in this strange mixed affair we call life when a man "
"takes this whole universe for a vast practical joke, "
"though the wit thereof he but dimly discerns, and more
"than suspects that the joke is at nobody's expense but "
"his own.";

byte[] bytes = pageContent.getBytes();

ByteArrayInputStream stream = new ByteArrayInputStream(bytes);

+ 4+ 4+ 4+

As in our earlier example, where you introduced a custom assertion to compare
matches (see Test Smell: Missing Abstractions, on page 138), the extra imple-

mentation detail in the test represents a missing abstraction. The solution:
introduce a helper method that creates an InputStream given appropriate text:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-4/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYYYVYYY

YVYY

vy

Test Smell: Multiple Assertions ® 143

iloveyouboss/test-5/test/util/SearchTest.java
public class SearchTest {
private static final String A TITLE = "1";

@Test
public void testSearch() throws IOException {
InputStream stream =
streamOn("There are certain queer times and occasions
+ "in this strange mixed affair we call life when a man "
+ "takes this whole universe for a vast practical joke, "
+ "though the wit thereof he but dimly discerns, and more
+ "than suspects that the joke is at nobody's expense but
+ "his own.");
// search
Search search = new Search(stream, "practical joke", A TITLE);
// ...
}

private InputStream streamOn(String pageContent) {
return new ByteArrayInputStream(pageContent.getBytes());
}
}

Hiding distracting detail has started to pay off. Our test is shaping into
something that we can follow more quickly.

Test Smell: Multiple Assertions

We've mentioned a few times in this book (one example: F[IJRST: [IJsolate Your

assert per test. You'll sometimes find reasons to assert multiple postconditions
in a single test, but more often the multiple assertions indicate that you have
two test cases.

Our longer test screams, “Split me!” The first case represents finding a search
result in the input, and the second case represents finding no match. Split
the test into two, providing each with a name that concisely states the
expected behavior given the context for the test:

iloveyouboss/test-6/test/util/SearchTest.java
public class SearchTest {
private static final String A TITLE = "1";

@Test
public void returnsMatchesShowingContextWhenSearchStringInContent()
throws IOException {
InputStream stream =
streamOn("There are certain queer times and occasions "
+ "in this strange mixed affair we call life when a man "

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-5/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-6/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

>
>

}

Chapter 11. Refactoring Tests ® 144

"takes this whole universe for a vast practical joke,
"though the wit thereof he but dimly discerns, and more "
"than suspects that the joke is at nobody's expense but "
+ "his own.");

// search
Search search = new Search(stream, "practical joke", A TITLE);
Search.LOGGER.setLevel(Level.OFF);
search.setSurroundingCharacterCount(10);
search.execute();
assertFalse(search.errored());
assertThat(search.getMatches(), containsMatches(new Match[]

{ new Match(A TITLE, "practical joke",
"or a vast practical joke, though t") }));

+ 4+ +

stream.close();

@Test
public void noMatchesReturnedWhenSearchStringNotInContent()

}

throws MalformedURLException, IOException {

URLConnection connection =
new URL("http://bit.ly/15sYPA7") .openConnection();

InputStream inputStream = connection.getInputStream();
Search search = new Search(inputStream, "smelt", A TITLE);
search.execute();
assertTrue(search.getMatches().isEmpty());
inputStream.close();

/] ...

}

If you split the test into two naively, you'll note that the second call to
stream.close() no longer compiles. A further look uncovers a small defect: the
second test’s input stream is named inputStream, not stream, which means that
the original test called close() twice on the same stream reference. Retain the

close() statement in the second test after renaming the reference to inputStream.

Also, take the liberty of removing unhelpful comments. Single-purpose tests

promote better test names that can help eliminate the need for comments.

Moving toward one assert per test makes it easier to write clear
test names.

Test Smell: Irrelevant Details in Test

Although we want to turn off logging when tests run, the code to do so is a
distraction to understanding the essence of any test. And though as good

coding citizens we should always close streams, doing so is also a distraction.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYYY VY

YYVYY

Test Smell: Irrelevant Details in Test ® 145

Move these bits of clutter to @Before and @After methods. To allow both tests
to take advantage of the stream.close() in the @After method, change the second
test to reference the stream field instead of the local variable named inputStream.

We also ponder the line that reads:
assertFalse(search.errored());

That assertion isn’t an irrelevant detail; it’s a valid assertion. We might con-
sider that it’s a second postcondition of running a search, but it hints at
something else: where’s the test case that generates a true value for
search.errored()? Delete the assertion and make a note to add a third (and maybe
also a fourth) test before committing.

Here are the decluttering changes:

iloveyouboss/test-7/test/util/SearchTest.java

public class SearchTest {
private static final String A TITLE = "1";
private InputStream stream;

@Before

public void turnOffLogging() {
Search.LOGGER.setLevel(Level.OFF);

}

@After
public void closeResources() throws IOException {
stream.close();

}

@Test
public void returnsMatchesShowingContextWhenSearchStringInContent() {

stream = streamOn("There are certain queer times and occasions "
"in this strange mixed affair we call life when a man "
"takes this whole universe for a vast practical joke, "
"though the wit thereof he but dimly discerns, and more
"than suspects that the joke is at nobody's expense but
"his own.");
Search search = new Search(stream, "practical joke", A TITLE);
search.setSurroundingCharacterCount(10);
search.execute();
assertThat(search.getMatches(), containsMatches(new Match[]

{ new Match(A TITLE, "practical joke",

"or a vast practical joke, though t") }));

+ 4+ 4+ 4+

}
@Test

public void noMatchesReturnedWhenSearchStringNotInContent()
throws MalformedURLException, IOException {

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-7/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

Chapter 11. Refactoring Tests ® 146

URLConnection connection =
new URL("http://bit.ly/15sYPA7") .openConnection();

stream = connection.getInputStream();
Search search = new Search(stream, "smelt", A TITLE);
search.execute();
assertTrue(search.getMatches().isEmpty());

}

// ...

}

Take care when moving details to @Before, @After, or helper methods. Make
sure you don’t remove information useful to understanding a test.

Good tests don’t require readers to dig into other functions to
. understand them.

Test Smell: Misleading Organization

Knowing which part of the test is the act part, which is the arrange part, and
which is the assert can speed up cognition. Use AAA (Keeping Tests Consistent

listing show the blank lines to insert:

iloveyouboss/test-8/test/util/SearchTest.java

@Test

public void returnsMatchesShowingContextWhenSearchStringInContent() {
stream = streamOn("There are certain queer times and occasions "

"in this strange mixed affair we call life when a man "

"takes this whole universe for a vast practical joke, "

"though the wit thereof he but dimly discerns, and more

"than suspects that the joke 1is at nobody's expense but

"his own.");

Search search = new Search(stream, "practical joke", A TITLE);

search.setSurroundingCharacterCount(10);

+ + + + +

search.execute();

assertThat(search.getMatches(), containsMatches(new Match[]
{ new Match(A TITLE, "practical joke",
"or a vast practical joke, though t") }));
}

@Test
public void noMatchesReturnedWhenSearchStringNotInContent()
throws MalformedURLException, IOException {
URLConnection connection =
new URL("http://bit.ly/15sYPA7") .openConnection();
stream = connection.getInputStream();

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-8/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYVYY

Yvy

Test Smell: Implicit Meaning ® 147

Search search = new Search(stream, "smelt", A TITLE);
search.execute();

assertTrue(search.getMatches().isEmpty());

}

We're getting close. Time for a final pass against the two tests!

Test Smell: Implicit Meaning

The biggest question each of your tests must clearly answer is, why does it
expect the result it does? Readers must be able to correlate between the
arrange and assert portions of the test. If the reason for getting the result
that the assert expects isn’t clear, your readers waste time digging through
the code to find an answer.

The returnsMatchesShowingContextWhenSearchStringinContent test expects a single match
on a search for practical joke against a very long string. A reader can eventually
spot the place in the string where the phrase practical joke appears and can
then do the math to figure out that ten characters before it and ten characters
after it represent the string:

"or a vast practical joke, though t"

But that’s making your test readers dig to find understanding. They’ll be
annoyed no matter how amusing the test data is. Make things explicit by
choosing better test data. Change the input stream to contain but a relative
smattering of text. Also change the content so that the surrounding context
information doesn’t need to be explicitly counted:

iloveyouboss/test-9/test/util/SearchTest.java
@Test
public void returnsMatchesShowingContextWhenSearchStringInContent() {
stream = streamOn("rest of text here"
+ "1234567890search terml234567890"
+ "more rest of text");
Search search = new Search(stream, "search term", A TITLE);
search.setSurroundingCharacterCount(10);

search.execute();
assertThat(search.getMatches(), containsMatches(new Match[]
{ new Match(A TITLE,

"search term",
"1234567890search term1234567890") }));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-9/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

Chapter 11. Refactoring Tests ® 148

Take a closer look at the second test, noMatchesReturnedWhenSearchStringNotinContent.
It works against a live URL’s input stream, making it a slow test. Although
we want at least one such live test, we decide to turn this test into a unit test.

Initialize the stream field to contain a small bit of arbitrary text. To help make
the test’s circumstance clear, search for "text that doesn't match":

iloveyouboss/test-9/test/util/SearchTest.java
@Test
public void noMatchesReturnedwWhenSearchStringNotInContent() {
stream = streamOn("any text");
Search search = new Search(stream, "text that doesn't match", A TITLE);

search.execute();

assertTrue(search.getMatches().isEmpty());

}
Using streamOn() lets you remove the throws clause from the test’s signature.

You have no end of ways to improve the correlation across a test. Meaningful
constants, better variable names, better data, and sometimes even doing
small calculations in the test can help. Use your creativity here!

Adding a New Test

With our initial ugly test whittled into two sleek, clear tests, it’s now relatively
easy to add a couple of new tests. First let’s write a test that demonstrates
how a search returns true for the errored() query:

iloveyouboss/test-10/test/util/SearchTest.java

@Test

public void returnsErroredWhenUnableToReadStream() {
stream = createStreamThrowingErrorWhenRead();
Search search = new Search(stream, "", "");

search.execute();

assertTrue(search.errored());

}

private InputStream createStreamThrowingErrorWhenRead() {
return new InputStream() {
@Override
public int read() throws IOException {
throw new IOException();
}
+

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-9/test/util/SearchTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-10/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

After ® 149

And add a test for the opposite:

iloveyouboss/test-10/test/util/SearchTest.java

@Test

public void erroredReturnsFalseWhenReadSucceeds() {
stream = streamOn("");
Search search = new Search(stream, "", "");

search.execute();

assertFalse(search.errored());

}

Time spent to add the new tests: less than a few minutes each.

After

The refactored tests are a thing of simplicity. Readers understand what case
is being demonstrated by reading a test’s name. They can focus initially on
the act part of the test to know what code is getting executed. They read the
arrange part to determine the context in which the test is running, and they
read the single assert so they know what the expected result is. Each of these
digesting actions happens quickly, far more so than before. The time to
comprehend tests reduces from perhaps minutes down to handfuls of seconds.

Seeking to understand your system through its tests motivates
p you to keep them as clean as they should be.

You now have a complete picture of what you must do in the name of design:
refactor your production code for clarity and conciseness, refactor your pro-
duction code to support more flexibility in design, design your system to
support mocking of dependency challenges, and refactor your tests to minimize
maintenance and maximize understanding.

You're ready to move on to the final part of this book, a smorgasbord of larger
topics on unit testing.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/test-10/test/util/SearchTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Part IV

The Bigger Unit-Testing Picture

You can take your unit-testing skills to the next
level by learning about the practice of test-driven
development (TDD). We’'ll rewrite some familiar code
using TDD so you can experience it firsthand. You'll
then learn how to face some of the tougher chal-
lenges in unit testing. Finally, you'll learn about
unit-testing standards, pair programming, continu-
ous integration (CI), and code coverage to under-
stand how unit testing fits into the larger scope of
a project team.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Test-Driven Development

By now you've no doubt noted that it’s hard to write unit tests for some code.
This difficult legacy code grows partly from a lack of interest in unit testing.
In contrast, the more you consider how to unit-test the code you write, the
more likely you are to end up with code that’s easier to test. (“Well, duh!”
respond Pat and Dale simultaneously.)

Consider always thinking first about how you will test the code you're about
to write. Rather than slap out some code and then figure out how to test it,
design a test that describes the code you want to write, then write the code.
This reversed approach might seem bizarre or even impossible, but it’s the
core element in the unit-testing practice of test-driven development (TDD).

With TDD, you wield unit tests as a tool to help you shape and control your
systems. With TDD, unit testing isn’t a pick-and-choose afterthought that
often gets shoved to the side; it’'s a required part of a disciplined cycle that
becomes core to how you build software. Your software will take on a different
and perhaps better design if you employ TDD.

In this chapter we’ll recode some of the iloveyouboss application using TDD
and talk about some of its nuances as we go.

The Primary Benefit of TDD

With plain ol’ after-the-fact unit testing, the obvious, most significant benefit
you gain is increased confidence that the code you write works as expected.
With TDD, you gain that same benefit and more!

Systems degrade largely because we don'’t strive often or hard enough to keep
the code clean. We're good at quickly adding code into our systems, but on
the first pass, it’s more often not-so-great code than good code. We don’t

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 12. Test-Driven Development ¢ 154

spend a lot of effort cleaning up that initially bad code for many reasons. Pat
chimes in with his list:

¢ “We just have to move on to the next task. We don’t have time to gild the
code.”

e “] think the code reads just fine the way it is. I wrote it, I understand it.
I can add some comments to the code if you think it’s not clear.”

* “We can refactor the code when we need to make further changes in that
area.”

e “It works. Why mess with a good thing? If it ain’t broke, don’t fix it. It's
too easy to break something else when refactoring code.”

Thanks, Pat. With TDD, your fear about changing code can evaporate. Indeed,
refactoring is a risky activity, and we've all made plenty of mistakes when
making seemingly innocuous changes. But if you're following TDD well, you're
writing unit tests for virtually all cases you implement in the system. Those
unit tests give you the freedom you need to continually improve the code.

Starting Simple

TDD is a three-part cycle:

1. Write a test that fails.

2. Get the test to pass.

3. Clean up any code added or changed in the prior two steps.

Your first step is to write a test that defines the behavior you want to build
into the system. In general, you seek to write the test that represents the
smallest possible—but useful—increment to the code that already exists.

For our exercise, we're rebuilding the Profile class. We think about the simplest
cases that can occur and decide to write a test that demonstrates what hap-
pens when the profile is empty (when no answers have been added to it).

(If you have a Profile class, start this exercise by deleting it and any tests for
it. Or start fresh in a new package or project.)

We'll write our tests incrementally. Eclipse lets us know as soon as we've
coded a problem by underlining the offending code with red squiggly lines.
We stop as soon as Eclipse gives us this negative feedback:

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYYYYYVYY

Starting Simple ¢ 155

iloveyouboss/tdd-1/test/iloveyouboss/ProfileTest.java
package iloveyouboss;

import org.junit.*;

public class ProfileTest {
@Test
public void matchesNothingWhenProfileEmpty() {
new Profile();
}
}

The Profile class doesn’t exist (you deleted it, right?), so Eclipse flags the attempt
to create a new Profile. Create the Profile class in the src directory. (In Eclipse,
the Quick Fix feature does this dirty work for you. Wonderful!)

iloveyouboss/tdd-2/src/iloveyouboss/Profile.java
package iloveyouboss;

public class Profile {
}

We wrote a tiny piece of a test and then wrote a tiny piece of code, only enough
to compile and stop Eclipse from complaining.

Write the rest of the test in the same manner—as soon as Eclipse complains,
respond by writing just enough code to compile. You should end up with the
following unit test:

iloveyouboss/tdd-3/test/iloveyouboss/ProfileTest.java
package iloveyouboss;

import org.junit.*;
import static org.junit.Assert.*;

public class ProfileTest {
@Test
public void matchesNothingWhenProfileEmpty() {
Profile profile = new Profile();
Question question = new BooleanQuestion(l, "Relocation package?");
Criterion criterion =
new Criterion(new Answer(question, Bool.TRUE), Weight.DontCare);

boolean result = profile.matches(criterion);

assertFalse(result);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-1/test/iloveyouboss/ProfileTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-2/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-3/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yvy

Chapter 12. Test-Driven Development ¢ 156

We've changed the interface to Profile just a bit from how it appeared in
Chapter 2, Getting Real with JUnit, on page 13. The matches() method takes a

(single) Criterion rather than a collection of them (a Criteria). Matching on one at
a time seems simpler, and we can add the ability to match on a Criteria later.

You always want your tests to fail first, to demonstrate that the desired
behavior (that the test describes) doesn’t yet exist in the system.

When doing TDD, always watch your tests fail first, to avoid costly
’, bad assumptions.

For Profile, that means return true from matches() because the test expects it to
return false:

iloveyouboss/tdd-3/src/iloveyouboss/Profile.java
package iloveyouboss;

public class Profile {
public boolean matches(Criterion criterion) {
return true;
}
}

After we demonstrate test failure, we seek the most straightforward way to
make the test pass. Flipping the Boolean from true to false does the trick:

iloveyouboss/tdd-4/src/iloveyouboss/Profile.java
package iloveyouboss;

public class Profile {
public boolean matches(Criterion criterion) {
return false;
}
}

We take a look at our test and production code. Nothing seems troublesome,
so we don’t do any cleanup. We've completed one pass of the TDD cycle. So
far the hardcoded false return might seem silly to you, but it's important to
following the incremental mentality of TDD. We've built one small bit of
behavior for the Profile class, and we know it works.

In fact, if you're using a capable source repository such as Git, now is the
time to commit your code. Committing each new bit of behavior as you do
TDD makes it easy to back up and change direction as needed.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-3/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-4/src/iloveyouboss/Profile.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYYYYYYYYYYY

Adding Another Increment ® 157

Adding Another Increment

For each failing test, seek to add only the code needed to pass the test—to
add the smallest possible increment. The mentality: build code exactly to the
“specifications” that the tests represent. If the tests all pass, you know you
could potentially ship the code—the tests document what the system does,
no more, no less. You avoid the potential waste of speculative development.

More practically (in terms of following the TDD cycle) writing the smallest
amount of code means that in most cases we can write another test that will
first fail. Writing more code than needed means you could find yourself writing
lots of tests that pass immediately. That might seem like a good thing, but it
takes you right back to the old way of slapping out lots of code before getting
pertinent feedback. You'd rather know sooner when you code a defect.

The next-simplest case that comes to our minds is that the profile should
match when it contains an Answer matching that of the Criterion:

iloveyouboss/tdd-5/test/iloveyouboss/ProfileTest.java
public class ProfileTest {
@Test
public void matchesNothingWhenProfileEmpty() {
Profile profile = new Profile();
Question question = new BooleanQuestion(1l, "Relocation package?");
Criterion criterion =
new Criterion(new Answer(question, Bool.TRUE), Weight.DontCare);

boolean result = profile.matches(criterion);

assertFalse(result);

}

@Test

public void matchesWhenProfileContainsMatchingAnswer() {
Profile profile = new Profile();
Question question = new BooleanQuestion(1l, "Relocation package?");
Answer answer = new Answer(question, Bool.TRUE);
profile.add(answer);
Criterion criterion = new Criterion(answer, Weight.Important);

boolean result = profile.matches(criterion);

assertTrue(result);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-5/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yvy

\

YYVYY

YYYYYYYYYYY

Chapter 12. Test-Driven Development ¢ 158

The changes to make this test pass are small. Implement an add(Answer) method,
and have matches() return true as long as the Profile class holds a reference to
an Answer object:

iloveyouboss/tdd-5/src/iloveyouboss/Profile.java
package iloveyouboss;

public class Profile {
private Answer answer;

public boolean matches(Criterion criterion) {
return answer != null;

}

public void add(Answer answer) {
this.answer = answer;
}
}

Cleaning Up Our Tests

After the second pass through the TDD cycle, we have code we can clean up.
Not in the Profile class, but in the tests. We want the tests to stay short and
clear. Both our tests instantiate Profile. Create a Profile field and move the
common initialization to an @Before method:

iloveyouboss/tdd-6/test/iloveyouboss/ProfileTest.java
public class ProfileTest {
private Profile profile;

@Before
public void createProfile() {
profile = new Profile();

}
@Test
public void matchesNothingWhenProfileEmpty() {
Question question = new BooleanQuestion(1l, "Relocation package?");
Criterion criterion =
new Criterion(new Answer(question, Bool.TRUE), Weight.DontCare);

boolean result = profile.matches(criterion);

assertFalse(result);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-5/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-6/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYVYVYY

YYYYYYYVYYY

Cleaning Up Our Tests ® 159

Rerun the tests to make sure you've not broken anything. The beauty of TDD
is that you write tests for all features first, which means you should always
have the confidence to refactor and clean up what you just wrote. You stave
off system entropy this way!

TDD enables safe refactoring of virtually all of your code.

Ny

The tests (we've shown only one here) are a little easier to follow without the
uninteresting instantiation of Profile in them.

Similarly, extract the creation of the same BooleanQuestion object to an @Before
method. When the tests pass again, rename the question field to questionlsTher-
eRelocation to help make the tests more readable:

iloveyouboss/tdd-7/test/iloveyouboss/ProfileTest.java
public class ProfileTest {
private Profile profile;
private BooleanQuestion questionIsThereRelocation;

@Before
public void createProfile() {
profile = new Profile();

}

@Before
public void createQuestion() {
questionIsThereRelocation =
new BooleanQuestion(1l, "Relocation package?");

}

@Test
public void matchesNothingWhenProfileEmpty() {
Criterion criterion = new Criterion(
new Answer(questionIsThereRelocation, Bool.TRUE), Weight.DontCare);

boolean result = profile.matches(criterion);

assertFalse(result);

}
/...
}

We can make one more similar refactoring pass to help the tests concisely
express what they're demonstrating. Extract the creation of an Answer object
to the @Before method that creates the Question instance. Use the better field

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-7/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

Yy

Yvy

Chapter 12. Test-Driven Development ¢ 160

name answerTherelsRelocation, and rename the @Before method to better describe
what it does:

iloveyouboss/tdd-8/test/iloveyouboss/ProfileTest.java

public class ProfileTest {
private Profile profile;
private BooleanQuestion questionIsThereRelocation;
private Answer answerThereIsRelocation;

@Before
public void createProfile() {
profile = new Profile();

}

@Before
public void createQuestionAndAnswer() {
questionIsThereRelocation =
new BooleanQuestion(1l, "Relocation package?");
answerThereIsRelocation =
new Answer(questionIsThereRelocation, Bool.TRUE);

@Test
public void matchesNothingWhenProfileEmpty() {
Criterion criterion =
new Criterion(answerThereIsRelocation, Weight.DontCare);

boolean result = profile.matches(criterion);

assertFalse(result);

@Test
public void matchesWhenProfileContainsMatchingAnswer() {
profile.add(answerThereIsRelocation);
Criterion criterion =
new Criterion(answerThereIsRelocation, Weight.Important);

boolean result = profile.matches(criterion);
assertTrue(result);

}

Many of your refactorings can be easy yet have great impact. Renaming a
variable adds tremendous information for the reader. Extracting small pieces
of code into helper methods with intention-revealing names—something your
IDE makes trivial—similarly goes a long way toward improving your tests.

You've built a second piece of behavior. Commit your code and let’s move on.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-8/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

vy

YYYYYYYYYY

Another Small Increment ® 161

Another Small Increment

The next test demonstrates that matches returns false when the Profile instance
contains no matching Answer object:

iloveyouboss/tdd-9/test/iloveyouboss/ProfileTest.java
public class ProfileTest {
private Answer answerThereIsNotRelocation;
// ...
@Before
public void createQuestionAndAnswer() {
questionIsThereRelocation =
new BooleanQuestion(1l, "Relocation package?");
answerTherelsRelocation =
new Answer(questionIsThereRelocation, Bool.TRUE);
answerThereIsNotRelocation =
new Answer(questionIsThereRelocation, Bool.FALSE);
}
// ...
@Test
public void doesNotMatchWhenNoMatchingAnswer() {
profile.add(answerThereIsNotRelocation);
Criterion criterion =
new Criterion(answerThereIsRelocation, Weight.Important);

boolean result = profile.matches(criterion);
assertFalse(result);

}

To get the test to pass, the matches() method needs to determine if the sole
Answer held by the Profile matches the answer stored in the Criterion. We take a
quick look at the Answer class to see how to compare answers. We discover
that it contains a match() method that takes an Answer as an argument and
returns a boolean:

iloveyouboss/tdd-9/src/iloveyouboss/Answer.java
public class Answer {
// ...
public boolean match(Answer otherAnswer) {
// ...
}
// ...
}

(We're now acting on a need-to-know basis and deliberately hiding the
implementation of match(). Trust for now that it does the job.)

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-9/test/iloveyouboss/ProfileTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-9/src/iloveyouboss/Answer.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yy

Chapter 12. Test-Driven Development ¢ 162

We code our solution to take advantage of the match() method, adding a single
conditional to matches that passes the test:

iloveyouboss/tdd-9/src/iloveyouboss/Profile.java
package iloveyouboss;

public class Profile {
private Answer answer;

public boolean matches(Criterion criterion) {
return answer != null &&
answer.match(criterion.getAnswer());

}
// ..

public void add(Answer answer) {
this.answer = answer;

}
}

Commit your code, and remember to do so from here on out.

Part of the thinking part in TDD is determining the next test you need to
write. As a programmer, your job requires understanding all the possible
permutations and scenarios that the code must handle. To succeed at TDD,
you must break those scenarios into tests and tackle them in an order that
minimizes the code increment needed to make each test pass.

Supporting Multiple Answers: A Small Design Detour

A profile can contain many answers, so the next test tackles that scenario:

iloveyouboss/tdd-10/test/iloveyouboss/ProfileTest.java
@Test
public void matchesWhenContainsMultipleAnswers() {
profile.add(answerThereIsRelocation);
profile.add(answerDoesNotReimburseTuition);
Criterion criterion =
new Criterion(answerThereIsRelocation, Weight.Important);

boolean result = profile.matches(criterion);

assertTrue(result);

}

Having multiple Answers in the Profile requires a way to store and distinguish
them. We choose to store the Answers in a Map where the key is the question
text and the value is the associated Answer. (It'd probably be better to use an
Answer ID as the key, but Answer has no such thing yet.)

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-9/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-10/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

\ A A

>

Supporting Multiple Answers: A Small Design Detour ® 163

iloveyouboss/tdd-10/src/iloveyouboss/Profile.java
public class Profile {
private Map<String,Answer> answers = new HashMap<>();

private Answer getMatchingProfileAnswer(Criterion criterion) {
return answers.get(criterion.getAnswer().getQuestionText());

}

public boolean matches(Criterion criterion) {
Answer answer = getMatchingProfileAnswer(criterion);
return answer != null &&
answer.match(criterion.getAnswer());

}

public void add(Answer answer) {
answers.put(answer.getQuestionText(), answer);
}
}

As part of the matches() method, we check the return from getMatchingProfileAnswer()
to determine whether or not it’s null. This null check seems a little awkward,
and we’d like to find a way to get rid of it, or at least hide it elsewhere. We
decide to push the check into the “server” code—the match() method that the
Answer class implements. Doing so allows us to swap the receiver in the
matches() call: rather than code answer.match(criterion.getAnswer()), we can code crite-
rion.getAnswer().match(answer), because criterion.getAnswer() returns a non-null value
(at least given the tests we've coded).

To facilitate this small refactoring, write a test to demonstrate the new hope
for the matches() method in Answer:

iloveyouboss/tdd-10/test/iloveyouboss/AnswerTest.java
public class AnswerTest {
@Test
public void matchAgainstNullAnswerReturnsFalse() {
assertFalse(new Answer(new BooleanQuestion(0, ""), Bool.TRUE)
.match(null));

}

The passing implementation in matches() is a simple guard clause: return false
if the passed Answer reference is null. Here’s the change to the Answer class:

iloveyouboss/tdd-10/src/iloveyouboss/Answer.java
public boolean match(Answer otherAnswer) {
if (otherAnswer == null) return false;
// ...
return question.match(i, otherAnswer.i);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-10/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-10/test/iloveyouboss/AnswerTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-10/src/iloveyouboss/Answer.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 12. Test-Driven Development ¢ 164

Now you can change the matches() method in Profile and eliminate the null check:

iloveyouboss/tdd-11/src/iloveyouboss/Profile.java

public boolean matches(Criterion criterion) {
Answer answer = getMatchingProfileAnswer(criterion);
return criterion.getAnswer().match(answer);

}

Doing TDD doesn’t require you to slavishly drive in all changes to Profile without
touching any other code. You bounce over to other classes—Answer in this
case—when you need to change their design to serve your needs.

Expanding the Interface

We're now ready to open up our interface and support passing a Criteria object
to matches(). The next test sets the stage for creating that interface:

iloveyouboss/tdd-11/test/iloveyouboss/ProfileTest.java

@Test

public void doesNotMatchWhenNoneOfMultipleCriteriaMatch() {
profile.add(answerDoesNotReimburseTuition);
Criteria criteria = new Criteria();
criteria.add(new Criterion(answerThereIsRelo, Weight.Important));
criteria.add(new Criterion(answerReimbursesTuition, Weight.Important));

boolean result = profile.matches(criteria);

assertFalse(result);

}
A simple hardcoded return gets the test to pass:

iloveyouboss/tdd-11/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
return false;

}

...and we quickly write the next test. Our refactoring of the tests as we go has
paid off by helping keep our TDD cycles short—perhaps a minute or two to
put a new test in place. A test that adds multiple Criterion objects to the Criteria
and one matching Answer to the profile is a small variation from the prior test:

iloveyouboss/tdd-12/test/iloveyouboss/ProfileTest.java

@Test

public void matchesWhenAnyOfMultipleCriteriaMatch() {
profile.add(answerThereIsRelo);
Criteria criteria = new Criteria();
criteria.add(new Criterion(answerThereIsRelo, Weight.Important));
criteria.add(new Criterion(answerReimbursesTuition, Weight.Important));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-11/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-11/test/iloveyouboss/ProfileTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-11/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-12/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Yvy

\

YYVYY

Expanding the Interface ® 165

boolean result = profile.matches(criteria);

assertTrue(result);

}
The implementation requires a loop to iterate through each Criterion in Criteria:

iloveyouboss/tdd-12/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
for (Criterion criterion: criteria)
if (matches(criterion))
return true;
return false;

}

To clean the tests a little, we extract the Criteria locals to a field that we initialize
in a new @Before method. We also eliminate the temporary result variable that
appears in each test. Doing so goes a little against AAA (it combines the act
with the assert), but that’s okay—AAA is not a hard-and-fast rule. The result
temporary adds no real value, particularly with the repetitive nature of the
tests, and they read better without it. Here’s what one of the tests now looks
like:

iloveyouboss/tdd-13/test/iloveyouboss/ProfileTest.java
public class ProfileTest {

// ...

private Criteria criteria;

@Before

public void createCriteria() {
criteria = new Criteria();

}

// ...

@Test

public void matchesWhenAnyOfMultipleCriteriaMatch() {
profile.add(answerThereIsRelo);
criteria.add(new Criterion(answerThereIsRelo, Weight.Important));
criteria.add(new Criterion(answerReimbursesTuition, Weight.Important));

assertTrue(profile.matches(criteria));

}
// ..

}

We continue in our test-driven vein, now adding some of the special cases.
The next test: if any must-meet criteria are not met, return false:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-12/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-13/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YVYY

Chapter 12. Test-Driven Development ¢ 166

iloveyouboss/tdd-13/test/iloveyouboss/ProfileTest.java

@Test

public void doesNotMatchWhenAnyMustMeetCriteriaNotMet() {
profile.add(answerThereIsRelo);
profile.add(answerDoesNotReimburseTuition);
criteria.add(new Criterion(answerThereIsRelo, Weight.Important));
criteria.add(new Criterion(answerReimbursesTuition, Weight.MustMatch));

assertFalse(profile.matches(criteria));

}
Getting it to pass is straightforward:

iloveyouboss/tdd-13/src/iloveyouboss/Profile.java
public boolean matches(Criteria criteria) {
boolean matches = false;
for (Criterion criterion: criteria) {
if (matches(criterion))
matches = true;
else if (criterion.getWeight() == Weight.MustMatch)
return false;
}
return matches;

}

Hmm...the implementation is starting to look a little like the original solution
from Chapter 2, Getting Real with JUnit, on page 13 that we ended up refac-
toring. It's still cleaner, but note that TDD doesn't magically produce the best
possible design. That’s okay. You have tests, and you can use them to help

you refactor toward a better design when you want.

Last Tests

Another special case: matches() returns true when the criterion is marked as
“don’t care™

iloveyouboss/tdd-14/test/iloveyouboss/ProfileTest.java
@Test
public void matchesWhenCriterionIsDontCare() {
profile.add(answerDoesNotReimburseTuition);
Criterion criterion =
new Criterion(answerReimbursesTuition, Weight.DontCare);

assertTrue(profile.matches(criterion));

}

Making the test pass requires adding a new conditional in the matches() method:

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-13/test/iloveyouboss/ProfileTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-13/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-14/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Tests As Documentation ® 167

iloveyouboss/tdd-14/src/iloveyouboss/Profile.java
public boolean matches(Criterion criterion) {
return
criterion.getWeight() == Weight.DontCare |
criterion.getAnswer().match(getMatchingProfileAnswer(criterion));

}

The new test passes, but another test breaks—the first one we wrote, matches-
NothingWhenProfileEmpty. We could change the test, but note that it demonstrates
pretty much the same thing that doesNotMatchWhenNoMatchingAnswer demonstrates.
Delete matchesNothingWhenProfileEmpty.

The last need involves calculating the score. This secondary interest in the
matches() method is where we recognized that the first implementation (shown
in Chapter 2, Getting Real with JUnit, on page 13) was slightly off, in that it

required the matches() method both to return a Boolean value and update the
score field—a side effect.

A better design would probably involve the creation of a secondary object that
handles the matching. Here’s a stab at a first test in that direction:

iloveyouboss/tdd-15/test/iloveyouboss/ProfileTest.java
@Test
public void scoreIsZeroWhenThereAreNoMatches() {
criteria.add(new Criterion(answerThereIsRelocation, Weight.Important));

ProfileMatch match = profile.match(criteria);

assertThat(match.getScore(), equalTo(0));
}

We leave the exercise of fleshing out the scoring behavior to you. You should
end up with the bulk of the matches() logic moved into the new ProfileMatch class,
which has its own set of unit tests. The end design is SRP-compliant, leaving
Profile as a class that simply holds onto profile data, and ProfileMatch as a class
that calculates matches and scores given answers and criteria.

Tests As Documentation

As the final task, let’s revisit the set of test names in ProfileTest:

matchesWhenProfileContainsMatchingAnswer
doesNotMatchWhenNoMatchingAnswer
matchesWhenContainsMultipleAnswers
doesNotMatchWhenNoneOfMultipleCriteriaMatch
matcheswWhenAnyOfMultipleCriteriaMatch
doesNotMatchWhenAnyMustMeetCriteriaNotMet
matchesWhenCriterionIsDontCare
scorelsZeroWhenThereAreNoMatches

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-14/src/iloveyouboss/Profile.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/tdd-15/test/iloveyouboss/ProfileTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 12. Test-Driven Development ¢ 168

We want readers to be able to quickly answer questions about the behavior
of the Profile class. The more we craft the tests for it with care, the more the
tests can document the behaviors deliberately designed into Profile.

When seeking to better understand a test-driven class, start by reading its
test names. The comprehensive set of test names should provide a holistic
summary of the intended capabilities of the class. The more the test names
are clear and consistent with one another, the better they act as the most
trustworthy form of class documentation.

Our test names are not bad, but we can make them better. The tests are part
of the ProfileTest class and thus are testing Profile objects, so omit Profile from
each of the test names. Also clarify which of the overloaded matches() methods
each test pertains to—the one that takes a Criterion or the one that takes a
Criteria. Here’s a first pass at a revised set of test names:

matchesCriterionWhenMatchesSoleAnswer
doesNotMatchCriterionWhenNoMatchingAnswerContained
matchesCriterionWhenOneOfMultipleAnswerMatches
doesNotMatchCriteriaWhenNoneOfMultipleCriteriaMatch
matchesCriteriaWhenAnyOfMultipleCriteriaMatch
doesNotMatchWhenAnyMustMeetCriteriaNotMet
alwaysMatchesDontCareCriterion
scorelsZeroWhenThereAreNoMatches

The test names are a little clearer but seem perhaps a bit verbose. We can go
one step further: nothing says we can’t define the tests in more than one test
class. Each separate test class, or fixture, can focus on a group of related
behaviors. Here’s how we might split ProfileTest:

class Profile MatchesCriterionTest {
@Test public void trueWhenMatchesSoleAnswer()...
@Test public void falseWhenNoMatchingAnswerContained()...
@Test public void trueWhenOneOfMultipleAnswerMatches()...
@Test public void trueForAnyDontCareCriterion()...

}

class Profile MatchesCriteriaTest {
@Test public void falseWhenNoneOfMultipleCriteriaMatch()...
@Test public void trueWhenAnyOfMultipleCriteriaMatch()...
@Test public void falseWhenAnyMustMeetCriteriaNotMet()...

}

class Profile ScoreTest {
@Test public void zeroWhenThereAreNoMatches()...

}

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

The Rhythm of TDD * 169

Encoding the behavior we're testing into the test-class names means we can
remove that repetitive information from the individual test names.

Regularly ensure that your test names work well together.

7

The Rhythm of TDD

The cycles of TDD are short. Without all the chatter that accompanies this
chapter’s example, each cycle of test-code-refactor is perhaps a few minutes.
The increments of code written or changed at each step in the cycle are simi-
larly small.

After you establish a rhythm with TDD, it becomes obvious when you're
heading down a rathole. Set a regular time limit of about ten minutes. If you
haven’t received any positive feedback (passing tests) in the last ten minutes,
discard what you were working on and try again, taking even smaller steps.

Yes, you heard right—throw away bad code. Treat each cycle of TDD as a
time-boxed experiment whose test is the hypothesis. If the experiment is going
awry, restarting the experiment and shrinking the scope of assumptions
(taking smaller steps) can help you pinpoint where things went wrong. The
fresh take can often help you derive a better solution in less time than you
would have wasted on the mess you were making.

After

In this chapter you got a whirlwind tour of TDD, which takes all the concepts
you've learned about unit testing and puts them into a simple disciplined
cycle: write a test, get it to pass, ensure the code is clean, and repeat.
Adopting TDD may change the way you think about design.

When you return to your desk and start applying what you've learned about
unit testing, you’ll inevitably hit a sticky challenge that makes you ask, “Now
how am I gonna test that?” Let’s find out!

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER 13

Testing Some Tough Stuff

Not everything is easy in unit testing. Some code will be downright tricky to
test. In this chapter we’ll work through a couple of examples of how to test
some of the more challenging situations. Specifically, we’ll write tests for code
that involves threading and persistence.

In Chapter 10, Using Mock Objects, on page 123, you learned to simplify testing

of the code has a lot to do with how easy it is to test.

In this chapter our approach to testing threads and persistence will be based
on these two themes: rework the design to better support testing, then break
dependencies using stubs and mocks.

Testing Multithreaded Code

It's hard enough to write code that works as expected. That’s one reason to
write unit tests. It's dramatically harder to write concurrent code that works.

In one sense, testing application code that requires concurrent processing is
technically out of the realm of unit testing. It’s better classified as integration
testing: you're verifying that you can integrate the notion of your application-
specific logic with the ability to execute portions of it concurrently.

Tests for threaded code tend to be slower—and we don’t like slower tests when
unit testing—because you must expand the scope of execution time to ensure
that you have no concurrency issues. Threading defects sometimes sneakily
lie in wait, surfacing long after you thought you'd stomped them all out.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 13. Testing Some Tough Stuff ¢ 172

Don’t worry: even though this is a book on unit testing, not integration testing,
you'll still work through an example of testing multithreaded code.

Keeping It Simple, Smarty
Follow a couple of primary themes when testing threaded code:

e Minimize the overlap between threading controls and application code.
Rework your design so that you can unit-test the bulk of application code
in the absence of threads. Write thread-focused tests for the small
remainder of the code.

e Trust the work of others. Java 5 incorporated Doug Lea’s wonderful set
of concurrency utility classes (found in the java.util.concurrent package), which
had already undergone years of hardening by the time Java 5 came out
in 2004. Instead of coding producer/consumer (for example) yourself by
hand—something too easy to get wrong—take advantage of the fact that
a smart someone else already went through all the pain, and use the
proven class BlockingQueue.

Java provides many, many alternatives for supporting concurrency. We'll
touch on just one here, and it won’t cover your specific case much of the time.
But remember the two themes of this chapter: this example shows you how
to redesign code to separate the concerns of threading and application logic.

Matchmaker, Matchmaker, Find Me All Matches

Let’s take a look at the ProfileMatcher class, a core piece of iloveyouboss. A Pro-
fileMatcher collects all of the relevant profiles. Given a set of criteria from a
client, the ProfileMatcher instance iterates the profiles and returns those
matching the criteria, along with the MatchSet instance (which provides the
ability to obtain the score of the match):

iloveyouboss/thread-1/src/iloveyouboss/ProfileMatcher.java
import java.util.*;

import java.util.concurrent.*;

import java.util.stream.*;

public class ProfileMatcher {
private Map<String, Profile> profiles = new HashMap<>();
private static final int DEFAULT POOL SIZE = 4;

public void add(Profile profile) {

profiles.put(profile.getId(), profile);
}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/thread-1/src/iloveyouboss/ProfileMatcher.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Testing Multithreaded Code ¢ 173

public void findMatchingProfiles(
Criteria criteria, MatchListener listener) {
ExecutorService executor =
Executors.newFixedThreadPool (DEFAULT POOL SIZE);

List<MatchSet> matchSets = profiles.values().stream()
.map(profile -> profile.getMatchSet(criteria))
.collect(Collectors.toList());
for (MatchSet set: matchSets) {
Runnable runnable = () -> {
if (set.matches())
listener.foundMatch(profiles.get(set.getProfileld()), set);
};
executor.execute(runnable);

}

executor.shutdown();

}

We need the application to be responsive, so we designed the findMatchingProfiles()
method to calculate matches in the context of separate threads. Further,
rather than block the client until all processing is complete, we instead
designed findMatchingProfiles() to take a MatchListener argument. Each matching
profile gets returned via the MatchListener method foundMatch().

Paraphrasing the code: findMatchingProfiles() first collects a list of MatchSet instances
for each profile. For each match set, it creates and spawns a thread that sends
the profile and corresponding MatchSet object to the MatchListener if a matches
request to the MatchSet returns true.

Extracting Application Logic

The findMatchingProfiles() method is pretty short but still manages to present a
good testing challenge. The method intermingles application logic and
threading logic. Our first goal is to separate the two.

Start by extracting the logic that gathers MatchSet instances into its own collect-
MatchSets() method:

iloveyouboss/thread-2/src/iloveyouboss/ProfileMatcher.java
public void findMatchingProfiles(
Criteria criteria, MatchListener listener) {
ExecutorService executor =
Executors.newFixedThreadPool (DEFAULT POOL_SIZE);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/thread-2/src/iloveyouboss/ProfileMatcher.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

YYYVYYY

Chapter 13. Testing Some Tough Stuff ® 174

for (MatchSet set: collectMatchSets(criteria)) {
Runnable runnable = () -> {
if (set.matches())
listener.foundMatch(profiles.get(set.getProfileld()), set);
b
executor.execute(runnable);
}
executor.shutdown();

}

List<MatchSet> collectMatchSets(Criteria criteria) {
List<MatchSet> matchSets = profiles.values().stream()
.map(profile -> profile.getMatchSet(criteria))
.collect(Collectors.toList());
return matchSets;

}
You know how to write tests for small bits of logic like collectMatchSets():

iloveyouboss/thread-2/test/iloveyouboss/ProfileMatcherTest.java
import static org.junit.Assert.*;

import static org.hamcrest.CoreMatchers.*;
import java.util.*;

import java.util.stream.*;

import org.junit.*;

public class ProfileMatcherTest {
private BooleanQuestion question;
private Criteria criteria;
private ProfileMatcher matcher;
private Profile matchingProfile;
private Profile nonMatchingProfile;

@Before
public void create() {
question = new BooleanQuestion(1l, "");

criteria = new Criteria();

criteria.add(new Criterion(matchingAnswer(), Weight.MustMatch));
matchingProfile = createMatchingProfile("matching");
nonMatchingProfile = createNonMatchingProfile("nonMatching");

}

private Profile createMatchingProfile(String name) {
Profile profile = new Profile(name);
profile.add(matchingAnswer());
return profile;

}

private Profile createNonMatchingProfile(String name) {
Profile profile = new Profile(name);
profile.add(nonMatchingAnswer());

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/thread-2/test/iloveyouboss/ProfileMatcherTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Testing Multithreaded Code ® 175

return profile;

}

@Before
public void createMatcher() {
matcher = new ProfileMatcher();

}

@Test

public void collectsMatchSets() {
matcher.add(matchingProfile);
matcher.add(nonMatchingProfile);

List<MatchSet> sets = matcher.collectMatchSets(criteria);

assertThat(sets.stream()
.map(set->set.getProfileId()).collect(Collectors.toSet()),
equalTo(new HashSet<>
(Arrays.aslList(matchingProfile.getId(), nonMatchingProfile.getId()))));

}

private Answer matchingAnswer() {
return new Answer(question, Bool.TRUE);

}

private Answer nonMatchingAnswer() {
return new Answer(question, Bool.FALSE);
}
}

Similarly extract the application-specific logic that sends matching profile
information to a listener:

iloveyouboss/thread-3/src/iloveyouboss/ProfileMatcher.java
public void findMatchingProfiles(
Criteria criteria, MatchListener listener) {
ExecutorService executor =
Executors.newFixedThreadPool (DEFAULT POOL SIZE);

for (MatchSet set: collectMatchSets(criteria)) {
Runnable runnable = () -> process(listener, set);
executor.execute(runnable);

}

executor.shutdown();

}

void process(MatchListener listener, MatchSet set) {
if (set.matches())
listener.foundMatch(profiles.get(set.getProfileld()), set);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/thread-3/src/iloveyouboss/ProfileMatcher.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 13. Testing Some Tough Stuff ® 176

Write a couple of fairly straightforward tests for the new process() method:

iloveyouboss/thread-3/test/iloveyouboss/ProfileMatcherTest.java

// ...
import static org.mockito.Mockito.*;

public class ProfileMatcherTest {

// ...
private MatchListener listener;

@Before
public void createMatchListener() {
listener = mock(MatchListener.class);

}

@Test

public void processNotifiesListenerOnMatch() {
matcher.add(matchingProfile);
MatchSet set = matchingProfile.getMatchSet(criteria);

matcher.process(listener, set);

verify(listener).foundMatch(matchingProfile, set);

}

@Test

public void processDoesNotNotifyListenerWhenNoMatch() {
matcher.add(nonMatchingProfile);
MatchSet set = nonMatchingProfile.getMatchSet(criteria);

matcher.process(listener, set);

verify(listener, never()).foundMatch(nonMatchingProfile, set);

}
/...
}

The tests take advantage of Mockito’s ability to verify expectations—to verify
that a method was called with the expected arguments. Refer to Simplifying

tool and for another example of its use.
Steps in the first test, processNotifiesListenerOnMatch, are:

O Use Mockito’s static mock() method to create a MatchListener mock instance.
Verify expectations using this instance.

©® Add a matching profile (a profile that is expected to match the given crite-
ria) to the matcher.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/thread-3/test/iloveyouboss/ProfileMatcherTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Testing Multithreaded Code ¢ 177

© Ask for the MatchSet object for the matching profile given a set of criteria.

O Ask the matcher to run the match processing, passing in the mock listener
and the match set.

O Ask Mockito to verify that the foundMatch method was called on the mock
listener instance with the matching profile and match set as arguments.
Mockito fails the test if that expectation isn’t met.

Redesigning to Support Testing the Threading Logic

The bulk of the code in findMatchingProfiles() that remains after we extract collect-
MatchSets() and process() is threading logic. (We could potentially go even one
step further and create a generic method that spawns threads for each element
in a collection, but let’s work with what we have now.) Here’s the current state
of the method:

iloveyouboss/thread-3/src/iloveyouboss/ProfileMatcher.java
public void findMatchingProfiles(
Criteria criteria, MatchListener listener) {
ExecutorService executor =
Executors.newFixedThreadPool (DEFAULT POOL SIZE);

for (MatchSet set: collectMatchSets(criteria)) {
Runnable runnable = () -> process(listener, set);
executor.execute(runnable);

}

executor.shutdown();

}

Our idea for testing findMatchingProfiles() involves a little bit of redesign work.
Here’s the reworked code:

iloveyouboss/thread-4/src/iloveyouboss/ProfileMatcher.java
Line1 private ExecutorService executor =
Executors.newFixedThreadPool (DEFAULT POOL SIZE);

ExecutorService getExecutor() {
5 return executor;

}

public void findMatchingProfiles(
Criteria criteria,
10 MatchListener listener,
List<MatchSet> matchSets,
BiConsumer<MatchListener, MatchSet> processFunction) {
for (MatchSet set: matchSets) {
Runnable runnable = () -> processFunction.accept(listener, set);
15 executor.execute(runnable);

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/thread-3/src/iloveyouboss/ProfileMatcher.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/thread-4/src/iloveyouboss/ProfileMatcher.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

20

25

Chapter 13. Testing Some Tough Stuff * 178

}

executor.shutdown();

}

public void findMatchingProfiles(
Criteria criteria, MatchListener listener) {
findMatchingProfiles (
criteria, listener, collectMatchSets(criteria), this::process);

}

void process(MatchListener listener, MatchSet set) {
if (set.matches())
listener.foundMatch(profiles.get(set.getProfileld()), set);

}

We need to access the ExecutorService instance from the test, so we extract its
instantiation to the field level and provide a package-access-level getter method
to return the ExecutorService reference.

Because we've already tested process, we can safely assume it’s correct and
thus ignore its real logic when we test findMatchingProfiles. To support stubbing
the behavior of process, overload findMatchingProfiles (see line 8). Change its
existing implementation to take an additional argument, processFunction, that
represents the function to execute in each thread. Use the processFunction
function reference to call the appropriate logic to process each MatchSet (line
14).

Add an implementation of findMatchingProfiles with the original signature that
delegates to the overloaded version (the one that takes a function argument,
at line 20). For the function argument, pass this::process, which refers to the
known-to-be-working implementation of process in ProfileMatcher.

Writing a Test for the Threading Logic

The code should work exactly as it did before, but we've set things up to make
it easier for us to write a test. Let’s give it a go:

iloveyouboss/thread-4/test/iloveyouboss/ProfileMatcherTest.java
// ...
import static org.mockito.Mockito.*;
public class ProfileMatcherTest {
// ...
@Test
public void gathersMatchingProfiles() {
Set<String> processedSets =
Collections.synchronizedSet(new HashSet<>());
BiConsumer<MatchListener, MatchSet> processFunction =
(listener, set) -> {

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/thread-4/test/iloveyouboss/ProfileMatcherTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Testing Multithreaded Code ¢ 179

processedSets.add(set.getProfileId());
b
List<MatchSet> matchSets = createMatchSets(100);

matcher.findMatchingProfiles(
criteria, listener, matchSets, processFunction);

while (!matcher.getExecutor().isTerminated())
assertThat(processedSets, equalTo(matchSets.stream()
.map(MatchSet::getProfileld).collect(Collectors.toSet())));

}

private List<MatchSet> createMatchSets(int count) {
List<MatchSet> sets = new ArrayList<>();
for (int 1 = 0; i < count; i++)
sets.add(new MatchSet(String.valueOf(i), null, null));
return sets;

O Create a set of strings to store profile IDs from MatchSet objects that the
listener receives.

® Define processFunction(), which will supplant the production version of process.
© For each callback to the listener, add the MatchSet’s profile ID to processedSets.
O Using a helper method, create a pile of MatchSet objects for testing.

© Call the version of findMatchingProfiles that takes a function as an argument,
and pass it the processFunction() implementation.

0O Grab the ExecutorService from the matcher, and loop until it indicates that
all of its threads have completed execution.

© Verify that the collection of processedSets (representing profile IDs captured
in the listener) matches the profile IDs from all of the MatchSet objects
created in the test.

By separating concerns between application logic and threading logic, we've
been able to write a few tests in reasonably short order. The first tests take
a little bit of effort and thought about how to best organize things. Each
subsequent thread-related test gets easier, however, as we begin to build up
a library of utility methods to help us get a handle on thread-focused testing.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 13. Testing Some Tough Stuff ® 180

Testing Databases

We first saw the StatCompiler code in [FJIRST: [F]ast!, on page 52. We were able
to refactor this class so that most ofltscodedoesntdlrectlylnteract with a
QuestionController instance, which in turn let us write fast tests for the bulk of
its logic. We were left with one method, questionText(), that interacts with a

controller object, and we’d now like to test that method:

iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
public Map<Integer,String> questionText(List<BooleanAnswer> answers) {
Map<Integer,String> questions = new HashMap<>();
answers.stream().forEach(answer -> {
if (!questions.containsKey(answer.getQuestionId()))
questions.put(answer.getQuestionId(),
controller.find(answer.getQuestionId()).getText()); });
return questions;

}

The questionText() method takes a list of answer objects and returns a hash
map of unique answer IDs to the corresponding question text. Paraphrasing
the forEach loop: for each answer ID that’s not already represented in the
responses map, find the corresponding question using the controller, and put
the found question’s text into the responses map.

Thanks a Lot, Controller

The trouble with writing tests for questionText() is the controller, which talks to
a Postgres database using the Java Persistence API (JPA). Our first question
regards the QuestionController controller class: do we trust it and understand
how it behaves? We’d like to make sure, by writing some tests for it. Here’s
the code for the class:

iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/controller/QuestionController.java
import iloveyouboss.domain.*;

import java.time.*;

import java.util.*;

import java.util.function.*;

import javax.persistence.*;

public class QuestionController {
private Clock clock = Clock.systemUTC();

private static EntityManagerFactory getEntityManagerFactory() {

return Persistence.createEntityManagerFactory("postgres-ds");

}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/controller/QuestionController.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Testing Databases ¢ 181

public Question find(Integer id) {
return em().find(Question.class, id);

}

public List<Question> getAll() {
return em()
.createQuery("select g from Question q", Question.class)
.getResultList();
}

public List<Question> findWithMatchingText(String text) {
String query =
"select q from Question q where q.text like '%" + text + "%'";
return em().createQuery(query, Question.class) .getResultlList();

}

public int addPercentileQuestion(String text, String[] answerChoices) {
return persist(new PercentileQuestion(text, answerChoices));

}

public int addBooleanQuestion(String text) {
return persist(new BooleanQuestion(text));

}

void setClock(Clock clock) {
this.clock = clock;

}

void deleteAll() {
executeInTransaction(
(em) -> em.createNativeQuery("delete from Question")
.executeUpdate());

}

private void executelInTransaction(Consumer<EntityManager> func) {
EntityManager em = em();

EntityTransaction transaction = em.getTransaction();

try {
transaction.begin();
func.accept(em);
transaction.commit();

} catch (Throwable t) {
t.printStackTrace();
transaction.rollback();

}

finally {

em.close();

}

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 13. Testing Some Tough Stuff ¢ 182

private int persist(Persistable object) {
executeInTransaction((em) -> em.persist(object));
return object.getId();

}

private EntityManager em() {
return getEntityManagerFactory().createEntityManager();
}
}

Most of the logic in QuestionController is simple delegation to code that implements
the JPA interfaces—there’s not much in the way of interesting logic. That’s
good design—we've isolated our dependency on JPA. From the stance of
testing, though, it raises a question: does it make sense to write a unit test
against QuestionController? You could write unit tests in which you stub all of
the relevant interfaces, but it would take a good amount of effort, the tests
would be difficult, and in the end you wouldn’t have proven all that much.

You should instead write tests against QuestionController that demonstrate its
ability to successfully interact with a real Postgres database. These slower
tests will prove that everything is wired together correctly. Defects are fairly
common in dealings with JPA, because three different pieces of detail must
all work correctly in concert: the Java code, the mapping configuration
(located in src/META-INF/persistence.xml in our codebase), and the database itself.

The Data Problem

You still want the vast majority of your JUnit tests to be fast. No worries—if
you isolate all of your persistence interaction to one place in the system, you
end up with a reasonably small amount of code that must be integration-
tested.

(You might be tempted to consider using an in-memory database such as H2
to emulate your production database for the purpose of testing. You'll get the
speed you want, but good luck otherwise. Attempts we've encountered were
fraught with problems due to sometimes subtle differences between the in-
memory database and the production RDBMS.)

When you write integration tests for code that interacts with the real database,
the data in the database and how it gets there become important considera-
tions. To verify that database find operations return query results as expected,
for example, you need to either put appropriate data into the database or
assume it’s already there.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Testing Databases ¢ 183

Assuming that data is already in the database is a long-term recipe for pain.
Over time, the data will change without your knowledge, breaking tests.
Divorcing the data from the test code makes it a lot harder to understand
why a particular test passes or not. The meaning of the data with respect to
the tests is lost by dumping it all into the database. Prefer to let the tests
create and manage the data.

You must answer the question, whose database? If it’'s your database on your
own machine, the simplest route might be for each test to start with a clean
database (or one prepopulated with necessary reference data). Each test then
becomes responsible for adding and working with its own data. This minimizes
intertest dependency issues, where one test breaks because of data that
another test left lying around. (Those can be a headache to debug})

If you can only interact with a shared database for your testing, then you'll
need a less intrusive solution. One option: if your database supports it, you
can initiate a transaction in the context of each test, then roll it back. (The
transaction handling is usually relegated to @Before and @After methods.)

Ultimately, integration tests are harder to write and maintain. They tend to
break more often, and when they do break, debugging the problem can take
considerably longer. But they're still an essential part of your testing strategy.

Integration tests are essential but challenging to design and
maintain. Minimize their number and complexity by maximizing
< the logic you verify in unit tests.

Clean-Room Database Tests

Our tests for the controller empty the database both before and after each
test method’s execution:

iloveyouboss/16-branch-persistence-redesign/test/iloveyouboss/controller/QuestionControllerTest.java
public class QuestionControllerTest {

private QuestionController controller;
@Before
public void create() {
controller = new QuestionController();
controller.deleteAll();
}

@After

public void cleanup() {
controller.deleteAll();

}

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-redesign/test/iloveyouboss/controller/QuestionControllerTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 13. Testing Some Tough Stuff 184

@Test
public void findsPersistedQuestionById() {
int id = controller.addBooleanQuestion("question text");

Question question = controller.find(id);

assertThat(question.getText(), equalTo("question text"));

@Test

public void questionAnswersDateAdded() {
Instant now = new Date().toInstant();
controller.setClock(Clock.fixed(now, Zoneld.of("America/Denver")));
int id = controller.addBooleanQuestion("text");

Question question = controller.find(id);

assertThat(question.getCreateTimestamp(), equalTo(now));

@Test

public void answersMultiplePersistedQuestions() {
controller.addBooleanQuestion("gl");
controller.addBooleanQuestion("g2");
controller.addPercentileQuestion("g3", new String[] { "al", "a2"});

List<Question> questions = controller.getAll();

assertThat(questions.stream()
.map(Question::getText)
.collect(Collectors.toList()),
equalTo(Arrays.asList("q1", "g2", "g3")));
}

@Test

public void findsMatchingEntries() {
controller.addBooleanQuestion("alpha 1");
controller.addBooleanQuestion("alpha 2");
controller.addBooleanQuestion("beta 1");

List<Question> questions = controller.findWithMatchingText("alpha");
assertThat(questions.stream()
.map(Question::getText)

.collect(Collectors.toList()),
equalTo(Arrays.asList("alpha 1", "alpha 2")));

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Testing Databases ® 185

The code calls the QuestionController method deleteAll() in both the @Before and
@After methods. When trying to figure out a problem, you might need to com-
ment out the deleteAll() call in the @After method so that you can take a look at
the data after a test completes.

Our tests are simple and direct. We're not testing end-to-end application
functionality—we’re instead testing the query capabilities, which is most of
what we care about. Our tests implicitly verify the ability of the controller to
add items to the database.

Mocking the Controller

We've isolated all direct database interaction to QuestionController and tested it.
Now we can move on to testing the questionText() method in StatCompiler. We now
trust QuestionController, so we can safely stub out its find() method.

Think about mocking as making an assumption: you are assuming that what
you’re mocking out works and that you know how it behaves—how it responds
to inquiries and what side effects it creates. Without that knowledge, you
might be making a bad assumption in your tests.

Here’s the questionText() method again:

iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
public Map<Integer,String> questionText(List<BooleanAnswer> answers) {
Map<Integer,String> questions = new HashMap<>();
answers.stream().forEach(answer -> {
if (!questions.containsKey(answer.getQuestionId()))
questions.put(answer.getQuestionId(),
controller.find(answer.getQuestionId()).getText()); });
return questions;

}
And here’s the test, which uses MocKito:

iloveyouboss/16-branch-persistence-3/test/iloveyouboss/domain/StatCompilerTest.java
@Mock private QuestionController controller;
@InjectMocks private StatCompiler stats;

@Before

public void initialize() {
stats = new StatCompiler();
MockitoAnnotations.initMocks(this);

}

@Test

public void questionTextDoesStuff() {
when(controller.find(1)).thenReturn(new BooleanQuestion("textl"));
when(controller.find(2)).thenReturn(new BooleanQuestion("text2"));

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-redesign/src/iloveyouboss/domain/StatCompiler.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/16-branch-persistence-3/test/iloveyouboss/domain/StatCompilerTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 13. Testing Some Tough Stuff * 186

List<BooleanAnswer> answers = new ArraylList<>();
answers.add(new BooleanAnswer(1l, true));
answers.add(new BooleanAnswer(2, true));

Map<Integer, String> questionText = stats.questionText(answers);

Map<Integer, String> expected = new HashMap<>();
expected.put(l, "textl");

expected.put(2, "text2");
assertThat(questionText, equalTo(expected));

}

Make sure you feel comfortable reading and paraphrasing what the test does.
Mockito does a great job of keeping the mocking needs in our tests simple
and declarative. Even without much knowledge of Mockito, you can read the
test and quickly understand its intent. Refer to Simplifying Testing Using a

Two common challenges—multithreading and database interaction—are
tough-enough topics on their own. Often many of your defects will come from
code in these areas.

In general, you want to adhere to the following strategy for testing these more-
difficult scenarios:

e Separate concerns. Keep application logic apart from threading, database,
or other dependencies causing you a problem. Isolate dependent code so
it’s not rampant throughout your codebase.

e Use mocks to break dependencies of unit tests on slow or volatile code.
e Write integration tests where needed, but keep them simple and focused.

Next up: you're almost ready to graduate. So far, you've focused on heads-
down unit testing on your development machine. For the final chapter, you'll
learn about some topics relevant to unit testing as part of a development
team.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

CHAPTER 14

Testing on a Project

If you're like most of us, you're working on a project with other team members.
You'll want to be on the same page with them when it comes to unit testing.
In this chapter you’ll learn about standards that you and your team must
hash out if you're to avoid wasting time on endless debates and code
thrashing.

The topics covered in this chapter will provide you with the basis for under-
standing what you’ll want to discuss and pin down quickly.

Coming up to Speed

Learning a new practice like unit testing requires continual vigilance. Even
if you enjoy writing unit tests and are good about covering the new code you
write, you're usually facing an uphill battle.

Perhaps your teammates are not as vigilant and are slamming out code at a
rate that far outpaces your testing. Or, perhaps you're close to a critical
deadline, and your team insists that the only way to make the deadline is to
toss all safeguards.

“Unit testing isn’t free,” says Pat, “We're supposed to deliver in two weeks,
and we're way behind. We just need to slam out code.”

We've been there, however, and so has Dale, who responds to Pat, “The worst
possible time to throw away unit tests is while in crunch mode. If we do, we’ll
be slamming out lots of code in short order, which means it’'s guaranteed to
be messier. It will take longer to determine whether or not it’s working prop-
erly, and it will take longer to fix any defects in that messier code. And there
will be more defects. One way or another, we’ll pay dearly for the choice to
dispense with quality for short-term gains.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 14. Testing on a Project ® 188

“Plus, slamming out code with no tests only speeds things up for a very short
period of time—maybe a couple days or so. Invariably, we hit ugly defects
that require long debugging sessions. And we always spend more time making
changes to hastily crafted, difficult-to-understand code. Sorry Pat, tossing
the unit tests won’t buy us the time we need.”

Unfortunately, not much will get us out of inevitable last-minute quandaries,
no matter how good we are at development. About all we can do is negotiate.
But we can hopefully diminish the number of times we are up against the
wall by insisting that we develop with quality controls from day one.

Unit testing can be a part of those quality controls. Let’s discuss how to ensure
that unit testing becomes a habitual part of your team’s cadence.

Getting on the Same Page with Your Team

How developers approach unit testing can vary dramatically from individual
to individual. Some developers might insist on TDD. Others might resist unit
testing at all costs, producing only the tests that they feel forced to write.
Some developers might prefer lumping multiple cases into a single test method.
Some might favor slower integration tests. Obviously, not everyone is going
to agree with the recommendations you've read about in this book.

It's important that your team get on the same page. Long debates—or contin-
ual back-and-forth without resolution—are rarely good uses of anyone’s time.
And although you’ll never agree on everything, you can at least find out what
you do agree on and start moving in the direction of increasing consensus.

Establishing Unit-Testing Standards

You’'ll want to derive some standards around unit testing. Start minimally
and seek to answer two questions:

e What things do developers feel are wasting the most time of everyone?
e What are simple standards that everyone can quickly agree on?

Seed a bit of discussion, run a quick meeting, and put into writing the
expectations for the team. Don’t stop there: you and your team will need to
keep atop adherence to the standards and also be willing to revisit and adapt
them as often as needed. Most teams need to revisit and tweak their standards
at least quarterly, and more often initially.

Here’s a short list of things you might want to standardize on early.

e What tests developers should run prior to check-in
e How to name test classes and test methods

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Getting on the Same Page with Your Team ® 189

e Whether to use Hamcrest or classic assertions

e Whether to use AAA or not

e Which mock tool to prefer

e Whether to disallow console output when checked-in tests execute

e How to clearly identify and discourage slow tests in the unit-test suite

Increasing Adherence to Standards with Reviews

Staying atop standards is not easy. Your team will need to exert a bit of col-
lective peer pressure. One more standard you’ll want to agree upon is how to
review code. Your team’s investment in the unit tests and the production
system is too expensive to allow individuals to do whatever they want to the
code, tests included.

You might initiate review sessions where unit-test producers solicit feedback
from others on the team. You can formalize the review process using tech-
niques like Fagan inspections.' Such after-the-fact reviews can at least act
as a gate that prevents blatant standards violations.

Another mechanism some teams employ is to require pull requests—a feature
most closely associated with GitHub. A developer submits a pull request for
a chunk of work that he or she would like integrated into the main branch.
Other team members can comment on the request and ultimately decide
when the change gets pulled, or merged, into the main branch.

Some IDEs support code-review plug-ins. For example, Upsource” is a code-
review tool for IntelliJ IDEA that provides the ability to discuss bits of code
in annotations that the IDE manages.

Reviewing via Pair Programming

Few practices have drawn as much controversy in the software development
world as pair programming, or pairing, where two programmers work
together, side-by-side, to develop software. Done well, pairing can generate
two-heads-are-better-than-one solutions, with higher-quality design than
either of the pair could produce while soloing. Pairing advocates suggest that
pairing is an active form of review.

After-the-fact review suffers from a few challenges. First, reviewers aren’t
usually familiar with the intimate details of the code product being reviewed.
The best reviews—the ones that find problems before you ship them—come

1.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Fagan_inspection
https://www.jetbrains.com/upsource/codereview/
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 14. Testing on a Project ® 190

from people with a deep understanding of the code. Reality in most shops
prevents this sort of time investment. As a result, reviews find fewer defects
than we’d like. The sorts of defects corrected are more typically surface-level.
After-the-fact reviews are valuable, but probably not as much as they cost.

Further, after-the-fact reviews come too late to fix serious problems. After
code is built and seemingly ready to ship, teams are usually under too much
pressure to step back and significantly rework code that’s purportedly already
working. Developers are pressed into moving on, by their peers, managers,
and even themselves.

Pairing, on the other hand, holds the hope that a second set of eyes will help
build quality in from the get-go. One way this can happen is insistence on
more and better unit testing. Think of pairing as a great way to instill a habit.
Your unit tests will provide more value if built by pairs.

It’s not for everyone, however. The thought of working with other developers
closely throughout the day can send many of us screaming for the exits. If
you're intrigued, make sure you fully understand how to practice pairing
successfully before trying to sell it to your teammates. There are many poor
ways to approach pair programming that will frustrate your team.

The PragPub article “Pair Programming Benefits”® provides you with some

selling points. Another article, “Pair Programming in a Flash” lays out the
ground rules for successful pair programming, as well as points out a few
pitfalls to avoid.

Convergence with Continuous Integration

“It works on my machine!” cries Pat. “Must be something wrong on your
machine,” he says to Dale.

Unit tests aren’t going to fix all such problems, but they are a standard of
sorts: any changes to the code can’t break the collective set of tests; otherwise
the standards—the tests—have been violated.

To be able to view the unit tests as a team-wide standard requires a shared
repository, of course. Developers check code out from the repository (or create
local branches, depending on your worldview), make changes, test locally,
then check the code back into the shared repository (also known as integrating
the code).

3. https://pragprog.com/magazines/2011-07/pair-programming-benefits

4. https://pragprog.com/magazines/2011-06/pair-programming-in-a-flash

www.it-ebooks.info

https://pragprog.com/magazines/2011-07/pair-programming-benefits
https://pragprog.com/magazines/2011-06/pair-programming-in-a-flash
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Convergence with Continuous Integration ® 191

The cutting edge of old-school mentality was to run a nightly build against
the shared code. If everything built okay, chances were that the integrated
code was in good shape—at least, that was the theory.

Adding unit and other automated tests to such a nightly build increases its
value dramatically. Knowing that the software passes all tests when run on
a machine other than yours, integrated with other recent code changes, should
increase your confidence about shipping it.

Nowadays, the nightly build, although a great step in the right direction,
seems quaint and inadequate. A team of developers can add several hundreds
of lines of code to the system in a day. The more code other developers add,
the more likely your code won’t work in conjunction with it. With only nightly
test runs against the integrated software, it could be nearly a full day before
you find out about conflicts. And it could be another day for you to unravel
how the combined code works and to find the problem. And it could be yet
another day to merge the clashing code areas.

Enter the notion of continuous integration (CI). Waiting a full day seems silly.
You want more-rapid feedback. CI means you integrate code much more fre-
quently and verify the results of that integration each time. The more quickly
you know that your code doesn’t work well with other changes, the better off
your team is.

The practice of CI is best supported with a tool known as a continuous inte-
gration server. A CI server monitors your source repository. When new code
is checked in, the CI server checks out the code from the source repository
and initiates a build. If the build exhibits any problems, the CI server notifies
the development team.

For the CI server to provide any value, your build must now include the
running of your unit tests. Because the CI server build process works on the
code of record in your source repository, it demonstrates the overall health
of your system. Not “my changes work on my machine,” or “your changes
work on your machine,” but “our code works on one of our golden servers.”

The CI server helps support healthy peer pressure against allowing bad code.
Developers begin to habituate themselves to running their unit tests before
check-in. No one wants to be recognized as the person wasting their team-
mates’ time by causing the CI build process to fail.

Installing and configuring a typical CI server requires perhaps a day or two.
This is time well spent. We consider use of a CI server to be foundational.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 14. Testing on a Project ® 192

A CI server is a minimum for building a modern development team.

o

You'll find numerous CI tools that work well with Java. Some CI servers are
free, some are open source, some are hosted, and some are licensed. Some
of the more widely used CI servers include Hudson, Jenkins (a fork of Hudson),
TeamCity, AntHill, CruiseControl, Buildbot, and Bamboo.

Code Coverage

Managers love numbers. The concept of code coverage—how much code is
unit-tested—is one that tickles the typical manager’s number fetish but ulti-
mately leaves a bad taste when used for anything but educational purposes.

More specifically, code coverage is a measure of the percentage of code that
your unit tests execute. You can find tools that do the dirty work of taking
the measurements. Emma (which we show briefly here—it’s a free and easily
installed Eclipse plugin) and Cobertura are examples of code-coverage tools.

Imagine that you have a Coverage class containing only one method, named
soleMethod(), and that soleMethod() contains a single nonconditional statement.
If you run a unit test that calls soleMethod(), the statement is executed. The
code coverage for soleMethod(), and the class as well (since Coverage has no other
methods), is 100%. If you run no unit tests that call soleMethod(), the code
coverage for Coverage is 0%.

Next consider that soleMethod() contains an if statement with a single simple
conditional, and the body of the if statement is a single statement. Here’s an
example of this code scenario:

iloveyouboss/13/src/scratch/Coverage.java
public class Coverage {
int count;

public void soleMethod() {
if (count > 0)
count++;

}

If the conditional holds true when a test is run, the coverage against Coverage
is 100%. If the conditional doesn’t hold true, the coverage is conceptually
50%: the if conditional counts as code executed, and the body of the if state-
ment doesn’t get executed—so roughly half the code is executed.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/src/scratch/Coverage.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Code Coverage ® 193

Some tools also measure branch coverage. Each conditional represents a
branch; your tests get 100% branch-coverage credit if you have one test that
covers the true branch and another test that covers the false branch.

Given the test:

iloveyouboss/13/test/scratch/CoverageTest.java

@Test

public void noIncrementOfCount() {
new Coverage().soleMethod();

}

...the following figure shows coverage of 53.8% for Coverage.java, with seven
covered instructions and six missed. For the code snippet immediately pre-
ceding, Emma highlights covered lines in green, uncovered lines in red, and
incomplete branch coverage in yellow. The class declaration itself is colored
green; the conditional if (count > 0) is yellow because no test results in the
conditional evaluating to true (because the value of count never changes from
0); and count++ is red because it never gets executed.

| B esvarwgsguen 26—

1 package scratch;
public class Coverage {
int count;

public void soleMethod() {

@7 if (count > @)
8 count++;
O
10}
11
Problems Search Console Debug r! Coverage &3 =
iloveyouboss (Sep 29, 2014 6:49:36 PM)
Element Coverage Covered Instructions Missed Instructions v |
v [iloveyouboss I 633% 832 483
> (Htest = 69.1% 553 247
v (F#src = 54.2% 279 236
> £ iloveyouboss = 54.2% 272 230
v {3 scratch 53.8% 7 6
> [J] Coverage.java = 53.8% 7 6

Given a second test that alters count to have a positive value, the code coverage
ends up at 100%:

iloveyouboss/13/test/scratch/CoverageTest.java

@Test

public void incrementOfCount() {
Coverage ¢ = new Coverage();
c.count = 1;
c.soleMethod();

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/CoverageTest.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/13/test/scratch/CoverageTest.java
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 14. Testing on a Project ® 194

Different tools measure things a little differently. Emma uses the concept of
a basic block of code—a nonbranching chunk of bytecode—whereas Cobertura
measures using lines of code. Don’t worry that the tools differ a little in how
they report coverage—you're looking for trending in the numbers, not a spe-
cific number.

How Much Coverage Is Enough?

On the surface, it would seem that higher code coverage is good and lower
coverage not so good. Your manager craves a single number that says, “Yup,
we're doing well on our unit-testing practice,” or “No, we're not writing enough
unit tests.”

To satisfy your manager, you'd unfortunately need to first determine what
enough means. Obviously, 0% is not enough. And 100% would be great, but
is it realistic?

The concept of coverage has some built-in limitations that mean it’'s only
possible to reach 100% by faking things. Imagine that you're using a frame-
work like Hibernate that requires you to supply a no-argument constructor.
Your test code and client code, on the other hand, use an overloaded construc-
tor that takes a single argument. The no-arg constructor counts against your
coverage percentage because the test code doesn’t execute it directly. Unless,
of course, you cheat and write a test that simply instantiates the class. Con-
gratulations: you've now unwittingly entered the temporarily lucrative and
ethics-free world of metric gaming (managers: worry not, it will all come back
to bite them in the end).

Most folks out there (the purveyors of Emma included) suggest that coverage
under 70% is insufficient. We agree. Many developers also state that investing
more time in unit testing provides diminishing returns on value. We don’t
necessarily agree.

Teams that habitually write unit tests after they write code achieve coverage
levels of 70% with relative ease. Much of the remaining near-third of their
code remains untested because it’s difficult code and hard to test (usually
due to poor dependencies). Sheer odds mean that 30% of your defects lie in
this untested code, and in reality the number is probably higher—difficult
code tends to hide more defects.

Jeff's Theory of Code Coverage: the amount of bad code increases
. in the areas of least coverage.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Code Coverage ® 195

Is 100% Really As Good As It Sounds?

The better your design, the easier it is to write tests. Revisit Chapter 8,

coupled with the will to increase coverage will move you in the direction of
100%, which should lead to fewer defects. You won't reach 100%, and that’s
okay.

Developers practicing TDD (see Chapter 12, Test-Driven Development, on page

always first write a unit test to describe the code they're about to write. TDD
makes tests a self-fulfilling prophecy.

The coverage percentage can mislead. It's easy to write a few tests that slam
through a large percentage of code yet assert little. Coverage tools don’t care
whether or not you have written a single assert. You also might have written
poor tests that are hard to understand and hard to maintain, and that don’t
assert anything useful. We've seen teams waste a lot of effort on writing unit
tests that had high coverage numbers but little value.

The Value in Code Coverage

Particularly as you begin your journey in unit testing, you’ll want to know
where your tests cover code and where they don’t. The beautiful part of tools
like Emma is that they provide visual annotations of the code that show you
where you're lacking in coverage.

When you think you're done with writing tests, run your coverage tool. Take
a look at the areas in the code that aren’t covered. If you're concerned at all
about the uncovered areas of code, write more tests. Looking at the coverage-
tool results regularly will keep you honest with the tests you write.

Code-coverage numbers mean little in isolation. The trend of code coverage
is important, however: your team should be increasing the percentage of
coverage over time, or at least not letting it slide downward.

Use code-coverage tools only to help you understand where your
4 code lacks coverage or where your team is trending downward.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Chapter 14. Testing on a Project ® 196

After

Up until this chapter, it's been only you and us (the authors) working
together to learn about and practice unit testing. We looked up from our
monitors, however, and realized there’s a team around us. In reaction, we
talked about some considerations for adopting unit testing in your team.

This book is a short, speedy tour of many the practices, concepts, and recom-
mendations for unit testing. It’s enough to get you on your way to improving
the quality of your software in a professional capacity. The best things you
can do with the information you've gleaned here is to start writing tests against
the code you produce and keep writing tests with an eye to making them
better each time.

The next-best thing you can do is to continually to seek out more knowledge
on unit testing. We've scratched the surface on most of the topics we've dis-
cussed. You’'ll want to experiment with the ideas we've presented. You'll also
want to try other things that other unit testers (or TDD practitioners) espouse.

The world of modern unit testing is a decade-and-a-half old. That short history
contains some dramatic shifts in the ways we approach unit testing. It also
suggests that more changes are inevitable. Keep monitoring and reading about
unit testing and TDD, and we guarantee that you’ll find even better ways to
make them pay off.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

APPENDIX 1

Setting Up JUnit in
Intelli) IDEA and NetBeans

In this appendix you’ll learn how to get JUnit unit tests running in both
NetBeans and IntelliJ IDEA. The screenshots and IDE configuration steps
you’ll see here supplant those in the Eclipse-based setup instructions starting
at Learning JUnit Basics: Our First Passing Test, on page 4. Note that these

instructions cover configuring JUnit from scratch in the IDE and do not pre-

sume use of Maven or any other configuration tool.

For either IDE, first set up a Java project as you normally would. Then add
the following source.' Make sure the package and directories match—both
source files should end up in the iloveyouboss package within a source directory

named src/iloveyouboss.

iloveyouboss/1/src/iloveyouboss/Scoreable.java
package iloveyouboss;

@FunctionalInterface
public interface Scoreable {
int getScore();

}

iloveyouboss/1/src/iloveyouboss/ScoreCollection.java
package iloveyouboss;

import java.util.*;

public class ScoreCollection {
private List<Scoreable> scores = new ArrayList<>();

1. Also downloadable from https://pragprog.com/titles/utj2/source_code.

www.it-ebooks.info

http://media.pragprog.com/titles/utj2/code/iloveyouboss/1/src/iloveyouboss/Scoreable.java
http://media.pragprog.com/titles/utj2/code/iloveyouboss/1/src/iloveyouboss/ScoreCollection.java
https://pragprog.com/titles/utj2/source_code
http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Appendix 1. Setting Up JUnit in IntelliJ IDEA and NetBeans ® 198

public void add(Scoreable scoreable) {
scores.add(scoreable);

}
public int arithmeticMean() {

int total = scores.stream().mapToInt(Scoreable::getScore).sum();
return total / scores.size();

}
IntelliJ IDEA

You first need to install JUnit support. Navigate to IntelliJ’s Preferences dialog
box and select Plugins from the left-hand menu. Scroll down to JUnit in the
Plugins list and ensure that the corresponding check box is checked.

e O 0 Preferences
[
C) Plugins
> Appearance & Behavior () Show: | All plugins
> Editor
Sort by: name v
» Version Control i 118n for Java 4
» Build, Execution, Deployment
> Languages & Frameworks i Intellitang v
> Tool G
l ools 3* Java Bytecode Decompiler 4
3¢ JavaFX ™
4
Click OK.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

IntelliJ IDEA * 199

Next, you need to download the JUnit library using Maven sources. Navigate
to the Project Structure dialog box for your new iloveyouboss project (File »
Project Structure). From the left-side menu, select Project Settings P Libraries.
From the middle pane, click the + button to add a new project library:

Project Structure

& P + - M
Project Settings J : : — —
. i Java
Project
m
Modules
Nothing to show
Select a library to view or edit its details
Facets here
Artifacts
Platform Settings
SDKs

Global Libraries

. Cancel | Apply \ oK |

From the Download Library From Maven Repository dialog box, you can either
type the appropriate version of JUnit or use the search button to locate it.
For our iloveyouboss example, we're currently using junit:junit:4.11:

8006 Download Library From Maven Repository

s el e e 2 Found: 269
junit;junit:4.11| v Showing: 269

keyword or class name to search by or exact Maven coordinates, i.e. 'spring’, 'Logger’ or 'ant:ant-junit:1.6.5"

| Download to: /Users/jlangr/ideaprojects/iloveyouboss/lib

[| Sources [| JavaDocs

| Cancel I[OK]

Click OK.

You next need to set up a test directory in the project. From the Project window
in IDEA, select the project and right-click to bring up its context menu. Select
New P Directory and enter test as the directory name.

Select the test directory from the Project window. From the context menu,
select Mark Directory As P Test Sources Root.

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Appendix 1. Setting Up JUnit in IntelliJ IDEA and NetBeans ¢ 200

Open an editor on the ScoreCollection.java source file. Bring up the context menu
and select Go To » Test:

© ScoreCollection java %

package I

import java.util.x;

public class ScoreColl=~*i~= &
private List<Scores Copy Reference X0 8C
! P I Paste R’V
O public void add(Scg A
scores. add(score Paste fr.om History... 703@V
Ay Paste Simple Xo®V
Column Selection Mode 88 *
public int arithmet
int total = scor Find Usages XF7
o 3 return total / s Analyze >
} Refactor >
Folding >

@’ Move to Changelist...

Jump to Navigation Bar XN\
Generate... ~N Declaration B
o o Implementation(s) 8B
N Cumplle.ScoreCoIIectlon.Java 0 8F9 Type Declaration ~A0B
=) Start Clojure Console 8D Super Method U
Local History > Test 08T

Git >

Compare with Clipboard
File Encoding

@ Create Gist...

You see a tiny dialog box with the title Choose Test for ScoreCollection (0
found). Click where it says Create New Test.... IDEA presents you with the
Create Test dialog box.

[® 06 Create Test

Testing library:) Groovy JUnit () Spock () JUnit3 (e) JUnit4 () TestNG
Class name: ScoreCollectionTest

Superclass: y. ‘ ‘
Destination package: iloveyouboss v
Generate: [| setUp/@Before

|| tearDown/@After
Generate test methods for: [| Show inherited methods
Member
) @ add(scoreable:Scoreable):void
z m arithmeticMean():int

? Cancel oK |

In the Testing library radio-button group, select JUnit 4. In the check-box
list labeled Generate test methods for:, make sure only arithmeticMean():int is
selected. Click OK. IDEA should generate the ScoreCollectionTest.java source file
in the test source directory in the iloveyouboss package:

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

IntelliJ IDEA © 201

c) ScoreCollection. java & ScoreCollectionTest.java %

package iloveyouboss;
Simport org.junit.Test;
Qimport static org.junit.Assert.x;

public class ScoreCollectionTest {

@Test
(5] public void testArithmeticMean() throws Exception {
A ¥

¥

In the testArithmeticMean test, add a statement that calls the fail() method.

The discussion of Eclipse setup has a detailed explanation of the important
bits of the test code. See Understanding the JUnit Test Bits, on page 7.

You have a few choices for running the test. We prefer to run all the tests, so
click the project name (iloveyouboss) from the Project window. From the context
menu, click Run ‘All Tests’. You should see the JUnit Test Results window

Run Allin iloveyouboss e
Pz 4+ [T » Done:lofl Failed: 1(in0.0175) [)
0 i 4 | /Library/3ava/JavavirtualMachines/jdk1.8.8. jdk/Contents/Hone /bin/java ..
¥ (& ScoreCollectionTest (Iovey: Lon Assertiont)i -
. . ava. lang.AssertionError <2 internal calls>
b testArithmeticMean at iloveyouboss.ScoreCollectionTest. testArithnetichean(ScoreCollectionTest. fava:11) <31 internal calls>
" Process finished with exit code 255

=
[Tests Failed: 0 passed, 1 failed in 0.017 5 (moments ago) 11 [lFs[UTF82[cevl 3w & T

Remove the fail() statement and rerun the test. You can do so using the menu
item again, or via the keyboard with Ctrl-Shift-F10, or by clicking the green-
arrow icon in the JUnit window. You should see a successful test run:

Run || Allin iloveyouboss. #*- L
[I 1 Done: 1 of 1 (in 0.008 s) (]
v @ <default package> /Library/3ava/JavaVirtualMachines/jdkl.8.0. jdk/Contents/Home/bin/java ...

& Tests in Progress: Done
Process finished with exit code @

=
=t} =
=]
] Tests Passed: 1 passed in 0.008 s (moments ago) L1 LF $|UTF-8 ¢ Gievl ¢ B & Ty

At this point, return to Arrange, Act, and Assert Your Way to a Test, on page

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

NetBeans

Navigate to the project properties page. Add a test package folder to correspond

Appendix 1. Setting Up JUnit in IntelliJ IDEA and NetBeans ® 202

to the source folder; name it test:

l@oe Project Properties - iloveyouboss
ategories:

> Sources
@ Libraries
¥ @ Build
@ Compiling
@ Packaging
@ Deployment
@ Documenting
@ Run
¥ @ Application
@ Web Start
License Headers
Formatting
Hints

© 0 ©

Click OK to save the changes, then click File » New File... from NetBeans’

Project Folder: /Users /jlangr/NetBeansProjects/iloveyouboss

Source Package Folders:

Package Folder Label Add Folder...
/Users/jlangr/utj2code/iloveyouboss/src Source Packages .
Remove
Move Up
Move Down
Test Package Folders:
Package Folder Label Add Folder...
/Users/jlangr/utj2code /iloveyouboss/test /Users/jlangr/utj2code/iloveyouboss/test —
Remove
Move Up
Move Down

main menu to open the New File dialog box:

{806 New File
1 v ey il < T
;' Choose File Type Project: | & iloveyouboss 4]
Q
Categories: File Types:
[Java Jw JUnit Test
win | Forms Jw Test for Existing Class
Swing GU
1] JavaBeans Objects U7 Test Suite
31 AWT GUI Forms HE TestNG Test Case
G Unit Tests HE TestNG Test Suite
[JavaFx
D Persistence
(2] Hibernate
[SmERa vl
Description:
Creates a simple JUnit test case for testing methods of a single class.

Help < Back Finish | Cancel |

www.it-ebooks.info

report erratum - discuss

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

NetBeans ¢ 203

Select Unit Tests from the list of categories, then select Test for Existing Class
from the list of file types. Click the Next button. You’ll see the rather busy
New Test for Existing Class dialog box.

Enter the name of the class to test as iloveyouboss.ScoreCollection (or let NetBeans
fill in the name by selecting the corresponding source class using the Browse...
button). Then uncheck all of the check boxes in the bottom half of the dialog
box, with the exception of the button marked Public that’s in the Method
Access Levels group. Your completed dialog box should look like this:

‘806 New Test for Existing Class
Steps Existing Class To Test
1. Choose File Type : X - Browse
2. Existing Class To Test Class to Test: iloveyouboss.ScoreCollection |
Created Test Class: iloveyouboss.ScoreCollectionTest
Project: iloveyouboss
Location: /Users/jlangr/utj2code/iloveyouboss/test ;
Created File: 2code/iloveyouboss/test/iloveyouboss/ScoreCollectionTest.java
Method Access Levels Generated Code Generated Comments
™ Public | Test Initializer | Javadoc Comments
Protected Test Finalizer Source Code Hints
Package Private Test Class Initializer

Test Class Finalizer

Default Method Bodies

Help | < Back Next > \ Finish | Cancel

When you click Finish, NetBeans creates iloveyouboss.ScoreCollectionTest:

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

Appendix 1. Setting Up JUnit in Intelli) IDEA and NetBeans ® 204

JJiir Test Class - JUnit 4.x I@ ScoreCollectionTest.java £ -
P (s] 2 @ B Q@ SR G

1 backage iloveyouboss;

2
3 I? import org.junit.Test;
Y import static org.junit.Assert.*;

10 public class ScoreCollectionTest {
11

12 I? public ScoreCollectionTest() {
13 }

14

15 @Iest

16 I? public void testAdd() {

17 }

18

19 @Test

20 I? public void testArithmeticMean() {
21 }

22

23 }

24

The author Javadoc comes from a NetBeans template. You can change this by
navigating to Tools » Templates, selecting Unit Tests P Test Suite - JUnit 4.x
from the list of templates, and clicking the Settings button.

Finally, make a few changes to the source file:

e Remove the testAdd() method (and the @Test annotation preceding it).

¢ Remove the Javadoc unless you have a burning need for it.

¢ Remove the constructor.

e In the testArithmeticMean test, add a statement that calls the fail() method.

The discussion of Eclipse setup has a detailed explanation of the important
bits of the test code. See Understanding the JUnit Test Bits, on page 7.

To run the test, click Run » Test Project (iloveyouboss) from the NetBeans
main menu. You should see the JUnit Test Results window open:

www.it-ebooks.info

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

NetBeans ¢ 205

Test Results

No test passed, 1 test failed.(0.042 s)
""""" v & iloveyouboss.ScoreCollectionTest Failed

0 v & testArithmeticMean Failed: junit.framework.AssertionFailedError c
E junit.framework.AssertionFailedError
at iloveyouboss.Score CollectionTest.testArithmeticMean(ScoreCollectionTest.java:9)

Remove the fail() statement and rerun the test. You can do so using the menu
item again, or via the keyboard with Ctrl-F6, or by clicking the double-green-
arrow icon in the Test Results window. You should see a successful test run:

Test Results £
SR

The test passed.(0.043 s)

www.it-ebooks.info report erratum - discuss

http://pragprog.com/titles/utj2/errata/add
http://forums.pragprog.com/forums/utj2
http://www.it-ebooks.info/

SYMBOLS

* wildcard for import state-
ments, xiv

|= (compound assignment op-
erator), 102

DIGITS
0-1-n rule, 88-89

A

AAA (arrange, act, and assert)
abstractions, 138
condensing with @Before

method, 19-22
consistency, 35
design, 149
exceptions to, 165
implicit meaning, 147
simple example, 10-12
standards, 188
test organization, 146

absolute time, 89

abstract factories, 128

abstractions
custom, 78
missing, 138-140
acceptance testing, xii
account balance examples
assertions, 26-28
exceptions, 31-34
execution order, 43-45
separating test and pro-
duction code, 36
act
in AAA, 10-12, 35
abstractions, 138
condensing with @Before
method, 19-22

consistency, 35
design, 149
implicit meaning, 147
mock objects, 133
test organization, 146
testing a single path, 18
add() method
guard clauses, 66
Profile class, 15
ScoreCollection class, 5
add(Answer) method, 158
AddressRetriever mock objects
example, 123-133
@After method
clean up, 43-45
database testing, 183,
185
invariants, 80-81
moving irrelevant details
to, 145
@AfterClass method, 44
Answer objects
adding, 15
refactoring, 98
weighting, 17
answerMatching() method extract-
ing classes example, 110
AntHill, 192
anyMatches() method refactoring
example, 101
Apache HttpComponents
Client, 124
application logic, separating
from threading logic, 172-
186
arithmeticMean method, 10-12

www.it-ebooks.info

Index

arrange
in AAA, 10-12, 35
abstractions, 138
condensing with @Before
method, 19-22
consistency, 35
design, 149
implicit meaning, 147
self-arranging tests, 60
test organization, 146
testing a single path, 17
array example of embedding
invariant methods, 82-85
aspect-oriented programming,
33
assert keyword, 84
assertThat() method, 11, 26

assertTrue() method
about, 25
floating-point numbers
comparison, 30
stack trace, 27

assertions, 25-34
in AAA, 10-12, 35
abstractions, 138
classic-style, 25
condensing with @Before

method, 19-22

consistency, 35
custom, 138-140
defined, 25
design and, 149
Hamcrest, 25, 27-30, 42
implicit meaning, 147
messages, 31
mock objects, 133
multiple, 143
naming, 26
postconditions, 86

http://www.it-ebooks.info/

Repeated principle, 57
standards, 188
styles, 25
test organization, 146
testing a single path, 18
using single, 12, 143
ATM example, 36
attack surface, 37
author Javadoc, 204

automating
refactoring, 100-102
Self-validating principle,
60

B

background tests, 46, see al-
so continuous integration
(@)

Bamboo, 192

basic block and measuring
code coverage, 194
Bearing class range example,
79-80
@Before method
creating additional, 43
database testing, 183
initializing tests, 19-22,
43-45, 158-160, 165
moving irrelevant details
to, 145
test-driven development,
158-160, 165
@BeforeClass method, 44
behavior
exposing private, 39
fixtures, 168
Isolated principle, 56
replacing with stubs,
125-131
testing behavior vs.
methods, 36
behavior-driven development,
42

Birkner, Stefan, 34

bloated construction code
smell, 142
BlockingQueue class, 172
Bool class, 17
bottlenecks, 71
boundary conditions
cardinality, 67, 75, 87-89
concurrency, 89-90
conformance, 67, 75-76
CORRECT mnemonic,
67, 75-91

examples, 65, 76
existence, 67, 75, 86
ordering, 67, 75, 77
range, 67, 75, 78-85
reference, 67, 75, 85
Right-BICEP mnemonic,
63, 65-68
time, 67, 75, 89-91
branch coverage, 193
BuildBot, 192

builds, nightly, 191

C

cardinality, CORRECT
mnemonic, 67, 75, 87-89
Categories, 46
CD (continuous delivery), 61
check-in standards, 188
checked exception types, 34
checkinvariants() method, 84
CI (continuous integration),
See continuous integration
(&)
circle example of range, 79—
80
clarity
refactoring for, 95-104
renaming for, 96
separating methods, 97
separating tests, 40, 42,
57
tests as documentation,
168
classes
concepts vs. concrete no-
tions, 113
concurrency utility class-
es, 172
custom abstractions
from, 78
extracting, 109-113,
116-117
separating test classes,
168
Single Responsibility
Principle, 57
SOLID design principles,
110
standards, 188
target, 8
classic-style assertions, 25

clean up
@After method, 43-45
@Before method, 19-22
organizing tests, 36

www.it-ebooks.info

Index ¢ 208

clean-room database testing,
183-185

clock, see also time
avoiding system clock, 90
test double, 58
closeTo() method, 30
Cobertura, 192, 194
code, see also code coverage;
code smells
multithreaded code, 171-
179
path conventions, xiv
reviews, 189
separating test and pro-
duction code, 5, 37-40
source code for this book,
xiv, 10, 197
typing vs. pasting, 5
unnecessary, 137
code coverage, 192-195
branch coverage, 193
design, 121, 195
level of, 194
mock objects, 134
tools, 192
code smells, 137-149
bloated construction, 142
implicit meaning, 147
irrelevant details, 144
irrelevant information,
140
misleading organization,
146
missing abstractions,
138-140
multiple assertions, 143
primitive obsession, 78
Shotgun Surgery, 119
unnecessary test code,
137

color, forcing errors, 71

command-query separation,
107, 114-115, 117-118
comments
assertions, 31
vs. @Ignore annotation, 46
vs. names, 31, 41-42,
144
commits and test-driven devel-
opment, 156
compound assignment opera-
tor (|=), 102
concurrency
boundary conditions, 89—
90
Java support, 172

http://www.it-ebooks.info/

testing multithreaded
code, 171-179
utility classes, 172
configuring
Eclipse, 5-6
IntelliJ IDEA, 197-201
NetBeans, 197, 202-205

conformance, CORRECT
mnemonic, 67, 75-76

consistency
in AAA, 35
tests as documentation,
168

console output standards,
188

constants, using meaningful,
42, 141

construction, bloated, 142

constructors
cautions, 118
dependency injection,

126, 133

context
implicit meaning, 147
JUnit tests, 19, 21
naming tests, 41

continuous delivery (CD), 61

continuous integration (CI)
background tests, 46
defined, 191
teams, 190-192
tools, 60, 192

continuous integration
servers, 191

controller database testing
example, 180-186

CoreMatchers class, 28

corner cases, see boundary
conditions

CORRECT mnemonic, 67, 75—
91
cardinality, 67, 75, 87-89
conformance, 67, 75-76
existence, 67, 75, 86
ordering, 67, 75, 77
range, 67, 75, 78-85
reference, 67, 75, 85
time, 67, 75, 89-91
correlation, mock objects, 133
cost
maintaining tests, 115
redundancy, 95
Coverage class example, 192—
194

Criteria object
about, 15
adding, 17
collapsing to single line,
78
Criterion class
about, 15
adding, 17
collapsing Criteria object to
single line, 78
extracting methods for
clarity, 97
cross-checking inverse rela-
tionships, 63, 68-70
CruiseControl, 192
custom abstractions, 78

custom matchers
creating, 81
missing abstractions,
138-140
resources, 29
verifying invariants, 81

D

data

boundary conditions, 65,
76

conformance, 76

exposing private, 39

implicit meaning, 147

isolating, 56

ordering, 77

separating from code,
182, 186

databases, see also mock ob-
jects
Categories feature, 46
clean-room testing, 183-
185
in-memory, 182
private sandbox, 59
separating data from
code, 182, 186
test speed, 45, 52-54,
56, 186
testing, 180-186
Daylight Saving Time (DST),
90
decluttering, see code smells;
refactoring

decorators and readability, 28

deleteAll() method, commenting
out, 185

dependencies, see databases;
mock objects

www.it-ebooks.info

Index ® 209

dependency injection (DI),
126, 128, 131

Dependency Inversion Princi-
ple (DIP), 110

describeTo() method, overriding,
81

design, see also FIRST princi-
ples; refactoring; Single Re-
sponsibility Principle (SRP)
AAA (arrange, act, and
assert), 149
avoiding duplication, 116
bloated construction, 142
code coverage, 195
code smells, 137-149
command-query separa-
tion, 107, 114-115,
117-118
concepts vs. concrete no-
tions, 113
flexibility, 121
implicit meaning, 147
irrelevant details, 144
irrelevant information,
140
misleading organization,
146
missing abstractions,
138-140
multiple assertions, 143
not-null values, 29
optimization desire, 104
performance and, 71, 104
private behavior, 40
Single Responsibility
Principle, 12, 40, 57,
107-114, 116, 143
SOLID design principles,
110
speed, 53, 56
supporting unit testing,
37, 128
unnecessary test code,
137
Visitor design pattern,
121

developers, see teams
DI (dependency injection),
126, 128, 131
DIP (Dependency Inversion
Principle), 110
directories
IntelliJ IDEA setup, 199
separating test and pro-
duction code, 38

http://www.it-ebooks.info/

documentation, unit testing
as, 41-42, 167

duplication, see redundancy

E
easyb, 42
Eclipse
configuring, 5-6
Emma code coverage
plugin, 192-194
ignored tests, 47
Infinitest, 60
inlining, 100
JUnit 4 support, 6
negative feedback, 154
Quick Fix, 155
resources, xii
screenshots, 4
shortcuts, 10
source folder creation, 5
stub failure statement, 8
template test, 7
test class creation, 5
Emacs, xii
email address form, 76
embedding invariant meth-
ods, 82-85
Emma plugin, 192-194
emptiness, 140

environmental constraints,
71
equalTo matcher, 11, 27
equalTo() method, 28
equals() method, 27
errored() query example, 148
errors, see also exceptions;
failed tests
checked exceptions, 34
vs. failures, 25, 29, 34
fencepost, 88
forcing, 63, 71
ignored exceptions, 137
not-null values, 29
Right-BICEP mnemonic,
63, 71
exceptions, see also errors;
failed tests
checked exceptions, 34
custom rules, 33
ignoring, 137
lambda expressions, 34
specifying, 31-34
existence
cardinality, 88
CORRECT mnemonic,
67, 75, 86

ExpectedException rule, 33
explicit intent, 146

extracting
application logic, 173-
179
classes, 109-113, 116-
117

methods, 96-98, 116
test-driven development,
159-160, 165

F

factory methods
custom matchers, 81
overriding, 128
Fagan inspections, 189

fail() method
about, 8
specifying exceptions, 32
failed tests, see also errors;
exceptions
assertion messages, 27
checked exceptions, 34
custom matcher mes-
sages, 81
Eclipse stub failure
statement, 8
ensuring, 12, 156
vs. errors, 25, 29, 34
explicitly calling, 32
fixing immediately, 45
ignoring, 46
not-null values, 29
red bar, 8
sporadic, 58
test-driven development,
156
Fast principle, 51-56
Feathers, Michael, 110
fencepost errors, 88

fields, dependency injection,
133
FIRST principles, 51-62
Fast principle, 51-56
Isolated principle, 51, 56
Repeated principle, 51,
57-59
Self-validating principle,
51, 59-61
Timely principle, 51, 61
Fishbowl, 34
fixtures, 168
floating-point numbers, com-
paring, 30

www.it-ebooks.info

Index ® 210

G

GET request, mock objects,
124-133

get() method example of stubs,
126-131

GitHub, 189

given-when-then naming pat-
tern, 42

Google Guice, 128, 131
Google Hamcrest tutorial, 29

guard clause
boundary conditions, 66
hiding null check, 163

Guice, 128, 131
H

Hamcrest
assertions, 25, 27-30, 42
matchers, 11, 27-30, 81
resources, 29-30
standards, 188
static import, 11

happy path tests, 64, 87

helper methods
bloated construction, 142
moving irrelevant details
to, 146
organizing tests, 42
refactoring for clarity,
103
histograms, Fast principle
example, 53-56

HTTP, mock objects, 124-133
HttpComponents Client, 124
Hudson, 192

I

IDEs, see also Eclipse; IntelliJ
IDEA; NetBeans
automated refactoring,
100
code-review plug-ins, 189
configuration and code
differences, xiv
options, xii
screenshots, 4, 197-205
shortcuts, 10
@Ignore annotation, 46
ignoring
exceptions, 137
tests, 46

implicit meaning, 147
import statements, wildcard,
Xiv

in-memory databases, 182

http://www.it-ebooks.info/

increments, test-driven devel-
opment, 157-158
indexing ranges, 82-85
Infinitest, 46, 60
information, irrelevant, 140,
144
initializing tests
with @Before method, 19-
22, 43-45, 158-160,
165
lazy, 119
injection
dependency, 126, 128,
131
options, 128
tools, 128, 131
@InjectMocks annotation, 132
inlining, local variables, 21,
100
InputStream examples
bloated construction, 142
multiple assertions, 143
int values, 67
integration testing, xii, 171,
183, 186
IntelliJ IDEA
Infinitest, 60
resources, xii
setup, 197-201
Upsource code-review
plug-in, 189
interface expansion, test-
driven development, 164—
166
Interface Segregation Princi-
ple (ISP), 110
InvariantException, 84
invariants, range and, 80-85
inverse relationships, Right-
BICEP mnemonic, 63, 68—
70
I0Exception, 137
irrelevant details code smell,
144
irrelevant information code
smell, 140

is decorator, 28
IsCloseTo matcher, 30
Isolated principle, 51, 56

isolation
advantages, 40, 56
dependent code, 186
extracting methods for
clarity, 97

principle, 51, 56
Repeated principle, 57
ISP (Interface Segregation
Principle), 110

J
Java
clock test double, 58
concurrency support, 90,
172
continuous integration
tools, 192
java.util.Iterator and com-
mand-query separa-
tion, 114
Persistence API, 180, 182
resources, xii
versions, xii
Java Concurrency in Practice,
90

Java Persistence API (JPA),
180, 182

java.time.Clock object, 58

java.util.lterator and command-
query separation, 114

JDave, 42

JDBC queries and inverse re-
lationships, 69

Jenkins, 60, 192

JJ’s Pancake House example,
88

JMeter, 73

JPA (Java Persistence API),
180, 182
JSON stubs, 125-131
JUnit
adding JUnit 4 support,
6
assertions, 25-34
basics, 4-12
building first test, 3-12
Categories, 46
context of tests, 19, 21
creating test class, 5
exceptions verification,
31-34
execution order, 10, 19—
20, 43-45
ignoring exceptions, 137
Intellid IDEA setup, 197-
201
NetBeans setup, 197,
202-205
organizing tests, 35-47
resources, xii
running, 8-10

www.it-ebooks.info

Index ® 211

second project, 13-22
separating test and pro-
duction code, 37-40

test bits, 7
tool icons, 9
versions, xii
view, 8

JUnit 3, 6

JUnit 4, 6

JUnitPerf, 73

L
lambda expressions
exceptions, 34
stub creation, 125
values, 11
Langr, Jeff, 88
latitude and longitude exam-
ple, 123-133
Law of Demeter, 99
lazy initialization, 119
Lea, Doug, 172
lending library example, 70
libraries, time and boundary
conditions, 90
Liskov Substitution Principle
(LSP), 110
lists
boundary conditions, 65
cardinality, 88
long values, 67
for loop, testing by path, 17—
18
LSP (Liskov Substitution
Principle), 110

M

maintainability, lines of code,
18
maintenance costs, 115
manual refactoring, 100-102
Martin, Robert C., 110
matchers
about, 27
custom, 29, 81
Hamcrest, 11, 28-30, 81
invariants, 81
threaded code example,
176

matches() method
about, 15
command-query separa-
tion, 114
extracting classes exam-
ple, 110

http://www.it-ebooks.info/

refactoring example, 96—
103
TDD example, 156-158,
161-164, 166
testing Profile class, 15-22
matchesSafely() method, 81

MatchSet examples
command-query separa-
tion, 114
extracting classes, 109-
113, 117
isolating answers, 118-
121
Math.sqrt() method, 68, 70
meaning, implicit, 147
memory
forcing errors, 71
in-memory databases,
182
message argument in asser-
tions, 31
methods, see also helper
methods
extracting, 96-98, 116
postconditions, 86
preconditions, 86
private, 116, 118
separating for clarity, 97
standards, 188
testing behavior vs.
methods, 36
understanding policy,
96, 100
metric gaming, 194
misleading organization, 146
missing abstractions, 138-
140

mock, 129
@Mock annotation, 132
mock objects, 123-134
isolating code, 57
standards, 188
threaded code, 173-186
tools, 130-133
mock() method, threaded code,
176
Mockito, 130-133, 176, 185
multiple answers, test-driven
development, 162-164
multiple assertions, 143
multithreaded code, 171-179

N

naming tests
compared to comments,
31, 41-42, 144
consistency, 41
constants, 141
generalizations, 26
length, 41
prefixes, 39
renaming, 96, 160
standards, 188
suminarizing scenarios,
10, 18
target classes, 8
tests as documentation,
41-42, 167
NetBeans
resources, xii
setup, 197, 202-205

networks, forcing errors, 71

Newton.squareRoot() example of
inverse relationships, 68

nightly builds, 191
not in assertions, 29

not-null values
Hamcrest matchers, 29
removing, 137

null values
boundary conditions, 86
Hamcrest matchers, 29
hiding check, 163

0]

object-oriented design (OO),
see also Single Responsibil-
ity Principle (SRP)

real-world modeling, 113
speed, 56

OCP (Open-Closed Principle),
110

Open-Closed Principle (OCP),
110

ordering

CORRECT mnemonic,
67,75, 77

time and, 89-91

organization, 35-47

clean up and initializa-
tion, 43-45

consistency, 35

misleading, 146

separating test and pro-
duction code, 37-40

single-purpose tests, 40

www.it-ebooks.info

Index ® 212

testing behavior vs.

methods, 36
tests as documentation,
41-42
Ottinger, Tim, 88
P
package
multiple tests and speed,
46

private behavior, 39
separating test and pro-
duction code, 38
Package Explorer, 5
pair programming, 189-190
“Pair Programming Benefits”,
190
“Pair Programming in a
Flash”, 190

parameters, verifying stub,
128-129
pasting vs. typing code, 5
paths
conventions, xiv
testing multiple with
@Before method, 19-22
testing single, 17-18
performance, see also speed
design and, 104
refactoring and, 102-104
Right-BICEP mnemonic,
63, 71-73
testing, 72-73, 104
persist() method, 59
Pike, Rob, 71

plain ol’ unit testing (POUT),
51, 153

policy, method, 96, 100
postconditions, 86
Postgres, 180, 182

POUT (plain ol’ unit testing),
51, 153

preconditions, 86
prefixing names, 39

primitive obsession code
smell, 78

private behavior vs. private
data, 39

private data vs. private behav-
ior, 39

private methods, 116, 118

private sandbox, 59

production code
inverse relationships, 69

http://www.it-ebooks.info/

mock objects, 134
separating from test code,
5, 37-40
Profile class
inverse relationships ex-
ample, 69
refactoring example, 96—
103
refactoring for Single Re-
sponsibility Principle
(SRP), 107-113
TDD example, 154-167
understanding, 13-15
ProfileMatcher threaded code ex-
ample, 172-179
ProfileTest class and tests as
documentation, 168

programmers, see teams
pull requests, 189

Q

query separation, see com-
mand-query separation

Question objects, 15, 17

questionText() example of
database testing, 180-186

questions histogram example,
53-56

Quick Fix feature (Eclipse),
155

R
range, CORRECT mnemonic,
67, 75, 78-85
readability
inlining local variables,
21
matchers, 27-28
renaming, 160
real-world modeling, 113
Rectangle class example of
range, 80-81
redundancy
design principles, 116
reducing with @Before
method, 19-22
reducing with refactoring,
95-104
refactoring, 95-104
automated, 100-102
benefits, 98
costs, 115
defined, 95
manual, 100-102
performance and, 102-
104

for Single Responsibility
Principle, 107-113

test-driven development,
158-160

testing private data and
behavior, 39

tests, 135-149

reference, CORRECT
mnemonic, 67, 75, 85

relative time, 89

renaming, 96, 160

Repeated principle, 51, 57-59

repositories, continuous inte-
gration, 190-192

Rerun Test icon, 9
resolution, forcing errors, 71

resources
custom matchers, 29
Eclipse, xii
Hamcrest, 29-30
IntelliJ IDEA, xii
Java, xii
JUnit, xii
NetBeans, xii
SOLID class-design prin-
ciples, 110
source files, 197
test sets, 22
for this book, xiv, 10, 197
responsibility, see Single Re-
sponsibility Principle (SRP)
retrieve() method example of
mock objects, 123-133
reviews, 189
Right in Right-BICEP
mnemonic, 63
Right-BICEP mnemonic, 63—
73
boundary conditions, 63,
65-68
cross checking, 63, 70
error forcing, 63, 71
inverse relationships, 63,
68-70
performance characteris-
tics, 63, 71-73
validation, 63
@Rule annotation, 33
rules, custom exception, 33
run() method, performance
characteristics, 72

www.it-ebooks.info

Index ® 213

S

sandbox, private, 59

ScoreCollection examples
boundary collections, 65—
67
first test, 4-12
test-driven development,
166
validation, 63

Search class refactoring test
example, 135-149
Self-validating principle, 51,
59-61
separating
application and threading
logic, 172-179, 186
assertions, 143
class responsibilities,

109-113
classes, 109-113, 116,
168

command-query separa-
tion, 107, 114-115,
117-118
data from code, 182, 186
methods for clarity, 97
test and production code,
5, 37-40
test classes, 168
tests for clarity, 40, 42,
57
setters, 128, 133
shipping, separating test and
production code, 38
Shotgun Surgery, 119
side effects, 86, 114
Single Responsibility Principle
(SRP), 107-116
assertions, 12, 143
classes, 57
command-query separa-
tion, 114
defined, 109-110
private behaviors, 40
refactoring example, 107-
113
separating classes, 116

soleMethod() method code cover-
age example, 192-194

soleNeed() method, 78

SOLID class-design princi-
ples, 110

source code for this book,
xiv, 10, 197

source folder, creating, 5

http://www.it-ebooks.info/

SparseArray example of embed-
ding invariant methods, 82—
85

speed, see also performance

database testing, 45, 52—
54, 56, 186

Fast principle, 51-56

HTTP calls, 125

number of tests, 45

threaded code, 171

Spring DI, 128, 131

square root example of in-
verse relationships, 68

SRP (Single Responsibility
Principle), see Single Re-
sponsibility Principle (SRP)

standards, 188

startsWith matcher, 28

StatCompiler example of
database testing, 180-186
state
assumptions and bound-
ary conditions, 85
command-query separa-
tion, 114
static fields, avoiding, 21

static imports
assertions, 26
Hamcrest matchers, 27
streamOn() method examples of
test refactoring, 142-148
stubs
mocks from, 130-133,
185
replacing behavior with,
125-131
verifying parameters,
128-129
system clock, avoiding, 90
system under test (SUT), 37

T

target class, 8
TDD (test-driven develop-
ment), see test-driven devel-
opment (TDD)
TeamCity, 60, 192
teams, 187-195
code coverage, 192-195
continuous integration,
190-192
pair programming, 189-
190
reviews, 189
standards, 61, 188

temporary variables, 99
@Test annotation
about, 8
execution order, 43
specifying exceptions, 31
test case, 10
test doubles, 59
test() method, 8

test-driven development
(TDD), 153-169

adding increments, 157-
158

advantages, 153

code coverage, 195

cycle, 154-156, 169

determining next test,
162

interface expansion, 164—
166

multiple answers, 162-
164

refactoring, 158-160

test failure, 12

tests as documentation,
167

writing tests first, 51, 62,
64, 153

testSearch() method refactoring
test example, 135-149

testing, see acceptance test-
ing; integration testing;
test-driven development
(TDD); unit testing

TestNG, xiii

thenReturn() method example of
mock objects, 131, 133

threaded code, 171-179

thrown rule, expected excep-
tions, 33
time
absolute, 89
in CORRECT mnemonic,
67, 75, 89-91
forcing errors, 71
performance, 71
relative, 89
Repeated principle and,
57-59
Timely principle, 51, 61
Timely principle, 51, 61
timeouts, 89

timestamps example of Re-
peated principle, 57-59

transactions, database test-
ing, 183

www.it-ebooks.info

Index ® 214

transformations, 100
transmission example, 85

try/catch block exception han-
dling, 32, 34, 137

typing vs. pasting code, 5

U
unhappy path, 71, 87
unit testing
adding tests, 148
advantages, 3
conditions for, 15
defined, xi
importance of, xi
multiple, 15, 45
by path, 17-18
refactoring tests, 135—
149
separating test and pro-
duction code, 37-40
standards, 61, 188
testing behavior vs.
methods, 36
tests as documentation,
41-42, 167
when to use, xi
writing before code, 51,
62, 64, 153
unnecessary test code smell,
137

Upsource, 189
\Y4

validation
conformance, 76-77
production code and in-
verse relationships, 69
Right-BICEP mnemonic,
63
Self-validating principle,
51, 59-61
values
boundary conditions, 65
conformance, 67, 75-76
int values, 67
lambda expressions, 11
variables
inlining, 21, 100
renaming, 160
temporary, 99
verifying
invariants, 81
stub parameters, 128-
129
vi, xii
Visitor design pattern, 121

http://www.it-ebooks.info/

Index ® 215

W when() method example of Z

wall-clock time, see absolute mock objects, 131, 133 zero, one, many (ZOM), 88-89
time; time wildcard for import statements,

Weight objects, 15, 17 xiv

www.it-ebooks.info

http://www.it-ebooks.info/

Explore Testing and Cucumber

Explore the uncharted waters of exploratory testing and beef up your automated testing

with more Cucumber—now for Java, too.

Explore [t!

Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(186 pages) ISBN: 9781937785024. $29
https://pragprog.com/book/ehxta

The Cucumber for Java Book

Teams working on the JVM can now say goodbye for-
ever to misunderstood requirements, tedious manual
acceptance tests, and out-of-date documentation. Cu-
cumber—the popular, open-source tool that helps
teams communicate more effectively with their cus-
tomers—now has a Java version, and our bestselling
Cucumber Book has been updated to match. The Cu-
cumber for Java Book has the same great advice about
how to deliver rock-solid applications collaboratively,
but with all code completely rewritten in Java. New
chapters cover features unique to the Java version of
Cucumber, and reflect insights from the Cucumber
team since the original book was published.

Seb Rose, Matt Wynne & Aslak Hellesoy
(338 pages) ISBN: 9781941222294. $36
https://pragprog.com/book/srjcuc

www.it-ebooks.info

.

Explore It!

Reduce Risk and
Increase Confidence with
Exploratory Testing

Elisabeth Hendrickson
Edited by Jacquelyn Carter

The

P omers

The
Cucumber
For Tava

Book

Behaviour-Driven
Development for

Testers and \) ' >4

Developers O (

7\

Seb Rose, Matt Wynne, /

and Aslak Hellespy
Foreword by
Robert C. Martin

(Unele Bob) i

edited by Jacquelyn Carter

https://pragprog.com/book/ehxta
https://pragprog.com/book/srjcuc
http://www.it-ebooks.info/

Build Better Software, Better

We'll show you how to build better software, and build it better, for both old code and new.

Your Code As a Crime Scene

Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(218 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development

You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(178 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjinsd

www.it-ebooks.info

The

ic
rammers

Your Code as a
Crime Scene
Use Forensic Techniques

to Arrest Defects, Bottlenecks, and
Bad Design in Your Programs

(int J = @; J < loci Jeo) resly) = bufly);
turn res;

wliew

S 1t res) ¢
b " res. [, "W ¢
| 3; 11 = checkRe i

‘Michael Feathers

ecodeM

8' £ < ﬁiifﬁgé Bl e o
i

= 0; soe
3 il th) Liido . 03
fﬂgfnog'

The

P mers

The Nature
of Software
Development

Keep It Simple,
Makelt Valuable,
Build It Piece by Piece

PLANNING
AR A e,

ORGANIZING
GUIDING

Ron Jeffries

edited by Michael Swatne

)

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd
http://www.it-ebooks.info/

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/utj2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you’'d like to have a paper copy of the book. It’s available
for purchase at our store: https:/pragprog.com/book/utj2

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com

International Rights: translations@pragprog.com

Academic Use: academic@pragprog.com
Write for Us: http.//write-for-us.pragprog.com
Or Call: +1 800-699-7764

www.it-ebooks.info

https://pragprog.com/book/utj2
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/utj2
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Foreword
	Preface
	Why Unit Testing
	Who This Book Is For
	What You Need
	How to Use This Book
	Code and Online Resources
	Acknowledgments

	Part I—Unit-Testing Foundations
	1. Building Your First JUnit Test
	Reasons to Write a Unit Test
	Learning JUnit Basics: Our First Passing Test
	Arrange, Act, and Assert Your Way to a Test
	Is the Test Really Testing Anything?
	After

	2. Getting Real with JUnit
	Understanding What We’re Testing: The Profile Class
	Determining What Tests We Can Write
	Covering One Path
	Tackling a Second Test
	Initializing Tests with @Before Methods
	How Ya Feelin’ Now?
	After

	3. Digging Deeper into JUnit Assertions
	Assertions in JUnit
	Three Schools for Expecting Exceptions
	After

	4. Organizing Your Tests
	Keeping Tests Consistent with AAA
	Testing Behavior Versus Testing Methods
	Relationship Between Test and Production Code
	The Value of Focused, Single-Purpose Tests
	Tests as Documentation
	More on @Before and @After (Common Initialization and Cleanup)
	Green Is Good: Keeping Our Tests Relevant
	After

	Part II—Mastering Manic Mnemonics!
	5. FIRST Properties of Good Tests
	FIRST It Helps to Remember That Good Tests Are FIRST
	[F]IRST: [F]ast!
	F[I]RST: [I]solate Your Tests
	FI[R]ST: Good Tests Should Be [R]epeatable
	FIR[S]T: [S]elf-Validating
	FIRS[T]: [T]imely
	After

	6. What to Test: The Right-BICEP
	[Right]-BICEP: Are the Results Right?
	Right-[B]ICEP: Boundary Conditions
	Remembering Boundary Conditions with CORRECT
	Right-B[I]CEP: Checking Inverse Relationships
	Right-BI[C]EP: Cross-Checking Using Other Means
	Right-BIC[E]P: Forcing Error Conditions
	Right-BICE[P]: Performance Characteristics
	After

	7. Boundary Conditions: The CORRECT Way
	[C]ORRECT: [C]onformance
	C[O]RRECT: [O]rdering
	CO[R]RECT: [R]ange
	COR[R]ECT: [R]eference
	CORR[E]CT: [E]xistence
	CORRE[C]T: [C]ardinality
	CORREC[T]: [T]ime
	After

	Part III—The Bigger Design Picture
	8. Refactoring to Cleaner Code
	A Little Bit o’ Refactor
	Finding Better Homes for Our Methods
	Automated and Manual Refactorings
	Taking Refactoring Too Far?
	After

	9. Bigger Design Issues
	The Profile Class and the SRP
	Extracting a New Class
	Command-Query Separation
	The Cost of Maintaining Unit Tests
	Other Design Thoughts
	After

	10. Using Mock Objects
	A Testing Challenge
	Replacing Troublesome Behavior with Stubs
	Changing Our Design to Support Testing
	Adding Smarts to Our Stub: Verifying Parameters
	Simplifying Testing Using a Mock Tool
	One Last Simplification: Introducing an Injection Tool
	What’s Important to Get Right When Using Mocks
	After

	11. Refactoring Tests
	Searching for an Understanding
	Test Smell: Unnecessary Test Code
	Test Smell: Missing Abstractions
	Test Smell: Irrelevant Information
	Test Smell: Bloated Construction
	Test Smell: Multiple Assertions
	Test Smell: Irrelevant Details in Test
	Test Smell: Misleading Organization
	Test Smell: Implicit Meaning
	Adding a New Test
	After

	Part IV—The Bigger Unit-Testing Picture
	12. Test-Driven Development
	The Primary Benefit of TDD
	Starting Simple
	Adding Another Increment
	Cleaning Up Our Tests
	Another Small Increment
	Supporting Multiple Answers: A Small Design Detour
	Expanding the Interface
	Last Tests
	Tests As Documentation
	The Rhythm of TDD
	After

	13. Testing Some Tough Stuff
	Testing Multithreaded Code
	Testing Databases
	After

	14. Testing on a Project
	Coming up to Speed
	Getting on the Same Page with Your Team
	Convergence with Continuous Integration
	Code Coverage
	After

	A1. Setting Up JUnit in IntelliJ IDEA and NetBeans
	IntelliJ IDEA
	NetBeans

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Z –

